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§ 1 .  Introduction

Let p be an odd p r im e . We assume that all spaces are completed at p in the
sense o f  Bousfield-K an [4]. I n  th is  p a p e r , a  cohomology is  taken  w ith  Z/p-
coefficients unless otherwise specified. Let s ip  be  the mod p Steenrod algebra, and
Y  denote the category of unstable d p -a lgeb ras. The objects of Y  are called .)t'-
a lgebras. F o r  a  space X ,H * (X ) is a  Y -a lg e b ra . It is known, however, that a
of-algebra need not be o f the  form H*(X).

An algebra A  is said to be realizable if A  is a .*-algebra and  is represented as
the cohomology of some space, namely there exists a  space X with A  H *(X ) as
Y -a lgeb ras . The realizability of an  algebra is one of the m ajor problems in the
unstable homotopy theory . T here  are, indeed, many results, such as the Steenrod
problem, the Cooke conjecture, and others (cf. [1], [2], [3], [6], [8], [10], [11], [13]
and [16]).

In  this paper we investigate the  realizability o n  th e  following algebras for
m > 1:

= Z I p[x2p 2] 0 A ( Y2p 2 +1 Z2n7+ I )

with Steenrod operation action f l(x 2 2) = y 2p 2+ 1 . It is known that many spaces
realize the algebra Am . In fact, there is the following result due to Cooke-Smith:

Theorem 1.1 ([6; Thm. 1.1, 1.2, 1.4]). (1) For p, there is a space Y, so
that the cohomology

H*(Y,) A(U3 , U2p+1) Z  I P[U2p+211 (4p+2)

with < 1 (1 4 3 ) =  u2p + i  and fl(a2p+ i) = u2p+2.
( 2 )  F o r t h e  three-connected cover o f  Y ,  w h ich  is  d en o ted  b y  Yr<3>,

H *(Y r<3>) '= ' A t ( p + 1 ) - 1 ,  nam ely  f or 1 t  <  p ,  the algebra A,( p + 1 )_ , is realizable as
the cohomology.
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Here we note th a t  Y1 =  B 1 (p) an d  Yp  = K (p ) are H-spaces constructed by
Mimura-Toda [16] and H arper [10], respectively. Then /31(p)<3> and K (p)(3>
also have H-structures, and so we see that Ap and Ap ( p + o_ i are  realizable by the
cohomology of H -spaces. Our first result is concerned with the restriction for the
realizability of A m  as the cohomology of H-spaces.

Theorem A .  I f  A n , is realiz able as the cohom ology  of  som e H-space, then
m  = p  o r  p ( p  + 1 ) - 1 ,  a n d  m oreover A p H * ( B i( p ) <3 >)  and  A p ( p + 0 _1

H*(K(p)<3>) as Y (-algebras.

Concerning the general case, by Theorem 1.1, it is natural to show that if Am

is  rea lizab le  a s  th e  cohomology o f  so m e  sp a c e , th e n  m  = t(p + 1) — 1 for
1 < t  <  p .  W e have the following partial result under the assumption that 1 <
m < 2p 3 —1.

Theorem B .  A ssum e that 1  < m  < 2p 3
 —  1. I f  Am  is  re aliz ab le  as  th e

cohomology of some space, then m = t(p +1) — 1 f or som e 1 < t < p, and moreover
A t(p + o_ i H * ( Y t <3>) as Y (-algebras.

For p  = 2 , such a restriction as in Theorem  B  d o e s  n o t hold. In fact,
Aguadé-Broto-Notbohm [2] have constructed a  space Z  such  tha t the m o d  2
cohomology H* (Z) Z  I  2 [x 8 ] A ( y 9 )  with Sq l (x8) = y 9 ,  and so for any m  1 ,
A m  H * ( Z  x  S 2 m+1 )  is realizable as the cohomology.

W e guess tha t for m > 2/33 ,  the algebra Am  canno t be  rea lizab le  as the
cohomology, and the further study will be discussed in the forthcoming paper, in
which we need more complicated computations to determine the Jr-structure of
Am  fo r m > 2p 3 (se e  Proposition 2.4).

From Theorem A and Theorem B, we concentrate on the following algebras
for 1 < t < p:

A t ( p + o _ i H * ( Y t <3>) Z/p[x2p 2I A (y2p2 + 1,z2()-0-1)

with fi(x2p 2) = y2p 2+ 1 . Aguadé-Broto-Santos [3] studied the homotopy uniqueness
of Yi <3>, and they have shown that if there is a space X  with H * ( X )  A p  as
algebras, thenthen X  Y 1 <3> up to p-completion. We can generalize their uniqueness
result for any  1 < t  < p  as follows:

Theorem C .  For 1 < t p ,  i f  there is a space X  so that H* (X ) A i ( p + 0 _1 as
Jr-algebras, then X  is hom otopy  equivalent to Yt <3> up to p-completion.

By combining Theorem A, Theorem B and Theorem C, our results show that
for m  1 ,  any H-space which realizes A m  is  homotopy equivalent to B i(p)<3> or
K(p)<3>, and that for 1 < m < 2p' — 1, any space which realizes A m  is  homotopy
equivalent to Yt <3> for som e 1 < t < p.

This paper is organized as follows: In §2, we recall the Lannes theory about
the T-functor, and apply the theory to  the algebras Api . In particular, we de-
termine the Jr-structure of A „, to compute the T-functor. These results will be
essential in the latter sections. I n  §3, we prove Theorems A and B combining the



Homotopy classification 321

results of §2 with the spectral sequence argum ents. §4 is devoted to the proof of
Theorem C.

§ 2. Lannes T-functor of if-algebras

In  this section, we compute the Lannes T-functor o f algebra A„, for m > 1.
The results o f this section will be used in  §3  and § 4 .  L et us now recall some
properties o f  th is  functor. The L annes functor T : .Y1. i s  a  le ft adjoint
o f  t h e  functor H*(BZI p) — , t h a t  is, t h e r e  i s  th e  a d jo in t  isomorphism
Hom,r (T(A), B) H o m  s  (A , H* (BZ 1 p) 0 B) for *'-algebras A  and  B.

For a 1 -m a p  f  :  A  —> H*(BZ1p), its adjoint restricts to a .t -m a p  T (A ) ° —>
Z/p, w here T(A) ° i s  th e  subalgebra o f  T (A ) o f  elements o f  degree O. The
connected com ponent o f  T ( A )  corresponding to f  is  d e f in e d  b y  Tf (A ) =
T (A )0 T(A) OZI p, and there is the  na tu ra l .-m ap  e i  : A  —> Tf(A).

T h e  ev a lu a tio n  m ap  e: BZI p x Map(BZ/p, X ) —+ X induces a ( - m a p
e*, and taking the adjoint of this yields a .*'-map  :  T (H *  (X )) —> H*(Map(BZ/
p ,X ) ) .  O n the  component level, fo r  a  m ap 0 : BZIp—> X , there  is a  Y-map

: To .(H*(X)) —+ H*(Map(BZ/p, X) 0 ). The com posite .1.0 .co .  is induced by
the  evaluation at the base point eo: Map(BZ/p, X) 0 —> X .  T he  following the-
orem  is due to  Lannes:

Theorem 2.1 ([15; Thm. 3.2.1]). L et X  be a  space and 0 : BZI p —4 X be a
m a p .  I f  T0 .(H *(X )) 1 =  0 , then Ao . : To .(H*(X)) —> H*(Map(BZ/p, X) 0)  is  an
isomorphism.

L et Ps X  denote th e  s-th stage  o f the  Postnikov decomposition o f  X , and
j : X —> Ps X  b e  the  induced m a p .  Then {Map(BZ/p, P,X) 0, } is  a  tower with
Map(BZ/p, X) 0 =  lim Map(BZ/p,P sX ) ,  where 0, j s 0. T h e  following theo-

rem  is due to  Dror Farjoun-Smith:

Theorem 2.2 ([7; Thm . 1.1]). I f  X  is a  nilpotent space, then there ex ists an
isomorphism To .( H *(X )) lim H*(Map(BZ/p, P,X) 0‘ ).—s

Moreover, T f  can be considered as a functor from Y (A ) to  .7(' (T. ' (A )), where
,V (A ) denotes th e  subcategory o f  Y  whose objects have A-module structure
compatible with its underlying t'-structure.

W e also regard T f (M ) a s  a n  object o f  1( (A ) through the  natural 1-m ap
C f  : A  —> Tf(A) f o r  any '(A ) -a lg e b ra  M ,  a n d  e f : M  — > T f (M ) becomes a
morphism of Y (A )-algebras. It is w ell know n that T f  is  exact, and commutes
with suspensions and tensor products.

From  now  o n , w e apply the Lannes theory  to  th e  algebras A „ ,. For the
cohomology of an H-space, there is the following result due to Dwyer-Wilkerson:

Proposition 2.3 ([9; Thm. 3.2, Lemma 4.5]). If  X  is an  H-space with finitely
generated cohomology, and f  : f r (X ) —> H*(BZI p) is a  .Y'-m ap , then  e l

H*(X) —> Tf(H* (X ))  is  an isomorphism.



{ Y 2p 2 +1Z2p-3 for i = 0 and m  =  p —  2

for i =  1  and m =  p 2
 —  p — 1

(2.5) P (x 2 2) =
Y2p 2 +1Z2p 2 -2 p -1
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For the general case, we need to determine the J(-structure of Am  to compute
the T-functor.

Proposition 2.4. A ssum e that 1 < n i < 2p 3
 —  1. If  A m  i s  a  Jr -algebra, then

the following hold:
(1)

{ KZ2p + 2 p _ 1  f o r i = 0 ,  m =  p 2 + p —  1 and  lc = 0,12 
g ) P  (Y 2p 2 +1 ) =

(2) f l ( z 2 m + 1 ) 0 .
(3 )

2x 2
P

p
( f - 1 ) z2,„± i  mod I  f o r  i  =  3  a n d  = 0, 1

=
0 mod I f o r i 3,

where I  = (y 2p 2+ 1 ) denotes the ideal o f  A ,„ generated by  y 2p 2+ 1 .

P ro o f  First we prove (1). I f (x2 2) 0  0  for i = 0, 1, then

0 otherwise.

u p  to  unit. F o r  th e  dimensional reason, i f  'YP(y2 p 2+ 1 )  0  0 ,  then  m = 2p 2 — p.
p 2

 —  p  for which e 2 p 2 +  )  -  Z 4 p 2 _ 2 p ±  , ,YP (Y2p2+1 ) X2p2Z2p2_2p+l u p  t o  unit.
However, using the Adem  relation YPfi = Y l

igYP - 1  +  fi.,Y)P and by (2.5), we obtain
tha t Y P ( y 2 2 1 )  =  I /3YP -  I  (x 2 p 2 )  + A ( x 2 2) = O.

If (y 2 2 + 1 )  0  0 , then we have that m  = p —  1 or m  =  p 2 +  p —  1 for which
1 (Y2p2+ I ) VX2p2 Z2p- 1 or I ( Y2p2+ ) K Z 2 p 2 + 2 p _  for K, V E  Z / p .  However, if

m  = p —  1 ,  then applying the A d em  relation . P2Y1 _ +g ) g 4 to
y 2 p 2+ 1  and  by (2.5), we have the equation yx2

P
p 2 z2p _1 . '" 2 - P+ 1 (y 2 p 2+ 1 ) = 0 , which

implies that y =  0 .  When m  = p 2 +  p —  1, if K 0  0 , then we replace A— as
Z2p2±2p_ I •

Using the A dem  relation P,P2/3 = g' I /3gP2 - 1  + fl,W 2 an d  by  (2.5), we obtain
th a t  Y P2(y221) =  g ' 1/3YP2 - 1  (x2 p 2 )  =  0 .  For i 3 ,  Y P '  ( y2p 2+ 1) =— 0  b y  the un-
stable condition.

Next we prove (2). We assume that /3(z2117+i) 0 0, and deduce a contradiction
from  this assum ption. Let J = (y 2p 2+ 1 ,z2,n + i )  denote the ideal of A „, generated
b y  y 2 p 2+ ,  and z2m+1. For the dimensional reason, fl(z2m+1) J ,  and applying
t h e  A d e m  re lation  Y I flY ni = Yffl+ I /1 + inf3 n1+1 t o  z2,,,4.1, w e  h a v e  that

1,6 Y m (zzin+1) = (fi(z2m+i)) P  0 J . W e  s e e  th a t  )3 'n (z2m +i) J  since J  is closed
under the action of and thus for some k  > 1, we can write / 0 " 1(z2m+i) =
up to unit. However, we see that Y I /3Ym (z2m+i ) = (4 , 2 ) E J  and this causes a
contradiction. Therefore we conclude that fl(z2 „,+ 1 ) = 0.

Finally we prove (3). For the dimensional reason, g ) P  (Z2177+1) = 0 mod I  for
i = 0, 1 . I f  . P2 (z2,7+1) 0 0, th e n  ni > p 2 , a n d  w e  c a n  w r i te  Y P2 (z2in+i) =
OxP- I mod ! fo r  so m e  0 e Z / p .  A pplying th e  A d e m  relation ..)2P2/3 =2p2



Homo topy classification 323

Y l fig'P2 - 1  + 16,Y)P2 t o  z21 + 1 a n d  b y  (1 ), (2 ), w e  o b ta in  th a t  0 = 0 , a n d  so
YP2 (z2,n + i) — 0 m od/.

If (Z2m+1) 0, then m
o f  d p  since  . ' ( 2 2  +)  = 0
/1.X P ( f  I )

 Z 2 m + 1  M O d I  for A e Z  /P•2p

p3, a n d  so the ideal I  is closed under the action
f o r  i 0  b y  (1). W e  p u t  ,19 P 3  (Z 2m +1) =

Then applying the Adem relation

op 3 + i  (p — 1 )(13 3  —  —  I ) y.2pi
1=0 P3 —  Pi

to z 2 m + 1 ,  w e have the equation A(A — 1)x2
2

 p
P (

2
P  I )  z2m-1-1 = 0 mod /, where we used the

assumption that m  2p3 — 1 t o  show  that :-Y2P3 (z2m+i) = O. T his implies that
A = 0 ,1 . By the unstable condition, 9 /'''(z217+1) =  0 for i > 4. This completes the
proof.

F o r  th e  X --algebra A , ) , w i t h  . P 3 (z2m+1) = Ax1;p
( i

2
)  1 ) z2m+i mod/, w e use the

notation Al;;, ) f o r  A = 0 ,1 . A s  is  know n , H* (BZ 1 p) A ( w  1 ) Z  I P[(02] with
#(0)1) = CO2. N ow  w e define a  J(-map f  : — > H *  (B Z  1  p )  a s  f  (x 2 p 2) = (of'
and f  (y 2 p 2+ 1 ) = f (z2,„+ ]) = O.

Proposition 2.6 . A ssume th at 1 < in < 2p3 — 1.
(1) et- : T (4 13) ) is  an  isomorphism.
(2) Tf  (A  )) Z/p [X2p 2] ( y2 p  2 +1 W 2p 3+1 ),

given as

P
(Z2m+1) x2p 2 14. 2m-2p 3 + I -

P ro o f  The quotient m ap  g : A;;1, ) —> Z I p[x 2 p 2] is  a  1(.-map since the  ideal
J = (y  2p 2 + 1, z2m+i) O f A  )  generated by y 2p 2+ 1  an d  z2m)-1 is closed under the action
of d .  W e see  tha t g* : Hom yr(Z /p [x 2 p 2], H*(BZ1p)) — > Horn s  (4 ) , H * (BZ 1 p))
b e c o m e s a n  i s o m o r p h is m ,  a n d  b y  [1; L e m m a  3.21, T  (Z I p[x 2 p 2])
T „(Z 1 p[x2„2]) Z/p[x21,2] for a non-trivial 47.-map g :  Z  I p[x 2 p 2] —> H* (BZ 1 p).

If  Y l (y 2 p 2+ 1 ) 0 ,  then by Proposition 2.4, m = p 2 + p —  1 and . 1 (y 2 p 2+ 1 )  =
Z 2 p 2 +2 p - l•  In this case, the required conclusion holds by [13; Prop. 4.21. Thus we
assume th a t  Y l (y 2 p 2+ 1 ) = O. T h e n  th e  idea l I  = (y 2 p 2+ 1 ) is c losed  under the
action of the Steenrod algebra. First we compute the T-functor of B;;;) = i4 ii) // =
Z/p[x2 p 2] ® A(z2m+i). Since Ti  i s  exact, w e  h av e  th e  following commutative
diagram:

2

=

Then the following hold:

an d  ef : T f  (A P )  is

Ef (X2p 2  )  =  X 2 2 ,{

e.f ( Y 2p2 + I) — Y2p2 +I ,

0  — > Z2m+IZ I P[X 2p 2 ]

 

B;,1) Z 1 p [X2p 2] - >

   

0 T  (Z IZ  P [ X 2 p 2 ] )   T  f  ( B ; ; ; )  )

where the  horizontal arrows are exact sequences

z l p[X 2p2]

'1)o f .Y/(Al,,)-algebras.
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Ej

A B(„'),
1 0
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If 2  =  0 , then we have Tj (Z2m+1Z 1 P[X2p2]) .72/22+17f (Z/P[X2p 2 1) '"=" Z2n11-1Z1
(0)p [x 2 2 ] since z2„,+.1Z/p[x2e2]

m -F
L s '  

E 2 I

Z/p[X2p 2] as (Am  )-a lgeb ras and T f  com-
(o). imutes with suspensions. By the above diagram, ef : T f  B m  ) s  an  iso-

morphism.
F o r 2  =  1 , because z2,n+1Z/p[x2e2] E

2'n-2p3+1 P  Z  n rxX2p 2 / F L  2p2 i
1 as ( I ) . .Y ( (A „, ) -

algebras, we have that T (Z2m-FIZ 1 P[X2p 2 ]) W 2m-2p3+1Tf (X 2P  p2Z 1 P[X2p 2D ,  where
w2„,_2p 3+1 i s  an  element which has trivial d e -actions. If w e app ly T  to  the
following exact sequence:

Px 2 p 2 Z/P[X2p 2 ] —' Z /P[X 2p2 ] Z/P[X2P21/Xfp2 Z /P[X 2P2 ] )

T f (Z/P[X2p 2 ] /X fp2 Z/P[X2p2 ]) = Ci b y  [9; Prop. 2.31, w e see that
T f ( 4 e 2Z/P[x2e 2]) LL-= Tr (Z/p[x2e 2]) "-' Z/p[x2e 2]. By the above diagram, T f (B T ) 7=-
Z /p[X 2p 2 ] 0  li(w 2 ,n _2p 3+ 1) and Cf : B;,! ) —> Tf(BT) is given as

{ ef(X 2 p 2 )  =  X2p 2 ,

Et (Z2/21+1) — 4p2 W2m-2p 3 +1 •

Next we have the following commutative diagram whose horizontal arrows
are exact sequences of .7((A )-algebras:

then since

0 T  f  )1 2p  2 ± ) T f (A (
n '17 ) ) Tf (BT ) O.

Using the same argument as above, and by Proposition 2.4 , we have the required
conclusions. This completes the proof.

§ 3. Proofs of Theorems A and B

In this section we prove Theorem A  and Theorem B  using the spectral
sequence arguments. First, we study the non-realizability for the algebras AT,
which will be used in the proof of Theorem B.

Proposition 3 . 1 .  F o r  1 < 171 <  2p 3 —  1, 4 1) cannot be realizable as the
cohomology.

P ro o f  We assume that there is a space X so that H * ( X )  AT , and deduce
a contradiction from this assumption. By a  result of Lannes [15; Thm. 3.1.1],
there is a map 0  : BZ I p —> X such that 0* = f. By Theorem 2.2, we can choose
a  sufficient large s >  0  so that H * ( P , X )  A T  and H * (Map(BZ I p, X )  ) -._-
Tf(A,; ) )  up to dimension 2m  +  2 . Then, E j : A;,! ) T f  (AT) can be realized by
the evaluation map

e  :  Map(BZ/p, Ps X Ps X
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u p  to  dimension 2m + 2, and thus w e have the induced homomorphism for the
Bockstein spectral sequences:

e; , : { B ,(P,X ), {B, (Map(BZ/p, P,X) 0 , ), fi, 1.

We see that {z2m+1} c 13,(P,X) becomes a permanent cycle. On the other hand,
for e ({ Z 2 m -1 -1 } ) {Xl;p2w2m-2p3+1} E  B ,(M ap (B Z / p , P s X )0 ),  by [5; Thm. 5.41, we

r  p -1have fi2({xP2p2 W 2M-2p 3 +  1  } ) =  1 X 2 p 2 Y2p2+1 W 2n1 - 2P 3 + 1 } O. T h is cau ses a  contra-

diction, and thus A,(„I )  cannot be realizable as the cohomology.

Now we prove Theorem B as follows:

Proof of  Theorem B. We assume that Am  is realizable, that is, there exists a
space X  such that H* (X )  A m . This forces Am  =  A ;,  b y  Proposition 3.1. A
result of Lannes [15; Thm. 3.1.1 1 implies that there is a m ap q : B Z I p —> X  such
that 0* =  f .  W e  se e  th a t the evaluation m ap e0 : Map(BZ/p, X ) 0 —> X  i s  a
homotopy equivalence by Theorem  2.1 and Proposition 2.6. Let t :B Z Ip —*
Map(BZ/p, X) 0 b e  the adjoint of On, w here it i s  the multiplication of an
H-structure of B Z I p . T h e n  w e  have the following commutative diagram  of
fibrations:

(3.2)

B Z I  p   BZI p

01

EBZI p B2 ZI p

eo
X Map(BZ/p, X) 0 X 1 B 2 Z / p .

where X1 = (Map(BZ/p, X) h B Z I p  denotes the Borel construction.
We consider the Serre spectral sequence for the bottom fibration whose E2-

term is given as

E 2 * ' =  H* (B 2Z I p) 0 Am .

As is known, H* (B 2 ZI p) ZI p[h2 , 0] 0 A (/3 ,/2,, A ' P121 i 0 ) .  where
=  g I P '  • • • Y i and /72 denotes the fundamental class. From  the diagram (3.2),

w e have that r(X 2 2) = 4 ' A 2 +262p 2 +1 fo r  some decomposable element 6 2p 2+ 1  c
H* (B 2 Z I p ) , since f ( x 2 2) = (of and -r(cof2 ) =  Y A I P h ,  w here  T  denotes the
transgression.

W e  s e t  y2p 2± 2 p  =  (f ig i fir12 )P + Y 1/3(62p 2+1 ). Then, Y I fl(62p 2+1 ) does not
contain the term (fiY I fiti2 )P , and since j*(Y2p2+2p) = Y 113 (.i * ( 41 13112 + 6 2p2+1)) = 0,
there exists an element of total degree 2p + 2p —  1 which kills y 2p 2± 2 p  in the
spectral sequence.

But for the dimensional reason, the differentials d2p 2+1 and  d2p 2+ 2  cannot kill
the element y 2p 2+ 2 p , s ince  r(x 2 2) = Y 4 'fir/2 + ö 2 a n d  r(y 2p 2+ 1 ) = fig 41 fir/2 +
)8(62p 2+1 ). The only possibility is that m  = t(p + 1) — 1 for some 1 t p , and
the differential d2,( p + i ) kills y 2p 2+ 2 p . H e r e  z 2 ,( p + 0 _1 is transgressive, and

t , )-
T(z2t(p+1)-1) ()6'Y  ' P 112) 62t(p+1)
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for some 421(p + 1) E H*(B 2 ZI p) which does not contain the term (fig I flq2 )1. S in c e
the transgression is  commutative with the Steenrod operation, we see that

(3.3)
{ Y P (2.2p+1) = Y2p 2 +I

g  I (Y2p 2 +1) = Z 2 P(P+ 1) - 1

for t =1

for t = p,

an d  th e  o th e r  o p e ra tio n s  a c t tr iv ia lly  o n  A t(p + 0_ 1 . T his concludes that
A f (p + 0_ 1 H ( Y<3>) as i(-algebras by [6; Thm. 1.41. This completes the proof
of Theorem B.

The proof of Theorem A  is obtained by the modification of the proof of
Theorem B as follows. W e rem ark that the proof does not need the assumption
that 1 <  in <  2p 3 -  1  since  w e  do no t use Proposition 2.6.

Proof  o f  Theorem A .  W e assume that there exists an H-space X  such that
H * ( X )  Am . For the dimensional reason, we see that f :  H*(X) -> H*(BZI p)
is a Hopf algebra map. Then, the map ç : BZI p -> X becomes an H-map by [15;
Thm. 3.1.11 in the proof of Theorem B .  By Theorem 2.1 and Theorem 2.3, we
have th a t the evaluation map e0 : Map(BZ I p, X) 0  -+  X  is  a  homotopy equiva-
lence, and moreover the bottom  fibration of the diagram  (3.2) becom es an
H-fibration by [14; Prop. 3.31. Hence the Serre spectral sequence for this fibra-
tio n  h a s  a  differential Hopf algebra structure, and b y  the D H A  lemma [12;
Lemma 1-61, T(z2/(p+o-i) = („f0 1 fin2 )̀  -4-, C2 ,( p + i )  m ust b e  a primitive element of
H*(B 2 Z Ip ).  This im plies that t =1 ,p  and C2r(p+1) = O. B y  (3 .3 ) , w e  have that
Ap  H * (B i(p )< 3 > ) and  Ap ( p + I ) I  H * (K (p )< 3 > )  a s  Jr-a lgeb ras. This com-
pletes the proof of Theorem A.

§ 4 .  Proof of Theorem C

In this section we prove Theorem C .  Aguadé-Broto-Santos [3] proved that
the homotopy type of 171 <3> is determined by the g(-structure of its cohomo-
logy. W e w ill generalize their argument, and show th a t the same result holds
fo r  Y1<3> for any  1  <  p .  F irs t , w e  are  concerned w ith the homotopy
uniqueness of Yt itself, which will be used in the proof of Theorem C.

Proposition 4.1. For 1 < t < p, if  there is a space X so that H t (X )  H * (Y , )
as  Jr-algebras, then X  Y ,  up to p-completion.

First, w e can prove the following lemma using the killing methods for the
cohomology of Y1 :

Lemma 4.2. The homotopy groups rti ( )7
1)  for j  <  2t(p +1) -I- 2 are described

as follows:

ip (j =  3 ,2t(p  +1) -1 ),

Tr ( Y,) Z /P  ( . /  =  2 P2 , 2 P2 + 2 P - 3 ),
0 (otherwise j < 2t(p +1) + 2).
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Proof of  Proposition 4.1. From the cohomology o f Y, as in Theorem 1.1. the
cell structure of X  is represented as

x - s 3  u oci e2p+ I u lp1e 2p+2 u e 21)+4 u u  e 2t(p+I)+2

where al e 702;_ 3 (S ° ) Z / p  denotes the  genera tor. S ince  Y, has the  same cell
structute, there exists a  map p : X (2P+2) —> Y, such that p* : H*( H .(x (2p+2))

is an isomorphism up to dimension 2p -I- 2, where X 1k) denotes the k-th skeleton of
X .  Now we can extend p  to  X ( 2 P+4 )  since X ( 2 P+4 )  is  the cofiber of some attaching
m a p  s 2 p + 3  x ( 2 p + 2 )  and  n2p + 3(Y 1)  = 0 by Lem m a 4.2. Iterating this argu-
m ent, w e can  ex tend  p  t o  X (2 P2) ,  a n d  th u s  g e t th e  required conclusion for
1 < t < p.

W hen t  =  p ,  if C: S 2P2 X ( 2 P 2 )  denotes the attaching map of X ( 2 P2+1) , then
u s in g  t h e  k ill in g  m e th o d s , w e  s e e  th a t  7r2p2(X ( 2P2 ) ) Z p C) Z/p a n d  C,,
n2p 2(S2P2 ) —> n2p2(X ( 2P2) ) is  the  inclusion  on  the  first factor. B u t  w e see that
p : n 2p 2(X (2P2) ) m ( Y,,) becomes a projection on the second factor, and so pC
is  nu ll homotopic. T his ensures that p  is extended to  X (2P2+1) ,  an d  th e  same
arguments as above establish the map p : X  — > Yp which induces an  isomorphism
in cohomology. This completes the proof.

F or j  > 1, w e se t an  algebra

= Z/p[u2] A (u3, u2 + 1) Z/p[u2p+2]/(4p + 2 )

with /31 (u2) = u3, ,9 1 (u3) = U2p+1 and fl(u2p-i-t) = U 2 p +2 , where pi  denotes the  j-th
Bockstein operation. Then w e have the following:

Proposition 4.3. The X (-structure o f  C determ ined by  .9P(u2p + i). In
particular, Y P(u2p + i) = /1.14 ( P  1 ) u2p+i f o r A = 0, 1.

P ro o f  Using the Adem relations .9 19 1 = 20) 2 and  <91fiY 1 = f l y 2 y2/3 , w e

have .9 1 (u2p + i) =  9 1 (u2p+2) = O. S in c e  .9P(u2p + 2) = /3,9P (u2p+1) using the Adem
relation .9P/3 = .9 1/39P - 1  ± /3 .9 P, it is sufficient to determine .9P(u2p + i )  to establish
the Jr-structure of C .  W e  c a n  put

t--1
Y P(u2p+i) AuP(P-1)u2 ± E p(p -o -i(p+ I)

2 p+I piu2 u2p+IU2p+2
i=1

t-I
p2-1-i(p+I) i+ E K i u 2U 3 U 2 p + 2

i=0

for some A ,p,,K  E  Z / p . Since g) 1,9P(u 2 p + t )  = g) P+ 1 (u2p+1) = 0, we have p i =  0 for
1 < i < t — 1  and lc, = 0 fo r 0 < i  <  t  — 1 .  Finally, applying the  Adem relation

 +  y 2 p - l y 1  to  u2p+1 , we conclude that A = 0, 1, and this completes
the proof.

We use the notation C1
1 2 ) fo r  A -- 0, 1 for the Jr -algebras Cj  w ith  .9P(u2p + 1) =

2uf1 P - 1 ) u2p + i for A = 0, 1, respectively. For j  >  1 ,  we define a  J r - m a p  : C411) - 4
H *(B Z I p ) as f ( u 2 ) -= co2 and f ( u 3 )  =  fj (u2p + I) =  fj (u2p+ 2) = O. Then, w e have
the following results whose proof is almost the  same as Proposition 2.6.
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Proposition 4.4. (1) 84  : CT)T 4 (C T ) is  an isomorphism.
(2) T h ( ) Z I 13[112] A (u3, vi) 0 Z I F[v211(v), and e  : C(1 )T 4 (CP)

is  g iv en  as

8 6(112) = 1121{

86(143) = u3,

86 (112p +1) = 41, 1 ,

8 _6(142p+2) = 41)2.

For j  >  1, let Y,<3; pi>  denote the homotopy fiber of the map of degree

r<3; pi> — > Y, 4 K (4 ,3 ).

Then, for 1 < t < p, H* (Y ,<3; pi>) -= CT )  as .Y(-algebras, namely CT )  is realizable
as the cohomology. On the other hand, w e have the next result for the non-
realizability of Ar-algebras ei

l ) , which will be essential in the proof of Theorem C.

Proposition 4 .5 .  Fo r j > 1 , th e  X . -a lgeb ra  C (
j ,i )  ca n n o t b e  r ea liz a b le  as the

cohomology.

P r o o f  W e assume that there exists a  space X  such that H *(X ) = Ci
(1 ) ,  and

deduce a contradiction from this assumption. A result of Lannes [15; Thm. 3.1.1 1
implies that there is a map Of  such that 0; =L . By Theorem 2.2, we can choose
a  sufficient large s>  0  such that H*(/) ,X ) ' '  C  H*(Map(BZ/p ; P ,X ) )
T4(C (

J
1) ) up to dimension 2p2 +  2 p . Then, E4  : C j(1 ) —> 74(Cj

(1 ) ) can be realized by
the map

: Map(BZ/P, PsX)o, P s X

u p  to  dimension 2p2 +  2p, and w e have the induced homomorphism for the
Bockstein spectral sequences:

: {B,(Psx),fl,} {Bi(map(Bz/p, Ps x) 0),#,I.

W e  s e e  th a t  {u2p + 041, +
1
2 } e  B ,(P,X ) becom es a permanent cycle, w hile  for

e({u2p + 04,41
2 }) = fuVvi v - 1 1 E Bt(MaP(BZ/P,PsX)), by [5; Thm. 5.41, we have

fij + i (furvi v - 1 1 ) 0  0  fo r 1 t  < p , and fli + 2 ({U 2
P 2 Vill2

P - 1 } )  0  O. This causes a
contradiction, and w e have the required conclusion.

P ro o f o f  T heorem  C. W e assume that there  exists a  space X  such that
H * ( X )  A t ( p + o_ i as Jr-a lgeb ras. In the proof of Theorem A, we considered the
Serre spectral sequence for the following fibration:

X  ;=- Map(BZ/p, X) 0— > B 2 Z / p ,

where X1 = (Map(BZ/p, X) 0 )03z7p  denotes the Borel construction, in which the
transgression was described as t (x 2 2) = + 6 2 p 2+ 1  fo r  some decomposable
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element 452p 2+ 1 E H*(B 2 Z I  p ) .  Now we compute the cohomology of X ] . W e  set

6 2p2+1
p-2

fill2)P-1-1(P12)112"+i) IC(flq2)11f -
- I

i=0

P - 3

+ E u i ( a Y i p i , ) P - 2- i( Y 'f lu 2 )q ± l(P + 1) A (Y I fin ) 11P 2 - P.2  .2
i=0

for Oi ,K, ai , e  Z / p .  Since (x2p 2) =0, we have O i =  K = 0"; = 0 for 0  <  i < p  -
2, and so r(x 2p 2)= 41 13/72 -A( I fir/2 )142 - P  . Then r(,P (x 2p 2))= -1 ( (

4

ifiti2 )/4 2 - P  -

( 1fill2) 1122 P 2  2 P ). Since ,9"(x 2p 2) = 0, we have 1 =  0, 1. Computing the spectral
sequence, we have H*(Xi) C ,  th is  forces 2  =  0 by  Proposition 4.5. A  result
of Lannes [15; Thm. 3.1.1 1 im plies that there  is a  m ap 0 1 :  BZI p X 1 su ch
th a t  0 1*  =  A . T h e  eva lua tion  m ap  eo , : Map(BZ/p, X1) X ]  i s  a  hom o-
to p y  eq u iv a len ce  b y  T h eo rem  2 .1  a n d  P ro p o sitio n  4 .4 . L e t BZI P
Map(BZ/p,X1) 95, b e  the  ad jo in t o f 0 1,u , where p  i s  the m ultiplication of an
H -structure  of B Z I  p .  T h e n , w e  h a v e  th e  fo llow ing fibration by th e  same
construction as above:

X1 <-L  M ap(B Z/p,X 1) -÷  X 2 — >B 2 Z / P ,

where X 2  =  (Map(BZ/p, X1) 0 , 1 hBZI p denotes the Borel construction. Computing
,  

the spectral sequence a s  above, we conclude that H*(X 2 ) CT) ) . I te ra tin g  th is
process, we have the following sequence o f spaces and  maps:

satisfying H* (X ) L- A ,(1)+ 0_,, H * (X i ) C i ,i (*, = 0 and

il(u2) --- 0,{

ii  (u3 ) =  /43,

i; (U 2 p + 1 )  =  U2p+1,

for j  >  1 . If  w e  se t X ccl i m  X , there is the M ilnor exact sequence
•

0 liM i H * + 1  ( X  )
 

H * (X )-> lim  H * (X

Since lim I H*± 1 (X  )  =  0  b y  the Mittag-Leffler condition, w e  have H ( X )

lim H*(XJ ) H*( Y ,), a n d  s o  X c o Y ,  b y  P ro p o s itio n  4 .1 . L e t F  b e  the4— J

homotopy fiber of the com posite X, Y1, th e n  H * ( F )  H * ( K ( i p ,2 ) )  b y  the
spectral sequence argument, and this im plies that F  K ( i p , 2). B y  the coho-
mology, X 1 is homotopy equivalent to the homotopy fiber o f  [A : Y, -4  K ( i i ) , 3),

/ . ( 142p-1-2) = 142p+2
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namely we have X1Y , < 3 ;  p > . Therefore, we have the  following commutative
diagram of fibrations:

from which we have
Theorem C.

Yr<3;P> B2ZI p

Yr K(ip,3)

I[P ] I[P ]

K (4 ,3 )     K (p ,  3),

th e  required conclusion, and this completes th e  proof of

X

Yi <3 >
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