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§1. Introduction

Let p be an odd prime. We assume that all spaces are completed at p in the
sense of Bousfield-Kan [4]. In this paper, a cohomology is taken with Z/p-
coefficients unless otherwise specified. Let =/, be the mod p Steenrod algebra, and
A" denote the category of unstable .o7,-algebras. The objects of " are called -
algebras. For a space X, H*(X) is a S -algebra. It is known, however, that a
A -algebra need not be of the form H*(X).

An algebra A is said to be realizable if A is a / -algebra and is represented as
the cohomology of some space, namely there exists a space X with 4 =~ H*(X) as
A -algebras. The realizability of an algebra is one of the major problems in the
unstable homotopy theory. There are, indeed, many results, such as the Steenrod
problem, the Cooke conjecture, and others (cf. [1], [2], [3], [6], [8], [10], [11], [13]
and [16]).

In this paper we investigate the realizability on the following algebras for
m > 1:

Am = Z/p[xzpz] ® A(yz,,:H s Zam+1)

with Steenrod operation action B(xy,:) = yy,2;¢. It is known that many spaces
realize the algebra A4,,. In fact, there is the following result due to Cooke-Smith:

Theorem 1.1 ((6; Thm. 1.1, 1.2, 1.4])). (1) For 1<t < p, there is a space Y, so
that the cohomology

H*(Y,) = A(uz, uzp41) ® Z/P[“2p+2]/(“z;p+2)

with P'(u3) = uzpyy and Puzps1) = tzpa.

(2) For the three-connected cover of Y, which is denoted by Y,(3),
H*(Yi(3)) = Ayps1y-1, namely for 1 <t < p, the algebra A1)\ is realizable as
the cohomology.
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Here we note that Y, = Bi(p) and Y, = K(p) are H-spaces constructed by
Mimura-Toda [16] and Harper [10], respectively. Then B;(p){3) and K(p){3)
also have H-structures, and so we see that 4, and A4,(,,)-; are realizable by the
cohomology of H-spaces. Our first result is concerned with the restriction for the
realizability of A4, as the cohomology of H-spaces.

Theorem A. If A, is realizable as the cohomology of some H-space, then
m=p or p(p+1)—1, and moreover A, = H*(B\(p){3>) and Apps1)-1 =
H*(K(p)<3)) as A -algebras.

Concerning the general case, by Theorem 1.1, it is natural to show that if 4,,
is realizable as the cohomology of some space, then m=1t(p+1)—1 for
1 <7< p. We have the following partial result under the assumption that 1 <
m<2p’—1.

Theorem B. Assume that 1| <m <2p*—1. If A,, is realizable as the
cohomology of some space, then m = t(p + 1) — 1 for some 1 <t < p, and moreover
Aip+1)-1 = H*(Y,(3)) as A-algebras.

For p=2, such a restriction as in Theorem B does not hold. In fact,
Aguadé-Broto-Notbohm [2] have constructed a space Z such that the mod 2
cohomology H*(Z) =~ Z/2[x3] ® A(yy) with Sq'(xs) = y,, and so for any m > 1,
An = H*(Z x S?™1) is realizable as the cohomology.

We guess that for m > 2p3 the algebra A, cannot be realizable as the
cohomology, and the further study will be discussed in the forthcoming paper, in
which we need more complicated computations to determine the ¢ -structure of
A,, for m > 2p3 (see Proposition 2.4).

From Theorem A and Theorem B, we concentrate on the following algebras
for 1 <t<p:

Aypr1y-1 = H*(Y,(3)) = Z/P[xz,ﬂ] ® A(J’zp2+1 ) ZZr(p+1)—1)

with B(xy,2) = y,241. Aguadé-Broto-Santos [3] studied the homotopy uniqueness
of Y1{3), and they have shown that if there is a space X with H*(X) =~ 4, as /-
algebras, then X ~ Y;{3) up to p-completion. We can generalize their uniqueness
result for any 1 <t < p as follows:

Theorem C. For 1 <1t < p, if there is a space X so that H*(X) = A;(p41)-1 as
A -algebras, then X is homotopy equivalent to Y,(3) up to p-completion.

By combining Theorem A, Theorem B and Theorem C, our results show that
for m > 1, any H-space which realizes 4,, is homotopy equivalent to B(p){3) or
K(p){3), and that for 1 <m < 2p* — 1, any space which realizes 4,, is homotopy
equivalent to Y,{3) for some | <t < p.

This paper is organized as follows: In §2, we recall the Lannes theory about
the 7-functor, and apply the theory to the algebras 4,,. In particular, we de-
termine the ¢ -structure of A4,, to compute the 7-functor. These results will be
essential in the latter sections. In §3, we prove Theorems A and B combining the
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results of §2 with the spectral sequence arguments. §4 is devoted to the proof of
Theorem C.

§2. Lannes T-functor of £ -algebras

In this section, we compute the Lannes T-functor of algebra A4,, for m > 1.
The results of this section will be used in §3 and §4. Let us now recall some
properties of this functor. The Lannes functor T :.# — % is a left adjoint
of the functor H*(BZ/p)® —, that is, there is the adjoint isomorphism
Homy (T(A), B) =~ Homy (A4, H*(BZ/p) ® B) for .# -algebras 4 and B.

For a -map f : A — H*(BZ/p), its adjoint restricts to a 4 -map T(4)" -
Z/p, where T(A)" is the subalgebra of T(4) of elements of degree 0. The
connected component of T7(A) corresponding to f is defined by T7,(4)=
T(A) @740 Z/p, and there is the natural J-map & : 4 — Ty(A).

The evaluation map e: BZ/p x Map(BZ/p,X) — X induces a S -map
e*, and taking the adjoint of this yields a #*-map A: T(H*(X)) — H*(Map(BZ/
p,X)). On the component level, for a map ¢: BZ/p — X, there is a J-map
Ao+ Ty (H*(X)) — H*(Map(BZ/p,X),;). The composite i4-¢4 is induced by
the evaluation at the base point e;: Map(BZ/p,X), — X. The following the-
orem is due to Lannes:

Theorem 2.1 ([15; Thm. 3.2.1]). Let X be a space and ¢ : BL/p — X be a
map. If Ty (H*(X))' =0, then Ay : Ty(H*(X)) — H*(Map(BZ/p.X),) is an
isomorphism.

Let P;X denote the s-th stage of the Postnikov decomposition of X, and
Js: X — P;X be the induced map. Then {Map(BZ/p.P;X),} is a tower with
Map(BZ/p, X ), ~ lim Map(BZ/p. P;X), . where ¢ = jp. The following theo-

rem is due to Dror Farjoun-Smith:

Theorem 2.2 ([7; Thm. 1.1]). If X is a nilpotent space, then there exists an
isomorphism Ty (H*(X)) = lim H*(Map(BZ/p. P;X), ).

Moreover, Ty can be considered as a functor from #°(4) to A" (Ty(A4)), where
A (A) denotes the subcategory of #° whose objects have A-module structure
compatible with its underlying # -structure.

We also regard Ty(M) as an object of J#'(A) through the natural J#"-map
e A— Tp(A) for any #'(A)-algebra M, and er: M — Ty(M) becomes a
morphism of #'(A)-algebras. It is well known that 7; is exact, and commutes
with suspensions and tensor products.

From now on, we apply the Lannes theory to the algebras A4,,. For the
cohomology of an H-space, there is the following result due to Dwyer-Wilkerson:

Proposition 2.3 ((9; Thm. 3.2, Lemma 4.5]). If X is an H-space with finitely
generated cohomology, and f:H*(X)— H*(BZ/p) is a XA -map, then ¢y :
H*(X) — Ty(H*(X)) is an isomorphism.
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For the general case, we need to determine the . -structure of A4,, to compute
the T-functor.

Proposition 2.4. Assume that 1 <m < 2p3 — 1. If A, is a A -algebra, then
the following hold:

(1)
: KZyprpap_1 for i=0, m=p>4+p—1 and k=0,1
g)p(yzpﬂ):{ p2+2p—1

otherwise.

(2) ﬂ(22m+l) =0.
3)

ixzpz zz,,,+| mod/ for i=3 and 1=0,1

'@pi(zbn-ﬁ—l) = {
Omod/ Jor i #3,

where I = (yy,24,) denotes the ideal of A,, generated by y,,:,,.
Proof. First we prove (1). If 2P (x,,:) #0 for i = 0,1, then

Vap24122p-3 fori=0and m=p-2

(2.5) PP (xyp2) = {

y2p2+122p2_2p_1 fori=1and m = p2 —-p— 1

up to unit. For the dimensional reason, if 7”’(y2p +1) #0, then m=2p? — p,
p* — p for which 27 (Vapr41) = Zap2-2ps1, PP (V2p241) = X2p222p2_3p41 UP tO unit.
However, using the Adem relation 278 = 2'f2P~! 4+ p#P and by (2.5), we obtain
that 27 (yy,2,,) = 2' B2 (x2) + BP7 (xy:) = 0.

If @'(yzsz) # 0, then we have that m = p —1 or m = p> + p — 1 for which
g"(yz,,zﬂ) = VXp,222p-1 OF Wl(yzpur.) = KZppr49p-1 for k,veZ/p. However, if
m = p— 1, then applying the Adem relation Pr'p) = .@ lgpr® 4 propr’=rtl o
Vap241 and by (2.5), we have the equatlon vx2 2Zp-1 = = Pt '(yzp :41) = 0, which
implies that v=0. When m = p>+ p — 1, 1f Kk # 0, then we replace kzy,2,5,_ as
Z2p242p-1-

Usmg the Adem relatlon PrR = P popr- + B#”" and by (2.5), we obtain
that 2% (Ypr41) = P ppr- (le,)—O For i >3, #? (yzp-+,)—0 by the un-
stable condition.

Next we prove (2). We assume that f(z3,,41) # 0, and deduce a contradiction
from this assumption. Let J = ( Vap? +1,22m+1) denote the ideal of A,, generated
by yyy2y and zyyi. For the dimensional reason, f(z2n,41) ¢ J, and applying
the Adem relation 2!f2" = 2"+ mBP™' to zy,41, we have that
.@'ﬁ.@"’(zz,,,ﬂ) = (B(zams1))” ¢ J. We see that B2 (z2,11) ¢ J since J is closed
under the action of 2', and thus for some k > 1, we can write BP" (zayms1) = 5,,2
up to unit. However, we see that 2' 2" (z3,,,1) = 2! (x ,) € J and this causes a
contradiction. Therefore we conclude that f(zy,4+1) = 0 ‘

Finally we prove (3). For the dimensional reason, ,0]’”'(22,,,4,1) =0mod/ for
i=0,1. If ’?"2( Zome1) #0, then m > p? and we can write J’"’z(zz,,,H) =

()»c ,-2,,,+|modl for some 0eZ/p. Applying the Adem relation 9”5_
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PP £ BPP’ t0 zymy1, and by (1), (2), we obtain that 6 =0, and so
.”7’72(22,"4_1) =0mod][.

If Q"”(z;_mﬂ) # 0, then m > p3. and so the ideal I is closed under the action
of &, since W”'(yzpzﬂ) =0 for i>=0 by (l1). We put ?”3(22,,,“) =
ixé’lgf—”zz,ﬂﬂ mod/ for Ae Z/p. Then applying the Adem relation

r’ ;
PP’ pp’ — Z(_l)p3+i<(1’ - 1)21’3 _") - ])ghr‘—iy i
=0 pm—pi

to zamy1, we have the equation A(4 — l)xi” P~ i1 = O0mod I, where we used the

assumption that m <2p3 —1 to show “that 9’2”3(22,,,“) = 0. This implies that
A =0,1. By the unstable condition, 9""(22,,,“) =0 for i > 4. This completes the
proof.

For the . -algebra A, with 27’ (z2ms1) —Ax”(" Zomsrmod I, we use the
notation A% for A=0,1. As is known, H (BZ/p) = A(w1) ® Z/plwn] with
B(w) = w;. Now we define a #-map f: AL — H* (BZ/p) as f(xy2) = ”
and f(y2p3+l) f(22m+l) 0.

Proposition 2.6. Assume that 1 <m <2p3 — 1. Then the following hold:
(1) & : A,(,(,)) — T,(A,(,,)) is an isomorphism.
(2) Ty(AW) = Z/plxsp:] ® A(Vaprsrs Wom_aprs1), and e : ALY — Tp(AR)) s
given as
er(Xgp2) = Xpp2,
er(Vyp21) = Yaprors

8/(22m+|) 2,,-“ 2m=2p3+1-

Proof. The quotlent map ¢: A% — Z/plxyy:] is a A-map since the ideal
J=( Vap 241+ Z2m+1) Of A,(,, generated by y,,.,; and zy, is closed under the action
of /,. We see that ¢* : Homy(Z/p[xy,], H*(BZ/p)) — Hom (4", H*(BZ/p))
becomes an isomorphism, and by [l; Lemma 3.2], Ty(Z/p[x;:]) =
T,( Z/p[xzp-]) Z/plx;,2] for a non-trivial #-map g : Z/p[le,z] — H* (BZ/p)

If 2! (y2p241) # 0, then by Proposition 2.4, m = p*+ p — | and 2! (Vpr1) =

Zyp242p—1- In this case, the required conclusion holds by [13; Prop. 4.2]. Thus we
assume that 2!( Yap41) = 0. Then the ideal /= (y,,:,) is closed under the
action of the Steenrod algebra. First we compute the T-functor of B,(,',1 = m) /1=

Z/p(xy2] ® A(zams1). Since Ty is exact, we have the following commutative
diagram:

0 — 22/;1+|Z/P[x2p2] — :(;f) —_— Z/p[xzpz] — 0

[

0 — Tf(22m+lZ/p[x2p3] - T/( m) — Z/p[xzpz] — 0,

where the horizontal arrows are exact sequences of ¢ (A,,, )-algebras.



324 Yusuke Kawamoto

If 2=0, then we have Tf(Zz,,,+1Z/p[X2p:]) x~ Zz,,,+1Tf(Z/p[x2pz]) X~ 22,,,+|Z/
plxap] since zani1Z/ p(xyp] = Z*HZ/ plx,,e] as A (4))-algebras and Ty com-
mutes with suspensions. By the above diagram, e : o Tf(B,(,?)) is an iso-
morphism.

For A=1, because zyu11Z/plxy] ;22'"_2p3+]xgp2Z/p[sz2] as %/(A,(,:))-
algebras, we have that Ty(zamy1Z/p[xap2]) gW’zm_zp3+lT[(ngZZ/p[prl]), where
Wam-2p3+1 18 an element which has trivial of,-actions. If we apply 7, to the

following exact sequence:
X322/ plxap2] = Z] plxape] — Z/ plxy2] /x5 . 2] plxap],

then since Tf(Z/p[xzp:]/xgpzZ/p[xzpz]) =0 by [9; Prop. 23], we see that
Ty (x5,.Z/ plxye]) = Ty(Z/ plxyya]) = Z/plxye]. By the above diagram, Ty (B)) =
Z/plxyp] @ A(Wyy_2p341) and &y : B\ — Tf(B,(,})) is given as

er(Xgp2) = Xop2,
er(zamtr) = Xg,,zwzm-zpm-

Next we have the following commutative diagram whose horizontal arrows
are exact sequences of 4 (Af,’}))-algebras:

A A
0 — Yop2i1 B/(n) — I(M) — Birf

ok

0 —— Ty BY) —— THAY) —— Ty(BY) — O.

—5 0

Using the same argument as above, and by Proposition 2.4, we have the required
conclusions. This completes the proof.

§3. Proofs of Theorems A and B

In this section we prove Theorem A and Theorem B using the spectral
sequence arguments. First, we study the non-realizability for the algebras A,(,}),
which will be used in the proof of Theorem B.

Proposition 3.1. For 1 <m <2p3 -1, A,(,P cannot be realizable as the
cohomology.

Proof. We assume that there is a space X so that H*(X) =~ AW, and deduce
a contradiction from this assumption. By a result of Lannes [15; Thm. 3.1.1],
there is a map ¢ : BZ/p — X such that ¢* = f. By Theorem 2.2, we can choose
a sufficient large s > 0 so that H*(PX) = AW and H*(Map(BZ/p, PsX),) =
Tf(A,(,l)) up to dimension 2m 4 2. Then, &/ : A,(,!) — Tf(A,(,i)) can be realized by
the evaluation map

s, - Map(BZ/p. P,X)y — P.X
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up to dimension 2m + 2, and thus we have the induced homomorphism for the
Bockstein spectral sequences:

e;x {Bi(PsX), B} — {Bi(Map(BZ/pﬂPSX)q}j)’ﬂi}'

We see that {z3,4} € B;(P;X) becomes a permanent cycle. On the other hand,
for e; ({zamt1}) = {xgpzwzm_zpsﬂ}l € B(Map(BZ/p, P;X), ), by [5: Thm. 5.4], we
have ﬂz({xgpzwz,,,_2p3+,}) = {xgp_z VapriiWam—2p341} # 0. This causes a contra-

diction, and thus A{) cannot be realizable as the cohomology.
Now we prove Theorem B as follows:

Proof of Theorem B. We assume that A,, is realizable, that is, there exists a
space X such that H*(X) =~ A,,. This forces 4,, = A,(,?) by Proposition 3.1. A
result of Lannes [15; Thm. 3.1.1] implies that there is a map ¢ : BZ/p — X such
that ¢ = f. We see that the evaluation map ey : Map(BZ/p.X), — X is a
homotopy equivalence by Theorem 2.1 and Proposition 2.6. Let :: BZ/p —
Map(BZ/p,X),; be the adjoint of ¢u, where u is the multiplication of an
H-structure of BZ/p. Then we have the following commutative diagram of
fibrations:

BZ/p — BZ/p —— EBZ/p —— B’Z/p

(32) ‘ﬂ l l H

X «——— Map(BZ/p.X), — X —1— B2Z/p,

where X| = (Map(BZ/p, X),),pz,, denotes the Borel construction.
We consider the Serre spectral sequence for the bottom fibration whose Ej-
term is given as

Ey* = H'(B*Z/p) ® Ap.

As is known, H*(B*Z/p) = Z/p[n,, P pn,|i = 0 @ A(Bn,, P4 By, |i = 0), where
P4 = PP ... P and n, denotes the fundamental class. From the diagram (3.2),
we have that t(x;,2) = 24 By, + Oyp24y for some decomposable element 6,,:,, €
H*(B*Z/p), since f(xy:)=w) and t(w) )= P4 By, where v denotes the
transgression.

We set 73,249, = (B2'Bny)" + 2'B(03p211). Then, 2'B(5,:,,) does not
contain the term (S2!fx,)”, and since T (Papry2p) = P'B(* (P By, +395241)) =0,
there exists an element of total degree 2p?+2p — 1 which kills Yap242p 1D the
spectral sequence.

But for the dimensional reason, the differentials dy,>,, and dj,2,, cannot kill
the element yy,2,,,, since 1(xy,2) = 24 By, +03241 and T(yy,ey) = B2V B, +
B(d3p211). The only possibility is that m =1(p+ 1) — 1 for some 1 <t < p, and
the differential dy,(,1) kills Vapr42p-  Here zypy1)-) Is transgressive, and

7(221(p+1)—1) = (ﬁ«@lﬂﬂz)’ + Czr(p+1)
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for some ({yp11) € H *(B*Z/p) which does not contain the term (82'By,)". Since
the transgression is commutative with the Steenrod operation, we see that

PP(22p41) = Yypr41 fort =1
(3.3) { | P Pet
P (Vapr41) = 2p(p+1)-1 for 1= p,
and the other operations act trivially on Ayp41)-;. This concludes that

Aipiy-1 = H*(Y,(3)) as A -algebras by [6; Thm. 1.4]. This completes the proof
of Theorem B.

The proof of Theorem A is obtained by the modification of the proof of
Theorem B as follows. We remark that the proof does not need the assumption
that 1 <m < 2p* — 1 since we do not use Proposition 2.6.

Proof of Theorem A. We assume that there exists an H-space X such that
H*(X)~ A,,. For the dimensional reason, we see that f: H*(X) — H*(BZ/p)
is a Hopf algebra map. Then, the map ¢ : BZ/p — X becomes an H-map by [15;
Thm. 3.1.1] in the proof of Theorem B. By Theorem 2.1 and Theorem 2.3, we
have that the evaluation map e,: Map(BZ/p,X), — X is a homotopy equiva-
lence, and moreover the bottom fibration of the diagram (3.2) becomes an
H-fibration by [14; Prop. 3.3]. Hence the Serre spectral sequence for this fibra-
tion has a differential Hopf algebra structure, and by the DHA lemma [12;
Lemma 1-6], t(z(p41)-1) = (B2 pn,)’ + {o(p+1) must be a primitive element of
H*(B*Z/p). This implies that =1, p and Cup+1y = 0. By (3.3), we have that
Ap, = H*(B1(p)<3>) and Apps1)-1 = H*(K(p)<3>) as A -algebras. This com-
pletes the proof of Theorem A.

§4. Proof of Theorem C

In this section we prove Theorem C. Aguadé-Broto-Santos [3] proved that
the homotopy type of Y;(3) is determined by the J-structure of its cohomo-
logy. We will generalize their argument, and show that the same result holds
for Y,{3) for any 1 <t¢<p. First, we are concerned with the homotopy
uniqueness of Y, itself, which will be used in the proof of Theorem C.

Proposition 4.1. For 1 <1 < p, if there is a space X so that H*(X) =~ H*(Y,)
as A -algebras, then X ~ Y, up to p-completion.

First, we can prove the following lemma using the killing methods for the
cohomology of Y

Lemma 4.2. The homotopy groups n;(Y,) for j < 2t(p+ 1) + 2 are described
as follows:
z, (j=32u(p+1)-1),
n(Y) = Z/p (j=2p*2p*+2p-3),
0 (otherwise j < 2t(p+1)+2).
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Proof of Proposition 4.1. From the cohomology of Y, as in Theorem 1.1, the
cell structure of X is represented as

X ~ S3 Ual€2p+l U[p]e2p+2 Uéezp+4 U---u eZI(p+|)+2’

where «; c—nzsp_3(S°) ~ Z/p denotes the generator. Since Y, has the same cell
structute, there exists a map p : X(®*2 — ¥, such that p* : H*(Y,) —» H*(X%+2)
is an isomorphism up to dimension 2p + 2, where X(¥) denotes the k-th skeleton of
X. Now we can extend p to X@7+% since X(27*4) is the cofiber of some attaching
map &: S¥3 — X+2) and ny,,3(Y,) =0 by Lemma 4.2. Iterating this argu-
ment, we can extend p to X 27 and thus get the required conclusion for
I <t<p.

When = p, if {: S%" — X" denotes the attaching map of X2?*+1 | then
using the killing methods, we see that 7 (X®))>Z,®Z/p and (. :
732 (S%7) — 13,2 (X)) is the inclusion on the first factor. But we see that
p. : My (X¥9) — 1,,2(Y,) becomes a projection on the second factor, and so p(
is null homotopic. This ensures that p is extended to X 2+ and the same
arguments as above establish the map p: X — Y, which induces an isomorphism
in cohomology. This completes the proof.

For j> 1, we set an algebra
Cj=Z/pluz) ® A(us.uzp+1) ® Z/ pluzps2]/(u3,42)

with f(uz) = u3, ' (u3) = uzpy1 and P(uyps1) = ugps2, where B; denotes the j-th
Bockstein operation. Then we have the following:

Proposition 4.3. The X -structure of C; is determined by PF(uypi). In
particular, PP (uy,41) = lug(p_l)uz,,ﬁ for 2=0,1.

Proof. Using the Adem relations 2' 2! = 22 and 2'p2' = pP? + 2B, we
have 2'(uyp41) = P (uyp12) = 0. Since PP(uzpy2) = fPP(uzp+1) using the Adem
relation 27 = 2'BPP~! + PP, it is sufficient to determine 27 (u,41) to establish
the A -structure of C;. We can put

1
_ 2.p(p=1) p(p=1)=i(p+1) i
PP(uzp1) = Ay " ugpir + E pilty Upp 41Uy, s
i=1

1—1
2 ; .
L, Pi=1=i(p+]) i
+ E :K'u2 W3typyr
—

for some 4,p;. k€ Z/p. Since P' PP (uzp1) = PP (u3p41) = 0, we have p; = 0 for
l<i<t—1and ;=0 for 0 <i<t—1. Finally, applying the Adem relation
PPPP = 2P% + PP P! 10 uype1, we conclude that A= 0,1, and this completes
the proof.

We use the notation CE.A) for A= 0,1 for the A -algebras C; with 2?(uyp.)) =
luf(p_l)usz for 4= 0,1, respectively. For j > 1, we define a ¥ ™-map f;: CE.’U —
H*(BZ/p) as fj(u2) = w, and f;(u3) = fij(uyp+1) = fi(uzps2) = 0. Then, we have
the following results whose proof is almost the same as Proposition 2.6.
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Proposition 44 (1) &y : C( — T/(C( )) is an isomorphism.
@ T7,(C") = Z/plia] @ A, 00) ® Z/ ploa)/ (), and e 5 ) = T
is given as

ep(u2) = uy,
e (u3) = us,
& (uzps1) = U501,
ef(ups2) = ujvy.
For j > 1, let Y,{3; p/> denote the homotopy fiber of the map of degree p- :

Y,y — v, Y k(z,.3).
Then, for 1 <t < p, H*(Y,{3;p/>) = CE-O) as A -algebras, namely C&O) is realizable
as the cohomology. On the other hand, we have the next result for the non-
realizability of S -algebras Cm, which will be essential in the proof of Theorem C.

Proposition 4.5. For j > 1, the A -algebra Cﬁ.l) cannot be realizable as the
cohomology.

Proof. We assume that there exists a space X such that H*(X) ~ C;l), and
deduce a contradiction from this assumption. A result of Lannes [15; Thm. 3.1.1]
implies that there is a map ¢; such that ¢; = f;. By Theorem 2.2, we can choose
a sufficient large s > 0 such that H*(P; X) 5.) and H*(Map(BZ/p,P X)) =
TfJ(C( ) up to dimension 2p? + 2p. Then, ¢ A C(.I — Tf(C(] ) can be reahzed by
the map

ey, : Map(BZ/p, P;X), — PX

up to dimension 2p%+2p, and we have the induced homomorphism for the
Bockstein spectral sequences:

: {Bi(P:X).B;} — {Bi(Map(BZ/p, P;X), ), B:}.
We see that {u2p+|u2p +2} € B;,(P,X) becomes a permanent cycle, while for
e; ({uzpr1u3,1,}) = {4f'vivj™'} € Bi(Map(BZ/p, PsX),; ), by [5; Thm. 5.4], we have

B ({ud o105 '}) #0 for 1 <r<p, and B,({uf vlvg"l}) #0. This causes a
contradiction, and we have the required conclusion.

Proof of Theorem C. We assume that there exists a space X such that
H*(X) = Ayps1)-1 as A -algebras. In the proof of Theorem A, we considered the
Serre spectral sequence for the following fibration:

X < Map(BZ/p,X),— X\ — B*Z/p,

where X, = (Map(BZ/p, X)y),52/, denotes the Borel construction, in which the
transgression was described as 7(x;,2) = 24 By, +3dyp241 for some decomposable
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element 6,,2, € H*(B?Z/p). Now we compute the cohomology of X;. We set

Sapri1 = Ze(w B2 (Bna)ny Y+ ey

- Za,w 1) (2 By Y — W2 By

for 0;,x, a,,ieZ/p Since 2! (xzp )= 0 we have 0 =k =0g;=0for 0 <i <p-

2, and s0 7(xy,2) = PPy — AP Bry)ny 7. Then (2P (xy,2)) = — (P2 fy)n " —
(2" Bny)n; 2 2"’). Since 2”(x,,2) =0, we have A =0,1. Computing the spectral
sequence, we have H*(X) = Cfl), this forces 4 = 0 by Proposition 4.5. A result
of Lannes [15; Thm. 3.1.1] implies that there is a map ¢, : BZ/p — X, such
that ¢ = f;. The evaluation map e :Map(BZ/p, X1), — X1 is a homo-
topy equivalence by Theorem 2.1 and Proposition 4.4. Let 1 :BZ/p—
Map(BZ/p, X ')¢. be the adjoint of ¢;u, where u is the multiplication of an
H-structure of BZ/p. Then, we have the following fibration by the same
construction as above:

X\ & Map(BZ/p. X), — X, — B*Z/p,

where X, = (Map(BZ/p, X 1) Jnpz/p denotes the Borel construction. Computing
the spectral sequence as above we conclude that H*(X;) =~ C() Iterating this
process, we have the following sequence of spaces and maps:

X xSy A

satisfying H*(X) = A,p41y-1. H*(X;) = C;.i; =0 and

i (u2) =0,

i}*-(u3) = Uus,

i_;(u2p+l) = Upyt1,

i (U2p42) = Uzpi2
for j>1. If we set X, = l_iij,-, then there is the Milnor exact sequence

0= lim' B (X)) = H* (X0) — lim H(X;) - 0.
J J

Since 11m H**‘(X ;) =0 by the Mittag-Leffler condition, we have H*(X,) =

lim H* (X)~H (Y), and so X, ~ Y, by Proposition 4.1. Let F be the
—J

homotopy fiber of the composite X; — Y. then H*(F) =~ H*(K(Z,,2)) by the
spectral sequence argument, and this implies that F ~ K(Z 2). By the coho-
mology, X, is homotopy equivalent to the homotopy fiber of [p]: ¥, —» K (Z,,,3),
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namely we have X; ~ Y,(3; p>. Therefore, we have the following commutative
diagram of fibrations:

X — Y&p — BZ/p

| | l

Y3y — Y, K(Z,,3)

T

x  — K(Z,3) —— K(Z,,3),

|

from which we have the required conclusion, and this completes the proof of
Theorem C.
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