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On the mod 3 homotopy type of the classifying space of a
central product of SU(3)’s

By

Antonio VIRUEL

1. Introduction

Let SU(3) be the compact Lie group of special unitary complex matrices of
order 3. It is well known that the center of SU(3), namely I', is isomorphic to
Z/3 and it is generated by the matrix (®,w.w) where w € C such that w* = 1 and
w # 1. The compact Lie group SU(3,3) is defined as the central product
SU(3) xz;3 SU(3), i.e., as the quotient

SU(3,3) = SU(3) x SU(3)/4

where 4 is the subgroup of SU(3) x SU(3) generated by the elements (4, A) such
that 4 eI

The group SU(3,3) plays an important role when studying the homotopy type
of the classifying space of the exceptional compact Lie group of rank 4, Fj,
at primes greater than 3 (see [17] and [6]), and specially at the prime 3 (see
[21]). This justify a deep study of the structure of SU(3,3), as well as those of its
classifying space BSU(3,3), at the prime 3.

Our first result describes the mod 3 cohomology of SU(3,3) as Hopf algebra.

Theorem 1.1. H*SU(3,3) =F3[y2]/y23®AF3(x1,x3,x§,x5), where subindex
indicates degree. Moreover, the Hopf algebra structure is given by the reduced
diagonal map

/
a X] X3 X3 Xs 32

417(0) 0 [ 9, ®x1 | 3, ®x1 | 1, ®(x3—x3)| 0

Proof.  See Section 3.

Then we calculate the mod 3 cohomology of the classifying space of
SU(3.3),BSU(3,3).
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Theorem 1.2. There is an algebra isomorphism:

H*(BSU(3,3);F3) = F3[y,, ¥4, y5, W8, Y12, Y1s] ® Ar, (3. ¥7, ¥9)/ R

where |y;| = i,|ws| =8 and R is the ideal generated by

Y2¥3 Y3Va, Y27, Yaws + V3 )7,
Y1Ya — V3Vg, Y3Vg + Y2Ve, WsVs4+ V3o, YaYo.
Y1¥g: Y8 Yo, Ws Vg — Y1¥o.  V3Vis — Vi + V3Vavi — yivia-

Wle also know that By, = 3. By, = ws, Bys = s, ?‘yz =y Plys= -y + ¥3,
Py, = w} +3ylzy§- P yis = ViVis — vavayd PPyr= yiyia+ yawd Plwg =
wgy, and Py, = J’lz(yg - ¥Y12)-

Proof. Consider the universal fibration

SU(3,3) — + — BSU(3.3)

and let (E}*,d,) be the mod 3 Eilenberg-Moore spectral sequence converging to
H*BSU(3,3). This spectral sequence starts as

Ez* = Cotor;’.su(3‘3)(F3, F})

In Section 4, Theorem 4.9, we calculate this E; term. In Section 5, we prove that
all the possible differentials vanish and therefore the spectral sequence collapses at
the 2-stage.

To finish, we should calculate the algebra structure. In order to do that, we
first calculate the mod 3 invariants by the action of the Weyl group on the
cohomology of the maximal tori (Section 6). Using that information we finally
calculate the algebra structure as well as part of the Steenrod algebra structure in
Section 7.

According to [17], the homotopy type of BSU(3,3) is determined, up to
completion, by its mod p cohomology at primes different from 3, for in that case

BSU(3,3), ~ (BSU(3)"),,  p#3.

In this note, we use strongly Theorem 1.2 to prove that BSU(3,3) is de-
termined up to completion by its cohomology at the torsion prime 3, as well.

Theorem 1.3. Let X be a 3-complete space such that
H'(X;F3) ~ H*(BSU(3,3);F3)

as algebras over the mod 3 Steenrod algebra. Then X is homotopy equivalent to
BSU(3,3) up to 3-completion.

Proof. See Section 10.

A different question is whether or not the homotopy type of a compact Lie
group or p-compact group is determined by the Weyl group representation. The
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concept of p-compact group, a homotopy theoretic generalization of compact Lie
group, was introduced by Dwyer and Wilkerson in [4]. A loop space X is said to
be a p-compact group if X is F, finite, p-complete, and X is a finite p-group.
Then p-compact groups are shown to admit maximal tori in the sense of Rector
([19], [4]) and the Weyl group of X, Wy, is defined as 7yWy, where Wy is the
space of self-maps of BTy over BX, if BTy — BX is the maximal torus of X.
The p-adic representation of the Weyl group as a pseudo reflection group is
therefore obtained as Wy — Aut (Hy(BTx:Z})).

Moller and Notbohm have considered the torsion free case: [15]. Here we
have considered again the case of SU(3,3).

Theorem 1.4. Let X be a connected 3-compact group with the same Weyl
group type as SU(3,3). Then BX and BSU(3,3) are homotopy equivalent up to
3-completion.

Proof. See Section 10.

This result allows us to determine the integral homotopy type of BSU(3,3) in
the following sense:

Corollary 1.5. Let L be a connected finite loop space with maximal torus and
Weyl group W, such that the integral representation of Wy is conjugate to that of
Wsua,3)- Then BL is homotopy equivalent to BSU(3,3).

Proof.  See Section 10.

Organization of the paper. The paper is organized as follows. In Section 2
we describe the mod 3 cohomology of PU(3") and BPU(3) as it will be usefull for
following calculations. In Section 3, we prove Theorem 1.1. In Section 4 we
calculate the E>-term of the Eilenberg-Moore spectral sequence associated to the
universal fibration of BSU(3,3). In Section 5 we prove that the Eilenberg-Moore
spectral sequence cited above collapses at the E>-term. In Section 6 we deal with
the action of the Weyl group of SU(3,3) on a maximal torus. In Section 7 we
determine the algebra structure of H*(BSU(3,3);F;). In the following sections
we follow the ideas in [3] to prove Theorems 1.3 and 1.4. In Section 8, given a
3-complete space X, with the same cohomology as BSU(3,3), we construct a
couple of principal fibrations that allow us to compute the cohomology of X{3},
the 3-connected cover of X, additively. In Section 9 we compute the algebra
structure of H*(X{3};F;) so obtaining X {3} ~ (BSU(3)2)§. In the last section
we prove Theorems 1.3 and 1.4, as well as Corollary 1.5.

Notation. Here .73 is the mod 3 Steenrod algebra, all spaces are assumed
to have the homotopy type of CW-complexes, and completion means Bousfield-
Kan completion. Given a space Y, we write H*Y for H*(Y:F3),Hy,(Y) for
H*(Y,Z7)®Q and Y, for the Bousfield-Kan p-completion of the space Y.
We write “Bss’ for the Bockstein spectral sequence, “EMss” for the Eilenberg-
Moore spectral sequence and “*Sss” for the Serre spectral sequence. The symbol
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Ar is used to denote an exterior algebra over the coefficient field F. Given a
group A and an A-module M, we denote by #*(A4; M) the cohomology with
twisted coefficients.

Acknowledgements. To finish the introduction, it is a pleasure to thank C.
Broto, S. Klaus, M. Mimura and D. Notbohm for interesting suggestions and
conversations. The author also thanks the referee for the improvements suggested
in the exposition of the paper.

2. The groups PU(3) and PU(9)

The compact Lie group PU(3") is defined as the quotient SU(3")/I", being I"
the center of SU(3"). The Hopf algebra structure of the cohomology of PU(3")
appears in [2].

Theorem 2.1. There is an algebra isomorphism:
H*PU(3") = F3[5]/9"" ® Ap, (%1, %3, ..., X23-2),

where |x;| =i and |p| =2. The Hopf algebra structure is given by the reduced
diagonal map

a | x X2i_1 V2

day| o | oo ()7 @xym | 0

The cohomology ring of BPU(3) is given by Kono, Mimura and Shimada
in [7):

Theorem 2.2. There is an algebra isomorphism:

H*BPU(?)) =~ F3[t2, 13, t12] ® AFJ(Z3, 17)/.]

where |t;| =i and J is the ideal generated by tt3,tt; and t3t7 + trls.
The Steenrod algebra structure was calculated by Kono and Yagita in [8]:

Theorem 2.3. The Steenrod algebra action is determined by the following
relations

ptr = 3, Bt =15,
?ll‘3:t7, !?ltlzzl‘é-l-[]zt%,

23
Pt = ity + 1314, Pty = 1312, Pty = (85 — 12).
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Then the groups PU(3) and SU(3,3) are related by the following commu-
tative diagram

/3 —— 13

| |

SUB3) —— SUB3)? —= SU(®3) (1)
| l
SU(3) —— SU(3.3) -2 PU®3)
where all the rows and columns are exact sequences and 7; is the projection of the
i-th factor. Moreover, the short exact sequence
SU(3) — SU(3.3) 25 PU(3)

has a section s: PU(3) — SU(3,3) that maps the class [4] to the class [4, A].
Hence the induced fibration

BSU(3) — BSU(3,3) 2% BPU(3)

has also a section and therefore it proves

Lemma 2.4. The maps B} and @i} induce a monomorphism in cohomology.

This lemma is quite useful as we know H*PU(3) as well as H*BPU(3), and
we want to calculate H*SU(3,3) and H*BSU(3,3).

We are also interested in the relation between PU(9) and SU(3,3). Let g
denote the composition

SU3) x SU3) 24 SU@3) x SU(3) x SU(3) — SU(9),

then ¢ induces the following commutative diagram
7/(3) —— SU(3) x SU(3) —— SU(3,3)
| | | @
7)9 —— SU(9) —— PU(9)

which will allow us to calculate the structure of H*SU(3,3).

3. The Hopf algebra structure of H*SU(3,3)

In this section we prove Theorem 1.1. In order to do it, we use the in-
formation about PU(3) and PU(9) stated in the previous section as well as the
diagrams relating those spaces with SU(3,3). Now, the proof of Theorem 1.1
follows as
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Proof of Theorem 1.1. By Lemma 2.4, we know that the fibration

SU(3) — SU(3,3) 25 PU(3) (3)

has a section and 7 is injective. An easy analysis of the mod 3 Sss associated to
fibration (3) shows that this spectral sequence collapses at the 2-stage and therefore

H*SU(3,3) = F3[1,)/y; ® Ap,(x1,x3, x5, x5),

where subindex indicates degree. Moreover, the generators can be chosen such
that 7;(X1) = x1,7(p) = y, M (X3) = x3 and 7(X3) = x3. Therefore we know that

a | x x3 x3 V2

$a)| 0| »m®xi|»®x |0

and Bx| = y,, and fx; = Bx} = y3.
To calculate the reduced diagonal of the element xs, we use the information
about PU(9) as follows: diagram (2) induces a diagram of principal fibrations

SU(3) x SU(3) —— SU(3,3) —— BZ/3

R

SU(9)  —— PU() —— BZ/9.

Comparing the mod 3 Sss sequences associated to both fibrations, we can easily
deduce that g*: H*PU(9) — H*SU(3,3) is trivial on all the generators of
H*PU(9) but in the cases §*(y) = y,,d"(X3) = x3 —xj and §*(Xs) = +xs. We
can assume that §*(xs) = xs, therefore

$(xs) = §(g"(%s))

= (9" ®3")(¢(%s))
=" ®4)(0* ® %~ ® %)
=y, ® (x5 — x3)

which finishes the proof.

4. The Cotor* calculation

Let o/ ~H*SU(3,3) as coalgebras. In this section we calculate
Cotor},(F3,F3), and to do that, we construct an injective resolution of F3 over </
using the same construction and the same notation as those in §4 of [12].

Consider L = of the submodule generated by {y,, y%,xl,x},z;,)q} where
z3=—x}. Let 0: o — L and 1: L — &/ be the natural projection and the in-
jection respectively, such that 100 =1,.
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Consider sL = {c3, ¢s,ay, a4, bs, be} the suspension of L, and define 0 : .o/ — sL
by =500 and, T7:sL —» o by i=10s5"".

Let T(sL) be the free tensor algebra over sL with the (natural) product
Y. Consider the two sided ideal I of T(sL) generated by Imy o (0® 0)o
#(Ker6). Then I is generated by:

lai,aj]. [ai b)), [ai,cs], [bics], [a 3],
[a4, (‘3] — Cs5ay, [b4, C3] + ¢sa;.  and [b6, (’3] + ¢s(as + bs),

where [, ] = aff — (—1)"Bo with n = deg («) deg (B).
Put C=T(sL)/I and we can now construct the twisted tensor product

W = 4o ® C with respect to §. That is, W is an &/-comodule with a differential
operator

dp =1®dc+((1®@Y)o(1®I®1)o(¢®1)),

where dc is defined as

de = Yo (@®B)odol.
In our case, dy and d¢ are given by:
dw(x1) = 1 ®ay,
dw(x3) =1®as + y, ® ay, dw(z3) = 1 @ bs + y, D as,
dw(xs) = 1 @ bs — y, ® (as + by),
dw(n)=1®c,  dw(¥3)=1®cs—y Qa,
dc(az) =0,
dc(as) = —c3ay,  dc(bs) = caa,
dc(bs) = c3(as + ba),
de(e3)=0  and  dc(es) = c2.

Now we define weight in W as follows:

Weight | 0 | 2| 2|4 1]2

o X1 { X3 ]| 23| X5 | Vol V3

C a ag b4 b(, C3 Cs

and the weight of a monomial is the sum of weights of each element.
Define a filtration F, = {x|weight(x) <r} and put EgW =" F;/F,_;. Then
it is easy to see that:

EoW = Ar,(x1,x3.23,x5) ® F3[ay, as, ba, bg) ® C(Q(y,)),
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where C(Q(y,)) is the cobar construction of Fi[y,]/y3. Now the differential
formulae imply that Ey W is acyclic, and hence W is acyclic. So W is an injective
F3-resolution over &/. Consequently we have:

H(C : dc) = COtOI‘;(F3,F3).

In what follows, we denote d¢ simply by d.

In order to calculate H(C : d), we follow the ideas in [13]. Call y, = a4 + bs,
then we have an additive isomorphism between C and T'(c3,¢s) ® Fi[az, aa, vy, bs).
Thus {cl'cPalalylbl|I;e N} is a basis of C.

Define a new weight in C by

we) [ 11|11 ]1]2

o a | as | ys| bs | c3 | cs

and for a monomial a; ...oz,,,v
(o ...ap) = (o) + - + w(ay).

For. an element x = > A;x;, where x; is a monomial and 4; € F3, we define the
weight of x as the infimum of the weights of the x;’s. Then the filtration
F" = {x|w(x) > r} gives rise to a spectral sequence {E,,d,} such that Ey = C and
Eo = H(C : d), namely converging to Cotor},(F3,F3).

Notice that the only non trivial dy is do(cs) = ¢3, therefore

Lemma 4.1. We have
E\ = F3[ay,as, y4, bs, ws] ® AR, (c3)
Now, the only non zero d; are dj(as) = —c3ay and d)(bg) = ¢34, thus
Lemma 4.2. E, = F3[a}, b}, ws] ® A, where
A= {1, yg,azbg,qafb(,,c;;afbé}Fg[az, Va)
@ {7, c2aabs, e3b5, ¢34, b5 }F3[ vy
@ {c3, y4}F3,
being y; = c3as — csay and yg = abe + y,aa.

To handle 4>, we introduce an auxiliary derivation ¢ on the subalgebra
F3[a2,a4,y4,b6] of C as

Oa) | O] —ax | O | ys

o a ag Va | be

Then, the derivation ¢ has the following properties:
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Lemma 4.3. For a polynomial P e F3|ay, a4, y4.be] we have:
1) 6*P=0,

2) [C3,P] = —C5(5P,

3) dP = c30P + ¢50°P.

Proof. (By induction.) Suppose that 6*P = 0 holds for any polynomial P of
degree up to /. Then:

B(xP)=8x-P+x-6°P=0.

Thus 6°P = 0 holds for a polynomial of degree /+ 1.
Suppose that [c3, P] = —c¢s0P holds for any polynomial P of degree up to /.
Then:

[e3,xP] = [e3, x]P + x[c3, P] = —¢s0x - P — xc50P = —cs50(xP).

Thus the relation holds for a polynomial of degree /+ 1.
Suppose that dP = ¢30P + ¢s6%P holds for any polynomial of degree up to /.
Then:

d(xP)=dx-P+x-dP
= (€30x + ¢502%) P + x(c30P + ¢50°P)
=c30x- P+ csd’x - P+ (c3x — ¢50x)0P — csx0*P
= 30(xP) + c50%(xP).
Thus the differential formula holds for a polynomial of degree /+ 1.

This derivation has “enough” information about the differential d as the
following shows.

Lemma 4.4. Let P be non trivial in F3|ay,as, y4,be). Then P is a non trivial
cocycle if and only if 6P = 0.

Proof. 1If P is a cocycle then dP = 0. Then by the differential formula, we
have 6P = 0.

Conversely, if dP =0, so does 5°P, therefore we have dP =0 by the dif-
ferential formula. Since P contains neither ¢3 nor c¢s, it is not in the d-image,
hence it is a non trivial cocycle.

Now, Lemma 4.3 gives rise to the formulae
y752P =d(a;P — a40P), wgd2 P = d(—c3P — ¢56P),
which together with the d2-image:
a} = 0% (—aj), azyy = 0% (asbe).
V=8 (=b)).  aryg = (~albs),

Yavg =0%(~asbg).  yi=0(ajh),
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proves the following lemma:
Lemma 4.5. The only non trivial dy are:
d(abg) = y1yi,  daeai) = weay,  da(c3azbg) = wy g,
d2(03a§b6) = Wy ygaz, dr(—c3asbe) = wyaz yy,
dz(c3b§) = wsyf, and dz(C3a4b§) = Wgy4)g-
Thus,
Lemma 4.6.
E3 = Filag, bg] ® ({1, ys, y3 }F3[az, y4]
® {3, y7, W8, Yo, arws, Y47, Yaws, ws yg }F3[ws]).

When we put y,, = a; and y ;g = b}, all the generators are permanent, hence
E; = E,, and we have proved

Proposition 4.7. We have an additive isomorphism
Cotory (F3, F3) = ({1, yg, i} Fs[az, v,
® {3, y7, W8, Yo, arWs, 4 ¥7. Yaws, ws ¥} F3[ws]) ® Falyya, yyg).
Now, it is easy to get the algebra structure of Cotor},(F3,F3) as
Proposition 4.8. Cotor,(F3,F3) is commutative.
Proof. To begin with, we have the following d-images:
3 =des.  yi=d(csai),  ys =d(esby),
[e3, y7] = d(csaa), [c3,wg] = d(c3), [c3, yo] = d(—csbs),
(y7,ws] = d(c3as),  [y7, 3o = d(=csasbg),  [yo,ws] = d(c3be)-

In C,[c3, P] = ¢s6P holds for P e Filay, a4, yy, bs), hence if P is a cocycle we
have [c3, P) =0. Therefore commutativity holds in Cotor’,(F3,F3).

And we have the following d-images:
3 =des,  y}=d(csaj),
s =d(eshg),  ¢6°Q =d(6Q).
9020 = (a0 — a0Q),  wsd?Q = d(—c30 — ¢50Q),
99020 = d(bedQ — y40),  c3ay = d(ba),
aayg=dbs),  ya = d(&),

Y1Vg = d(_“3b6)~ YoVa = d(bé)’



The mod 3 homotopy type of BSU(3,3) 259

Yoyg = d(—asbg),  c3y; + aywg = d(csay),
c3yg + Yoy, = d(aabs), Y1Y4 + Yoy2 = d(aabs),
Wws Vg — Y79 = d(—csaasbs), wg Vs + Yoc3 = d(csbe).
Finally, note that the elements which are 0 as polynomial in Fi[az, a4, vy, be)
are generated by y3 — a3y, — y3yi, hence we have proved:
Theorem 4.9. For o/ = H*SU(3,3), we have as algebra:

Cotory,(F3, F3) = F3[az, y,. yg. ws, V12, ¥15] ® AR, (c3. ¥7. ¥9)/ R,
where R is the ideal generated by:

c3ay, C3Y4, Y742, Y1y
YoJXa, Yo JVsgs c3y7 + axws, c3yg + Vo)
V7Va+ YoV WV — Y7V, WsVs+ YoC3, Vi —a3Vig— ViVia-

Corollary 4.10. We have
Cotor;, (F3.F3) = (4 + B) ® F3[y,3, y1]

where A = {1, yg, y2}Fs(az, ys) and B ={1,ay,c3. y4, ¥7, Vg, Vo, ¢35} F3wg].  More-
over, ANB={l,as, y4, y3}F3.

5. The spectral sequence collapses
In this section we prove that the EMss associated to the fibration
SU(3.3) - x — BSU(3,3),

namely (EX*,d,), collapses at the 2-stage. We prove that all the possible dif-
ferentials vanish and therefore the spectral sequence collapses at the 2-stage.

The description of the Ej-term, Cotory,.gy s 3)(F3,F3), appears in Theorem
4.9.

The classes a; and c3 of Cotory.gy ;3 (F3.F3) are the transgressions of the
classes x; and y, of H*SU(3,3), so they are permanent cycles.

Since d,y, is of degree 5 and CotorZ.SU(3v3)(F3,F3) =0, y, is a permanent
cycle.

In the mod 3 Sss associated to the fibration

SU(3,3) - x — BSU(3,3),

we use Kudo’s Theorem and obtain a non trivial element f2'c; € HBSU(3.3),
hence H'BSU(3,3) # 0. The only element of degree 7 in Cotory. sy 3 3 (F3. F3) is
y7. s0 it is a permanent cycle and represents 2'c;.

The elements d, yg and d,wg are of degree 9. The only element of degree 9 in
Cotory.sy,3)(F3.F3) is yg and it is a permanent cycle because

I = dimg, Cotory. gy 3.3 (F3, F3) > dimg, H* BSU(3,3) > dimg, H’ BF = 1.

So wg and yg are permanent cycles too.
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Since d,y;, is of degree 13 and Cotor}f.su(l”(Fg,F;) =0, yj, is a permanent
cycle.
Finally, we know that

12 = dimoH "®(BSU(3,3); Q) < dimg, H'*BSU(3, 3)
dimg, H'* BSU(3,3) < dimg, Cotor ' g3 3 (F3, F3) = 12,

hence y;3 has to be a permanent cycle too.

6. Mod 3 invariants forms

In this section, we calculate the invariants under the action of the Weyl group
of SU(3,3) on H*BT. In what follows in this section, the lattice Ls of a compact
Lie group G means the lattice associated to the 3-adic representation of Wy, the
Weyl group of G, on GL(H*(BTg;,Z7%)).

The first step is to calculate Lgy s 3), the lattice of SU(3,3). According to
Notbohm [18], the lattice of SU(3) x SU(3) is projective and that one of PU(3)x
PU(3) is simply connected, therefore the lattice L of any quotient of SU(3)x
SU(3), with Weyl group W, fits in the following diagram:

Lpypyxpuzy —— L — Ly

\ l |

Lpyayxpu) —— Lsupyxsup) —— Z/3®ZL/3

| |

Z(L) —— Z(L)

where either rows and columns are short exact sequences, and Z(L) is the center of
the lattice. In our case Z(Lgsygs,3) = Z/3.

Let {é),...,é4} a Z3-base of Lgy@3)xsu(), then the action of Wsyayxsu@) =
X3 x X3 is given by the matrices
01 0 0 1 0 0 0
~ 1 0 0 O ~ 01 00
=10 0100 ™=looo 1|
0 0 0 1 0 01 0
0O -1 0 0 1 0 0 O
— I -1 0 O ~ o1 0 O
CA=1o o 1o ® B=lo 00 1|
0 0 0 1 0 0 1 -1

where T4 and EZ, and 7B and CB represent the permutations (1,2) and (1,2,3)
in the first and second copy of X3 respectively. This implies that o(é,) = o(é3)
and o(e3) = o(és).
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Because o is surjective and the inclusion of the center of SU(3,3) is diagonal,
we can assume that ¢(é;) = o(é3) = 1 without lost of generality. Hence, a Zj-
base of LSU(3,3) ~ Kero is

€|=él—52. €2=£.’|—é3
e3 = e — éq, eq =26+ é

and therefore the action of Wy 3) is given by the matrices

-1 -1 -1 -l 1000
0 1 0 0 001 0
TA=1 0 o 1 ol =010 0]
0 0 0 1 00 0 1
1 -1 -1 -1 10 1 0
0 1 0 0 00 —1 0
CA=1 4o o 1 o ™ CB=lo 1 1 0
1 0 0 0 00 1 1

Now, we have to calculate the action of Wgy3 3 on H*BT, that is, on

Lsyi,3)/3 = Lsus,3) @ Fs.
Let us consider the Fs-base of H*BT =~ H*(BT;Z5) ® Z/3:

h=e®l+e®1+e3®1
h=e®1+e3®1
h=e®l+ea@1+ea®1
h=e®1l-eQ®1,

then the action of Wy 3) on Lsy@3)/3 = H*BT is given by the matrices,

010 0 1 00 0

1 000 010 0
TA_0010‘TB_0010’
00 0 1 00 0 —1
0100 1 1 1 -1
0010 1 -1 1 -1
CA=11 00 0o 4 B=| | | |
00 0 1 11 1 1

The calculation of the mod 3 invariant forms is now done in several steps,
following the chain of subgroups

(TA,CA) = (TA,CA,CB-TB) = Wsyq,3).
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Easily we can see that,

Lemma 6.1. F; [t] , I, 3, t4]<TA'CA>

S =ty + i3+ bty and s¢ = 1 i,

=~ Fi(z2,54,86,ta] where zy =1+ 1) + t3,

Let R denote the element CB- TBe Wgy(3 3), the next step is,

Lemma 6.2. F3[zz,54,s(,,t4]R ~ Fi(z, x4, y4,X6] where subindex indicates de-
gree and,

X4 = S4 + 2214,
2
Vs = f4 - t422a
Xe = S¢ — t4(S4 + fg — 22).

Proof. It can easily checked that Fi[zy, x4, y4, X6] < F3[zz,s4,s6,t4]R. Now,
an arbitrary element f € Fi[zy,s4,56,%4] can be written in an unique manner as
f =g+ tsh where g, h € F3(z2,x4, y4, x6). If £ is invariant under the action of R,
we have that

g+ (22 — ta)h = g+ 1ah,
what implies that 4 =0, and the lemma have been proved.

Finally,

Theorem 6.3. F; [tl , I, 13, 14] Wsue.s ~ F; [22, Z4, 28,212, 218]/(}‘24) where the ele-
ments z; and r; have degree j and can be expressed as elements of ¥3|za, x4, y4, X¢] in
the following manner,

Zp =12
24 = z% + X4 + y4
28 = 23(x¢ + Z2Xx4) — y4(z§ + X4+ y4)

Ya+73%;

212

t1g = xg — xg(Xa + Yy — 23)22 — Xo(xa + Y4 — 23) 14,

1y = 23(213 + zzzg — zgzlz — 232428 — 2;24 + 222323 - z%zj’ - zg)
- zé + z§24z§ - zizlz.

Proof. We have that F3[I|,12,I3,t4] Wsua.s) =~ ((F3[11,[2,l3,t4]<TA'CA>)R)TB
hence by the lemmas above, all we have to do is to calculate

TB
F3[22,S4 + Zp14,86 — t4(S4 + tf — Z%), [‘% - t422] .



The mod 3 homotopy type of BSU(3,3) 263

An element f e Fi[zy,54 + 2ata,56 — ta(sa + 13 — 23), 17 — 1425] is written (no
necessarily uniquely) in a form

f=g+ (t‘% — [422)11 + (S(, — t4(S4 + ff - Z%))f + (S(, - I4(S4 + l‘% - Z%))zj

where g,h, i,j € F3[.’.’2.Z4,23,212,f.'|g].
As f is invariant,

0=f—TB(f) = tazash + ta(ss + 1] — 23)i — seta(sa + 17 — 23)j
0 =z0h + (54 + 17 — 23)i — s6(s4 + 12 — 23) .

Therefore zyh = (s4 + 12 — 23)(sej — i) and applying CB we get that j =0

because zj,h,i,j and s4+ 3 —z? are invariant by the action of BC. Hence
zoh = —(sq + 13 — z3)i and there exists h e Fi[zp,z4,28,212,215] such that h=

—(sa+ 12 = z2)h and i = zh.
We have proved that if f is invariant then

f=9— (3 —tazs)(sa+ 3 — 22)h + z2(56 — ta(sa + 12 — 23))h
=g+ (z3 — 22224)IA1
that is feF3[22,Z4,Zg,Z|2,2|g]/(l’24). Clearly,

. %
F3(22,24, 28,212, 218] / (r24) = Fa[t1, 12, 13, 14) 7500
and the theorem is proved.

Remark 6.4. An easier expression of ryy can be obtained if we consider the

class zig = 213 + 2228 — 23212 — z3z428 — 2324 + 222328 — 2323 — z3. In this case,

w
Fi[t1, t2, 13, ta] "5V = 3z, 24, 23, 212, 218) /(23218 — 23 + 232428 — 23212).

Remark 6.5. Note that the classes z; and z;, have been chosen such that
they are the images of the generators of H *BTPul/f(';‘)” described in [7] by the map
H*BTpy@3) — H*BTsy(s,3 induced by the projection SU(3,3) — PU(3).

The classes z4 and zg have been chosen such that the natural inclusion

H *BTFWF“ cH *BTSV:%‘,’S‘ maps the classes p, and p, described in [20] to z4 and zg

4
respectively.

By means of the Cartan formula as well as the information given in the
remarks above, we can get some information about the action of the Steenrod
algebra.

Proposition 6.6. The action of /3 on Fit), 12,13, 14] Wsuen g given by,

i) Ploy=23,Pl2s=—zg + 22, Plzg =242, P21 = 23215, and P'z1g3 = 23213 —
23242}

i) P32, =0,P324 =0, P325 = 25215 +f, and P3z; = 212(226 —z12), where f €
F3(23, 24, 28, 212)

i) 2%z, =0,2%24 =0, #%°25 =0,2°21, =0, and P°z;5 = z},
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7. The algebra structure of H*BSU(3,3)

In this section we calculate the algebra structure of H*BSU(3,3) as well as
the action of some Steenrod operations.
Remember we have a fibration (see Section 2)

BSU(3) — BSU(3,3) 2% BPU(3)

such that Bn*: H*BPU(3) —» H*BSU(3,3) is injective (Lemma 2.4). Call
y;=Ba*(t;) for i=2,3,7,12 and wg = Bn*(t3) where t;e H*BPU(3) are the
classes described in Theorem 2.2. Then trivially we get the algebra relations

Y2y3 =0, Y2y =0, Yyaws + y3y; =0
also some information about the Steenrod algebra action
Byy=1y3, By =ws,
P'yy =y, Py =wi + vy,
Py; = yiyi2 + y3ws, Pwg = wyyy, P’y = y2(¥5 = yi2)-

Moreover, we also have the inclusion SU(3,3) — F, that induces an injection
H*BFy— H*BSU(3,3). Call y,,y3 and y, the images of z4,zs,z9 € H*BF; re-
spectively, therefore we have the algebra relations

YaVg =0,  ygpy =0
and
Py =—ys + i, Bys = v, 2y =0.
Now by dimensional reasons we get that
Y34 =0,
and applying 2! to this equality and f2' we also get the algebra relations
0=2"(y374) = ¥1V4 — 33

0= B2 (y1y4) = Wsys + 3.

As dimq; HY BSU(3,3) = dimgy HY) BSU(3)* =4 and y;ws # 0 we have the
following new algebra relation

0 =B(y08) = ¥3¥5 + y2 s

Now, note that 2'ys = p2f + Ay;y, where f € F3[y,, y4, y5,ws] and 1€ F;,
therefore y;2'y, =0 and applying 2! and f2' to the relation above we get,

0=2"(y3y5 + y2¥9) = ¥71¥3

0= B2 (y35 + ¥2¥9) = W Vg — Y7 5.
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At this point, to have completely determined the algebra structure of
H*BSU(3,3), we only need to find a nice generator in dimension 18 and to
describe the algebra relation that appears in dimension 24. In order to do that we
use the information of Section 6.

Lemma 7.1. Let T <> SU (3,3) be the standard inclusion of the maximal torus
of SU(3,3). Then H*BSU(3,3) R (H*BT)"sv09 s surjective.
Proof. By Remark 6.4 we know that
Fslt1, 0o, 13, 14) 5000 = F3[z2.24, 28,212, 218) /(23218 — 23 + 232423 — z3212).

We already know that H*BSU(3,3) is generated (as algebra) by y,, y;, ys,
Y7, Yg, W8, 1o and a generator in dimension 18, and because the way they have
been chosen and Remark 6.5, we also know that
Bi*(y;) = z, Bi*(y;) =0, Bi"(ys) = za, Bi"(y7) =0,
Bi"(wg) =0,  Bi"(yg) =z.  Bi’(y3) = z12.
Therefore the image of this new generator in dimension 18 has to be 0 or z3
probably plus decomposables. If it is 0, then Im Bi* = F3z,z4, 25, z13], but by
Proposition 6.6 we know that #3zg = 2,215 + f where S € Filz3,24, 25, 212, which

means that 23zg ¢ Im Bi* what is impossible.
Hence zjg is in Im Bi* and the lemma is proved.

By the last lemma we know that there exist at least one element y,q such that
Br*(y1g) = z1g. It is clear that y; is a new generator and, because

dimgH '8(BSU(3.3): Q) = dimg, H'* BSU (3, 3),
we also have that fiy;; = 0.
Now, by the last lemma we know that the algebra relation in dimension 24
has to be of the form
0= y3¥1s — ¥§ + V3VaVs — YaVio + ayswsy s + bwiyg + cwd, 4)
where a,b,c € F3.  Applying f to (4) we get that 0 = bw?y,, hence b = 0 and the
relation is reduced to
0= 3pie — 24 p2pp2 — 3 3 5
V2Vis = Vg T VaYaVg — VaYia +ayawsyip + cwyg, (5)
where a,c e F3.  Applying £ to y,(5) we get that 0 = cy3w§, hence ¢ = 0 and the
relation is reduced to
0= y3yis = ¥§ + V3VaVs — VaVia + ayswsy,. (6)
where a € F3.  Applying f to y,(6) we get that 0 = ay,wiy,,, hence a =0 and
finally we get the algebra relation
0= y3yis = ¥§ + V3VaVi — Yavia
which finishes the calculations.
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The action of 2' on y,s can be easily deduced of that relation and we get

P yis = Vivig — Vavavi.

8. Two principal fibrations

Let X be a 3-complete space with H*X =~ H*BSU(3,3). First of all, we
obtain some information about the low dimensional 3-adic cohomology of X.

Lemma 8.1. Let X be a 3-complete space with H*X =~ ,, H*BSU(3,3), then
the low dimensional 3-adic cohomology of X is

n 0 1{2 3 4 5 6 7
H (X;Z3) | Z5 | 0| 0| 55Z/3 | (94,5025 | 0 | {13, 7272)25 | O

where the notation has been chosen in such a way that the mod 3 reduction sends a
3-adic class x to its mod 3 reduction x.

Proof. Because X is a simply connected, p-complete space such that H/X is
finite for all j, we can apply Proposition 5.7 in [1], and we get that H/(X;Z}) is a
finitely generated Z3-module for all j. Hence we can apply the Bss.

The first differential is the primary Bockstein. It vanishes for all the algebra
generators of H*X =~ H*BSU(3,3) but (see 1.2)

Byr =y, By7 = ws, and Bys = yo.
Therefore at the B,-stage of the spectral sequence all the elements are in even

degree, hence all of them are permanent cycles and we get the desired result.

By the lemma above, we know that H3(X;Z}) =Z/3. Let X — K(Zj},3) be
the natural map induced by j;, the generator of H*(X;Zj), and let Y be the
homotopy fibre of that map. This map classifies a principal fibration,

(Bs", 5 v L x. (7)

We also know that H2X =Z/3. Let X — K(Z/3,2) be the natural map
induced by y,, the generator of H?X, and let F be the homotopy fibre of that
map. This map classifies a principal fibration,

Bz)3 L F 4 x. (8)

As there exists a map K(Z/3,2) LK (Z5,3) such that the following diagram
commutes
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both fibrations (7) and (8) fit in the following commutative diagram,

($13 BZ/3 (BS');

|

(S F Y
yl i l
X
where both rows are also fibrations.
In this section we compute the cohomology of Y, H*Y, additively.

©)

Proposition 8.2. The mod 3 Sss associated to the fibration (7) collapses at the
Eg¢-stage and:

E}" = F3[x2, x4, X4, X6, X¢. X8, X12, X138, X20|/ H

where H is the ideal generated by Xsx} — X182, XaX4 — X6X2, X3 — XeX3,X4X1g —
X20X2 and X3xi5 — X3 + X2XaX§ — X3X12.

Proof. Let us denote H*BS' = F;[v] where |v] =2 and let (E**,d,) be the
mod 3 Sss associated to the fibration (7). The spectral sequence starts as:

Ey*=#"(X;H'BS')~H'X ® H*BS";
hence, in view of Corollary 4.10, we can write it as
Ey" = C® {1,253, V4, ¥7. Vs Vo, ¥3ys}Fa[ws, y1a, y1g, 0],
where y, has bidegree (n,0),ws has bidegree (8,0),v has bidegree (0,2), and
C=(4/40B) @ F;[v]
= (y%Fs[yz, Yas Vo5 V125 V152 ) @ {1204, YiYF3[va, v, y12, Vg 0]
@{)’z}'8~J’4YBayg}F3[y8»,V|2»YIsvl’])/rZ‘i

being a4 = y3yi5 — ¥ + ¥3vaVi — Viviz-
The first non trivial differential is the transgression of v, which is by con-
struction y;, that is, d3(v) = y;. This determines d3 and:

EZ’* =C® {J’202a y3vz’ y4l)2, V1. V85 Vo, y3y802}F3[W8, Y12, V18» 03]
@ {¥2, Y2, V4, Yav}F3[ 1, yis, v3],
where
{2. 320, 3207, y30°, ya, yav. y4v2,y7.y8,y§v, y§v2‘w8,y9.y12.y18,v3}

can be chosen as a set of algebra generators. It follows that dy =0 and EJ" =
E;".
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Lemma 8.3. v® is a permanent cycle, and ds is determined by ds(y;v?) =

we, ds(y,0%) = +y; and ds(yqv?) = + ys.

Proof. Since v transgresses to y;,v> must be transgressive too, in particular
ds(v*) =0, and by the Kudo transgression theorem, ds(y,v?) = BP!y; = w.

We look now at the Sss with coefficients in Zj:

Ey* = #"(X;H'(BS';23)) = H'(Y;Z5).

It is well known that H*(BS';Z) = Z4 [t] and, by Lemma 8.1, we also know
H*(X;Z3) for x <7. The first non trivial differential is dsi = j, and we find that
5% should be a permanent cycle because dsi? = 37302 = 0 and there is no other
possibilities for d,i°.

In addition, we know that the mod 3 reduction is a natural transformation of
cohomology theories and therefore induces a map between the corresponding
spectral sequences. Comparing both spectral sequences, we find that »* should be
a permanent cycle in the mod 3 Sss as so is &> in the 3-adic Sss.

Since y, = 2'y; and y; does not survive, y, has to “die” too. The unique
possibilities are ds(y,v?) = +y;, by degree reasons.

At this point, ds(y,40?) could be + y, or trivial. Assume ds(y,v?) = 0, in this
case

y3(y30%) = y7(a0?)
ds(yg(y3v?)) = d5(y7(y4vz))
ygwg =0
which is impossible (recall that y;v? and y,v? are indecomposables at the Es-
stage). Hence ds(y %) = + y,.

By dimensional reasons we get that ds vanishes for the other algebra gen-
erators of EJ".

Now, we know ds over all generators so we can calculate Eg*:

Eg,* =C @ {y27 Y20, V4, Yal, yS}F3[yl27 V18> 03],
where

{y2a YU, YVa, V40, Vg, ygl’, yi%l]z» Y12 Viss US}

can be chosen as a set of algebra generators.
Now, dimensional arguments show that all the following differentials vanish,
so Eg" = E%*, that is,

E%" = F3[x2, x4, X4, X6, X6, Xg, X12, X18, X20] / H

where x; is represented by y, for i # 6, x¢ is represented by v, X4 is represented by
y,v,X¢ is represented by y,v, %3 is represented by pZv and X is represented
by y3v?, and H is the ideal generated by X4x? — Xi8X2, XaXs — X6X2, X3 — XeX3.

X4X18 — X20x and .X‘;)Cm — Xg + X2X4x§' - X‘%Xlz.
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Remark 8.4. From the edge homomorphism of this Sss we know that
x; = j*(y;) for i # 6 and h*(xs) = v3.

Now we can calculate the Poincaré series of H*Y.

Corollary 8.5. The Poincaré series of H*Y is

1
(1= )21 = 18)*(1 —12)

P(H*(Y:F3).1) =

Proof. Note that the calculation of mod 3 Sss in the proposition above does
only depend on the /;-algebra structure of H*X, hence the same result is
obtained if we replace X by BSU(3,3). In this last case, ¥ would be the
classifying space of

G={(4,B)e U(3) x U(3)|det(A4) = det(B)},
and therefore the Poincaré series of H*Y and of H*BG should agree.
Finally, notice that G fits in a short exact sequence

SU33) - G- U®3)
that induces a fibration
BSU(3) - BG — BU(3)

whose mod 3 Sss collapses at the E,-stage and gives an algebra isomorphism
H*BG ~ H*BSU(3) ® H*BU(3) from which one obtains

1
(1= 21— 19)*(1 - 2)

P(H'Y,t) = P(H*BG,t) =

9. Maximal tori

Let us consider V' the toral elementary abelian 3-subgroup of SU(3,3) of
maximal rank and denote by i) the inclusion. We can easily obtain that the
centralizer of ¥ in SU(3,3) is T*, the maximal torus.

Now, if X is a 3-complete space with H*X =~ , H*BSU(3,3), Lannes’ theory,
[9], provides a map o : BV — X, that induces

«*=Bi, : H*X *H*'BSU(3,3) - H*BV

in cohomology. Then, Lannes’ T functor shows that map(BV,X), ~ (BT*);.
Now, the mod 3 reduction of the natural representation of X3 @ X3 ~
Wsu3,3) on Aut(T*) induces an action on BV and map(BV,X), ~ (BT*);. This
action looks in mod 3 cohomology like the honest one on BT* = BCsy; 3 (V).
According to Notbohm [18], the possible lattices associated such an action of
Z3@® X3 are equivalent to those of SU(3)% SU(3,3) or SU(3) x PU(3), whose
mod 3 reductions are not equivalents. Therefore the action of X3 @ X3 on
map(BV, X), ~ (BT*); should be equivalent to that on BT* = BCgy3 3 (V).
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Moreover, the evaluation map is 23 @ X'3-equivariant and the action is lifted
to homotopy pullbacks, so from fibration (7) we obtain the diagram

(BS'); — (BS");
5 ® ZCE e,y (10)

fl Ii
2y ® Z;Cmap (BV, X), =~ X

where all maps are equivariant. The pullback fibration is therefore classified by
the composition map (BV, X), Lx L K(Z4,3) which is clearly trivial, hence

E ~ (BT%);.
In the same way, from fibration (8) we obtain the diagram
BZ/3 —— BZ/3
2@ ZCE 2, F (11)

g'l yl

23 @ 23C map (BV, X), <. X
where all maps are equivariant. The pullback fibration is therefore classified by
the composition map(BV,X), — X —»K(Z/3,2). As this map represents a

o
non splitting extension, we see that E ~ (BT*)j.

Now, we can complete the diagram (9) to

-+ BZ)3 ——— (BS");

\ NN N
- L BZ/3 ——— (BS");
s
———— (BT} —— (BT?);
N e
s —m F —— ¥
(BT); — (BT%);
AN AN




The mod 3 homotopy type of BSU(3,3) 271

We study the maps ev and ev to obtain information about the cohomology of
F H*F.

Lemma 9.1. The induced map in cohomology
év':H'Y - H'E =~ H'BT’®
is injective.
Proof. Note that by construction ev : map (BV, X), ~ (BT*); — X looks in

(
cohomology like the inclusion of the maximal torus in SU(3,3), hence (see 6) we
have that

ev* : H*X — (H*(BT*),)>®>
= F3(22,24,28, 212, 218)/ (23218 — 23 + 232428 — 23212)

is given by ev*(y;) = ev*(ys) = ev*(ws) = ev*(yg) =0 and ev*(y;) = z; for i = 2,4,
8,12,18. This determines the map of Sss’s induced by the diagram (10). At the
E,-stage is

e*®1:H'X®H'BS' — H*BT*® H*BS'

and then we find that the generators of the E,-stage of the first spectral sequence
(see Section 8) are all detected in the second one which clearly collapses at the E,-
stage. But this last is a free commutative algebra, hence the map of spectral
sequences becomes an injection at the E,-stage. The lemma follows by induction
on the filtration degree of the spectral sequences.

Lemma 9.2. (1) The induced map in cohomology
ev’': H'F — H*E ~ H*BT*
is injective.
(2) The Poincaré series of H*F is

1
(=191 = 1)

P(H'F.1) =

Proof- (2) Consider the mod 3 Sss associated to the fibration
(S = F— ¥

that appears in diagram (12). Let us denote H'S' = Ag,(u). The spectral se-
quence starts as

Ey*=#"(Y;H'S"Y=H'Y®H'S".

The first non trivial differential is the transgression of u, which is by construction
,, the generator of H2Y. This determines d; and, because every element in H*Y
*, %

is regular (by Lemma 9.1 H*Y is a subalgebra of a polynomial algebra), E;" =
H*Y/J where J is the ideal generated by y,. Clearly the following differentials
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vanish, so E,, = E3 and because y, is regular,
P(H*F,t)=PH'Y,t)-(1 - 1?)

which gives the desired result.
(1) Consider the natural map of spectral sequences between the mod 3 Sss
associated to both central rows in diagram (12). At the E)-stage is

*@1:H'YQ®H*S' 5> H*BT° ® H*S'

and, by Lemma 9.1, it is injective. Clearly, both spectral sequences collapse at the
E;j-stage which gives us an injection at the E,-stage. Those FE,-terms are
concentrated in the zero horizontal line so that they actually coincide with the
cohomology of the total spaces, thus proving the desired result.

Since ev is 23 @ X3-equivariant, we actually obtain that
ev" : H'F— (H'E)»®*.

It is therefore crucial to understand the action of X3;@®2%X; on H*E ~
H*BT*. Let Lj denote the 3-adic lattice associated to the action of X3 @ X3 on
H*(E;Z}). Because the 3-adic lattice associated to the action of X3 @ X3 on
H*(map (BV,X),;Z3) is equivalent to that of SU(3,3), the left hand fibration of
the diagram (11) provides an exact sequence of lattices:

0— LSU(3,3) g LE_' g Z/3 — 0.

According to Notbohm [18], we get that L; have to be the centerfree lattice
associated to Lgys,3) and therefore Lz = Lgy(3)xsy(3y wWhich gives us the precise
action of X3 @ X3 on H*E ~ H*BT*. Now we can prove,

Proposition 9.3. H*F =~ H*B(SU(3) x SU(3)) as «/3-algebras.

Proof. By Lemma 9.2 (1), we know that ev*: H*F — (H*E)**®**_ Because
(Le); = (Lsu@)xsu3))s» then

(H*E_') 502 o (H*BT4) Wsu)xsu)
=~ F3[cq, s, 6, C6) = H*B(SU(3) x SU(3)).
Hence we have that
ev* : H*F— H*B(SU(3) x SU(3)),

and by Lemma 9.2 (2), the Poincaré series of both algebras agree, so ev* induces
the desired isomorphism.

10. The proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let X be a 3-complete space with H*X =~
H*BSU(3,3) as «/3-algebras. For such a space we have obtained a principal
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fibration (8):

Bz)3 L F Lx

and proved (Proposition 9.3) that H*F ~ ,, H*BSU (3)%.  According to Notbohm
([17)) this implies that F ~ (BSU(3)*);.
Following Dwyer and Zabrodsky’s work [5] we have that

map (BZ/3., (BSU(3)*)}), ~ B(SU(3)*);

where ¢ stands for the constant map. Therefore we can apply Zabrodsky's
Lemma (see [11], [22]) and obtain that the composition of the homotopy
equivalence F ~ (BSU (3)2)’3‘ with the 3-completion of the standard (BSU(3)2) —
BSU(3,3) factors up to homotopy through X:

BZ/3 —— F 4, X

| g l

BZ/3 —— (BSU(3)%); —— BSU(3,3)},
from which X ~ BSU(3,3);.
Proof of Theorem 1.4. On the one hand,

Hg, (BX) = Hy, (BTx) W = Q) [y4: Jan Ve Vo)

and we get that Hé}X >~ AQG(x_;,)'c;,x5.5c5). Hence the mod 3 Bss of H*X should
converge to By = Ap, (X3, X3, X5, Xs5).

On the other hand, because the map n;7 — m X is surjective [14], and it
factors through the covariants (mT)y, = (mT) = Z/3, we have that either
7'[|X=0 or 7I]X=Z/3.

If 11X =0, according to Lin (see [10]) H*X has only elementary 3-torsion
and the first possible indecomposable in H*X which is not in B, appears in
dimension 7. Hence x3,X3,xs5, and X5 are in fact indecomposable elements of
H*X and H*X =~ Ap,(x3,%3,x5,%s5). Using EMss we get then that H*BX ~
F3[y4. 74, 6, Y] and therefore by [17] BX ~ (BSU(3)2)§. But SU(3,3) and
SU (3)2 have not the same Weyl group type at the prime 3. Hence m X = Z/3.

Let X be the universal cover of X which is a simply connected 3-compact
group such that the mod 3 Bss of H*X should also converge to By, =
Ap,(x3,X3,x5,Xs). By the argument above, BX ~ (BSU(3)2)’3‘.

To finish the proof we follow exactly the same arguments we used in the proof
of 1.3. Following Dwyer and Zabrodsky’s work [5] we have that

Wsu3.3)

map (BZ/3. (BSU(3)*);), ~ (BSU(3)*);

where ¢ stands for the constant map. Therefore we can apply Zabrodsky’s
Lemma (see [11] and [22]) and obtain that the composition of the homotopy
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equivalence BX ~ (BSU (3)2)’3‘ with the 3-completion of the standard BSU(3)* —
BSU(3,3) factors up to homotopy through BX:

BZ/3 — BX 1, BX

|l l

BZ/3 —— BSU(3)%); —— BSU(3,3)5,
from which BX ~ BSU(3,3)5.
We finish this section proving Corollary 1.5.

Proof of Corollary 1.5. By [16], we have to prove that the classifying space of
L is in the same genus as BSU(3,3). The rational case and the p-completed cases,
for p # 3, follow from [15] and the case p = 3 from Theorem 1.4. This completes
the proof.
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