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On the mod 3 homotopy type of the classifying space of a
central product o f SU(3)'s

By

Antonio VIRUEL

1. Introduction

Let S U(3) be the compact Lie group of special unitary complex matrices of
order 3 . It is w ell know n that the center of SU(3), namely F , is isomorphic to
Z /3  and it is generated by the matrix (co, co, co) where co e C such that co 3 =  1  and

1. The compact Lie g roup  S U (3 ,3 ) is  de fined  as the central product
SU(3) X  zo S U(3), i.e., as the quotient

SU(3, 3) = SU(3) x S U(3)I4

where A  is the subgroup of SU(3) x SU (3) generated by the elements (A , A ) such
that A  c F.

The group SU(3, 3) plays an important role when studying the homotopy type
of the classifying space of the exceptional compact Lie group of ra n k  4 , F4,
a t  primes greater than 3 (see [17] and [6]), and specially at the prime 3  (see
[21]). This justify a deep study of the structure of SU(3, 3), as well as those of its
classifying space BSU(3, 3 ), a t the prime 3.

Our first result describes the mod 3 cohomology of SU(3, 3) as Hopf algebra.

Theorem  1.1. H* SU(3, 3) = F3 [y2 ]/y3 0 A F3 (x i , x3, x5 ), where subindex
indicates degree. M o re o v e r, the H opf  algebra structure is g iv en by  the reduced
diagonal map

a x l X3 X!3 X5 Y2

0(a) 0 y2 0 xi Y2 0 xi Y 2 0 (-Y  — x 3 ) 13

P ro o f  See Section 3.

T hen  w e  ca lcu la te  the m od 3  cohom ology  o f th e  classifying space of
SU(3, 3), BSU(3, 3).
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Theorem 1.2. T here is an  algebra isomorphism:

H*(BSU(3,3); F3) F3 [Y2, Y 4, Y8, W8 , YI2, Y18] AF3 (Y3 , y7 , Y9)/R

where I Yi I =  i, I w81 =  8  and  R  is  th e  ideal generated by

Y2Y3 , Y3Y4, Y2Y7 Y2w8 + Y3 Y7 ,,

Y4 Y9 ,Y7Y4 Y3Y8, Y3 Y8 ± Y2 Y9 , W8 Y4 + Y3 Y9 ,

Y7 Y8 , Y8 Y9 , Y7Y9 , Y  3
3 2 2 3W8.Y8 - 2 YI8 - Y8 + Y2Y4Y8 — Y4Y12.

W e also know  that fly2 =  y 3 , fiy7 = ws, fiY8 = y9 , "- 1 Y3 = Y7' 1 y4 = - Y8 +  y i ,

Y, I Y12 = wi + YI2Y3 , ' - 1 YI8 = Yi1 'I8 - Y2Y4A, '-° ) 3  Y7 =  Y7YI2 ± Y3W i, Y 3W8 =
W8y12 and Y 3 y12 -  y12(4 — Y12)•

P ro o f  Consider th e  universal fibration

SU(3, 3) —> * BSU(3, 3)

and let ( E * ,  d )  b e  the m od 3  Eilenberg-Moore spectral sequence converging to
H*BSU(3, 3). This spectral sequence starts as

Cotor*H *s u ( 3 , 3 ) (F3 , F3).

In Section 4, Theorem 4.9, we calculate this E2 term . In  Section 5, we prove that
all the possible differentials vanish and therefore the spectral sequence collapses at
the 2-stage.

To finish, we should calculate the algebra struc tu re . In  order to do that, we
first calculate th e  m o d  3  invariants b y  th e  ac tio n  o f  th e  W eyl group on the
cohomology of the maximal to r i (Section 6). Using that information we finally
calculate the algebra structure as well as part of the Steenrod algebra structure in
Section 7.

According to [17], th e  hom otopy ty p e  o f  BSU(3, 3 )  is determ ined, up to
completion, by its mod p cohomology a t primes different from 3 , for in that case

BSU(3, 3); (BSU(3) 2 ); P 0  3 .

In  th is note, w e  use  strongly Theorem 1.2  to  p rove  tha t BSU(3,3) is de-
termined up to completion by its cohomology a t  the torsion prime 3 , as well.

Theorem 1.3. L et X  be a  3-complete space such that

H *(X ;F 3 ) H *(B S U (3 ,3 );F 3 )

a s algebras over th e m od 3  Steenrod algebra. T h e n  X  is homotopy equivalent to
BSU(3, 3 )  up to 3-completion.

P ro o f  See Section 10.

A  different question is whether o r not the hom otopy type of a compact Lie
group or p-compact group is determined by the Weyl group representation. The
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concept of p-compact group, a homotopy theoretic generalization of compact Lie
group, was introduced by Dwyer and Wilkerson in [4]. A  loop space X is said to
be a  p-compact group if  X  is Fp finite, p-complete, and no X  is  a  finite p-group.
Then p-compact groups are shown to admit maximal tori in  the  sense of Rector
([19], [4]) and the  Weyl group o f X,W x, is defined a s  7roWx ,  where Wx  i s  the
space o f self-maps o f BTx  o v e r  B X , if  BTx —+ BX is  the maximal torus o f  X.
The p-adic representation o f  th e  W eyl group a s  a  pseudo reflection group is
therefore obtained a s  Wx  A u t  (H 2 (BTx ;r p )).

Moller and  Notbohm have considered the torsion free case: [15]. Here we
have considered again the case of SU(3, 3).

Theorem 1.4. L e t X  be  a  connected 3-compact group w ith the sam e Weyl
group type as SU(3, 3). Then B X  and BSU(3, 3) are hom otopy equivalent up to
3-completion.

P ro o f  See Section 10.

This result allows us to determine the integral homotopy type of BSU(3, 3) in
the following sense:

Corollary 1.5. L et L  be a connected finite loop space with m axim al torus and
Weyl group W I , such that the integral representation o f  WI , is conjugate to that of
WSU(3,3)• T hen B L  is hornotopy  equiv alent to B S U(3, 3).

P ro o f  See Section 10.

Organization of the paper. The paper is organized as fo llo w s. In Section 2
we describe the mod 3 cohomology of P U (3 )  and B PU(3) as it will be usefull for
following calculations. In Section 3 , we prove Theorem 1.1. In Section 4  we
calculate the E2-term of the  Eilenberg-Moore spectral sequence associated to the
universal fibration of BSU(3, 3). In Section 5 we prove that the Eilenberg-Moore
spectral sequence cited above collapses at the E2-term. In Section 6 we deal with
the action of the Weyl group of SU(3, 3) o n  a  m axim al to rus. In Section 7 we
determine the  algebra structure of H*(BSU(3, 3); F 3 ) .  In  th e  following sections
we follow the ideas in  [3] to prove Theorems 1.3 and  1.4. In Section 8, given a
3-complete space X, w ith  th e  sam e cohomology a s  BSU(3, 3 ), we construct a
couple of principal fibrations that allow us to compute the cohomology of X {3},
th e  3-connected cover o f  X, additively. In Section 9  we com pute the  algebra
structure of H*(X{3}; F3) so obtaining X f31  (B SU (3) 2 )3 . In  the  last section
we prove Theorems 1.3 a n d  1.4, a s  well a s  Corollary 1.5.

Notation. Here sli3 i s  the m od 3  Steenrod algebra, all spaces are  assumed
to  have the homotopy type of CW-complexes, and completion means Bousfield-
K an com pletion. G iven a  space  Y, w e w rite H *Y  fo r  H*( Y: F3 ), HQ*3 ( Y ) for
H * (Y ,Z 3 )  Q  a n d  Y ;  fo r  th e  Bousfield-Kan p-completion o f  th e  space Y.
W e write "Bss" fo r the  Bockstein spectral sequence, "EMss" fo r the  Eilenberg-
Moore spectral sequence and  "Sss" for the Serre spectral sequence. The symbol
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A F is used to denote an exterior algebra over the coefficient field F. Given a
group A  and an A-module M , we denote by Yt * ( A ;  M )  the cohomology with
twisted coefficients.

Acknowledgements. To finish the introduction, it is a  pleasure to thank C.
Broto, S . Klaus, M . Mimura and D . Notbohm for interesting suggestions and
conversations. The author also thanks the referee for the improvements suggested
in the exposition of the paper.

2. The groups PU (3) and PU(9)

The compact Lie group PU (3n) is defined as the quotient S U(3")I T , being F
the center of SU (3n). The Hopf algebra structure of the cohomology of P U (3n)
appears in [2].

Theorem 2.1. T here is an  algebra isomorphism:

H* PU (3") F3 IYLF 3 " A F 3 •56-‘31 • •  •

where =  i  an d  152 1 = 2. T he H opf  algebra structure is giv en by  the reduced
diagonal map

The cohomology ring of B PU (3) is given by Kono, Mimura and Shimada
in [7]:

Theorem 2.2. T here is an  algebra isomorphism:

H* B PU (3) F3[t2, t8, t12] AF3(/3, t7) I J

where 161 = i and J  is  the ideal generated by  t213, t2t7 and t3t7 + t21.8.

The Steenrod algebra structure was calculated by Kono and Yagita in [8]:

Theorem 2.3. T he S teenrod algebra action is determ ined by  the following
relations

fl12  = 1 3, fi17  =  tg,

112 = q - k t i2 q ,

,g4 3 /7  =  t7 tI2 /3 q , g) 3 /8  =  t8 tI2 , ,93 112 =  1 '12 (4  - 112)•
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Then the groups PU (3) and  SU(3, 3) are  related by the  following commu-
tative diagram

SU (3) - *

Z/3  Z / 3

SU(3) 2S U ( 3 )

p i

SU(3, 3) 1 > PU(3)

(1)

     

SU(3)

      

where all the rows and columns are exact sequences and 7r1 is  the projection of the
i-th factor. Moreover, the short exact sequence

SU(3) — + SU(3, 3) PU(3)

has a section s : PU(3) —+ SU (3, 3) tha t m aps the  class [A ] t o  the  class [A, A].
Hence the induced fibration

BSU(3) — > BSU(3, 3) BPU(3)

has also a section and therefore it proves

Lemma 2.4. The maps Bii i* and f r, induce a monomorphism in cohomology.

This lemma is quite useful as we know H*PU(3) as well as H*B PU(3), and
we want to calculate H* SU(3, 3) and H*BSU(3, 3).

W e are  also interested in the relation between PU (9) and  SU(3, 3). Let g
denote the composition

S U(3) x  SU (3) Lx 4  SU(3) x  SU (3) x  SU (3) SU (9),

then g  induces the  following commutative diagram

Z/(3) S U(3)x  S U(3) SU(3, 3)

gl (2)

Z/9 SU(9) PU(9)

which will allow us to calculate the structure of H*SU(3,3).

3. The Hopf algebra structure of H* SU(3, 3)

In  th is section we prove Theorem  1.1. In  o rde r to  d o  it ,  w e  use  the  in-
formation about PU (3) and  PU (9) stated in  the  previous section as well as the
diagrams relating those spaces with SU(3, 3). N ow , the proof o f Theorem 1.1
follows as
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Proof  o f  Theorem 1.1. By Lemma 2.4, we know that the  fibration

SU(3) SU(3,3) PU(3) (3)

has a section and f q  is injective. A n  easy analysis of the mod 3 Sss associated to
fibration (3) shows that this spectral sequence collapses at the 2-stage and therefore

H*S U(3,3) = F3 [y2 ]I y3 AF3 (XI , X3, X5),

where subindex indicates degree. Moreover, the  generators can be chosen such
that 711(X1) = xi, 71(5') = Y,fil(Sc3) = x3 and TE2(X3) = x. Therefore we know that

a XI X3 X !3 Y2

0(a) 0 y2 0 x i y2 0 x i 0

and fix] = y2 , and fix3 = flx =
To calculate the reduced diagonal of the element x 5 , we use the information

about PU (9) as follows: diagram (2) induces a  diagram of principal fibrations

SU(3) x  SU(3) SU(3, 3) - >  B Z / 3

g t ilI
SU(9) - >  P U ( 9 ) BZ/9.

Comparing the mod 3 Sss sequences associated to both fibrations, we can easily
deduce that '4* : H*PU(9) — > H*SU(3, 3 ) i s  t r iv ia l o n  a l l  t h e  generators of
H* PU(9) but in  the  cases j*(j)) =  y2 , 4*(i3) = x3 — and  4* (x 5 ) = + x5 . We
can assume that "j*(X5) = x5, therefore

0(x5) =  OW (X5))

= (0 *

= (0 *

®

®

'0* )(0(X5))

4* )(Y 2X ‘ I 50)

= Y2 0  (X3 - x3)

which finishes the  proof.

4. The Cotor* calculation

L e t  ,szi H*SU(3, 3) a s  coalgebras. In this s e c t io n  we calculate
Cotord* (F3 , F3 ), and to do that, we construct an injective resolution of F3 over d
using the  same construction and the same notation as those in  §4 of [12].

Consider L  c  d  th e  submodule generated by f y2 , y3, xl, x3, z3 , x 5 1  where
Z3 =  Let O : L  and I :  L d  be the  natural projection and the in-
jection respectively, such that to 0 = 1 4 .
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Consider sL = {c3,c5,a2, a4, b4, b6} the suspension of L, and define  : sL
b y  0 = s o  0  and, I : sL —> si b y  i= 1 0 s -1 .

L et T (sL ) b e  the free tensor algebra over sL  w ith  the (natural) product
iii . Consider th e  tw o  s id e d  id e a l  /  o f  T (s L ) generated by 1m 1i o (0 ® 0)0
0 (K er ) . T hen  / is  gene ra ted  by:

[a, , af ], [a„ bf ], [a i , 5 ] , [b„ cd, [a 2 , c3 ],

]C/4, C3] [b4, c] c5a2, a n d  [b6, C 3 ] ±  Cs (a4 + 14),

where [a, fl] = — (-1)" flat with n = deg (a) deg (//).
P ut C =  T(sL)// and  w e can  now  construc t the twisted tensor product

W = Jai C with respect to  O. That is , W is an d-com odule with a  differential
operator

d w = l0 d c + 0 0 0 0 (1 0 0 0 1 )0 (0 0 1 ) ) ,

where dc is defined as

dc = o (O ® o  q i o

In our case, dw and dc  a r e  given by:

dw (xi) = 1 a2,

dw(x3) = 1 a4 + Y2 0 az, dw(z3) ------ 1 ba +  Y2 0 az,

d w (x 5 ) = 1 0 b6 — Y2 0 (a4 + b4),

dw(Y2) = 1 c3, dw(yi) = 1 0 c5 — y 2 C) c3,

dc(a2) = 0,

dc(a4) = —c3a2, dc (b4 ) = c3a2,

dc (b6 ) = c3(a4 + b4),

dc (c3) = 0 and dc(c5) =

Now we define weight in  W as follows:

Weight 0 2 2 4 1 2

X1 X3SI Z3 X5 Y2 .Y2

C a2 a4 b4 b6 C3 Cs

and the weight of a monomial is the sum  of weights of each element.
Define a filtration Fr  = {xlweight (x) < r} and put Eo W =

it  is easy to see that:
Then

E o  W A F3  (X I , X 3. 23, Xs) F3 ]a2 , (24, ba,b6]0 C(Q(Y2)),
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w here C( Q ( y 2 ) )  i s  th e  cobar construction o f  F3 [y 2 ]/ y 3 .  N ow  th e  differential
formulae imply that EoW  is acyclic, and hence W is acyclic. S o  W is an injective
F3-resolution over Jai. Consequently we have:

H(C : dc) = CotorI, (F3 , F3 ).

In  what follows, we denote dc  sim ply  by d.
In order to calculate H(C : d), we follow the ideas in [13]. Call y4 = a4 +

then we have an additive isomorphism between C and T(c3, C5) F 3  [ a 2 ,  a 4 ,  y 4 ,  b 6 ] .

Thus {4 e l
5 a2

13 a4
14 y 5 b6

16 l  e N} is  a  basis o f  C.
Define a  new weight in  C  by

co(a) 1 1 1 1 1 2

a az Y4 b6 C3 C5

and  fo r a  monomial oti . • • octo

0)(0ti cxn) = 0)(ai + • • • + co(c(n).

F o r  a n  element x  =  A,x„ where x ,  is  a  monomial and  /1, E  F 3 , we define the
weight o f  x  a s  th e  infimum o f  th e  weights o f  th e  x,'s. T h en  the filtration
F r =  { x 0)(X) r} gives rise to a spectral sequence {Er , dr } such that Eo = C  and

= H(C : d ) , namely converging to Cotord* (F3 , F3 ).
Notice tha t the only non trivial do is do(c5) = c ,  therefore

Lemma 4.1. W e have

E1 "L"' F3 [a2, a4, y4, b6, w 8] 0 AF1 (C3)

N ow , the only non zero d ] a r e  di (a4) = —c3a2 and d i (b6) = e3Y4, thus

Lemma 4 .2 .  E2 F 3  [4 , N, w8] C) A , where

A  = { 1 , Y8, a2q, e3 aib6 , e3aiN}F3[a2, Y4]

(2) {.Y71 C3a4b6, C3N , c3a4, Nt}F3[Y4]

0  {c3, Y4}F3,

being y7 = C3C/4 — cs a2 an d  y8 =  a2b6 + Y 4a4•

T o  hand le  d2, w e introduce a n  auxiliary derivation 6  o n  th e  subalgebra
F3 [a2, a4, b 6 ]  o f  C  as

6(a) 0 —az O Y4

a a2 a4 Y4 b6

Then, the derivation has the following properties:
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Lemma 4 .3 .  For a polynomial P e F31a2, a4, y4, b61 we have:
1) 6 3 P  =
2) [c3, = —c 56P,
3) dP = c3S P + c 5 62 P.

Pro o f  (B y  induction.) Suppose that (5 3 P = 0 holds for any polynomial P of
degree up to 1. Then:

63 (XP) = 5 3 x P + x  .6 3 P =O.

Thus 63 P = 0 holds for a polynom ial of degree / + 1.
Suppose that [c3, /3] —c55P holds for any polynomial P  of degree up to /.

Then:

[c3, xP] = [c3, x]P + x[c3, P] = —c5 5x  P — xc5(5P = —c56(xP).

Thus the relation holds for a polynom ial of degree / + I.
Suppose that dP = c 3 5P + c 5 (5

2
P  holds for any polynomial of degree up to /.

Then:
d(xP) = dx • P + x  • dP

= (c3Sx + c56 2 x)P + x(c35P + c56 2 P)

= c 3 ,6x • P + c56 2 x•P + (c3x — c5(5x)5P — c5xS 2 P

= c36(xP)+ c56 2 (xP).

Thus the differential formula holds for a polynom ial of degree 1+ 1.

T his derivation has "enough" inform ation about the differential d  as the
following shows.

Lemma 4 .4 .  L et P  be non trivial in F3[a2, a4, yzt, b6].
cocycle if  and only  if  S P = O.

P ro o f  If P  is a cocycle then d P  O. T h e n  b y  the differential formula, we
have S P = O.

Conversely, if  O P= 0 , so  does 02 P ,  therefore we have d P = 0  b y  the  dif-
ferential fo rm u la . Since P  contains neither c3 nor c 5 , it  is  n o t  in the d-image,
hence it is a non trivial cocycle.

Now, Lemma 4.3 gives rise to the formulae

y 7 62 P — d(a2 P — a4 5P), w 862P d ( —c3 P — c3 SP),

which together with the 62
- image:

= 6 2 (—ai), a2Y4 ( 52 ( a 4 b 6 ) ,

Ya =
-2 

( — b6), a2y 8=62(-41,6),2 2

Y4Y8 = 6 2 ( — a4N ) ,A  =  5 2  (aibi,) ,

T hen P is a non trivial
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proves the following lemma:

Lemma 4.5. T he only  non triv ial d2 are..

d2(a2N) d2(c34) = 11,84 d2(c3a:IN) =

d2(c3aib6) - w8y8a2, d2(-c3a4b6) w8a2Y4,

d2(c3b) = w ay , and d2(c3a4b 6
2 )  =  14'8Y4Y8-

Thus,

Lemma 4.6.

E3 L- F3 [4, N] (11, Y8, 1F3[a2, Y4]

{c3, y 7 , Wg, Y9, a2w8, Y4Y7, Yaws, w8.328}F3[w8 ] ) •

When we put y 12 =  a2  and y 18 =  b ,  all the generators are permanent, hence
E 3 =  E cj a n d  we have proved

Proposition 4.7. W e hav e an additive isomorphism

Cotor s i* (F3, F3) ({ 1 , y8 , Ji}F3[a2, .Y4 ]

0  {c3, Y71 w 8 ,  y 9 ,  a2W8, Y4 Y71 Y4 w8, w8Y8}F3[w8]) 0 F3[Y12 , Y ld •

Now, it is  easy  to  ge t the  algebra structure of C otorI,(F3 , F3) as

Proposition 4.8. C o to r, (F 3 , F 3 )  is commutative.

P ro o f  To begin with, we have the following d-images:

2C3 =  dC5,y  =  d(c54), A  d(c5 N),

[0, y7 1 = d(c5a4), [0, 4, 8] = d (c ), [C3, y 9 ]  =  d(-c5b6),

[y , = d (c ia4 ) ,[ y 7 ,  Y 9] = d( - c5d4b6), [y9, W g] = d (C P )6 )•

In  C, [c3, P] = c5(5P holds for P E  F3[a2, a4, Y4, h6], hence if P  is a  cocycle we
have [c3, P] = O. T h e re fo re  com m utativ ity  holds in  C otor .*4 (F3, F 3 ).

A nd we have the following d-images:
2 d=  G/C5, A = d(c54),

A  = d(c5N ), c3(52 Q = d(6Q),

Y76 2  =  d(a2Q - a4 6 Q), w 862Q = d(-c3Q - c56Q),

Y96 2  =  d(b66 Q  Y 4 Q ), C3d2 = d (b 4 ),

c3Y  = d(b6), Y 7a2 = d(4),

Y 7 Y 8 = d( - 4b6), Y9 Y 4 = d(N),
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y 9 y 8 -  d ( - a4 b ) , c3y7 + a2w8 = d(c5a4),

c3y 8 + Y9Y2 - d(a4b6), Y 7Y 4 Y 9Y 2 - d(a4b6),

w8y 8 -  y 7 y 9  =  d( - c5a4b6), w8Y 4+ y9c3 = d(c5b6)•

Finally, note that the elements which are 0 as polynomial in F3 [a2, a4, Y4 , bEl

are generated by y  -  a y  18 - KIY12 , hence w e have proved:

Theorem 4.9. F o r d  = H *S U (3, 3), we have as  algebra:

Cotor,VF3, F3) F3 [a2, Y4 , Y8 , w81 YI2 , YI8] AF3 (C3, Y7 , Y 9)I R,

where R  is  the ideal generated by:

c3a2, C3 Y4 , Y7a2, Y7 Y8

Y9Y4,
Y7Y4 ± Y9 Y2,

Y9 Y8 ,

w8 Y8 - Y7.329 ,

C3 y7 - 1-  a2 W8 1

w8 Y4 + Y9C3,

C3 Y s + Y9 Y2
„ 3 ,

`. 2-Y18 Y4.112 .

Corollary 4.10. W e have

Cotord* (F3, F3) (A + B ) 0 F3 [ V V  1L., 12) 18,

where A  = {1, y8, yi}F3[a2, y 4 ] and B  11, a2, C3, Y4, y7, yg, Y9, C3 y 8 1F3 [wd . More-
over, A n B = az, Y4, Ys}F3.

5. The spectral sequence collapses

In this section w e prove that the EMss associated to the fibration

S U(3, 3) * - 4  B S U(3, 3),

namely (E **,  , a(
* ) ,  collapses at the 2-stage. W e prove that a ll the possible dif-

ferentials vanish and therefore the spectral sequence collapses at the 2-stage.
The description of the E2-term, CotorH* ,s u ( 3 ,3 ) (F3,F3), appears in  Theorem

4.9.
The classes a2 and c3 of Cotor t i* .s u ( 3 ,3 ) (F3, F3) are the transgressions of the

classes x 1 an d  y2 o f  H*S U(3, 3), so they are permanent cycles.
Since d r y 4  i s  of degree 5 and CotorH

5 *s u ( 3 , 3 ) (F3, F3) = 0, y 4  i s  a permanent
cycle.

In the m od 3 Sss associated to the fibration

S U(3, 3) B S U(3,3),

we use Kudo's Theorem and obtain a non trivial element fig' i c3 E H 8 BSU(3, 3),
hence H 7  BSU(3, 3) 0 O. The only element of degree 7 in CotorH* . s u ( 3 , 3 ) (F 3 . F 3 )  is
y 7 ,  so it  is  a permanent cycle and represents Y 1c3.

The elements dr y 8 and (1018 are of degree 9. The only element of degree 9 in
Cotorn* .s u ( 3 , 3 ) (F3,F3 )  is  y 9 and  it  is  a permanent cycle because

1 = dimF3 Cotor 9
H „s u ( 3 , 3 )  (F3 , F3 ) > dimF3H 9 BSU(3, 3) > dim F , H 9 BF4 = 1.

So w8 and y8 are permanent cycles too.
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Since dr y i 2  is of degree 13 and Cotor13*SU(33)
( F 3 , F 3 )  =  0, y 1 2 is a permanentH , 

cycle.
Finally, we know that

12 = dimQH 18 (BSU(3, 3); Q) d i m F 3 1/ 18 BSU(3, 3)

dimF3 H I8 BSU(3, 3) < dimF 3 CotorZ s u ( 3 , 3 ) (F3, F3) = 12,

hence y 1 8 has to be a permanent cycle too.

6. Mod 3 invariants forms

In this section, we calculate the invariants under the action of the Weyl group
of SU(3, 3) on H* B T .  In what follows in this section, the lattice LG of a compact
Lie group G means the lattice associated to the 3-adic representation o f  W G, the
Weyl group o f  G, o n  G L (H *(B T G ,Z ))•

The first step is to calculate L sG(3 , 3 ) ,  the  lattice o f SU(3, 3). According to
Notbohm [18], the lattice of S U (3)x  S U (3) is projective and that one of PU(3)x
PU (3 ) is simply connected, therefore th e  lattice L  o f  any quotient of SU(3)x
S U (3), with Weyl group W, fits in  the  following diagram:

L PU(3)xPU(3)

        

L PU(3 x PU(3) L S U (3)x S U (3) - >  Z / 3  0  Z / 3

Z(L) Z(L)

where either rows and columns are short exact sequences, and Z (L ) is the center of
the lattice. In  our case Z (L s u (3 ,3) ) = Z/3.

Let 01, . • • , é- } a  Z /
3\ -base of L s t 1 ( 3 ) x S U ( 3 ) ,  then the action of Wsv(3)xsu(3)

E 3  X E 3  is given by the matrices

/ 0 1 0o \

=
1 0 0 0

=

/1 0 0 \
0 1 0 0 

0 0 1 0 0 0 0 1 
\0 0 0 1 \0 0 1 0

/ 0 —1 0 0\ /1 0 0O \
1 —1 0 0 0 1 0 0

CA  = and C-13 =
0 0 1 0 0 0 0 — 1
0 0 0 1 \0 0 1 —1 /

where 7- - " -A  and CA, and  TB and CB represent the permutations (1,2) and (1,2,3)
in  the  first and second copy o f E 3  respectively. This implies that ofél) o ( ê 2 )
and a (é3) = o-(é4).
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Because a is surjective and the inclusion of the center of SU(3, 3) is diagonal,
we can assume that c(êl) = cr(é3) 1 without lost o f generality. Hence, a Z3 -
base o f L su(3 , 3) Ker a- is

el = e1 — e2 = é-1 — é-3

e3 = —  êa, e4 = 2e1 + é- 2

and therefore the  ac tion  o f W su(3 , 3) is given by the matrices

7 - 1 —1 —1 —1 \ /1 0 0 \
0 1 0 0 0 0 1 0 

TA =
0 0 1 0

TB =
0 1 0 0 

0 0 01 / \0 0 0 1/

7-1 —1 —1 —1\ /1 0 1 0

CA =
0
0

1
0

0
1

0
0

and C B =
0 0 —1 0
0 I —1 0

\ l 0 0 0 ) \ 0 0 1 1

N ow , we have to calculate the action of S u(3,3) o n  H *B T , that is, on
L su(3,3)I 3L s u ( 3 , 3 )  0 F3.

L et us consider the F3-base of H * B T  H * ( B T ;Z 3 )  Z/3:

t1 e i 0  1  +  e2  0  1  +  e3  0  1

t2 = e2 0 1 + e3 0 1

t3 = e2 0 1 + e3 0 1 + ea 0 1

ta = e2 0 1 — e3 0 1,

then the  ac tion  of W SU(3,3) on Lsu(3,3)/ 3 H * B T  is given by the matrices,

TA =

/0 1 0 \
1 0 0 0
0 0 1 0

\0 0 0 1J

TB =

/1 0 0 0\
0 1 0 0
0 0 1 0

\0 0 0 —1)

0 1 0 0 7-1 1 1 —1\

CA =
0 0 1 0
1 0 0 0

andC B =
1 —1 1 —1
1 1 —1 —1

\0 0 0 1 \1 1 1 1 j

T he  calculation o f  th e  mod 3  invariant forms is now done in  several steps,
following the  chain o f subgroups

<TA , CA > <TA , CA , CB • TB> WSU(3,3)•
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Easily we can see that,

Lemma 6.1. F3 [ti , t2 13, 
t 4 ]  < T A , C A > r

3 [Z2 , Szt, S6, t4] w here  22 = t i  + 12 +13,
S 4  =  ti t2 ti t3 t2  t3  and S 6  = ti t2t3.

L et R  denote the  element CB• TB e  W su (3 , 3 ) ,  the  next step is,

Lemma 6 .2 .  F3 [Z 2 , s4, S6, t41 R  7:=__ F3 [Z2, X4, y4, X6] where subindex indicates de-
gree and,

X 4 =  S4 ± 2214

Y  4  -  1:1 t 4Z2 ,

X 6  = S6 -  14(s4

P ro o f  It can easily checked that F3 [Z2, x 4, Y  x6] F3 [Z2, 54, 56 , 14] R  •
 Now,

a n  arbitrary element f  E  F3 [Z2, S4, 56, t 4 ] can be written in  an  unique manner as
f  =  g + t4h where g, h e F3 [Z2, x4, y 4 , x6]. If f  is invariant under the action of R,
we have that

g + (z2 -  t4 )h -  g + t4h,

what implies that h 0 , and the  lemma have been proved.

Finally,

Theorem 6.3. F3 [ti, t2)
 1 3 ,  / 4 ]  W S U (3  1)

F3 [Z2, 24) 2 8, 2 1 2 , 1 8 ]/(r2 4 ) w h e r e  the ele-
ments zi  and ri  have degree j  and can be expressed as elements of  F3[22, X4, .Y4, x6] in
the following manner,

2 2  =  2 2

2  ,2 4  =  2  - r2  X 4  +  Y 4

Z8 = Z2 (X6 + Z2X4) Y 4 ( 2 3  +  X 4  + Y4)

3 _,_ ,
2

2
2 1 2  -  Y 4  - E  ' Y 4

=  4  -  x 62 (x4 + Y 4  Z ) Z 2  -  X6 (X4 - 1-  y 4  -  Z D 2 y4,

2 3 3
-r

„ 7 , 2 3 31'24 = 2 3 (2 1 8  +  2 2 2 8  -  2
„

22 1 2  - ,224. Z2Zq.Z8
,  ,

- 2)

3  , 2 2 3-  2 8 -t- Z 2 242 8  -  Z 4  Z12.

,P ro o f  W e  h a v e  t h a t  F3 [ti , t2, 13, 14] w s "  3 ) =  (( F3[t1, t2, 13, 14]
<TA CA >)R)TB

hence by the  lemmas above, all we have to d o  is to calculate

F3 [Z 2, S 4 ± Z2 t4, S6 - 14(54 14Z2]TB •
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A n  element f  c  F3 [Z2 , S4 ± z2 t4,• S6 - t4(S4 _ z i), t _  t4z 2] is written (no
necessarily uniquely) in  a  form

f  =  g + _ t4z2)h + (56 - t4(s4 + t - z3))i + (56 - t4(s4 + t _  4 ) ) 2 ;

where g ,h , i ,  j  F3[7.2, Z4, Z8, ZI2, ZI8]•
As f  is invariant,

0 = f  - T B (f ) = t4z2h + t4(s4 + t -4 )i-s 6 t4 (s 4 + t i -  z ) i

0 = z2h + (s4 + - 4 ) i - s 6 ( s 4 + t i  -  z3)j.

Therefore z2 h = (54  +  t _  4 ) ( s 6 i  _  0  a n d  applying C B  we get that j  0
because z2 ,h , i ,  j  a n d  s4  +  t -  z3 are  invariant b y  th e  a c tio n  o f  B C .  Hence
z2h -(54 + z ) i  a n d  there exists h E F3 [Z2 , Z4, Z8, ZI2, ' 18] such that h -=
-(54 + t -  z ) i i  and  i = z2h.

We have proved that if f  is invariant then

f  =  g  - _ t4z2)(54 + t _ z3)i, + z2(s6 - t4(s4 + t -

= g + (z8 - 4z4)b

that is f  E F3 [Z2 Z4, Z8, Z I2, ild/(r24 ). Clearly,

1 SU(3,3)F3 [Z2, Z4, Z8, ZI2, ' 18]/(r24) F3 [il t2, t3, tzIJ

and the theorem is proved.

Remark 6.4. A n easier expression of r24 can be obtained if we consider the
class zi8 = ZI8 Z 2 Z i  -  Z 3 Z 1 2  -  Z 3Z 4Z 8  - Z3Z4  Z 2 Z iZ 8  -  z z  -  z .  In  this case,

F3 [ti , t2, t3, Li] WSU(3 3) F3 [Z2 , Z4, Z8, ZI2, Z18[/(Z3Z18 - 4 +  z3z44 - 4z12).

Remark 6.5. N ote that the classes z2 and zi2 have been chosen such that
they are the images of the generators of H*B Tp

w
u73 )̀

3) described in  [7] by the map
H*BTp u (3 ) -> H*B T s u ( 3 ,3)  induced by the projection SU(3, 3) -> PU(3).

The classes z4 a n d  z8 have  been chosen such that th e  natural inclusion
WF W 3)H * B TF ,  4 OE H*B T s u

SU (3

(3 ,3 ) maps the classes p l and P 2  described in [20] to z4 and  Z8
respectively.

By means of the  C artan  form ula  as well as the inform ation given in the
remarks above, we can get some information about the action of the Steenrod
algebra.

Proposition 6.6. T he action of  ,2 / 3  on F3 [ti , 12, t3, td W s
"  

3 ) is  g iv e n  by,
i) .9 1 z2 = 1 za = - z 8 + z i, Y i zs = z4z8,,9 1 z12 = 4z12, and .9 1 z18 = * 1 8

2Z2Z4Z 8

ii) 1 3 Z 2  =  0 , ,9 3 Z 4  =  0 , .9 3 z8 = z 2z 18 f ,  and  Y 3 zi2 =
F3 [Z2, Z4, 4, ZI2]

iii) Y 9 Z 2  =  0 , . 9 Z 4  =  0 ,  .9 9  z8 = 0, Y 9 z12 =  0 , and Y 9  z i 8 = 4 8

z i2 (4  -  z i2 ) , w here f  e
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7. The algebra structure of H*BSU(3, 3)

In  this section we calculate the algebra structure of H*BSU(3, 3 ) as well as
the action of some Steenrod operations.

Remember we have a  fibration (see Section 2)

BSU(3) — > BSU(3, 3 )  i± >1 B PU (3 )

s u c h  th a t  Bfr* : H*B PU(3)— + H*B S U(3,3) is injective ( L em m a 2.4). Call
y . =  B f(*(ti) fo r  i = 2, 3, 7, 12 a n d  w8 = Bii*(t8 ) w here t, e H *B PU (3) are the
classes described in  Theorem 2 . 2 .  Then trivially we get the  algebra relations

Y2Y3 Y2Y7 = 0, Y2w8 + Y3Y7 =

also some information about the Steenrod algebra action

fiY2 — Y3 ,P Y 7  =  W 8 ,

Y 1 Y3 = Y7) Y 1Y i2= 4 + yi2y3,

3Y7 Y7Y12 Y 3 4 , Y3W8 W8Y12 , ' 3 Y 1 2  -  Y 1 2 ( y 4  -  Y 1 2 ) .

Moreover, we also have the inclusion SU(3, 3) ‘-# F4 that induces an injection
H *B F4 H *B S U (3, 3). C all y 4 , y8 a n d  y 9  the  im ages of z4, z8, z9 e H* BF4 re-
spectively, therefore we have the algebra relations

Y4Y9 Y8Y9 = 0

and

I Y4 =  Y s  +  y , f i Y s  =  )291 Y 1y 9 =  O.

Now by dimensional reasons we get that

Y3Y4 — 0 ,

and  applying Y I to  th is equality  and fig' I w e  a lso  g e t the algebra relations

O = (Y3Y4) = Y7Y4 Y3Y8

O =  P} 1 (Y3Y4) = w8Y4 + Y3Y9.

As dim% H (T3 BSU(3, 3) -= dim% 1-q 3 BSU(3) 2 =  4  and y 3 w 8 0 0 we have the
following new algebra relation

O = fi(Y2Y8) = Y3Y8 + Y2Y9.

Now, note tha t Y i y 8 =  j q f  + .1y3 y9  w here f  e F3[y2, y4 , y8 , w8 ]  and A E F3,
therefore  y1 ' y 8 =  0  and  applying Y I a n d  flY I t o  the relation above we get,

O =  I (Y3Y8 + Y2Y9) = Y7Y8

0 =  /3g)  I (Y3Y8 + Y2Y9) — w8Y9 Y 7 Y 9 .
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A t  th is  p o in t, t o  h a v e  completely determined t h e  a lgebra  structure of
H *B S U (3,3), w e on ly  need  to  find  a  nice generator in  dim ension 18 a n d  to
describe the algebra relation that appears in dimension 24. In order to do that we
use the information of Section 6.

Lemma 7 .1 .  L et T  ‘4 S U (3, 3) be the standard inclusion of the maximal torus
Br*of SU(3, 3). Then H*B S U(3, 3) (H* BT) w suo 3 )  is surjective.

P ro o f  By Remark 6.4 we know that

F3 [ti , t2, t3, tzt] WSU(3, 3) F3 [Z2 Z4, Z8, Zi2, ZI81/(Z3Z18 - ZE3{ Z i Z 4 4 4.Z12)•

W e already know that H *B S U (3,3) is generated (as algebra) by y2, Y3, Y4‘
Y71 Y81 w81 .Y12 a n d  a  generator in dimension 18, and  because the  way they have
been chosen and  Remark 6.5, we also know that

Bi*(y 2 ) = z 2 , B 1*(y 3)= 0, *(y 7 ) = 0,Bi * (Y 4) = 14, Bi

B i(w 8 ) = 0, B1*(y8)= z8. B1*(y12)= z12.

Therefore the image of this new generator in dimension 18 has to be 0 or z18
probably plus decomposables. I f  i t  is  0, then  Im = F3[z2,z4, zs, zi2], b u t by
Proposition 6.6 we know that g) 3 z8 = z2z18 + f  where f  e  F3 [Z2, Z4, Z8, Zi2], which
means that Y 3 z8 Im B /* w hat is impossible.

Hence z18 is  in  Im B t* and the  lemma is proved.

By the last lemma we know that there exist at least one element y i s  such that
B it(y 18 ) = z18. It is  c lea r tha t y 18 i s  a  new generator and , because

dimQH 18 (BSU(3, 3); Q) = dimF3 1-118 BSU(3, 3),

we also have that fiy 18O .
Now, by the last lemma we know that the algebra relation in dimension 24

has to  be  o f the  form

Yis + YZ-Y4Y YâYi2 + aY4w8Y12 b n iy 8 + (4)

where a,b ,c  e F 3 .  Applying )6' to  (4) we get that 0 = b q y 9 ,  hence b  = 0 and the
relation is reduced to

0  = Y ZY 18 - + Y Z Y 4Y ; A Y 12+ aY4 11'81'12 + c4 ,( 5 )

where a,c  e  F 3 .  Applying /3 to  y 2 (5) we get that 0 = cy 3 4 ,  hence c  = 0 and the
relation is reduced to

O = Y 23 .Y18 - y  + Y 3 .Y 4 .4  Y ,3tY 12+ aY4w8.Y12 ,( 6 )

where a E  F 3 .  Applying /3 to  y 7 (6 )  w e get that 0 = ay 4 vtiy i 2 ,  hence a = 0 and
finally we get the  algebra relation

O = YZ.Y18 .3) 33 + YiY4Y K31.Y12
which finishes the calculations.
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The action of Y I o n  y i 8  can be easily deduced o f tha t relation and we get

,9 1 Yis = YiYi s Y2Y4A•

8. Two principal fibrations

Let X  be a  3-complete space with H*X  ' H*BSU(3, 3). First of all, we
obtain some information about the low dimensional 3-adic cohomology o f X.

Lemma 8 .1 .  L et X  be a  3-com plete space w ith H* X  s13H * B S U (3 ,3 ) , then
the low dimensional 3-adic cohomology o f  X  is

n 0 1 2 3 4 5 6 7

H* (X ; Z3) E3 0 0 y3 Z/3 {y3, y4 }Z3 0 00 4 , y4 y2 1E3

where the notation has been chosen in such a  w ay  that the m od 3 reduction sends a
3-adic class X  to its m od 3  reduction x.

P ro o f  Because X  is a  simply connected, p-complete space such that IPA' is
finite for all j, we can apply Proposition 5.7 in [1], and we get that Hi(X; Z3) is a
finitely generated Z3 -module for all j. Hence we can apply the  Bss.

The first differential is the primary Bockstein. It vanishes for all the algebra
generators o f H *X  H *B S U (3 , 3) b u t (see 1.2)

=  3'31 fi3)7 = w8, and flYs = Y9.

Therefore at the B2-stage of the spectral sequence all the elements are in even
degree, hence all o f  them are permanent cycles and w e get the  desired result.

By the lemma above, we know that H 3 (X; )  =  Z /3 .  Let X  —> K(E3, 3) be
the  natural m ap induced by y3 ,  the  generator o f  H 3 (X; Z3), an d  le t Y  b e  the
homotopy fibre of tha t m a p . T h is  m ap classifies a principal fibration,

(BS 1)"3 ± *  Y X. (7)

W e also  know  that H 2 X =  Z / 3 .  L et X  K (Z/3,2) b e  the  natural map
induced by y 2 ,  the  generator o f H 2 X , and le t F  be the homotopy fibre of that
m a p . T h is  m ap classifies a principal fibration,

BZ/3 F  - - ( 8 )
As there exists a  map K(Z/3, 2) K(Z3 , 3) such that the following diagram

commutes
X   X

Y21
Y 3  1

K(Z/3,2)
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both fibrations (7) and (8) fit in the following commutative diagram,

(S I )3 BZ/ 3 (BSI )3

   

(S')3 (9)

where both rows are also fibrations.
In this section we compute the cohomology of Y, H* Y, additively.

Proposition 8.2. The m od 3 S ss associated to the f ibration (7) collapses at the
E6-stage and:

= F3 [X2, X4, X4, X6, 5C6, X8, X12, 5-C18, X201/H

where H  is  th e  ideal generated by  .k- 44  - -
jc20x2 and 4 x 1 8  -  x  + x2x44 - xz3tx12.

P ro o f  Let us denote H*BSI = F3 [u] where v  =  2  and let (E: , * , d* )  be the
m od 3 Sss associated to the fibration (7). The spectral sequence starts as:

E 2
"  =  *(X ;H*B S I ) 1 1 * X  H * B S 1 ;

hence, in  view of Corollary 4.10, w e can w rite it as

E'2" = C  C ) { 1, Y2, Y3, Y4 , Y7 , Y8 , Y9, Y3Y8}F3[wa, Y12 , YI8 ,

where y ,  has bidegree (n, 0), w8 has bidegree (8, 0), u has bidegree (0, 2), and

C = (Al A n B) F3 [V]

_ _ _
4 f 

r
kY -v2 31Y2 , Y4 , Y8, YI2 , YI8, ul 1/4.7-7  TY2Y4, Y r 3LY4, Y8, Y12, Y18 , ui

{Y2.Y8 , Y4Y8, Y}F3EY8, Y12 , Y18 , v1)/r24

being r2 4  =  4 1 '1 8  -  4  +  4 .Y 4 4  4 3 '1 2 .
The first non trivial differential is the transgression of v, which is by con-

struction y 3 ,  tha t is, d3(u) = y 3 . This determines 13 and:

=  C  G {Y211 2 V3 2, VV 4v2, y7 , Y8 , Y9, Y3Y8v 2 }F 3 [W8, Y12) Y18 ,  y 3 ]

0 {y 2 , y2v, Y4, Y4V}F3[Y12, yig, V 3 ],

where
,,2„ 2 ,{ Y2V, Y2t)2 , Y3 1)2 , y4, Y4v, y4 u

2

y7 , Y8 , Y e , Y "
2

8 11'8, Y9 , Y12. Y18, v3}

can be chosen as a set of algebra generators. It follows that (14 0  and E 5
"  =

-  x 6 x , J .C.4X18
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Lemma 8.3. v 3 is  a perm anent cy cle, and d 5  is determined by d5(y 3 v2 ) =
W8, d5(y 2 v2 ) = ± Y7 an d  d5(y4 v2 ) =  + y 9 .

P r o o f  Since y transgresses to y 3 , v3 m u st be transgressive too, in particular
d5(y3 ) =  0 , and  by the Kudo transgression theorem, d5(y2 v2 ) = fl. ' y3 = 1V8.

We look now at the Sss with coefficients in Z3:

= *(X ; H*(B S 1 ; Z 3̂ )) H * (  E 3̀  ).

It is well known that H*(B S I; Z1
3' ) Z /3 [15] and, by Lemma 8.1, we also know

H *(X ;r3 ) fo r  *  < 7 . T h e  first non trivial differential is ii3t) = Y3 and we find that
Y3 should be a permanent cycle because a3Y 3 =- 3 73 f 2 =  0  and  there is n o  other
possibilities for d r i53 .

In addition, we know that the mod 3 reduction is a  natural transformation of
cohomology theories a n d  therefore induces a  map between th e  corresponding
spectral sequences. Comparing both spectral sequences, we find that v3 should be
a permanent cycle in the mod 3 Sss a s  so is f)3 in the 3-adic Sss.

Since y7 =  £ 1
3 a n d  y 3 does not survive, y 7 has to "die" to o . The unique

possibilities are  d5(y 2 v2 )  = + y 7 ,  by degree reasons.
At this point, d5 (y 4 v2 )  could be ± Y 9  or trivial. Assume d5(y 4 v2 ) = 0, in this

case

y 8 ' 3 v2 = Y7 (Y4v 2 )

d5 (Y8 (Y3V2 )) = d5(Y7(Y4v 2 ))

y 8 w8 = 0

which is impossible (recall that y3 v2 a n d  y 4 v2 are indecomposables a t th e  E5 -
stage). H ence d5(y4 v2 ) =  y 9 .

By dimensional reasons we get that d5 vanishes fo r the  other algebra gen-
erators of E 5*'*.

Now, we know d5 over all generators so we can calculate E * :

4  =  C 'D  {Y2, Y2v, Y4, Yav, Y8 }F3 [Y121 Y18 , V3 ] ,

where

{ y21 Y2v, y 4 , Y4v) .Y81.4 1) ) AV2 1 Y12) Y18, v 3 }

can be chosen a s  a  se t o f  algebra generators.
Now, dimensional arguments show that all the following differentials vanish,

so E , * E * ,  that is,

E c*,;* =F3[x2,x4,jc- 4, X6,-,-C6, X8, X12, 568,--i .20]/H

where x, is represented by y, for i  0  6, x6 is represented by y 3 , X4 is represented by
y2 y, X6 is represented by y o , i i s  is represented by y iv  a n d  i - 20 is represented
by yiv 2 ,  a n d  H  is  th e  ideal generated by 5-44 — .Tc,8x2,5-c4x4 — 5c6x2 ,X-,34 — x6x3.

4 568 — 5-c20x2 and 4x18 — X +  x 2 x 4 4  -  4 x 1 2 .
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Remark 8.4. From th e  edge homomorphism o f  th is S ss we know that
x, = j*()) ;)  fo r i 0  6 and h*(x6) = u 3 .

Now we can calculate the Poincaré series o f H* Y.

Corollary 8.5. T he Poincaré series of H* Y is

1
(1 — 14)2(1 — 16)2(1 — 12 ) .

P ro o f  Note that the calculation of mod 3 Sss in the proposition above does
only depend o n  th e  s1 3 -algebra structure of H * X , hence th e  same result is
obtained i f  w e replace X  b y  B S U (3 ,3 ) . I n  this last c a se , Y  would be the
classifying space of

G= { (A  , B) e U (3) x  U(3)I det (A ) = det (B)}

and therefore the Poincaré series o f H* Y  and  of H*B G should agree.
Finally, notice that G fits in  a  short exact sequence

SU (3) —> G —> U(3)

that induces a fibration

BSU(3) —> BG —> BU(3)

whose mod 3  S ss collapses at the E2-stage and gives a n  algebra isomorphism
H *B G  H *B S U (3 )0  H *B U (3 ) from which one obtains

P(H*Y  ,t) = P(H*B G,t)=
1

(1 — (4 ) 2 (1 — t6 ) 2 (1 _ 1 2 )

9. Maximal tori

L et u s  consider V  th e  to ra l elementary abelian 3-subgroup o f  SU(3, 3) of
maximal rank and  denote by iv  th e  in c lu s io n . We can easily obtain that the
centralizer o f  V  in  SU(3, 3 ) is  T 4 ,  the maximal torus.

Now, if X is a  3-complete space with H* X  i--.'.9, 3 11*BSU(3, 3), Lannes' theory,
[9], provides a  map a : B V  —> X , that induces

oc* B i  : H *  X  H *  B S U (3 , 3) — > H*BV

in cohom ology. Then, Lannes' T  functor shows that map(B V, X), (BT 4 )13.
N o w , th e  mod 3  reduction o f  th e  natural representation o f  E 3  E 3

W SU(3,3) on Aut(T 4 ) induces an action on BV  and map(B V, X) (BT 4 )3. This
action looks in  mod 3 cohomology like the  honest one on  BT 4  =  BCs u ( 3 ,3) ( V).
According to Notbohm [18], the possible lattices associated such an action of
E 3  E 3  are  equivalent to those o f  SU(3) 2 ,SU(3, 3 )  o r  S U(3) x  PU(3), whose
mod 3  reductions a re  not equivalents. Therefore th e  a c tio n  o f  E 3  E 3  on
map(B V, X) should be equivalent to that o n  BT 4  =  BCs u (3,3) ( V).

P(H*(Y :F 3 ),t) =



 (BT 5 )3 h(BT4)3

     

> (BS')3

  

BZ/3
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Moreover, the evaluation map is Z 3 0  E3-equivariant and the action is lifted
to homotopy pullbacks, so from fibration (7) we obtain the diagram

(B S ') 3   (B S ') 3

E3 (.) E3CE
eu Y (10)

il
E )  Z 3 C  map (BV , ev- >  X

where all maps are equivariant. The pullback fibration is therefore classified by
the composition map (BV, X ) Œ X  - -  K(Z3, 3) which is clearly trivial, hence
E  (BT 5 )3

In the same way, from fibration (8) we obtain the diagram

BZ/3 BZ 13

1 3 C.) E3CE
ev

E3 0 E3C map (BV
eu X

where all maps are equivariant. The pullback fibration is therefore classified by
the composition map(B V, X ) Œ  —>e u  X K(Z/3, 2). A s this map represents a
non splitting extension, we see that E  (BT 4 )3

Now, we can complete the diagram (9) to

(S 1 )3   BZ/3  (B S ')3

(12)

 Y

(BT4 )3 (BT4 )3

(S1 )3

(S )3

(S )3
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We study the maps e) and év to obtain information about the cohomology of
F,H *F.

Lemma 9.1. The induced m ap in cohomology

év* : H* Y —> H* E H *  B T 5

is injective.

P ro o f  Note that by construction ev : map (BV, (BT4)3 —> X looks in
cohomology like the inclusion of the maximal torus in  SU(3, 3), hence (see 6) we
have that

ev* : H* X (H*(BT 4 )3) 1 3 ( [ ) 1 3

F3[Z2, Z4, Z8, Z12, ZI8]/(Z3Z18 ZF3; 4Z44 4z12)

is given by ev* (y 3 ) -= ev* (y 7 ) = ev* (11, 8) = ev* (y 9 ) = 0 and ev* (y,) = z, for i = 2, 4,
8,12, 18. This determines the map of Sss's induced by the diagram  (10). At the
E2 -stage is

ev* 01 : H* X 0 H*BS 1 —> H* BT4  0 H* BS 1

and then we find that the generators of the E„-stage of the first spectral sequence
(see Section 8) are all detected in the second one which clearly collapses at the E2-
stage. B ut th is last is a free commutative algebra, hence th e  m ap of spectral
sequences becomes an injection at the E „-stage. The lemma follows by induction
on the filtration degree of the  spectral sequences.

Lemma 9.2. (1) The induced m ap in cohomology

ét* : H*F H * E  =  H * B T 4

is  injective.
(2) The Poincaré series of H F  is

P(H* F,t) =
(1 — t4 ) 2 (1 — (6 ) 2

P ro o f  ( 2 )  Consider the  mod 3 Sss associated to the  fibration

(S I )3 F Y

that appears in  diagram  (12). L et us denote H* S I =  A F ,(u ). The spectral se-
quence starts as

E2" = Yt9 *(Y;H*S 1 ) H * Y  0  H * S 1 .

The first non trivial differential is the transgression of u, which is by construction
Y2, the generator of H 2 Y .  This determines d2 and, because every element in H* Y
is regular (by Lemma 9.1 H * Y is a  subalgebra o f a  polynomial algebra), Et =
H* Y/J where J is the ideal generated by y 2 . Clearly the  following differentials

1
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vanish, so E OE) =  E 3  and  because y 2 is regular,

P(H*F,t) = P(H* Y  ,t) • (1 — t 2 )

which gives the  desired result.
(1) Consider the  natural map of spectral sequences between the mod 3 Sss

associated to both central rows in  diagram (12). A t the  E2-stage is

Fu* C)1 : H*Y  C) H* S 1 H * B T 5 C) H* S I

and, by Lemma 9.1, it is injective. Clearly, both spectral sequences collapse at the
E3 -stage which gives u s an  in jec tio n  a t  th e  Eco -stage. Those Em -terms a r e
concentrated in the zero horizontal line so that they actually coincide with the
cohomology of the  to ta l spaces, thus proving the  desired result.

Since ei i s  E 3  0  E3-equivariant, we actually obtain that

e)* : (H*E)13c)13.

It is  th e re fo re  c ru c ia l to understand th e  a c t io n  o f  E 3 E 3 o n  H*EL .-
H*B T 4 . Let L E denote the 3-adic lattice associated to the action of E3 0 E 3  on
H * ( E ;Z 'n .  Because th e  3-adic lattice associated to the  ac tion  o f E 3  0  E 3  on
H*(map (By, X )Œ ; Z )  is equivalent to that of SU(3, 3), the left hand fibration of
the diagram (11) provides an exact sequence o f lattices:

0 —> LSU(3,3) — > L E  - 4  Z/3O .

According to Notbohm [18], we get that L E h a v e  to be th e  centerfree lattice
associated to L su(3 , 3 )  and therefore 4 - L s u ( 3 ) x S U ( 3 )  which gives us the precise
action of E 3  0  E 3  o n  H*E . H * B T 4 . Now we can prove,

Proposition 9.3. H *F H *B (S U (3 ) x  S U (3 )) a s  d3-algebras.

P r o o f  By Lemma 9.2 (1), we know that -a*: H F ' -4 (H*P) 3 1 .3 . Because
(L E )' (LSU (3 )XSU (3 ))

A
3 then

(H*E) I 3 E 9 E 3  =  (H*B7 4 ) W S U ( 3 ) x n 1 ( 3 )

F3 [C41 c6, E.6] H*B (SU(3) x  SU(3)).

Hence we have that

1)* : H*F<— H*B (SU(3) x  SU(3)),

and by Lemma 9.2 (2), the Poincaré series of both algebras agree, so a *  induces
the  desired isomorphism.

1 0 .  The proof of Theorems 1.3 and 1.4

Proof of Theorem  1.3. L e t  X  b e  a  3-complete space with H* X
H*BSU(3, 3) a s  s13 -algebras. F o r  such a  space we have obtained a principal
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fibration (8):

BZ 13 F X

and proved (Proposition 9.3) that H*F '-' 1 3 H*BSU(3) 2 . According to Notbohm
([17]) this implies that F (BSU(3) 2 )3.

Following Dwyer and  Zabrodsky's w ork [5] w e have that

map (BZ/3, (BSU(3) 2 )3 B(SU(3)2)3

where c  s ta n d s  fo r  th e  c o n sta n t m a p . T herefore  w e can  apply  Zabrodsky's
L em m a (see  [11 ], [22 ]) a n d  o b ta in  th a t  th e  c o m p o sitio n  o f  th e  homotopy
equivalence F  (B S U (3 ) 2 )3  with the 3-completion of the standard (BSU(3) 2 )
BSU(3, 3 ) factors u p  to  homotopy through X:

BZ/3 F X

BZ/3 (BSU(3)2)3 BSU(3, 3 ) ,

from which X  B S U (3 ,3 )3 .

Proof  o f  Theorem 1.4. On the one hand,

1/6 3 (B X ) H(B T x )W S U(3 3) Q A [

3 LY4+ Y4 ,  y 6  ; 6 ]

and we get that 1-14 ,  X A q3 (x3, x3 , x5, i5). Hence the mod 3 Bss of H*X  should
converge to  B o, AF, (X3, X5, 5C5).

O n  th e  other hand, because the  m ap rci T —> rciX is  surjective [14], a n d  it
factors through the covariants (mi T) w , (niT) 147. , ( 3 3 ) = Z/3, we have that either

= 0  o r  rci X  = Z/3.
If  rci X = 0, according to L in  (see [10]) H* X  has only elementary 3-torsion

and  the  first possible indecomposable in  H* X  w hich  is  no t in  B o,  appears in
dimension 7. Hence x 3 , X-

3 , x5 ,  and a re  in  fact indecomposable elements of
H * X  a n d  H * X  AF, (X3, 56, X5, 5C5). U sing EM ss w e  g e t th e n  th a t H*BX
F3 [Y4 j ) 4 , Y6) j)6] a n d  the re fo re  by  [17] B X (BSU(3) 2 )3. B u t  SU(3, 3 )  and
SU(3) 2 have  not the same W eyl group type a t  the prime 3. Hence rci X = Z/3.

L et X-  b e  the  universal cover o f X  which is a  simply connected 3-compact
g ro u p  su c h  th a t t h e  m o d  3  B s s  o f  H * .k  sh o u ld  a lso  converge t o  B o,
AF, (X3, 5C3, X 5, 5-05). By the argument above, B k (BSU(3) 2 )3.

To finish the proof we follow exactly the same arguments we used in the proof
o f  1.3. Following Dwyer and  Zabrodsky's work [5] we have that

map (BZ/3, (BSU(3) 2 )3 (BSU(3)2)3

w here c  s ta n d s  fo r  th e  c o n sta n t m a p . T herefore  w e can  apply  Zabrodsky's
Lemma (see 1 111 a n d  [22]) a n d  ob ta in  tha t the com position of the homotopy
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equivalence BA2  (B S U (3 ) 2 )3 with the 3-completion of the standard BSU(3) 2

BSU(3, 3) factors u p  to  homotopy through BX:

BZI3 BX

I

     

BZ/3 BSU(3)2)3 BSU(3, 3 ) ,

from which B X  B S U (3, 3 ) .

W e finish this section proving Corollary 1.5.

Proof of Corollary 1.5. By [161, we have to prove that the classifying space of
L is in the same genus as BSU(3, 3). The rational case and the p-completed cases,
for p  3, follow from [15] and the case p = 3 from Theorem 1.4. This completes
the proof.
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