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Generating elements for B;{R
By

Adrian Iovita and Alexandru ZAHARESCU

Introduction

Let us fix a prime number p. Then B}, denotes the ring of p-adic periods of
algebraic varieties defined over local (p-adic) fields as considered by J.-M.
Fontaine in [Fo]. It is a topological local ring with residue field C, (see the
section Notations) and it is endowed with a canonical, continuous action of
G:= Gal(Q,,/Qp), where (_)p is the algebraic closure of Q, in C,. Let us denote
by I its maximal ideal and B, := Bjp/I". Then B}, (and B, for each n>1) is
canonically a (_)p-algcbra and moreover (—)p is dense in B}, (and in each B,
respectively) if we consider the “canonical topology™ on B, which is finer than the
I-adic topology.

Let now L be any algebraic extension of Q, contained in Qp and Gy :=
Gal(Q,/L). In [I-Z], the authors described all the algebraic extensions of
K :=Q," such that L is dense in (B,)° for some n or in (B:,'R)GL. Let us
formulate this problem in a different way. For two commutative topological rings
A c B, a subset M — B will be called a “generating set” if A[M] is dense in B.

Definition 0.1. Let 4 < B be commutative topological rings, then we define
“the generating degree”, gdeg(B/A) e NU oo to be

gdeg(B/A) := min{|M|, where M is a generating set of B/A}

where |M| denotes the number of elements of M if M is finite and oo if M is not
finite.

Then the problem Is L dense in (Bl)?*? can be formulated as Is
gdeg((BjR)GL/L) zero? For example Theorem 0.1 of [I-Z] can be restated as:

Theorem 0.1. If L is not a deeply ramified extension of K then
gdeg((B,)“/L)=0  for all n and gdeg(Bz) /L) = 0.

A characterization of deeply ramified extensions L of K satisfying gdeg((Bj;R)GL /
L) = 0 is obtained in [I-Z], Theorem 0.2. As not all deeply ramified extensions of
K have this nice property, [I-Z] left open the problem of describing (B, )" for all n
and (B‘J;R)GL, for a general deeply ramified extension L. The first part of this
paper (section 2) supplies such a description, namely we prove
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Theorem 0.2. If L is a deeply ramified extension of K then
1) there exists a uniformizer z of B}, (ie. a generator of I) such that
+ \GL
ze (Bj)
i) Ll[z] is dense in (B:;R)GL, and if we denote by z, the image of z in B,, then
L(z,] is dense in (B,)°" for all n.

In other words, Theorem 0.2 tells us that if L is deeply ramified then
gdeg((B.)®*/L) <1 for all n and gdeg((Biz)“/L) < 1.

The second part of the paper (sections 3 and 4) is concerned with a problem
of a different nature. It is known ([I-Z]) that B, is a Banach algebra over Q, for
all n. We are interested in constructing a ‘“‘nice” integral, orthonormal basis of
By, as a Banach space over Q,. First we prove a surprising fact, namely that B,
is the completion of the polynomial ring in one variable over Q, in a suitable
topology, i.e. we prove the following

Theorem 0.3. gdeg(B},/Q,) = 1.

Theorem 0.3 provides us with an element Z € By, such that Q,[Z] is dense in
Bfz. We can use this “generating” element Z to construct an orthonormal basis
for B, over Q,. Namely, let us fix an n > 2 and let us denote by z the image of Z
in B,. Then we construct a sequence of polynomials {M,,(X)},,, in Q,[X], with
the property that My(X) =1 and deg(M,,(X)) = m for all m, such that

Theorem 0.4. The family {M,(z)}
over Q,, ie.

i) For any ye By there exists a unique sequence {cy}, in Q, such that
Cm %0 and V= CmMu(2).

i) For y and {cn},, as in i) above we have

w 18 an integral, orthonormal basis of B,

m

w,,(y) = I'l"l’ill'l U(C,,,)

where let us recall that wy, is the valuation which gives the Banach-space norm on By,.
iii) For y and {cy},, as in i) above, we have: w,(y) = 0 if and only if ¢, € Z,
Sor all m.

m

We end the paper (section 5) with some examples and problems concerning
metric invariants for elements in BJ,.

Notations. Let p be a prime number, K =Q," the maximal unra_miﬁed
extension of Q,, K a fixed algebraic closure of K and C, the completion of K with
respect to the unique extension v of the p-adic valuation on Q, (normalized such
that v(p) = 1). All the algebraic extensions of K considered in this paper will be
contained in K. Let L be such an algebraic extension. We denote by
Gy := Gal(K/L), L the (topological) closure of L in C,, @, the ring of integers in
L and m; its maximal ideal. If K < L = F c K, and F is a finite extension of L,
4pyp denotes the different of F over L.

If 4 and B are commutative rings and ¢: 4 — B is a ring homomorphism
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we denote by Qg4 the B-module of Kihler differentials of B over A, and
d: B — Qp, the structural derivation.

Let &/ be a Banach space whose norm is given by the valuation w and
suppose that the sequence {a,} converges in &/ to some o. We will write this:
A — a.

If 4 is a subring of the commutative ring B and M < B is a subset, then we
denote by A[M] the smallest A4-subalgebra of B which contains M.

1. Some constructions, definitions and results

We'd like to first of all recall some of the main results and definitions from
[Fo], [F-C] and [I-Z], which will be used in the paper. We’ll first recall the
construction of B, which is due to J.-M. Fontaine in [Fo]. Let R denote the set
of sequences x = (x), _ ; of elements of (¢, which verify the relation (x("*!)” =
x". Let's define: vg(x):=0o(x?), x4+ y=s where 5" = lim,_q(x("*" +
Yyt P™ and xy =t where 1 = x") p(" With these operations R becomes a
perfect ring of characteristic p on which vg is a valuation. R is complete with
respect to vg. Let W(R) be the ring of Witt vectors with coefficients in R and if
x € R we denote by [x] its Teichmiiller representative in W(R). Denote by 0 the
homomorphism 6 : W(R) — Oc¢, which sends (xo,xy,...,Xy,...) to Z;‘O:O p”xﬁ,").
Then 6 is surjective and its kernel is principal. Let also ¢ denote the map
W(R)[p~'] = C,. We denote B, :=lim_W(R)[p~']/(Ker(#))". Then 6 extends
to a continuous, surjective ring homomorphism 6 = 04z : B}, — C, and we denote
I:=Ker(048) and I, := INW(R). Let = (¢"), , be an element of R, where
£" is a primitive p”-th root of unity such that &® =1 and ¢V 1. Then the
power series

o

DD -0 n

n=1
converges in B}y, and its sum is denoted by 7 := logle]. It is proved in [Fo] that ¢
is a generator of the ideal /, and as Gk := Gal(K/K) acts on ¢ by multiplication
with the cyclotomic character, we have 1"/1"*! =~ C,(n), where the isomorphism is
C,-linear and Gk-equivariant. Therefore for each integer n > 2, if we denote by
B, := B, /1" we have an exact sequence of Gk-equivariant homomorphisms

0= Juss = Buyt 55 B, — 0

where J,4 = I"/I""! =~ C,(n). This exact sequence will be called “the funda-
mental exact sequence”. We denote by 0, : By — B, := Bl/I" and by 1, : B, —
C, the canonical projections induced by 6.

Let us now review P. Colmez’s differential calculus with algebraic numbers as
in the Appendix of [F-C]. We should point out that as our K is unramified over
Q, and so W/(R) is canonically an (x as well as an (g-algebra, we’ll work with
W(R) instead of Aj,. For each nonnegative integer k, we set Af . := W(R)/I{.
We define recurrently the sequences of subrings (0%‘) of O and of (Oz-modules Q)
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setting: (O(Ig) =0Of and if k > 1 Q) .= Og ®C”‘f‘_”gcl"‘.k"’/@x and (0%‘) is the kernel
K K

of the canonical derivation d®*) :(0(,?_1) — Q%) Then we have

Theorem 1.1 (Colmez, Appendice of [F-C], Théoréme 1). (i) If k e N, then
(Og) =KN(W(R)+ I**") and for all ne N the inclusion of 60(1?) in W(R)+ I+
induces an isomorphism

n ~ mlk k
A/ p" Ak, =09/ pny).

(i) If k=1, then d® is surjective and Q¥ =~ (K/aX)(k), where a is the
fractional ideal of K whose inverse is the ideal generated by &) — 1 (recall &V is a
fixed primitive p-th root of unity.)

Some consequences of this theorem are gathered in the following

. l ;
Corollary L1 (i) Al = & (09/p'0%) and A}) ® 2,Q, = Buy1 for all
n>=0.
(i) QW is a p-divisible and a p-torsion O g-module.

The authors have defined in [I-Z] a sequence {w,},, of valuations on K.
We'll recall the definition and their main properties. For each n > 1 let (9%') be
the subring of (¢ defined above. For ae K* we define

wy(a) :=max{meZ|ae p’"(Og_l)}.

Properties of wy

a) wy(a+b) = min(wy(a), w,(b)) and if w,(a) # w,(b) then we have equality,
for all, a,be K.

b) wy(ab) = wy(a) + w,(b) for all a,b.

¢) wy(a) = oo if and only if a =0.

d) o(a) = wy_i(a) = wy(a) for all ae K and n>2

e) For each n>1 the completion of K with respect to w, is canonically
isomorphic to B,.

f) For each n> 1, o e Gal(K/K) and ae K we have wy,(a(a)) = wy(a).

Remark 1.1. If we define the norm |al|, := p~" for all a € K, then w, and
| -1, extend naturally to B, which becomes a Banach algebra over K.
Furthermore the canonical maps ¢, : B,+1 — B, are continuous Banach algebra
homomorphisms of norm 1. As mentioned before, B}R = lim_B,, with transition
maps the ¢'s. The canonical topology on B}, is the projective limit topology,
with topology on each B, induced by w,.

Let us now recall the concept of deeply ramified extension. Let Q, <=L < K.
Then we have

Theorem 1.2 (Coates-Greenberg, |C-Gl). The following conditions on L are
equivalent
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i) L does not have a finite conductor (i.e. L is not fixed by any of the
ramification subgroups of Gal(K/Q,).)

ii) The set {v(4ryq,)|Qp = F <L and [F:Q,] < w0}y is unbounded

iii) For every L' finite extension of L, we have mp < Try.(mp).

Remark 1.2. There are more equivalent conditions in [C-GJ, but we will not
use them here.

Definition 1.1 (Coates-Greenberg, [C-G]). We say that L is a deeply ramified
extension of Q, if it satisfies the equivalent conditions of the above Theorem.

We’d like now to recall another result of [I-Z], which will be used in the proof
of Theorem 2.2. For each n > 1 we have defined a derivation

d,: 0" Q.
K

The following facts are proven in [I-Z], section 5:

1) d, is continuous with respect to w,,; on the domain and the discrete
topology on the target. Therefore it extends to an (Ok-linear map from the
topological closure of (9(1;_1) in B,;;, which will be denoted by A,;|, so d,:
App1 — Q.

2) Juy1 < Auyy, where J, was defined before. So, by restriction we get an
Ok-linear map d, : Jy41 — Q™ which turns out to be surjective for all n > 1.

3) Both J,.; and Q) have canonical structures of Oc,[G]-modules and d,, is
Oc,|G]-semilinear (let us recall that G := Gal(K/Q,).)

4) Let L be a deeply ramified extension of Q, and G : Gal(K/L). Then
the restriction

dy = IO — (QU)) 6

is “almost surjective”, i.e. the cokernel of the map is annihilated by m;.

Finally, we’d like to recall the notion of “generating set” and ‘‘generating
degree” defined in the Introduction. For two commutative topological rings
A c B, a subset M < B will be called a “generating set” if A[M] is dense in B,
where A[M] is defined in the section Notations.

Definition 1.2. Let 4 < B be commutative topological rings, then we define
“the generating degree”, gdeg(B/A) e NU oo to be

gdeg(B/A) := min{|M|, where M is a generating set of B/A}

where we denote by |M| the number of elements of M if M is finite and oo if M is
not finite.

We have the very simple properties:
a) If A< Bc C then
i) gdeg(C/A) < gdeg(B/A) + gdey(C/B)
i) gdeg(C/A) > gdeg(C/B).
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Remark 1.3. It is not true though that gdeg(C/A) > gdeg(B/A4). For ex-
ample gdeg(Q,/Q,) = o while gdeg(B;,/Q,) =1 (as will be shown in Theorem
3.1).

<

gdeg(B/A) is invariant with respect to isomorphisms of topological rings.
If A< B is a finite separable extension of fields, then gdeg(B/A4) < 1.
If L/Q, is a finite field extension, then gdeg((./Z,) < 1.
gdeg(@cp/Z,,) = 0.

el

€

Remark 1.4. In connection with €) above note that since gdeg(Q,/Z,) =1
from i) above and the level 1 case of Theorem 3.1 below it follows that
gdeg(Cp/Zp) < 2.

2. Galois invariants of Bj,

Let L be an algebraic extension of K. Then we can state and prove the
following description of (B,)° for all n> 1 and of (BJR)GL.

Theorem 2.1. If L is not deeply ramified then L is dense in (B,)% for all
n>1 and in (B;R)GL.

This was proved in [I-Z].

Remark 2.1. In [I-Z] the authors prove much more, namely that (B,,)GL =L

for all n>2 and (B;;R)GL = L. Also, the valuations w, restricted to L are all
equivalent and they are equivalent to the usual p-adic valuation v.

Theorem 2.2. If L is deeply ramified then

i) there exists a uniformizer z of Bl (let us recall that this is a generator of
the ideal 1), such that z e (Blg)°".

ii) L[04(2)] is dense in (B,) " for all n > 2 and L[z] is dense in (B;R)GL, where
z is like in 1),

Proof. 1) was proved in [I-Z)], but we will sketch the proof here as well. It is
enough to prove that for each n > 2 there exists a uniformizer z, € (B,,)GL such
that the z,’s are compatible (i.e. ¢,(z,+1) = z,). We'll prove this by induction on
n. For n=2 the statement follows from the fact that (C,,(l))GL #0 ([I-Z]
Proposition 3.1). Let us now suppose that the statement is true for n and let us
prove it for n+ 1. Let z, be a uniformizer of B,, invariant under G, and let y be
any uniformizer of B,,; such that ¢,(y) = z,. Let us recall the “fundamental
exact sequence’”’

0 — Jup1 = Buyi ﬂ’ B, — 0.

On the one hand, J,4| = I"/I""! is a one dimensional C,-vector space generated
by y". On the other hand, as z, is invariant under Gy, for each g € G, we have
o(y) — y € Jur1. Therefore for each o € G there exists a unique {(o) € C, such
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that
a(y) =y ={(o) - y"

The map { : G, — C, thus defined is a continuous 1-cocycle for the group G.. As
H'(G,C,) = 0 (as proved in [I-Z] Proposition 3.1) there exists an ¢ € C, such that
{(c) = o(e) — ¢ for all e G.. Now set z,4) := y —e-y". This will do the job,
as it is easy to see that g(y") = y" for all o€ Gy.

Before we prove ii) we need the following

Lemma 2.1. Let L be a deeply ramified extension, n > 1 and z € (Bus1) % a
uniformizer and y = §,(z) € (B,):. For each ae L[y] there exists be L[z such
that ¢,(b) =a and if n>1 then w,y1(b) > wy(a) — 1 and if n=1 then wy(b) >
v(a) - 2.

Proof. Let {au},, om € K such that o, — z. Then a, .

Let now a=Ymy eL[y], then x,:= S ma,) Sa. Also {x,}, is
Cauchy in Wny1, Xm —5c:=Ymz eLlzl, and ¢,(c) =a. Let us suppose
n>1. Then if w,y (¢) > w,(a) — | then we take b = ¢ and we are done. If not,
we’ll change ¢ by an element of z"L = Ker(¢,[,(;), such that the desired inequality
holds. First of all we may suppose that w,(a) = 0 (if not we just multiply by a
suitable power of p). Then w,(x,,) =0 for m » 0, so x,, € 0" for m> 0. Also
as {Xu},, is a Cauchy sequence in w,;|, we have d,(c) = d,(x,,) € QY for m>» 0 as
shown in section 1. We also have a(d,(c)) = d.(c) for all o€ G, so d,(c) €
(@)% As was explained in section 1, d, extends to an Oc,[G]-semilinear map,
dy,: Iy — Q" such that its restriction

(*) d, : JnG4_L| - (Q(n))GL

is ‘“almost surjective” (in the sense that its cokernel is annihilated by my.)
Moreover, as in the proof of Theorem 2.2 i), J,41 = y"C, as Oc,[GL]-modules.
Therefore we have J,,GJrLI ~ y"L, so from the almost surjectiveness of d, in (x),
there exists ff € z"L such that pd,(c) = pd,(B). Moreover as z"L is dense in z"L
(in wyy1), Q" is discrete and d, is continuous, f can be chosen from z"L. Finally
we have wyii(c—f)+1>=0=w,(a). So we take b =c— f and we are done.
The proof goes identically if n = 1, but v(a) may not be made 0 by multiplying
with a power of p, but 0 < v(a) < 1.

Proof of the theorem. Let us denote by z, := 0,(z). It would be enough to
prove that L|z,] is dense in (B,)°" for all n > 1. This statement is true for n = |
as L is dense in (C,,)GL. So let us suppose that it is true for some n > 1. Then
we have the commutative diagram with exact rows

0 = ()"l — (Bu)® B (B)" — 0
U U U
0 — (za1)"L — Llzgy] — L[z)) — 0
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The top exact sequence comes from considering the long exact cohomology
sequence of the fundamental exact sequence above and the fact that
H'(G,Cy(n)) =0 ([I-Z] Proposition 3.1). The first vertical inclusion is dense in
wyt1 and the third is dense in w,. We want to prove that the middle inclusion is
dense as well (in w,q)).

Let o€ (B,;1)% and let g; € L[z, such that a; 3 #,(0). We apply Lemma
2.1: there exist ¢; € L[zy41], i=0,1,2,... such that ¢,(co) = ao, ¢,(c;) = aiy1 — a;,
for i>0 and w,y(c;) = wy(aip1 —a;)) —2 — oo. Therefore ¢; 0. So let
bi:=co+ci +---+c¢i € L[zyy1], then ¢,(b;) = a; and {b;}, is Cauchy in w,y;. Let
x € B,y be the limit of {b;};. Then, obviously x e (Bu11)C and ¢,(x) = &,(a).

Thus, a — x € Ker(¢,,|(3"+l)aL) =z"L, say o —x =mz", me L. Let s;e L be such
Wnt1

v Wyl
that s; — m, then s;z" — mz". So, t;:=b; +s;z" € L[z,y1] and t; =5 a.

Remark 2.2. The same result was obtained by P. Colmez for the case where
L is the cyclotomic Z,-extension of Q, in [C], using different methods.

3. Generating elements

The main result of this section is the following rather surprising

Theorem 3.1. There exists z € Bjy such that Q,[0,(z)] is dense in B, for all
n>1 and Q,lz] is dense in Bjp.

Remark 3.1. For n =1 this is an improvement of the result of [I-Z,1] where
the authors proved that one can find an element z in C, such that Q,(z) is dense in
C,.

Remark 3.2. Actually, Theorem 3.1 can be stated in an apparently stronger
form: there exists z € B}, such that Q[z] is dense in Bj,.

Before we start the proof of the theorem we need the following

Lemma 3.1 (“weak” Krasner’s Lemma in B,). Let n > 1 be an integer, L any
algebraic extension of Q, and «,f € Q, such that

wa(o— B) > y,(a) := Jedhax wa(a — a(a)).

Then L(a) < L(p).

Proof. If this were not true there would exist o € Gal(K/L(p)) such that
o(«) # a. Since wy(o — ) = wy(o(a — B)) = wa(a(x) — f) and since w, is a val-
uation we have

wa(a — a(a)) = wp(a — f)
which is-a contradiction.

Remark 3.3. The “‘strong” Krasner’s Lemma in B,, which is left as an open
problem, would be the same statement but for any f in B,.
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Proof of the theorem. We can find a sequence {a,},.n in (_)p such that
Qp(al) = Qp(aZ) < Qp(an) < - c UQp(an) = Qp'

Now we construct a sequence of elements in Q,, {a,}, together with a sequence of
polynomials {Ay »(X)}(u<n in Q,[X] having the following properties for each
neN:

1) hp (o) = o, for any m < n.

ii) UQp(‘xn) =Q,.

i) wy(oty — dpy1) > max{n,y,(x,).d}, where y, was defined in Lemma 3.1
and
1= (it (o)) + (/1)

0, := max max -
m<my<n | S/‘sdeg(hm, .,"2) j

(here, if 1 € Q,[X] and j is a nonnegative integer then we denote by i) the j-th
derivative of A.)

The construction goes like in [I-Z.1], namely we choose our sequence {,}, to
have also the property

iv) Qp(an) < Qp(a")'

First we take ) := a;. Suppose we have constructed o, a,...a, and h; ;(X)
for i < j < n and we want to find o4 and hy, 441 (X) for m <n. We take (as in
(I-Z,1]) o,y1 of the form o,y = oy + 1, - any1, Where 1, € Q, is “small” enough to
have iii) above. From Lemma 3.1 it follows that Q,,(a,,) c Qp(a,,+1), SO dpy] =
é(anﬂ — 0y) € Qp(sy1), i.e. we have iv) for a,y. This will imply property ii)
after the construction is done. Also, from the fact that Q,,(an) < Qp(a,,+1) it
follows the existence of #h, ,1(X) satisfying the required property. We define
simply

B 1 (X)) = By (Bn n1 (X)) for m < n.

Hence the inductive procedure works, and so we have a sequence {a,,},,, which is
Cauchy in w,, for all » > 1, and also Cauchy in B}R. Let us denote by z, € B,
and by ze B}, the elements with the property: o, ™z, for all n>1, and
lim,0,, =z in B} Hence z, =0,(z) for all n>1. We'd like to show that
Q,[z,] is dense in B, for all n > 1 and Q,[z] is dense in Bj,. For this it would be
enough to show that Q, is contained in the topological closure of Q,[z,] in B, for
all n and in the topological closure of Q,[z] in Bj,. We’'ll show that for a fixed
but arbitrary r, a, is in the topological closure of Q,[z,] in B,, for all n.

So let us fix two arbitrary positive integers r and m;. We also fix m, such that
my; >m; and my >r and n > m,. Let us denote by u, := a,4 —a,. We have
Wr (B, my () — /- (Ong1)) = wy (Z h,(,{])‘,,,: (otn) - ]—;1)

j=1

> | min L) £l ) = ()
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where the first inequality comes from the Taylor expansion of A, m, (1) and the
property d) of the w,’s. Since w,(u,) > J, we get from iii) the following relation

V) Wr(hm,,mz(an) - hm],mg(an+l)) = n.
Let now ms3 > m,. From v) above we get

my—1

Wr(hm] Jmy (am;) - hml,m; (am;)) =W, ( Z (h"1|,"13 ((xn) - hm|,mz (an+| )))

n=my
= m:rsnnigmj Wr(hmI,mz (an) - hnn,mz (an+l)) = my.

W,

Now we let m3 go to infinity and deduce from the fact that hy, m,(otm) —
Miny .y (2¢) and Ay, (0, ) = 0, for all my that

Wr(o‘nz. - hm,,m: (Zr)) = my.

Therefore we see that we can approximate o, , in the valuation w,, as well as we
want with polynomials 4, m,(z,) € Q,[z,]. Thus the topological closure of Q,[z/]
in B, contains all the «,, so it contains all the fields Qp(a,,) =Q, [on] sO it contains
Q, and hence it equals B,. This finishes the proof.

Now that we have constructed generating elements z in B} one naturally
might wonder if these elements could be also used to generate the modules of
differential forms (see section 1). Let us fix some integer n > 2 then as shown in
(I-Z], d”~V induces an 04 o,-linear homomorphism d"=1 g, — Q=1 which is
continuous with respect to w,, on J, and the discrete topology on Q! and
surjective. Therefore if z € B}, is a “generating element” then any element in

QU1 will have the form d" V(P(0,(z))) for some polynomial P(X) with
coefficients in Q,. This doesn’t mean, however, that d"~!)(z) generates Q""" as
an (O module. Actually we know that this is impossible since Q=N s p-
divisible. What happens is that the coefficients in the above polynomials P(X)
have larger and larger powers of p in their denominators. Therefore if one wants
to generate Q""" in terms of 6,(z) one needs to use a sequence of polynomials in
0,(z) such that no finite power of p will annihilate all their differentials.

4. An orthonormal basis for B,

Let us fix an n > | and a “generating element” z € B, over Q, (we recall that
such an element has the property that Q,[z] is dense in B,). Such an element
exists by Theorem 3.1, and actually can be chosen such that #,(z) is a “‘generating
element” of C,. Moreover we may suppose that w,(z) > 0 (if not we just multiply
z by a suitable power of p). For any m > 1 we define

d(m, z) := sup{w,(f(2))| f € Q,[X], monic, deg [ < m}.
We have
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Lemma 4.1. J(m,z) is an integer for all m.

Proof. 1t would be enough to show that d(m,z) is finite. Suppose not, then
from the inequality w,(f(z)) < v(f(#n,(z))) we deduce that

sup{v(/ (1,())) | f € Q,[X]. monic, deg f < m} = w.

As Q, is locally compact, there exists a Cauchy sequence of polynomials of degree
at most m, {f,(X)}ien. such that v(f(y,(z))) — oo as k — co. The Q,-vector
space of polynomials of degree at most m is complete so let us denote by
f(X) :=limg_ o f,(X). Then f(#,(z)) =0 and so #,(z) is algebraic of degree at
most m over Q,. This contradicts the fact that 5,(z) is a generating element of
C,.

For each m > 1 let us choose f,, € Q,[X] monic of degree at most » such that

o(m, z) = wu(fu(2))-
We'll call the polynomials f,, “admissible”. We have the following
Lemma 4.2. deg(f,,) = m.

Proof. The proof follows easily from the fact that
o(m+1.z) >0d(m,z), for all m

This relation follows from the more general inequality: for all m;,m; > 0 we have
o(my +my,z) =6(my,z) +0(my,z) and the fact that 6(1,z) > w,(z) > 0.
In order to prove this formula let us see that

Wn(fm.+m2(z)) = Wn(fm] (2) 'fmz(z)) > Wn(fm, (2)) + wn(fmz (2))-

Let now {f,,(X)}, be a sequence of “admissible” polynomials, and for each
m>1 we define r, :=w,(f,(2)) and M, (z) := 1, (z)/p™. We set My(z):= 1.
Then we have

Corollary 4.1. If my > | then {My,M,..., M, } is a basis for the Q,-vector
space of polynomials of degree less than or equal to my with coefficients in Q,.

The main result of this section is

Theorem 4.1. {M,(2)},5, is an integral, orthonormal basis of B,, as a
Banach space over Q,. More precisely:

i) For any ye B, there exists a unique sequence {cp}, 5 in Q, such that
cm — 0 and Y= cmMy(z).

ii) Let yeB,, y=3, cnMy(z), with ¢, € Q, for all m>0 and c, 5o0.
Then wy(y) = min,v(cy).

iii) Forall ye By, wi(y) 20 if and only if y =3, cuM,(z) with ¢, € Z,, for
all m >0 and ¢, — 0.

Proof. Property iii) obviously follows from i) and ii). Let us first prove
ii). For this let us consider a finite sum: y = Z:?::() My (2), with ¢, eQ, for
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all m.  Let mg be the largest index k such that min{v(c,,)} = v(ck). We claim

that:
my
Wy ZcmMm(Z) = U(cmo)-
m=1

Obviously we have that the right hand side is less than or equal to the left hand
side. Let us suppose that the inequality is strict. Then we have

m=1

my r’"O
W (Zp—c,,,Mm(z)) >y = 0(mo, 2).
0

But, Z,’,’:"OPC""O ¢mM,y(z) is a monic polynomial of degree myg in z, so the above
inequality contradicts the definition of d(myg,z). So the claim follows. On the

other hand one has

N
Wn( Z CmMm(Z)) > D(Cm(,)

m=my+1

SO

N
Wy (Z C,,,M,,,(Z)) = U(Cmo).
m=1

Therefore ii) holds true for finite sums, so also for sums of the form
Ym0 CmMu(z), where cp, 5 0. Thus ii) is proved.

Now let us prove i). Let y e B, and as z is a “‘generating element”, we have
a sequence of polynomials P, (X) e Q,[X], such that

P, (z) i y.

Let k,, := deg(P.(X)). By Corollary 4.1 each P,(z) can be written P,(z) =
Z}Z’O cm,;jM;(z) such that w,(P,(z)) = minjv(c, ;) from the above discussion. As
the sequence {Pn(z)},, is Cauchy in w,, for each j, the sequence {c,, ;},, is Cauchy
in v (as W,,IQ =), so let us define ¢; := lim,¢,,j € Q,. Moreover we claim that
v(¢j) = oo. To see this let us fix £ > 0 and fix also m, such that w,(P,, (z) — y) >
1 For al] j > max(mg, k) fixed, let m be big enough such that w,(Py,(z) —
P (z)) >1 so we have v(cm,; — cm,;) > 1 So we get (letting m go to infinity)
v(¢cj — Cm,.j) >% and ¢, ;=0 as j>k,. This proves the claim. So it now

makes sense to consider

00

- Z CmMm(z) € Bn-

1=

From the construction of j we have P,(z) o y, so y=y. The uniqueness
statement of i) follows easily from ii).
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Remark 4.1. If in Theorem 4.1 we consider z as a “‘generating element” of
B, over K (let us recall that K = Q;’) then the same construction gives an integral,
orthonormal basis of B, over K.

5. Maetric invariants for elements in B;,LR

Although the topology in B}, does not come from a canonical metric, the B,’s
do have canonical metric structures. This shows us a way to obtain metric
invariants for elements in By, by sending them canonically to any B, and
recovering various metric invariants from those metric spaces.

For example, one may consider for any Z in B}, the invariants d,(m.Z) :=
3(m, (0x(2)))-

We mention that at level n =1 (i.e. in C,) one knows a lot more about these
admissible sequences than we presently know in B,, for n > 1, or in B};. More
details can be found in [P-Z] and [A-P-Z]. Can any of those results be obtained at
higher levels or in B}.?

In [A-P-Z] it is proved that one can separate the conjugates of Z from the
nonconjugates using certain metric invariants. Let us recall how this is done: for
any Z in C, — Q, the sequence {d(m, Z)/m},, has a limit /(Z) in RU{o0}. Now
we take a “distinguished” sequence f,,(X) for Z (this is canonically a subsequence
of what we called in this paper an “‘admissible” sequence of polynomials for Z, see
[A-P-Z]) and define for any y in C,, [(y,Z) :=limy,supv(f,(y))/m. Then
l(y,Z) <1(Z) for any y in C, and this holds with equality if and only if y and Z
are conjugate. This provides us with a metric characterization for the set of
conjugates of Z, as the set of zeros of the function f(y) =1(Z) —I(y,Z). What
will be the analogous result at higher levels or in Bj.?

From the proof of Lemma 4.2 it follows easily that for any z in B, the
sequence {d(m,z))/m},, has a limit, say /(z). Now if Z is in B}, we get a
sequence of metric invariants for Z, given by /,(Z) := /(6,(Z)). What can be said
about this sequence?

Since w, is dominated by w,_, it is clear that d(m, 8,(Z)) < d(m, 6,-,(Z)) for
any m,n and Z. Therefore one has: /|(Z) > hL(Z)> --- =2 1,(Z) = ---

The questions concerning metric characterizations for the set of conjugates is
particularly interesting for generating elements, for the following reason: If we
define for any Z in B (or in some B,) C(Z):= {o(Z)|o € G}, where as always
G := Gal(Q,/Q,) we have a continuous surjective map from G to C(Z) given by
o — o(Z). Now if Z is a generating element in Bfy (or in B, respectively) then
the above map is one-to-one and moreover it is a homeomorphism. So one can
view G as lying inside B, via the orbits C(Z) of these generating elements.

Another class of invariants can be obtained in the following way. We take
an admissible sequence of polynomials {f,,(X)}, for an element ze B, and
consider the sequence {w,(f},(z))},,- In the definition of admissible sequences the
derivatives f, (X) played no role and so we have no reason to expect that the
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numbers w,(f,,(z)) are independent of the admissible sequence considered. The

following result might then come as a surprise.

Proposition 5.1. Let z be a ‘‘generating element” of B,, for some n>1.
There is an infinite subset M = M(z) of N such that the sequence {w,(f.(2))} e u

m
is independent of the particular admissible sequence {f, (X)},, considered.

m

Remark 5.1. If Z is a generating element of B, then for any n we get a
sequence of invariants for Z, namely:

5:;(’"’Z) = wn(f""(ﬁn(Z)) me M(0,(Z)).
Here the sets .#(6,(Z)) might be different for different n’s.

Proof. Let us fix an admissible sequence {f,,(X)},, for z. We claim that the
sequence {by,},, defined by

b 1= Wa(f1(2)) — wa(f,(z))  for all m

is not bounded from below. Suppose not, and let b € Z be a lower bound for the
sequence {b,,},. Let us first observe that the b,,’s are unchanged if we replace in
their definition the f, (X)’s by the M,,(X)’s (the M,,’s are defined in section
4). So we have

m

wo(M, (2)) = by >b  for all m.

Then the derivative with respect to z gives us a Q,-linear operator

% : Qp[Z] - Qp[z]

which is continuous since it is bounded on the orthonormal basis {M,,(z)},, by the
assumption. Since Q,[z] is dense in B,, the operator £ has a unique extension to
a continuous, Q,-linear operator ¥ : B, — B,. Clearly ¥ is a derivation of B,,
which is trivial on Q,. We now look at its restriction to Q,. If xe€Q, and
P,(X) is its minimal polynomial over Q,, then we have:

0= ¥(Pu(a) = Py() ¥ ().

Since P, (a) # 0 it follows that ¥(x) = 0. So ¥ is trivial on Q, and by continuity
it is trivial on B,. But this is a contradiction with the fact that % is non-trivial on
Q,[z]. This proves the claim. Now let .# be the infinite set of those indices m
for which we have:

min{b; |0 < j <m — 1} > by,

Our second claim is that for any other admissible sequence of polynomials
{gm(X)},, for z, we have

wa(gh(2)) = wa(f)(z))  for all me 4.

m

In order to prove our second claim, let us denote by {G,(z)},, the orthonormal
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basis of B, over Q, obtained from {g,,(X)} Let mge .#. Since

m*

gmo(X) _ j;no(X)
Gmo(X) B M'"o(X)

we are done if we prove that w,(G,, (z)) = w,(M,, (z)). At this point we use the
basis {M,,(z)},, to write

mo

Gy (2) = ) ¢;M;(z)
j=0

with ¢; €Q,. As w,(Gy,(z)) =0 (by the construction of the G,,’s) we get from
Theorem 4.1 iii) that ¢; € Z, for all 0 < j < my. Moreover looking at the leading
coefficients of G,,, and M; we get that ¢,, =1. We have

my

G, (z) = chle'(z).
j=1

Now for any j < my we have
wa(¢iMj(2)) = v(¢j) + wa(M](2)) = wa(M[(2)) = bj > by, = wa(M,, (2)).
Therefore
Wa(G (2)) = wa(M,, (2)).

This proves the Proposition.
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