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A  remark on smooth solutions of the weakly
compressible periodic Navier-Stokes equations

By

Isabelle GALLAGHER

Abstract

We investigate the limit of the periodic compressible Navier-Stokes equations,
when the Mach number goes to zero, and the density goes to a constant. We
prove long time existence results for smooth solutions of the weakly compress-
ib le  Navier-Stokes equations, fo r sm all M ach numbers, under a  smallness
condition on the initial velocity field, which depends only on  the  viscosity
(that smallness condition is im posed only on the compressible part of the
velocity in  the  bidimensional c a se ) . W e also prove the convergence of the
solutions of the compressible equations to the incompressible equations, once
the fast waves, which satisfy a  fully parabolic equation, have been removed.

1. Introduction

The aim of this article is to study the asymptotic behaviour of smooth solutions
of the periodic, weakly compressible Navier-Stokes equations. A large amount of
literature exists on the subject (see [13] for an extensive bibliography), and consider-
able progress has been made recently, concerning the existence and convergence of
weak solutions with various boundary conditions ([3], [4], [14]) as well as concern-
ing the existence of smooth solutions with critical regularity in the whole space and
in  the periodic case ([2]). H ere, we are interested in the convergence of smooth
solutions, as w ell a s  in  lo n g  tim e existence results, in  th e  li m it w hen the Mach
number goes to zero, and the density goes to a constant.

So let us consider a compressible, viscous fluid, evolving in  a  periodic box T d ,
where d 2  stands for the space dim ension. The viscosity of the fluid is v>0, its
Mach number is noted E > 0 , and the state of the fluid at a time t >0 and at a point
x E T d  is given by its velocity field, noted v 6 =(v",--,v€ 4 )(t,x ) and its density p' =
p' (t ,x). The equations satisfied by v and p  are the following (see for instance
[13])
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{ a t (pe vc)-Fdiv(pc ye Ovc) — v Av' -1---iyi  V p(pc)= pc f  i n  le X T d ,

a tp ' +  d iv (p ' v ')=  0  i n  R +  X Td ,

(vrt=o, p °)=  (v , p e e ) ,

where f  =( f ' , f 2 , f 3) represents exterior forces, fixed and independent of E  to avoid
unnecessary com plications. The fluid is supposed to be isentropic, which means
p(pc) , = pc' , where y  is chosen such that y>1. It is well known that this system can
be put in  a  symmetric form, by defining the sound speed

def 2  e = V a T(pe),
y - 1  P

and writing the system in  terms o f ye and  cc. In  th is article, the fluid will be also
supposed to be weakly compressible, which m eans that the  density is close to  a
constant, put to 1 here to simplify : I)" =1+ Ei5c. That can also be written as ce=

co + ee-c,

system

271" a few computations, we come up with the followingwhere co= 1 . Aftery—

Ve"'

(NS' )

a t v '+  ye . Vve

a f eE+v'•V 'e.'±

vAv' 11(1 —  C ia ) A V  +f ,y– co E  =
_ divv'yco e = 0 ,

( vjt=0,  eft= = ( vo, Jo),

where we have written y  Y -1  –  =  2  ,  and c,,o = ? °. To simplify, we have supposed that

the initial data (v 0,e0)  does not depend on  e .
We are interested here in the asymptotic behaviour of the solutions of (NSe). Let

us notice th a t  (N S ')  is  a  system o f  evolution equations, penalized by a  skew-
symmetric operator L, defined as

delL (v ,c )=  (Vc,divv).

Problems around skew-symrntric penalizations have been studied by a  number of
authors, (among which J.-L. Joly, G. Métivier, and J. Rauch in [9], S. Schochet in
[17], E. Grenier in [7]). However, unlike the cases studied by those authors (and also
unlike [5], [6]), the  system considered here is neither fully hyperbolic, nor fully
parabolic. W e shall see in the course of the study that this fact leads to additional
difficulties compared to the cases referred to here. Let us recall that in the case of
fully hyperbolic or fully parabolic systems, long time existence results can be proved
by the means o f a  semi-group method (see [17], [5], [6]) : we introduce the semi-
group generated by L,0,t(t)= ,  and the "filtered" solution associated with VCd=ef
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(V,C'), defined by U ("=- L  — T )VV . i n  the fully hyperbolic o r parabolic case, thatclef t

new function converges to  a  function U  (see [7]), a n d  it is proved in  [17] for the
hyperbolic case, in [6] for the parabolic case, that the convergence holds, fo r  E >0
small enough, o n  a  lifetime [0,T] for a ll T <T ,;',  where T8" is the  life span of the
"limit system" satisfied by U .  In  other words, not only does the  penalization not
destroy the life span o f  V  compared to the  non  penalized equation (that is due to
the skew-symmetry of L ), but it expands it up to the  life span o f  U , fo r E > 0  small
enough. It is this kind of result we are seeking here. We shall prove the following
theorem, where we h a v e  noted, a s  in  th e  w hole o f  th is  te x t , H S  f o r  th e  usual
homogeneous Sobolev space o f  order s  on T ": it is  de fined  by  th e  norm  11 O w =
IllkIsa(k)11p,
Fourier variables.

Theorem 1. There exists - a constant c >0  such that the following holds. Let
d(v o,e'0) be an element o f  lis(T d ), with s > i +  3, and suppose that the exterior force

f  is an  element o f  the  space C A R ,  H s-2( T d) ) n L 2( R ±  hr s-i ( T d‘s .)) Suppose also
that

a n d  II f„P., „ P(R+,114-) .
- - cv,

where P  denotes the Leray projector onto divergence free vector fields. Then f or all
T > 0  and f or E  small enough, we have

-r = ( -i 3 O )+ 0 t4 )U 0 „ - h o ( 1 )  in C °([0, T ], 11 2 ),

where a  satisfies the incompressible N av ier-S tok es equation, an d  Uosc=(uose, X0.)
satisfies a parabolic system:

a,a+t-i.V a— vAa= — V  p+Pf,

a, u„,c+ (a+ U., u0 ,)- 1(7 divuo„, Ax o ,)=o,

Pvo, U0sc1t=0=(( 1 P ) v o , e a

The operator 0 is a quadratic form, of  the following type (see (2.13) f o r a precise
1definition): (a,b )=-f (A a•V  b +A b -V  a), w here A a=(A ' ct)I d-F, is  a se t  o f

smooth symmetric matrices for all a.
In the case d =2 ,  the result holds under the only assumption thatli(1 — P)volIL2<cv.

R em arks. Let us note that the "limit system" (N S 0 ) is fully parabolic :  some of
the viscosity, at the  lim it, is transferred from the com pressible part of the velocity,

to the sound speed, x .  T his form is specific to the periodic case :  in the case
of the  whole space, the  so lu tions of (N S ') converge to  the incom pressible Navier-

where 0 (k )  is the  (discrete) Fourier transform o f  u , and  k  Zd are the

(NS())
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Stokes system (see [3]), and that is due to the fact that the fast waves can disappear
to infinity in the case of the whole space, due to Strichartz-like estimates. The same
phenomenon occurs in the case of the Euler equation : S. Ukai proved i n  [18 ] that
the solutions of the weakly compressible Euler equations converge to the incompress-
ible Euler equations, whereas in the periodic case, it is proved in [5] that there is an
additional, coupled equation in the limit system.

Moreover, that theorem shows that the life span of (N S ')  is arbitrarily large, for
E  small enough, under a  smallness condition on the velocity at time t= 0 . In the
bidimensional case, no smallness condition is required for the incompressible part of
the initial data, Pvo.  In  [8], T. Hagstrom and J. Lorenz prove a very similar result,
in the bidimensional case ; their result is actually more precise in the sense that the
life  span  is exactly  +co  fo r  8  sm all enough. H ow ever th e  method followed is
completely different to the one used here, since in  [8], everything is based on the
exponential decay to z e ro  o f  sm ooth so lu tions o f the  bidimensional, periodic,
incompressible Navier-Stokes equations — and of all their derivatives — when t —>
co. Hence, as noted in  [8], if one adds an exterior force, or if one considers higher
dimensions as it done in our theorem, it is not clear that the proof in  [8] still holds.

2. Proof of the theorem

2 . 1 .  Notation and preliminary computations. In this section, we are going to
transform somewhat the equation (N S '), in  order to apply more easily the methods
of [5] and [6]. It is known that for smooth enough initial data, one can solve (N S ')
locally in time (see [11] for instance). In the following sections, s>d/2+3 will be
a fixed real number, and we shall place ourselves on a time interval [0, T ] such that

1111 - <L os([0,T L  H ) .05 (2.1)

where c0 >-11Vollii.- is a fixed constant. Let us notice that under assumption (2.1), we
have, for 8 < Coar- 0 1 ,

Mi C 1  H Z  Cc co ,

where C is a "universal" constant, depending only on y .  In the following, we shall
no te  b y  th e  sam e letter C  all such universal constants depending only on the
dimension, on y or on other such parameters (and in particular independent of e).

d So finally we have, since s —2> 2 '

(lC C O O e V M H . (2.2)

Since H s is embedded in H ,  that immediately implies that if e is small enough so
1th a t Cc.E

'  
then the operator defined by

de f
cl(D)= — vA - 1-  v(1 —  c',/,(06, (2.3)

satisfies for a ll v'
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(2.4)

where we have  n o te d  (+ ) i p -  fo r  th e  scalar product i n  IP - 2 . W e can  re-write
equation (N S ')  as

LVE a, 1/- ' q ( V 1 , r)-F (a(D)17' ,0)-4 --
 6  =  ( f ,0 ) , (2.5)

where q(V 1 , V 1 ) represents all the bilinear terms in  (N S ') . Let us note that q can be
written generically as q(a,b)=1/2(Aa•V b+ Ab•V a), where A  is a  linear operator,
such that A u = ( A i u ) 1 < j < d + I I  and  fo r all j, A 3 u  is a  smooth, symmetric matrix.

N otation . Throughout the text, for any vector V = (v,e) where y has d compo-
nents a n d  is a  scalar, we will note, recalling that P  is the  L 2 -orthogonal projector
onto divergence free vector fields,

v= Pv, V„,.= V —( v,0), (2.6)

V '= y  a n d  Vd + I =er.

W e shall call V0 1 , a n  oscillating vector field.

2.2. The filtered equation. Let us recall that we have defined ot (0 = e - i t ' and

ot( — ) V'. It is straightforward to see that Ll'=(17',0)-1- ot'( — ) r „ .  Then

according to (2.5), U" satisfies the  following equation :

a, L  + O U ' , W ) +  M ( D ) U  o t ' ( - 0  ,

Uf,=o = Vo,

where

' ( U 1 , U  ')=  o t( - - - ) q ( Z ( *  , o t ( ) (  E ) , (2.7)

and  where

.0 D ) L  =  — v(AtV ,0) —  v t ( - - 0 ( 6 , ( t O P „ „ ) 1A ( 0 t ( / „ ) d ,O)

v ( )((1 — C 1/05' ) ( A t ( * ' ) (1 —CM(At(--Et--) 0 d ,0 ) ,

where we have defined

def COC 1 ,0—
C o +  E ( o t  (

-
6
L

)

(2.8)
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N otation . W e shall call .4 •'(D) the following operator :

—  v(17,0) —  v t )(A( of' vos)' A (  ( ) V0.) d,0), (2.9)

and the operator .4V(D)( LP, V ) shall be

M A D )(U ',V )
def v

tE ) ( ( i  C  )(A ot 0 1  ,  ( I — ) ( A  ot ( )V ) d ,0). (2.10)

In  other words, we have written .5C (D )Ue=sC ' 1(D)U'+.5C' 2 (D ) (U ',U ') .  Let us
note that the inequality (2.4) implies the following proposition.

Proposition 2.1. Under assum ption (2.1), th e  operator .541(D)(•)-1- .542 (D)
, •) is positive (but not def inite): w e have for instance

(4 i' l (D) V+.5C'2(D)( V)1V) H —> C sup
15i5d

2

H ' - `•

(2.11)

   

Now let us prove that L/' converges t o  U  in  C ° ([0, T ], Hs - 2 ) , when 6  is small
enough, where U satisfies the following equation :

where Q (U ,U) and ,4 2 (D )U  are the limits in  0D' respectively o f  Q '( U ',U ') and
4(D) W , a n d  where .4 2 (D) U is second order elliptic.

T h e  coming section consists in  th e  com putation o f  th e  lim it system , and in
particular in  the  proof that .4 2 (D) U  is  second o rder e llip tic . In  the  last section
below (Section 2.4), we combine those results to prove that the limiting system is
globally well posed for suitable initial data, and that enables us to prove the theorem
stated in the introduction, using methods of [5].

2.3. Computation of the limit system (NSA

Proposition 2.2. The limit o f  Q '(( P ,(P ) in Z ' is Q (U ,U) where there exists
p such that

PQ (U ,U )=a•V r a + V p , a n d  (1— P ) Q ( U  ,U ) =  (a+ U„„U o„).

Moreover, the lim it of  ( ( _ - - )f ,o ) in Z '  is (Pf ,0).

P ro o f  The limit of the quadratic term was obtained in [7], and the limit of the
filtered forcing term was obtained, by the same method, in  [6 ]. We shall not recall
the arguments leading to those results here, as the techniques used a re  strictly
identical to the ones we shall be using in the proof of the following proposition, to
obtain the elliptic term .4 2 (D ).  Let us simply recall that

fa t u+m,u)+4 2 (mu=(Pf,0),
(2.12)

Vo,
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( U ,U)= E  ((A U )° (n— k)• kU b(k),e'(n))ec(n). (2.13)
(.., c=o

We have noted (coa(k)).,15a5d4-1 for the eigenvalues of .3 L (k ), where .7  is the
(discrete) Fourier transform, and the associate eigenvectors are ( e(k )) 15a<d+I.
Finally we have written coVc= co'(k)+ k ) —  ( n ) ,  and Ua(k)=.7 U (k)
• ea(k)ea(k).

Proposition 2.3. Under assumption (2.1), the limit in ' o f  .4 (D )U  defined
in equations (2.9), (2.10) is .4 2 (D )U , where .4 2 (D) is elliptic. More precisely, .4 2 (D)
applied to incompressible fields is defined by

2(D )(a,0)= —  v A(17,0),

whereas applied to oscillating fields as  defined in (2.6), we have

— 1(Vdivuo,c, Axo.w).2(D )( u ., x „ ,e)=-

P ro o f  By the same computation as in (2.2), we have for all s '< s ,  by the rules
of product in Sobolev spaces,

st( - 0 ( 1 — CV,07 )(6 , t ( 1 -) U 1 , — , (  — C(17 ) ( A t ( ) U ' ) d ,O)

hence we have, under assumption (2.1),

li m .4 2(D )(L  ,U ')= 0 .

CLII u z 112, s - 2 ,

(2.14)

To find the limit of .4 l" (D )  W , in the same way as in [5], [6] and [7], we are going
to use the non stationary phase theorem. As t ( t )  is unitary, one need only find the
limit of .4"(D) U. Moreover, we are only interested here in the "compressible part"

of U, since the "incompressible part" of U  only appears in the form — vAa,
which does not depend on e .  So we are looking for the limit in Z ' of .5C• I (D )U„„
Let us compute the eigenvalues and the eigenvectors of .7 L(n); in order to simplify
the computations, we are going to work in the case d= 3, the general case is treated
exactly in the same way. We have

L(k) -=

/ 0 0 0 ik,\
0 0 0 ik 2

o

0 0 ik 3

ik ik2 i k 3 0  I

which yields the eigenvalues 0 (of order 2) and ± did The eigenvectors associated
with the eigenvalue 0 are of course incompressible. Since we are only interested in
"compressible-type" vectors here, we shall only compute the last two eigenvectors,
respectively associated with did y-  and y-  and called respectively e+ (k ) and
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e- (k ) .  We get

 

a n d  e - (k )=

 

N ow  for any "compressible-type" vector B, let us w rite ,7 B (k)=(b l ,b2,b3,b4), and

1 Z(t)B (k )=  1
1(14  e

+k2b2+k3b3+1k1b4)e±(k)

+  1
k1

4eidkli(k,b,+k2b2±k3b3-1 0 4 )e -(k ).
I 

It follows that

(A t ( t )B ) 3,0 )(k )=— e -iolyik i bi - 1- k 2 b2 + k 3 b3 +10 4 )(k 1,k 2 ,k 3 ,0)

- k eitlk l ' ( k Ibi+ k2b2+ k3b3 - 10 4 ) (k  k 2, k3, 0 )2

Finally we find the following expression, w here U „,=- ( u o s c , x o s c ) : for all f in

2
v ( ( l+ c o s 2 t l

e
k117 )k•t2„,.(k)+sin 2 t l

e
k l YM ( D ) Ikli„c(k))/cf,

k j

Ujo„(k )=  —

a n d  3 M ' I (D )U 4. , (k )= 1 ( (1  c o s 2 t 1 ) 1 0  o s , , ( k ) — sin 2 t 1  ei c 1 1 7  Iklk . a0„(k)).

So the non stationary phase theorem yields

firn M (D )(1 -1,0)= —  v A r t  a n d  lim 4 Z (D )(u „ , x o s c ) = — 1(Vdivu05e, Ax.).
8-■0

(2.15)

Finally  (2.14) and (2.15) give Proposition 2.3.

2.4. Proof of the theorem . In the previous section, we have computed the limit
system (ArS0) .  W e shall now check that it is globally well posed, under the assump-
tions of Theorem  1, and w e shall prove (1.1).

2.4.1. Global wellposendness o f (NSA

dProposition 2.4. L et s > -
2

+ 3  be a f ix ed real num ber. T hen there ex ists a

constan t c > 0  s u c h  t h a t  i f  Vo E lls (T d ) a n d  13
.1‘ c°(R1 - ,H-2(Td)) n L2(R+.
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1-1' 1(T d )), with

Ilvollf11-.(r)±11J011114-,
(v)‹ cv, and liPf Il L'(13:`, <  CV, (2.16)

then there exists a unique solution U to (NS0 ), and

U EC ° (R+ , Hs(Td ))nL 2(R+ , Ils +1 (T d )).

In the case when d= 2, then it is enough to suppose that II vo.o.,c110-0+11e-olleco< cv.

P ro o f  The proof of this proposition follows from classical results concerning
parabolic equations (see for instance [1 ] for the case of the incompressible Navier-
Stokes equations): it is well known that if the initial data is in  Hs(T d ), and if Pf
E  c o(R +, H s- 2

( r
a))  n  L 2(R ±, ) )  then one can solve (N S 0 )  locally in time,

and we have a unique solution

' o) n L20, T 0 l l -P - 1 (V ) ) ,  for s o m e  T 0 > 0. (2 .17)UE C ° ([0, T o], H

Moreover, assumption (2.16) implies that (NS ) ) has a unique solution U such that

U E  c o(R +,n  L 2(R +, H i t
( T

d ) ) ,

hence (N S 0 )  has a unique solution

UE C ° ([0, To ] , H T -r a )) n L2(R±, H -'2-1(ird)), for some T0 >0,

and Lemma 3.1.1 of [1 ] implies that

U E  O R + , I -1 6(T d)) n LAR ± , 1-/ d( T d ) ) ,  for all 6-<- —2 (2.18)

One can note that no forcing term is considered in  [1 ], bu t with the  assumptions
made on Pf, , it can be added to the proofs in [1] with no difficulty. It is then easy
to  infer, by similar arguments, that

UE C ° (R + , Hs(Td)) n L2(R+, H s - H (T d )) . (2.19)

The arguments leading to  (2.19) are standard; we re-formulate them here for the
convenience of the reader.

We start by choosing a' < —

d

+1, for which we have, by an energy estimate in2

1 d   i i

(t)1121 cr')+ c v ( t ) r n , -.(v ) < I
2 dt1U(t)1141/'w),2

which yields that for a ll 6 '< d/2+ 1 and for a ll t

Il u(t)112„,co+ Cv Sm u(2-)Il ,,,dr<m uom2„,,,+ „,(T.)). (2.20)

B ut (2.18) im plies tha t U E L 4(R + ,  f i ' '(T d ) )  fo r  a l l  0-'_<d/2±1/2, hence (2.20)
implies that
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U  C b (R + , I cr (T d )) n L 2 (R +  , 1P + 1 (T d )), for all d + 12  .

T h e n  UE OR + ,  1--P'(T d )) for a ll cr' d/2-i--1, so  again  by  (2.20), we have

UE Cb(R ± , 1-1'(Td ))n L2(R+ , H ( T d ) ) ,  for all cs' —d +1.2

Finally, for a ll  o-' >—
d

+1, an energy estimate yields2

I d 
2  d t

IlL (t)112aqi->+ c
2
v ( t ) 1 1 2a- ct') ; M U(t)M(T)M U(t)Ii 2n—(r),

hence for a ll 0/>d/2+1 and a ll t

MU( 0112H -(r)+ c
2
v S11 ( 2-)112a—omdr

UlD112fr(V )+v I . ' (r"V))11 UPi_2(R+, H(T)),

and one concludes by recurrence.
So we have the result for d >2 . In the bidimensional case, one uses moreover the

fact that the bidimensional incompressible Navier-Stokes equations are globally well
posed, with no smallness assumption on the initial data, nor on the forcing term, as
soon as the initial data is in  L 2 (T ) (see [1]). So there is no smallness condition on
the incompressible part of the initial data i70 , n o r on  P f, , in  tha t case.

The proposition is proved.

2.4.2. End of the p ro o f. The func tion  Pr c-11—  U  satisfies the equation

a t r 4 ( - 1 - . 0 (  W',14/'-1-2U)-1--.541(D )W '+ .4 ' 2 (D)( U ',W ')

= (.4 2(D)— (D ))U  - ( 0  —  ')(U  ,U )+ (ot(— )f —  P f ,0 ) —  M ' 2 (D )(U ',U ),

(2.21)
w ith the initial data Wri =0 =0.

R em ark . It is  no t to ta lly  c lear a t th is stage w hy the ellip tic  operator .4 2 (D)
alone does not appear on the left-hand side of this equation, as it would im ply that
W  satisfies a parabolic equation, w ith additional forcing terms on the r ig h t. In the
last remark, at the very end of the paper, we explain why the choice above is made,
by showing that the additional forcing terms that would appear cannot be controlled
properly, contrary to the ones that appear in  (2.21).

In the right-hand side of equation (2.21), we find two different types of terms : on
the one hand w e have the function .54•2 (D)( U', U), defined in (2.10), which can be
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estimated by

IIM A D )(U )1111.-‹  CvEIIU '0.11 a—II (2.22)

in  the  same way as for (2.2). O n the  other hand, we have three terms,

(4 2(D)— .5C' I (D ))  U , ( —  ' ) (  U , U )  a n d  ( o t ( _  et )f _ pf

Those terms are going to be treated using a  method followed in  [5] and  [6]. Let us
recall that we have defined, in  [5], the  following notion.

dDefinition 2.1 (Oscillating functions). L e t T>0, an d  ci- > be fixed.

W e write k g =(1‘ 1,•••,k,), where k,EZ d ,  an d  will call Ik q l=max1 ,1k ,I . Then a
function 1? ( t )  w ill be said to be (p,o- )-o scilla tin g i f  there exist functions fi g ,  r o ,

such that it can be W ritten as  126 ( where

Req ,0,(t)= .7 E  e - 4 1 %( , r o ( n ,k ) f , ( t ,k , ) . . f , ( t ,k o ,
1-ZE

with 1<'-={1c2E Z d q l
i=1

n  and  )6' ,(n,k q )ER*}, an d  where r o  an d  f i satisfy

a ,  O ,  s u c h  t h a t  Iro (n,k g )I <C(1+1kil)'-(1±1k q l)''

.7 - 1 ( f,( t ,• ))  is an  element o f  C ([0 ,7 ], H )

and 0", ›  0 '  s u c h  th at  .7 -1 (a if , ( t , • ) )  is an  element o f  C ([0 ,1 ], H ').

In  view of that definition, we have the following proposition, which has an obvious
proof, using also Proposition 2.4.

Proposition 2.5. Under the  assumptions of  Theorem 1 , (4 2 (D)—  A T(D))U
is a (1 , s-2 )-o scilla tin g function, ( 0 — )( U ,U ) is a (2, s -1 )-o s c illa t in g  function,

and f inally  the function ( t ( — O f , — Pf, 0) is a  (1 , s -2 )-o sc illa tin g  function.

It follows that the  function W  satisfies the following equation :

a ,vr+ 0 '(W ',W H -2U )+ .54V (D )W 'd-sC ' 2(D )(U ',W ')= R (f,U )+ F '(U ) ,

where R,;„(f ,U ), is  a  (2, s -2 ) - o s c i l la t in g  function according to Proposition 2.5,
with

R , (0 -0 ')(u ,u )+ (t( — Pf ,0)± (4 2 (D) —  .9,(W (D))U ,

and  where F '(U ) is estimated as follows, according to (2.22):
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IIF'(U)11H--<CEccoll Ls.

The following lemma, similar to Lemma 2.1 of [5], will enable us to conclude.

Lem m a 2.1. L et T>0  and 0.> —

d
+1 be two real numbers, let b' be a family

2
of  functions, uniformly bounded in the space C° ( [0 ,7 ],1 1 '(T d)), and let at, be
a function going to zero with E in I-P(T d). L et O ' be as in  (2.7), and let ,C(D)
be a second order, positive operator in the sense o f  (2.11). Finally  let R'0 „  be a
(p,a)-oscillating function, with p l ,  and F ' be a function going to zero with E  in
C°([0,7], 11(T d)). Then the function a', solution of

a f a '+ 0 '(a ',b ')+  A (D )a '=  R „ -k  F ' i n  Td,{
(2.23)

a 0 =  a,

is an  o(1) in the space C°([0,7], 1-1'(T d)).

We shall postpone the proof of that lemma for a while, and finish the proof of the
theorem.

Under assumption (2.2), Lemma 2.1 with a=s - 2, implies immediately that

T > 0 ,  l im W '= 0  in C ° ([0,T], I-F -2 (T d)).
E-0

That implies in particular that for a ll T > 0 , and for E  small enough,

tE [0, T ] ,  111/'(t)0H- U0c.(r, H"). (2.24)

So choosing the constant C os  larger than 40U0 c o(R+, l l s--), that implies that

II V ' ( 610[0,T1, 1-P- z )-<- C o s  11V' (t)110[0,71, H - z)‹  cl  fo r  E small enough,

which means finally that W ' is defined for all tim es T, for E small enough.
Hence the theorem is proved.

Proof  o f  Lemma 2.1. We shall only give a sketch of the proof, as it is very
similar to the proof of Lemma 2.1 in  [5 ]. The only difference is the presence of a
bilinear form  and of a second order, positive operator on the left-hand side of
equation (2.23). We start be re-writing equation (2.23) in the following way :

ara' +  '(a ',b ')+  M (D )a '= + F',

where, writing 1 ,  for the characteristic function of X , and w ith the notation of
Definition 2.1, we have defined

f? ,N E  IV:bosc,N
=

■={1.1,1741,N).7Rg',,,„.( • )),
gE{1,..,p)
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and c=f

Then, still as in  [5], we can define the function

C y =  a'+ Ek o,N ,

where k o s c,N  is defined by =  E and

def

sc,N -

E  E  i e  r o (n , k ) f ;( t ,k  ,) . . f g).
Hi N 1;E 10 )3 ,(n, k g )

It is obvious that if we prove that for N  large enough, uniformly in E , and for E  small
enough, i s  a r b i t r a r i l y  s m a l l  in  C

°
( [0 ,7 ],  1-1' 1(T d ) ) , then the  lemma will be

proved. But the function /VA, satisfies the following equation :

a f ivN + Q . (ivA ro,K +b +2Eko.,N )+ m (D)1,vv

= R 'g 'si
g
v  F E EAZ(D)kose,N •

The following proposition will enable us to conclude, by energy estimates on

Proposition 2.6. U nder th e  assum ptions o f  L em m a 2.1, the  f unction IA
satisfies

{ a fivN + Q ' O -  kA  b '+2E R c , ifr0+ A Z(D)Ilt,v= ERk,'„, -  k R 'g 'sï
g
v  + F',

Cvlf =0= 1,VN,o,

where 1b g o e sgoes to zero with E  in W ,  Rk,'0s,  is bounded uniform ly  in E, in C ° ([0,7],
H "), by  a constant depending on N , an d  R ', /. goes to z ero in C ° ( [0 ,7 ],  H ')  when
N  goes to inf inity , uniform ly  in  E.

P ro o f  W e shall not give all the details of the proof here, as it is identical to
Proposition 3.1 o f  [5 ] : it is  based  o n  th e  fact that th e  function i s  a  low
frequency term, hence as smooth as one needs (if one pays by enough powers of N ),
and that on the contrary i s  a  high frequency term, hence small if  N  is  large
enough, uniformly in  E .  So we can write

E ,Ag (D ..sc, I. -  ([0 , T], 1-1') +  E  Q .V-1--2 ekse,N)11L 1-([0,71, Ecg(E, N),ll 

as well as

1V11 L -  ([0, T], C  ,( N

where

lim c 0.(N  ) = 0  a n d  c o.(e ,N ) is uniformly bounded in  N  and in  E .
N-0.0

The proposition follows.
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Then a classical energy estimate in  He yields, sincecr> —

d
+1

'
 and  since Al(D) is2 

positive,

1 d   11 n 11
2  d t  

I N(t)II C IIWN(0112e-11b4 (011h CMCN(()PH-

C1101(t)1111 , 11(ERktoscd- F ' ) ( t)11H,.

We have used the fact (see [15] or [16]) that for all vector fields a and b, we have the
following estimate

d.-1->• - •, ( Q '(a,b)1b) f r < ClIbIltrotnilallir(Ra)11. 7

+  C M bM tr(R)aVaML-or5+

a n d  V  r> —
d

' ( Q '(b,b)lb) H r<2 

Now since the  in itia l da ta  can be chosen arbitrarily sm all, provided N  is  large
enough and E is small enough, we can suppose to start with, that it is such that there
exists a tim e T * satisfying

0 <  T* <supItE[ 0 ,T]Il1114(011H, -"‹ 1 + B (  T)},

where B (T ) is an upper bound (uniform in E )  for lib' IlL-ao,ri,H--). Then by a variant
of Gronwall's lemma we get, for a ll t < T*

Ilc v(t)11,-‹  c( 11 011,p+So
t ( R ik , + F ) ( ) i i , c17-)exp(T  (1+ B (T))). (2.25)

  

We then just have to choose N  large enough and E small enough so that

Mor,o11„, +So (e k k o„-I- F')(7-) F r d ,r < (1±  B (T))
2C exp(—  T ( 1  + B ( T ) ) ) ,— 

to obtain

  

V t<T*, 110,(01111
<   (1 +  B 2 (T ) )  

That means that T* can be chosen equal to T, and (2.25) implies that

a' —>0 in C° ([0,T], He).

The lemma follows.

Remarks. The fact that in the statement of the theorem, nothing is said about
the smallness of Jo is simply due to the fact that one just has to take E  small enough
to  have lit'011H.<cv, since j o  is defined by ci=o= co+ Eeo.
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Furthermore, a s  remarked after equation (2.21) one  can w onder a t the choice
made, to put the positive operator M (D ) on the left-hand side of (2.21), instead of
the elliptic part .42 (D) a lo n e . But it is easy to see that in the latter case, on the
right-hand side of the equation satisfied by W ' w ould appear the  term (M ' I (D)
--.54 2 (D ) ) (1 '.  That term is not oscillating in the sense of Definition 2.1, unless in
that definition, the functions f i are  replaced by e-dependent functions f ,

 where V
i E  [1,..,q], ( t , • ) )  is compact in C

°
([0, 11 ') .  But to ensure that compact-

ness, we must allow for the loss of 77>0 derivatives when passing from ( I ' to  Y r.
However in the previous proof, it is crucial that no loss of derivatives occurs between
the assumption (2.1) and the result (2.24). In other words, such a method with 4 2 (D)
on the left-hand side of (2.21) does not enable us to conclude.
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