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Behavior of rational curves of the minimal
degree in projective space bundle in any

characteristic

By

Eiichi Sato

In this paper we investigate the behavior of rational curves of the minimal
degree in a projective space bundle. Particularly we try to generalize the theory
of adjoint bundle of ample vector bundles to any characteristic. In characteristic
zero the classifications of their adjoint bundles are made by many authors [F2],
[F3], [Io], [PW], [YZ]. Then a main tool is the contraction theorem due to Mori-
Kawamata and Kobayashi-Ochiai theorem. In particular they heavily depend
on generalized Kodaira-Vanishing theorem in characteristic zero.
On the other hand considering Theorem by [YZ] in any characteristic, we have

Theorem 2.6. Let X be an n-dimensional smooth projective variety
defined over an algebraically closed field of any characteristic and let E be an
ample vector bundle on X. Assume that KX + c1(E) is not nef. Then we have

1) If rankE = n ≥ 2, then each line bundle of X is numerically equivalent
to aL with an integer a where L := −KX − c1(E) is an ample line bundle. In
particular −KX is numerically equivalent to (n+ 1)L.

2) If rankE = n− 1 ≥ 3, X has two cases :
I) NS(X) ×Z Q ∼= Q and X is Fano.
II) There is a generically bijective and finite morphism φ : D → X from a

projective variety D to X where ψ : D → C is a fiber space over a projective
curve C. Moreover for each point c in C φ(ψ−1(c)) is a divisor swept out
by rational curves parameterised by (2n − 4)-dimensional divisor of Y . (See
Proposition 2.3.2 for Y )

Note that if E is spanned then the same conclusion (Theorems 4.7.2 and
6.16) as in Theorems 1 and 2 [YZ] is obtained. Namely X is one of Pn,
hyperquadric and scroll over a smooth curve. It is a corollary of Theorem 4.1
A, B stated just below.

Now when we study the adjoint bundle of ample vector bundle (X,E),
we see that the essential point is 1) to show the existence of extremal rational
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676 Eiichi Sato

curve in P(E) which is not in a fiber of a canonical projection P(E) → X, 2)
to investigate the locus D consisting of extremal rational curves which intersect
with each other and 3) to determine the base space dominated by D or a family
of D.

Then note that 2) is very important and in characteristic zero that D is
a fiber of contraction map induced by the extremal rational curve by virtue
of a powerful tool (= a contraction map). On the other hand since we have
no contraction map in positive characteristic, we analyze the structure of D
directly as in Section 3. From the viewpoint we can state the usual problem of
the adjoint bundle in the more general form stated in Theorem 4.1 A, B below,
for example, we need not the condition of rankE < dimX + 1 there. Thus we
get the following

Theorem 4.1.A. Let X be an n-dimensional smooth projective variety
defined over an algebraically closed field of any characteristic and let E be a
rank r-vector bundle on X. Assume that E is ample and spanned. Moreover
suppose that there is a rational curve C̄ on P(E) so that (OP (E)(1).C̄) = 1
and that C̄ is not in a fiber of the canonical projection P(E) → X. Then if
−(KP (E).C̄) = n+ 1, (X,E) is isomorphic to (Pn,OPn(1)⊕r).

Theorem 4.1.B. Let the notations and assumptions be as in Theo-
rem 4.1.A. When −(KP (E).C̄) = n > 4, h∗E is either I) OP1(1)⊕r or II)
OP1(1)⊕r−1⊕OP1(s) with s > 1 where h : P1 → C̄ is the normalization of C̄.
Moreover in case I) (X,E) is either

1) a Pn−1-bundle φ : X → C over a smooth projective curve C and
E|φ−1(c)

∼= OPn−1(1)⊕r; or
2) (Qn,OQn(1)⊕r).
In case II) (X,E) is either
3) (Pn,OPn(1)⊕r−1⊕OPn(2)); or
4) NS(X) ×Z Q ∼= Q and P(E) is swept out by (n− 1)-dimensional pro-

jective spaces P with OP (E)(1)|P ∼= OPn−1(1).
Finally suppose that OP (E)(1) is very ample. Then (X,E) in 4) is (Pn, TPn

⊕OPn(1)⊕r−n) with r ≥ n.

As a byproduct of the above Theorem we get

Theorem 6.17. Let L be an ample line bundle on an n-dimensional
smooth projective variety X defined over an algebraically closed field of any
characteristic. Assume that L is spanned. Then we have the following

1) KX + nL is nef unless (X,L) is (Pn,OPn(1)).
2) Assume that KX + nL is nef. If n > 4, KX + (n− 1)L is nef unless

(a) X is a hyperquadric and L = OX(1)).
(b) (X,L) is a scroll over a smooth curve.

Moreover Theorom 4.1.A yields

Thereom 7.1. Let X be an n(≥ 4)-dimensional smooth projective variety
defined over an algebraically closed field of any characteristic and E an ample
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Behavior of rational curves 677

vector bundle of rank n on X. Assume that E is spanned. Then the following
conditions are equivalent:

(a) cn(E) = 1
(b) KX + c1(E) is not nef.
(c) (X,E) is isomorphic to (Pn,OPn(1)⊕n).

The above result is a generalization to any characteristic of a result of J.
Wisniewski [W]. At the same time it is an answer of Corollary given by [LS].

We organize this paper as follows.
In Section 1 in any characteristic we study the behavior of rational curves

with the minimal degree on rational connected varieties and obtain a sufficient
condition (= Corollary 1.5) for the Picard group of a rational connected variety
to be isomorphic to Z modulo the numerical equivalence. This corollary and its
argument make it possible to treat our problem easily and, under the additional
assumption that E is spanned, to give a classification in positive characteristic.
In this case the direct consideration of the locus D itself takes an almost same
part in the dealing contraction theory.

In Section 2 without assuming that E is spanned we study (X,E) with
not nef bundle KX + detE to get Theorem 2.6.

In Section 3 we investigate the behavior of rational curves with the minimal
degree in the projective space bundle. The observation gives rise to the detailed
information with respect to the property of rational curves and the structure
of X.

From Sections 4 to 6 the investigation of (X,E) is made under the assump-
tion that E is spanned.

In Section 7 we state an application of Theorem 4.1. Theorem 7.1 yields
a partial answer (Theorem 7.6) of the conjecture Ballico posed in [B].

Conventions and Notations. Throughout all the sections we work
over the algebraically closed field of any characteristic. We use the customary
terminology of algebraic geometry. O(a) denotes the line bundle OP1(a) on
P1. Gr(n.1) denotes the Grassmann variety parameterising lines on Pn. Ě is
dual to a vector bundle E.

1. Preliminaries

Let A,B and T be projective varieties and let p : B → A and q : B → T
surjective morphism where a general fiber of q is irreducible and of dimension
≥ 1 and where every fiber is connencted.

(1.1) Assume that for each point t in T p : q−1(t) → A is a finite mor-
phism and for each point x in A p : q−1(q(p−1(x))) → A is a generically finite
morphism.

In this section these notations and assumption are maintained.
(1.2) For a closed subset ∗ in A a closed subscheme S1(∗) of A denotes

the reduced structure of p(q−1(q(p−1(∗)))). We inductively define Sm(∗) by
S1(Sm−1(∗)) where S0(∗) = ∗. Then for a point x in A a sequence
{Sm(x)}m=1,2,3,... is the increasing one of closed subschems in A.
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Remark 1.2.1. When a point y in A is contained in Sm(x), there is a
subset {t1, t2, ...tm} in T so that x ∈ Ct1 , y ∈ Ctm

and so that if m ≥ 2, then
Cti

∩ Cti+1 is not empty for i = 1, ...m where C∗ denotes p(q−1(∗)).
From now on we study a condition for NS(A) ×Z Q to be isomorphic to

Q. For the purpose we make a preparation.

Lemma 1.3. Let the notations and the assumptions be as in (1.1) and
(1.2). Let L and M be line bundles on A and T respectively. Assume that
p∗L = q∗M . Then we have

1) Let W be a closed subscheme of A. If L|W is numerically equivalent to
zero (hereafter written as L|W ≈ O), then M |q(p−1(W )) ≈ O.

2) Let V be a closed subscheme of T . If M |V ≈ O, then L|p(q−1(V )) ≈ O.

Proof. This proposition is obtained from the following
Fact: Let f : X → Y be a morphism between complete algebraic schemes and
D,E line bundles on X and Y respectively with f∗E = D If E ≈ O, then
D ≈ O. Moreover the converse holds if f is surjective.

Therefore we get

Corollary 1.4. Let the line bundles L and M be as in Lemma 1.3. Let
x be a point in A and for a point t in T set a closed subscheme p(q−1(t))(⊂ A)
as Ct. Then for each positive integer m L|Sm(x) and L|Sm(Ct) are numeri-
cally equivalent to zero. Similarly M |q(p−1(Sm−1(x))) and M |q(p−1(Sm−1(Ct))) are
numerically equivalent to zero.

Moreover we get

Corollary 1.5. Let us maintain the condition and the notation in (1.1)
and (1.2). Let A,B, T, p and q be as above. Assume that q is a fiber bundle with
the fiber F and that Picard group of F is isomorphic to Z. Assume, moreover,
that there are a point x in A and an integer m so that Sm(x) = A. Then
NS(A) ×Z Q ∼= Q.

Proof. Let N be an ample line bundle and L a line bundle on A. Then
p∗N |F ∼= OF (a) and p∗L|F ∼= OF (b) with integers a(> 0), b. By virtue of base
change theorem we infer that p∗(L⊗a ⊗ N⊗−b) = q∗M with some line bundle
M on B. Thus L⊗a is numerically equivalent to N⊗−b from Corollary 1.4.

Next we state a condition for A to have a fiber structure.
Let p̄(:= p × idA) : B × A → A × A and q̄(:= q × idA) : B × A → T × A

where ∆ is the diagonal of A. Then we take ∆ as ∗ in (1.1) and do the same
as (1.1) for p̄ and q̄. Then we can define the closed subscheme Sm(∆) of A×A
for each positive integer m in the same way as above. Remark that for each
point x in A Sm(∆) ∩ (A× x) = Sm(x) × {x}

Thus we pose the following conditions:
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(1.6) 1) for each point x in A and for each positive integer m, Sm(x) is a proper
closed set in A.
2) There are two integers a(≤ n − 1),m0 and an open set U in A so that for
each point x in U , dim Sm(x) = a for each integer m ≥ m0.

From the above condition we can take an open set Ā ⊂ U in A and an
irreducible component D′ of Sm0(∆) ⊂ A×A satisfying the following:

1) for each point x in Ā Dx is an irreducible component of Sm0(x) which
is of a-dimension where D′ ∩ (A× {x}) = Dx × {x}.

2) an induced morphism D′ ∩A× Ā→ Ā is flat.
Remark that Dx is contained in Sm(x) for each point x in A.

We assume that
(1.7) A is smooth and 2a ≥ dimA.

Then the flat family {Dx}x∈Ā forms an algebraic family.
Moreover we have a

Claim. Under the condition (1.6) and the assumption (1.7) there are two points
x1, x2 ∈ Ā (by shrinking Ā further) so that Dx1 and Dx2 do not intersect.

In fact if otherwise, we see from 2a ≥ dimA for any two points x1, x2 ∈ Ā
Dx1 and Dx2 intersect. Take a point u in Dx1 and Dx2 . Since u is contained in
both Sm0(x1) and Sm0(x2), the point x1 is contained in S2m0(x2) from Remark
(1.2.1). Thus for any point x ∈ Ā S2m0(x) is a closed subset in X which
contains Ā and therefore coincides X, which induces a contradiction to 1.6.1.
(1.8) Take a Hilbert scheme Λ̄ induced by the algebraic family {Dx}x∈Ā. More-
over let D̄ be the universal space over Λ̄. Then by the universality we get a
morphism f : Ā→ Λ̄. Set the closure of f(Ā) of Λ̄ as Λ. Then let D be D̄×Λ̄ Λ.
Let φ : D → A and ψ : D → Λ be canonical projections and Dλ = φψ−1(λ).

From the above argument we have

Proposition 1.9. Let us maintain the condition (1.1) and the notations
(1.2) and (1.6). Assume that A is smooth and 2a ≥ dimA. Then there are
projective varieties D,Λ and surjective morphisms φ : D → A, ψ : D → Λ so
that φ is a generically bijective morphism which is injective on ψ−1(Λ0) with
some open set Λ0 in Λ. Moreover if the characteristic of the base field is zero,
then φ is a birational morphism which is an isomorphism on ψ−1(Λ0).

Proof. Take an open set Λ0 of f(Ā) (⊂ Λ). The remainder is easily
shown.

Moreover we get

Corollary 1.10. Let the condition and notations be as in Proposition
1.9. Assume that A is smooth and of n-dimension with a = n − 1. Then for
each point x in A dimSm(x) = n − 1 for each positive integer m ≥ 1 and a
canonical morphism φ : D → A is finite and generically bijective. Moreover if
the characteristic of the base field is zero, then φ is an isomorphism. Thus for
each couple λ, λ, in Λ, Dλ ∩Dλ, is empty.

Proof. We have only to show that ψ is finite. But since dim Λ = 1 it is
obvious from 1.5.
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Remark 1.11. When the characteristic of the base field is arbitrary, we
cannot check whether the φ is an isomorphism. Even if the morphism φ is
an isomorphism, a fiber of ψ : A(∼= D) → Λ, is possibly singular in positive
characteristic. When the characteristic is 2 or 3, it is known that there exists
a smooth surface which is a fiber space over a smooth curve where every fiber
is a singular curve.

2. KX + c1(E) is not nef

In this section we construct a family of rational curves in X induced by
an extremal rational curve and investigate the property of the family.

Let X be an n-dimensional smooth projective variety and E an ample
vector bundle on X of rank r(≤ n). These notations X,E are maintained
hereafter.

First we begin with the following

Proposition 2.1. Let C be a rational curve on X. Then C does not
deform to a sum of effective 1-cycles, if one of the following conditions about
X or E holds

1) C is an extremal rational curve on X where (C. −KX) = min{(C̄. −
KX)|C̄ is a rational curve on X}. See [Io]

2) C is an extremal rational curve on X where (KX + c1(E).C) < 0 and
rankE ≥ n/2 + 1.

3) There is an ample line bundle L on X with (C.L) = 1.

Proof. 1) is shown in [Io]. We show 2). First the following is well-known.

Sublemma. Let F be an ample vector bundle of rank r on a rational
curve. Then deg F ≥ r.

Assume that C deforms to a sum of effective 1-cycles ΣaiCi where a cycle Ci

is an irreducible and reduced curve with integer ai. Then Ci is a rational curve
and (Ci. detE) ≥ n/2 + 1 from sublemma. Thus (C. − KX) ≥ n + 2, which
yields a contradiction to (C.−KX) ≤ n+1 by Theorem 4 in [Mo]. 3) is trivial.

Hereafter in this section we assume that
(2.2) C is a rational curve on X which does not deform to a sum of effective
1-cycles.

(2.3) Let φ : P1 → C be the normalisation of C and let us take a Hilbert scheme
Hom(P1, X) of the morphism φ. Then it is known by virtue of Grothendieck
that
(2.3.1) dim[φ] Hom(P1, X) ≥ χ(P1, φ∗TX) = (−KX .C) + n.

Letting e the left-hand side of the above inequality, we have an e dimen-
sional irreducible component V containing the morphism φ so that the auto-
morphism group G of P1 acts naturally on the normalisation V̄ of V . Similarly
G acts naturally on V × P1 and therefore on V̄ × P1.
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Thus we can define a morphism
π̇ : V → Chowd̄

X by π̇(v) = the cycle of v(P1). Here d̄ = (v(P1). detE)
and Chowd

X is Chow variety parameterizing 1-dimensional effective cycles C
such that (C, detE) = d. Thus let Y be the normalisation of the closure of
π̇(V ) in Chowd̄

X .
In [Mo] the following is shown:

Proposition 2.3.2. Let C be a rational curve on a smooth projective
variety X. Assume that C does not deform to a sum of effective 1-cycles. Then
there exists a geometric quotient of V̄ by G which is isomorphic to Y and a
geometric quotient of V̄ × P1 by G written by Z.

(2.3.3) Let p : Z → X and q : Z → Y be canonical morphisms where q is
a P1-bundle. Here dimY = e− dim AutP1 = e− 3.

Let Cy = p(q−1(y)). We state a property of the morphism p.

Proposition 2.4. Let conditions and notations be as in 2.2 and 2.3.
Assume that dim p−1(x) ≥ 1 for each point x in p(Z). Then for each point x
in p(Z), the morphism p restricted to q−1(q(p−1(x))) − (p−1(x))(=: D) → X
is quasi-finite. Particularly dim p−1(x) ≤ n− 1.

Proof. Assume that p|D is not quasi-finite. When dim p(D) = 1, p(D) =
p(q−1(y)) for each point y in q(p−1(x)), which yields a contradiction. Next
consider the case of dim p−1(x) ≥ 1. Then dim p(D) ≥ 2. Thus we can take
a point A in p(D) − x and a projective curve C in D such that p(C) = A.
The ruled surface Z×Y q(C)(:= S) has two curves S ∩ p−1(x), C which do not
intersect and which go to two points x,A via p. This yields a contradiction by
virtue of Theorem 4 in [Mo]. The last statement is trivial.

Moreover we have

Proposition 2.5. Let X and E be as above and r = rankE. Assume
that KX +c1(E) is not nef. Let C be an extremal rational curve on X satisfying
the inequality (KX + c1(E).C) < 0 and the assumption 2.2. Then under the
notations Y, Z in Proposition 2.3.2, we have

1) If −(KX .C) ≥ n, then p is surjective and 2n− 3 ≤ dimY ≤ 2n− 2.
2) When dimY = 2n − 2, the morphism p has an equi-dimensional fiber

whose dimension is n − 1 and for each point x in X, p(q−1(q(p−1(x)))) = X.
Hence NS(X) ×Z Q ∼= Q.

3) When dimY = 2n− 3, we have the following two cases :
3.1) There is a point x in X and an integer m such that Sm(x) = X.
3.2) dimSm(x) < n for each point x in X and for each positive integer m.
i) In case of 3.1 NS(X) ×Z Q ∼= Q.
ii) In case of 3.2 there is a finite and generally bijective morphism φ : D →

X from a projective variety D to X where ψ : D → C is a fiber space over a
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projective curve C. Moreover for each point c in C φ(ψ−1(c)) is a divisor swept
out by rational curves parameterised by (2n− 4)-dimensional divisor of Y .

Proof. We show 1). First (−KX .C) ≥ n yields 2n− 3 ≤ dimY by (2.3.1)
and Proposition 2.3.2. Thus dimZ ≥ 2n− 2. First assume that p is not surjec-
tive, namely dim p(Z) ≤ n−1. Take a point x in p(Z). Then dim p−1(x) ≥ n−1
and therefore dim q−1(q(p−1(x))) ≥ n. Hence q−1(q(p−1(x))) − p−1(x)(=:
D) → p(Z)(⊂ X) is not quasi-finite, a contradiction to Proposition 2.4. Simi-
larly we have the inequality: dimY ≤ 2n−2. Next let us consider 2). Then p is
surjective from the above argument of 1). The condition implies dimZ ≥ 2n−2.
Thus the first statement of 2) is shown from Proposition 2.4. The rest is ob-
tained from Corollary 1.5. Finally we show 3). First note that p is surjective
from the proof of the above 1). When X has a property of Sm(x) = X for a
point x in X an integer m, i) is obtained by Corollary 1.5. As for the other case,
since dim q−1(q(p−1(x))) ≥ n−1 for any point x inX, we get dimSm(x) = n−1.
Thus ii) follows from Proposition 1.10.

Theorem 2.6. Let X be an n-dimensional smooth projective variety
defined over an algebraically closed field and E an ample vector bundle on X
of rank r(≤ n). Assume that KX + c1(E) is not nef. Then we have

1) If r = n > 1, then NS(X) ×Z Q ∼= Q and −KX − c(E) is an ample
line bundle. Moreover −KX is numerically equivalent to (n + 1)L where L =
−KX − c(E). Therefore X is Fano.

2) If r = n− 1 and n ≥ 4, then X is i) or ii) of 3) in Proposition 2.5.

Proof. First since rank E ≥ n/2 + 1, (2.2) is satisfied by Proposition 2.1.
We consider 1). The assumption implies that there is an extremal rational
curve C on X so that (KX + c1(E).C) < 0 and that n+ 1 ≥ −(KX , C). Since
−(KX , C) > (c1(E).C) and (c1(E).C) ≥ n from sublemma of Proposition 2.1
we see that n + 1 = −(KX , C) and (c1(E).C) = n. Thus under the notations
in Proposition 2.3.2 we get dimY = 2n − 2 from (2.3.1) and Proposition 2.5,
which implies the former part. On the other hand since (KX + c1(E).C) = −1,
we get the latter part.

Next we consider 2). In the same way as 1) we get −(KX , C) = n + 1, n
and the desired facts by Proposition 2.5.

3. Rational curves on projective space bundle

Let E be an ample vector bundle of rank r on an n-dimensional smooth
projective variety X. Let C̄ be a rational curve on P(E) and π : P(E) → X
the canonical projection.

Assume that
(3.1) (C̄.OP (E)(1)) = 1 and C̄ is not in a fiber of π.

Our aim of this section is to investigate the deformation of C̄ in P(E) and
to study the property of (X,E) with −(KX .C̄) = n+1 or n. As a consequence
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we can determine the structure of (X,E) with −(KX .C) = n+1 or n in question
stated in Sections 1 and 2.

Let X = P(E), ξ = OP (E)(1) and g : C̃ → C̄ be the normalization of C̄.
Then considering a Hilbert scheme Hom(P1,X ) at the morphism g, we see that
(3.2) dim[g] Hom(P1,X ) ≥ χ(P1, g∗TX ) = −(KX .C̄) + n+ r − 1
Here [g] means a point corresponding to the morphism g in Hom(P1,X )

Thus take an irreducible component VX of Hom(P1,X ) containing the
morphism [g] where dimVX ≥ χ(P1, g∗TX ). Let ṼX be the normalization of
VX . Then by Mori’s method (see Lemma 9 in [Mo]) (C̄.ξ) = 1 provides us,
from Proposition 2.1 and 2.3.2, with

Proposition 3.3. Let the conditions and notations be as in 3.1 and 3.2.
Then there are projective varieties Y ,Z and morphisms a : Z → X , b : Z → Y
where b is P1-bundle and dimY ≥ −(KX .C̄)+n+r−4. Here Y ,Z are geometric
quotients of ṼX and ṼX ×P1 by AutP1 respectively.

Remark 3.3.1. Let Chowd′
X be Chow variety parameterizing 1-dimensional

effective cycles C of X such that (C.ξ) = d′. Then we have a canonical mor-
phism π′ : VX → Chow1

X by π′(v) = the cycle of v(P1)) modulo rational
equivalence where (v(P1).ξ) = 1. Then note that Y is the normalization of the
image of π′ in Chow1

X .

Moreover we have

Corollary 3.4. Let C̄t = a(b−1(t)) for a point t in Y. Then we have
1) for each point t in Y, C̄t is an irreducible rational curve with (C̄t.ξ) = 1

and a canonical morphism b−1(t) → C̄t induced by a is birational.
2) π : C̄t → π(C̄t) is birational.
3) Moreover (C̄t.π

∗E) and (C̄t.π
∗KX) are independent of a choice of the

point t in Y.

Proof. 1) is trivial from (C̄.ξ) = 1. 2) follows from the following

Sublemma. Let F be an ample vector bundle of rank r on P1. Let C
be a rational curve on P(F ) which is not in a fiber of a canonical projection
π : P(F ) → P1. Assume that (OP(F )(1).C) = 1. Then F has OP1(1) as a
direct summand and C is a section induced by a line bundle OP1(1). Namely
π : C → π(C) is an isomorphism.

In fact we assume that C is not a section of π. Taking the normalisation
of φ : C̄ → C the fiber product P(F ) ×P1 C̄(∼= P((φπ)∗F )) has a section
C̃ of a canonical projection P((φπ)∗F ) → C̄, which is induced by the curve
C. Hence we infer that (OP ((φπ)∗F )(1).C̃) = (OP(F )(1).C) = 1, which means
that (φπ)∗F has a quotient line bundle OP1(1), which turn out to be a direct
summand, because (φπ)∗F is ample. On the other hand since the ample vector
bundle F is isomorphic to ⊕r

i=1OP1(bi) where 1 ≤ b1 ≤ b2 ≤ ... ≤ br, (φπ)∗F
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is isomorphic to ⊕r
i=1OP1(dbi). Here d is the degree of φπ ≥ 2. Thus we get a

contradiction, as desired.
3) is trivial.

(3.4.1)G denotes AutP1. G acts natually on Hom(P1,X ) and Hom(P1, X)
respectively. By 2) of Corollary 3.4 we see that for the G-stable compo-
nent VX there are a G-stable component VX of Hom(P1, X) and a canon-
ical morphism π̃ : VX → VX defined by mapping g in VX to π̃(g) in VX

where π̃(g) : P1 → (πg)(P1) is the normalization of (πg)(P1) by virtue of
the universality of Hom(P1, X). Particularly π̃ is a G-morphism. Then we
have a canonical morphism e : π̃(VX ) → Chowd

X by π̇(v) = the cycle of v(P1)
modulo rational equivalence where d = (πv(P1). detE) and where Chowd′

X is
Chow variety parameterizing 1-dimensional effective cycles C of X such that
(C. detE) = d′. Let Y be the normalization of e(π̃(VX )) in Chowd

X . Then Y
is normal projective variety which is a geometric quotient of the normalization
V ′ of π̃(VX ) by G by virtue of Lemma 9 in [Mo2]. Moreover G acts natually on
V ′ ×P1 and therefore we have the geometric quotient Z of V ′ × P1 by G and
a canonical morphism π̄ : Y → Y. Let p : Z → X and q : Z → Y be canonical
morphisms where p is surjective and q a P1-bundle.

Remark 3.5. 1) For a point t in Y C̄t is induced by a direct summand
OP1(1) of p∗E|q−1(π̄(y)) where p∗E|q−1(π̄(y))

∼= ⊕r
i=1OP1(ai). Thus dimY −

dim π̄(y) ≤ r − 1.
2) dimY − dim π̄(Y) = r− 1 if and only if p∗E|q−1(y)

∼= ⊕rOP1(1) for any
point y ∈ π̄(Y). Then the morphism Y → π̄(Y) is of equi-(r-1) dimension.

3) If dimY − dim π̄(Y) = r − 2, then for any point y ∈ π̄(Y) p∗E|q−1(y)
∼=

⊕r−1OP1(1)⊕OP1(s) with some positive integer s.
In fact 1) and 2) are trivial by the construction of π̄. 3) is obtained by the
ampleness of E.

Next we state the facts about dimY and the properties of a closed sub-
scheme Sm(x) in a(Z) defined in (1.2) for a general point x on X .

Proposition 3.6. Let the condition and notation be as in 3.1 and 3.3.
Then for each x in X , we have the following :

1) for each positive integer m a canonical morphism π, : Sm(x) → X
induced by π is a finite morphism. Hence dimSm(x) ≤ n.

2) dimZ − dim a(Z) ≤ n− 1. Moreover dimZ − dim a(Z) = n− 1 if and
only if the morphism a;Z → a(Z) is the one of (n− 1) equi-dimensional fiber.
Consequently if dimZ − dim a(Z) = n− 1, for each point x in X and for each
positive integer m dimSm(x) = n and a canonical morphism π, of 1) is a finite
surjective morphism.

3) dimY ≤ 2n+r−3. If dimY = 2n+r−3, then the morphism a;Z → X
is surjective and dimZ − dim a(Z) = n− 1.

4) −(KX .C̄) ≤ n+ 1.
5) If −(KX .C̄) = n+ 1, then “if” parts in both 2) and 3) hold.
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Proof. Let j = (π∗detE.C̄) and let us set jξ − π∗detE as L. Then we
see from Corollary 1.4 that L|Sm(x) is numerically equivalent to zero. On the
other hand, assume the contrary of 1), namely there is a curve D in Sm(x)
which is contained in some fiber of π. Then since L|D = jξ|D, it is am-
ple, a contradiction. As for 2) assume that dimZ − dim a(Z) ≥ n. Since
dim b−1(b(a−1(x))) = n + 1, b−1(b(a−1(x))) − a−1(x) → X is not quasi-finite.
Noting that (ξ, C̄) = 1, we have a contradiction to Proposition 2.4. Thus we
get all of 2) at the same time. 3) is shown in the same manner as in 2). As for
4) assume that −(KX .C̄) ≥ n+ 2. Then dimY ≥ χ(P1, g∗TX )− dim AutP1 =
−(KX .C̄) + (n + r − 1)χ(P1,OP1) − 3 ≥ 2n + r − 2. Then we get the same
contradiction as in 2), which implies 5).

The above argument of Proposition 3.6 says

(3.6.1) Note from Proposition 3.3 that
If −(KX .C̄) = n and if a(Z) is a proper subvariety of X , then dimZ −
dim a(Z) = n − 1, dim a(Z) = n + r − 2 and the last part of 2) in Propo-
sition 3.6 holds for any point x ∈ a(Z).

Corollary 3.6.2. Let u := dimZ − dim a(Z). Then we have
1) dimSm(x) ≥ u+1 for each point x in a(Z) and for each positive integer

m.
2) Assume that there is a point x in a(Z) where dimS2(x) = u+ 1. Then

there are a (u+ 1)-dimensional irreducible component Sx of S2(x) and an 2u-
dimensional irreducible component Tx of ba−1(S1(x)) enjoying the following :
Sx = a(b−1(Tx)) and for two points x1, x2 in Sx there exists a point y of Tx

with a(b−1(y)) � x1, x2 Namely Sx is swept out by a family of rational curves
parameterized by a 2u-dimensional closed subvariety of Y.

Proof. 1) is trivial by Proposition 2.4. Consider 2). Since Sm(x) ⊂
Sm+1(x) = a(b−1(b(a−1(Sm(x)))), we can take an irreducible component V of
S1(x) with dimV = u+ 1. We have a
Claim: dim b(a−1(V )) = 2u.
In fact it is clear from Proposition 2.4 that dim b(a−1(V )) is 2u or 2u +
1. Assume that dim b(a−1(V )) = 2u + 1. Then since S1(V ) ⊂ S2(x), we
get dim b−1(b(a−1(V ))) = 2u + 2. Hence we infer that for a point x′ ∈
V (⊂ S1(V )) dim a−1(x′) = u + 1 and therefore dim b(a−1(x′)) = u + 1 and
dim b−1(b(a−1(x′))) = u+2. On the other hand since S1(x′) ⊂ S2(x) and there-
fore dimS1(x′) = u + 1, the induced morphism b−1(b(a−1(x′))) − a−1(x′) →
S1(x′) is not quasi-finite, a contradiction from Proposition 2.4.

Now take an irreducible componentW of b(a−1(V )) which is of 2u-dimension.
Then a(b−1W ) is the desired irreducible component of S2(x) which is of u+ 1
dimension. Thus we have only to set V and W as Sx and Tx.

Next we state the relation between Y and π̄(Y).

Proposition 3.7. Let Y and π̄(Y) be as stated above.
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1) If dimY = 2n+ r − s with s ≥ 3, then dimY − dim π̄(Y) ≥ r − s+ 2.
2) If dimY = 2n + r − 3, then (c(E).C) = r, dim π̄(Y) = 2n − 2 and for

any point y ∈ π̄(Y) p∗E|q−1(y)
∼= ⊕rOP1(1). Moreover if dimY = 2n + r − 4,

then dimY − dim π̄(Y) = r − 1 or r − 2 and therefore dim π̄(Y) = 2n − 3 or
2n− 2 respectively.

Proof. Assume that dimY − dim π̄(Y) < r − s+ 2. From 1) of Remark
3.5 dimY−dim π̄(Y) < r−1, namely dim π̄(Y) > 2n−2. Therefore it turns out
that there is a at least (2n-1)-dimensional family of irreducible rational curves
on X. By bend and break theory of rational curves there is a curve Cy with
some point y ∈ π̄(Y), so that Cy decomposes to a sum of rational curves, a
contradiction to the property of π̄(Y). The remainder is obtained from Remark
3.5.

Let C = π(C̄). From now on we consider the case of
(3.8) −(KX .C̄) = n+ 1.

We immediately get from Proposition 3.6

Corollary 3.8. Assume that −(KX .C̄) = n+ 1. Then we have
1) −(KX .C) = n + 1 and (c1(E).C) = r. Hence p∗E|q−1(t) ∼= ⊕rOP1(1)

for each t in Y .
2) dim π̄(Y) = 2n − 2 and moreover each fiber of the morphism π̄ : Y →

π̄(Y) is of (r-1)-dimension.
3) For every point x in X , the conclusion in Corollary 3.6.2 holds with

u = n− 1. Consequently NS(X) ×Z Q is isomorphic to Q.

Proof. Since −KX = rξ− π∗(KX + c(E)), we get −π∗(KX + c(E).C̄) =
n+1−r and therefore −(KX +c(E).C) = n+1−r from 2) of Corollary 3.4. On
the other hand from 5) of Proposition 3.6 we infer that dimY = 2n+r−3. Thus
from 2) of Proposition 3.7 we get (c(E).C) = r and therefore −(KX .C) = n+1
and others. 2) follows from 2) of Remark 3.5 and the above 1). The former of
3) is obtained from 3) of Proposition 3.6. The final part of 3) is obtained from
Corollary 1.5 by letting A = X,B = Z and T = Y .

Next we consider the case of
(3.9) −(KX .C̄) = n.

Then we get
(3.9.1) −(KX + c(E).C) = n− r.

Hence we have 0 ≥ r − (c(E).C) = n+ (KX .C).

In this case we have, from Proposition 3.3 and from 3) in Proposition 3.6,
following two cases:

dimY = 2n+ r − 3 and = 2n+ r − 4 .

First we consider the case of
(3.10.1) dimY = 2n+ r − 3.
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From Proposition 3.7 we get (c(E).C) = r and therefore −(KX .C) = n.
Moreover for each point x in X dimSm(x) = dimZ − dim a(Z) + 1 by 2) and
3) in Proposition 3.6. This case does not happen under the assumption that E
is spanned. (see (4.8))

Next we consider the case
(3.10.2) dimY = 2n+ r − 4.

We see by (2) of Proposition 3.7 that dimY − dimπ̄(Y) is r − 1 or r − 2
and that dim π̄(Y) is 2n − 3 or 2n − 2 respectively. In the former case we
have (c(E).C) = r and in the latter case (c(E).C) > r by 2) of Remark 3.5.
Consequently for any point y ∈ π̄(Y) p∗E|q−1(y)

∼= ⊕r−1OP1(1)⊕OP1(s) with
some positive integer s by 2) of Remark 3.5. Moreover dimSm(x) ≥ n− 1 for
each point x in X and for each positive integer m.

Here we divide the morphism a : Z → X into two cases:
(3.10.2.1) a is not surjective

We see from 2) of Proposition 3.6 and dim a(Z) = n+ r− 2 therefore that
a : Z → X is of an (n-1)-dimensional fiber. Hence for each point x in a(Z)
dimSm(x) = n for each positive integer m.
(3.10.2.2) a is surjective. (Thus a general fiber of a is of dimension n− 2.)

Then noting the properties of Sm(∆) before (1.6), we have the following
table of (3.10.2.2) for a general point x in X .

dim π̄(Y) dimS2(x) (c(E).C) p∗E|q−1(y) −(KX .C)
γ.1 2n− 3 n− 1 or n r O(1)⊕r n
γ.2 2n− 2 n− 1 or n ≥ r + 1 O(1)⊕r−1⊕O(s) ≥ n+ 1

where s ≥ 2. We give a

Remark 3.10.3. Let us consider the case of dimS2(x) = n in the table
before. Similarly in the proof in 2) of Corollary 3.6.2 there is an irreducible
subvariety Tx of Y so that 1) dimTx = 2n − 3 and 2) Sx(:= pq−1(Tx)) is an
n-dimensional irreducible component of S2(x). There is an open set R in Sx

so that Sx is smooth around R and contains an (n− 1)-dimensional irreducible
component of S1(x′) for each point x′ in R.

4. Proof of Theorem 4.1 (I)

In this section let E be an ample vector bundle of rank r on a smooth
projective variety X. We maintain the notations X,E,X (= P(E)) and so on
in Section 3. Moreover throughout in this section we assume that
(4.0) E is spanned.

We determine the structure (X,E) and get the following:

Theorem 4.1.A. Let X be an n-dimensional smooth projective variety
defined over the algebraically closed field in any characteristic and let E be a
rank r-vector bundle on X. Assume that E is ample and spanned. Moreover
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suppose that there is a rational curve C̄ on P(E) so that (OP (E)(1).C̄) = 1 and
that C̄ is not in a fiber of a canonical projection P(E) → X . Then
when −(KP (E).C̄) = n+ 1 (3.8), (X,E) is isomorphic to 1) (Pn,OPn(1)⊕r).

Theorem 4.1.B. Let the notations and assumptions be as in Theorem
4.1.A. When −(KP (E).C̄) = n > 4 (3.9), h∗E is either I) OP1(1)⊕r or II)
OP1(1)⊕r−1⊕OP1(s) with s > 1 where h : P1 → C̄ is the normalization of C̄.
Moreover in case I) (X,E) is either

1) φ : X → C has a Pn−1-bundle structure over a smooth projective curve
C and E|φ−1(c)

∼= OPn−1(1)⊕r. (3.10.2.2. γ.1) or
2) (Qn,OQn(1)⊕r). (3.10.2.2. γ.1)
In case II) (X,E) is either
3) (Pn,OPn(1)⊕r−1⊕OPn(2)). (3.10.2.1) or
4) NS(X) ×Z Q ∼= Q and P(E) is swept out by (n− 1)-dimensional pro-

jective spaces P with OP (E)(1)|P ∼= OPn−1(1). (3.10.2.2. γ.2)
Finally suppose that OP (E)(1) is very ample. Then (X,E) in 4) is (Pn, TPn

⊕OPn(1)⊕r−n) with r ≥ n. (3.10.2.2. γ.2)

See (4.7) for the case of (3.8), (4.10) for (3.10.2.1), and (5.15), (6.15) for
(3.10.2.2. γ.1 γ.2) respectively.

By the assumption thatE is spanned, the tautological line bundle OP (E)(1)
(=: ξ) of E is base points free.

Let φ : X → PN be a morphism with h0(X, ξ) = N +1. Then by (C̄t.ξ) =
1, we see that C̄t is a smooth rational curve for each point t in Y . Then to
determine the structure of Sx, we begin with the following

Proposition 4.2. Let U , V and W be projective varieties and p : W → U
surjectivre morphism and q : W → V P1-bundle. Let L be an ample spanned
line bundle on U which induces a morphism φ : U → PN with h0(U,L) = N+1.
Assume that for each v in V ,

1) the set {v′|Cv = C ′
v} is a finite set with Cv = p(q−1(v)),

2) (L.Cv) = 1, and
3) dimV = 2 dimU − 2.
Then φ is an isomorphism and (U,L) ∼= (Pn,OPn(1)).

Proof. First we have
Claim 1. For any two points u1, u2 in U there are finitely many points {v}

in V so that u1, u2 are contained in a rational curve Cv.
Remarking that Cv does not decompose to a sum of 1-cycles by the condition
2, we can easily show it in the same way as in Proposition 2.4.

Let S = φ(U) and lv = φ(Cv). Then we have
Claim 2. S = Pn and n = N .

Indeed, take a general and smooth point A in S. Then the tangent space TS,A

at the point A in S is an n-dimensional linear subspace in PNand it contains a
line lv passing through the point A. On the other hand the closed subscheme
{v ∈ V |lv � A}(= V̄ ) of V is of n − 1 dimension from the assumption and
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the finiteness of φ. Hence by claim 1 the set
⋃{lv|v ∈ V̄ } coincides TS,A and

therefore S itself, required.
(4.2.1) By the universality of Hilbert scheme of lines on Pn we have a canonical
morphism φ̄ : V → Gr(n, 1) which is finite and surjective by the assumption of
1), 3) and claim 1.

Let Un−1 be a general member of |L|.
Claim 3. Un−1 is irreducible and reduced.

From the assumptions 2) and claim 1 the reducedness of Un−1 is obvious.
Moreover when n > 1, the irreducibility is obtained by virtue of Bertini’s
Theorem, as desired.

For the proof we have only to show that the degree of φ is 1. We can
assume that U is normal. We show this proposition by induction on n.

When n = 1, it is trivial.
Next take a general member Un−1 of |L|. Then it is irreducible and re-

duced by claim 3. Moreover the (n − 1)-dimensional linear space φ(Un−1)
induces a closed subvariety Gr(n − 1, 1) in Gr(n, 1). Then we have an irre-
ducible component Vn−1 of φ̄−1(Gr(n−1, 1)) with pq−1(Vn−1) = Un−1 and let
Wn−1 = q−1(Vn−1). Thus by induction assumption φ|Un−1 is an isomorphism
and (Un−1, L|Un−1) ∼= (Pn−1,OPn−1(1)). Consequently degree of φ is 1, as
required

Thus combining 2) of Corollary 3.6.2 and Proposition 4.2, we get

Corollary 4.3. Let the condition and notation be as in 3.1 and 3.3.
Assume that there is a point x in X so that dimS1(x) = dimS2(x) = dimZ −
dim a(Z) + 1(:= d). Moreover suppose that E is spanned. Then there is a
d-dimensional irreducible component Sx of S2(x) as in 2) of Corollary 3.6.2
where (Sx, ξ|Sx

) ∼= (Pd,OPd(1)). Namely the morphism φ|Sx
is isomorphism.

Proof. S2(x) provides us with Sx, Tx used in the notations of Corollary
3.6.2. Since ξ is base points free, the assumptions in Proposition 4.2 are satis-
fied, as desired.

Next to show that the image of above Sx via the canonical projection
π : X → X is a projective space we make several preliminaries to give a
sufficient condition for the image of C̄t via the canonical projection π to be P1.

Proposition 4.4. Let F be a vector bundle on a rational curve D.
Assume that g∗F ∼= ⊕m

i=1(OP1(ai))⊕ri with the normalisation g : P1 → D of
D where 1 = a1 < a2 <, ... < ar. Assume that F is spanned. Then we have

1) if D is a singular curve and A is a singular point in D, then h(π−1(A))(∼=
PΣm

i=1ri−1) contains h(ḡ(P(OP1(1))⊕r1)) which is of dimension r1. Here π :
P(F ) → D and ḡ : P(g∗F ) → P(F ) are canonical morphisms and h : P(F ) →
PN a morphism induced by a line bundle OP(F )(1).

2) D is smooth either if m = 1 or if OP(F )(1) is very ample.
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Proof. Take a section D̄(:= P(OP1(1))) of P(g∗F ) corresponding to a
direct summand OP1(1) of g∗F . Since (OP(g∗F )(1).D̄) = 1, we see that an
induced morphism : D̄ → hḡ(D̄) via hḡ is an isomorphism and that hḡ(D̄) is
a line. Thus ḡ : D̄ → ḡ(D̄) is an isomorhism and ḡ(D̄) is a smooth rational
curve.

Then we have two cases: the morphism g is a) not a homeomorphism
around g−1(A) b) a homeomorphism around g−1(A). Let r = Σm

i=1ri.
In case of a) there are two points R1, R2 on P1 with g(Ri) = A. Then we

infer that each fiber π̄−1(Ri) for i = 1, 2 goes to the same (r − 1)-plane P in
PN via the morphism hḡ. On the other hand h(ḡ(D̄)) is a line. Thus this line
is contained in the (r − 1)-plane P . Consequently h(ḡ(P(M)) is contained in
P where M is a subbundle OP1(1)⊕r1 of g∗F . In case of b) take a point R on
P1 with g(R) = A. Then the section D̄ tangents to the fiber π̄−1(R). Thus
we get the phenomena as the first case a). Hence 1) is shown. Remarking that
dimP(M) = r1 because of the finiteness of hḡ we can show 2) by 1).

The above immediately yields

Corollary 4.4.1. Under the condition 3.1 let C̄t be as in Corollary 3.4
and π̄ as in 3.5. Assume that p∗E|q−1(y)(∼= ⊕m

i=1OP1(ai)⊕ri) is independent of
a choice of a point y in π̄(Y). Moreover assume that E is spanned. Then we
have the following:

1) the image of C̄t via the canonical projection π is P1 and π : C̄t → π(C̄t)
is an isomorphism either if m = 1 or if OP(E)(1) is very ample.

2) Let m = 2, r2 = 1 and Sing(Y ) = {y ∈ π̄(Y)|p(q−1(y)) is singular} a
closed set in π̄(Y). Then for each point x in X Sing(Y, x){:= {y ∈ Sing(Y )|
p(q−1(y)) is singular at x} is at most finite many points.

Proof. 1) is trivial. For 2) remark that for each point y in Sing(Y ) the set
{y′ ∈ Sing(Y )|p(q−1(y) = p(q−1(y′)} is at most finite many points. Assume the
contrary of 2) namely there is a point x in X so that Sing(Y, x) is of positive
dimension. Then noting that p∗E|q−1(y)

∼= OP1(1)⊕r−1⊕OP1(a2), we see that
for each point y in Sing(Y, x) a divisor in P(E|p(q−1(y))) corresponding to a
divisor P(OP1(1)⊕r−1) in P(p∗E|q−1(y)) is tranformed via φ to a unique fiber
π−1(x)(∼= Pr−1), a contradiction to the finiteness of φ by 1) of Proposition 4.4.

Now we give an easy

Proposition 4.5. Let A,B be varieties and f : B → A a morphism.
Assume that there is a smooth point x in B whose image f(x) is a smooth point
in A and that there is no non-zero tangent vector v at the point x which goes
to zero vector via the linear map df∗,x. Then f : B → f(B) is separable.

Proof. Assume that f : B → f(B) is not separable. Then for the point x
there is a non-zero tangent vector v of TB,x so that the differential map df∗,xv
is zero which yields a contradiction to the assumption.
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Note that each non-zero tangent vector on Pn is obtained by the one
induced by a line. Thus we have

Corollary 4.6. Let A be a smooth variety and f : Pn → A a quasi-
finite morphism. Assume that for each line l on Pn an induced morphism
f : l → f(l) is an isomorphism. Then f(Pn) is smooth and f : Pn → f(Pn) is
isomorphism.

Proof. First since there is a line passing through any two point, the as-
sumption implies that f is injective. From the above argument we see that
for each point x in Pn the differential map df∗,xv : TPn , x → TA,f(x) is in-
jective. Hence from the injectivity of f we infer that f(Pn) is smooth and
f : Pn → f(Pn) is etale. Thus f is an isomorphism.

Corollary 4.6.1. Let us maintain the condition (3.10.2.1) and (γ.2) of
(3.10.2.2). Assume that E is spanned. Then for a general point x in a(Z) ⊂ X
Sx is a n (or, n − 1)-dimensional projective space respectively. An induced
morphism π : Sx → π(Sx) is separable.

Proof. We have an argument of the case (3.10.2.1). The other case follows
in the same way. The former part is trivial by Corollary 4.3 since dimSm(x) =
dimZ − dim a(Z) + 1 = n for each positive integer m. Next we consider the
latter part. Let S = Sx. Then there is an (2n-2)-dimensional closed subvariety
T in Y where a(b−1(T )) = S and T is isomorphic to Gr(n.1) by 2) of Corollary
3.6.2. Note that for each point t in T a curve C̄t is a line on S and that
π̄(T ) = π̄(Y). Now we assume the contrary of the conclusion. (#) For each
point x in S there is a point t in T so that π(C̄t) is a cuspidal curve passing
through cuspidal point π(x) by Proposition 4.5. The image of such a point t
via π̄ is contained in Sing(Y ) of 2) in Corollary 4.4.1. Here a cuspidal curve
C means the one so that there is a birational morphism j :<→ C where < is
a cubic plane curve with the cusp singularity R and the cuspidal point means
the image j(R). We have a

Claim: For each point x in S there is a unique point t satisfying (#).
In fact assume that there is another point t′ in T so that π(C̄t′) is a cuspidal
curve passing through cuspidal point π(x) Then we see easily that any line
C̄t”), through the point x on the 2- plane (⊂ S) generated by two line C̄t, C̄t′

is projected via the morphism π to a cuspidal curve with the cuspidal point
π(x), a contradiction to 2) in Corollary 4.4.1.

For the inseparable morphism π : S → X we consider the homomorphism
h : TPn → π∗TX . Then Claim implies that there is an exact sequence:

0 → L→ TPn → F → 0
where L is the kernel of h and F the image of h. Then L is a line bundle and
F a rank (m-1) vector bundle on Pn. But there does not exist such an exact
sequence on Pn.

At last we have come to the proof of Theorem 4.1. We investigate the case
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(4.7) −(KX .C̄) = n+ 1.
Take a point x in X . Then by 2) and 5) of Proposition 3.6, we infer that

dimSm(x) = n for each positive integer m. Thus Corollary 4.3 implies that
Sx

∼= Pn and ξ|Sx
∼= OPn(1). Moreover 1) of Corollaries 3.8, 4.4.1 and 4.6

imply that the morphism π′ : Sx → X is isomorphism. Moreover we infer
that E is a uniform vector bundle from Corollary 3.8, where for each line l ,
E|l ∼= ⊕rOPn(1). By Proposition 4.2 in [Sa1]. we get

Theorem 4.7.1. Let X,E, C̄ be as in Theorem 4.1 and let us maintain
the assimption in Theorem 4.1. If −(KX .C̄) = n+1, then (X,E) is isomorphic
to (Pn,⊕rOPn(1)).

The above immediately yields

Theorem 4.7.2. Let E be an ample vector bundle of rank r = n+ 1 or n
on an n-dimensional smooth projective variety X. Assume that E is spanned.
Moreover assume that if r = n + 1, then KX + c1(E) is numerically trivial
and that if r = n, then KX + c1(E) is not nef. Then (X,E) is isomorphic to
(Pn,⊕rOPn(1)).

Proof. First we consider the first case. Then since −KX is numerically
equivalent to an ample line bundle c(E), X is Fano. Thus there is an extremal
rational curve C on X so that −(KX .C) ≤ n + 1. On the other hand by
sublemma in Proposition 2.1 we infer that −(KX .C) = n+1 and (c(E).C) = n+
1. Take the nomarization φ : C̄ → C of C. Then φ∗E ∼= O(1)⊕n+1, whose direct
summand O(1) yields a rational curve C̃ on X with (C̃.OP(E)(1)) = 1. Thus
−KX is numerically equivalent to (n + 1)OP(E)(1) and therefore −(KX .C̄) =
n+1. Since C̃ is not in the fiber of the projection P(E) → X we get the desired
fact by Theorem 4.7.1.

Next we consider the second case. By Theorem 2.6 −KX is numerically
equivalent to (n + 1)(−KX − c(E)). Thus there is an extremal rational curve
C on X so that −(KX .C) ≤ n + 1. In the same manner as above we see that
(c(E).C) = n, −(KX .C) = n + 1 and therefore φ∗E ∼= O(1)⊕n. Consequently
−(KX .C̄) = n+ 1. Hence we get the desired result.

Next under the assumption (4.0) we investigate the case −(KX .C̄) = n.
(4.8) We show that the case (3.10.1) does not happen.

First by dimY = 2n + r − 3, we see that p∗E|q−1(y)
∼= OP1(1)r by 2)

of Proposition 3.7. Since dimSm(x) = dimZ − dim a(Z) + 1 = n for each
positive integer m. we see X is isomorphic to Pn from the above argument to
obtain Theorem 4.7.1. Thus it follows that −(KX .C) = −(KPn .C) = n+ 1, a
contradiction to −(KX .C) = n.

Next we give a

Lemma 4.9. G is a rank r uniform vector bundle on Pn where for a line
l G|l = ⊕r

i=1O(ai) with 0 = a1 ≥ a2 ≥, ...,≥ ar. Assume that G has a non-zero
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section. Then G has a trivial line bundle and the quotient vector bundle G′ is
a uniform vector bundle with G′|l = ⊕r

i=2O(ai).

Proof. A non-zero section s yields a homomorphism s : O → G. Assume
that there is a point x in Pn so that s(x) = 0. Then take a line C passing
through the point x such that the induced homomorphism s|C : OC → GC is
a non-zero homomorphism. On the other hand we see easily that a non-zero
section of G|l = ⊕r

i=1O(ai) with 0 = a1 ≥ a2 ≥, ...,≥ ar vanishes nowhere, we
get a contradiction as for the induced homomorphism s|C .

(4.10) Here we treat the case (3.10.2.1).
We take a rational curve C̄t in t ∈ Y and construct Sx as above. We

infer that Sx is a projective space Pn. Let S = Sx. Next if s = 1 in (3.10.2),
π|S : S → X is an isomorphism in the same way as in the proof of Theorem
4.7.1. We get −(KX .C) = n + 1, a contradiction. If s > 1, π|S : S → X is
separable by Corollary 4.6.1.

From now on we show that π is etale and therefore an isomorphism. For
the sake we consider the following function:

g : X � x → #(π|−1
S (x)) ∈ N

Then the function is lower semi-continuous in the Zariski topology. Next note
that S = ∪y∈T C̄y. Moreover as shown in the proof of Proposition 3.6 the re-
striction of the line bundle L = (r + s− 1)ξ − π∗ detE of X (=: P (E)) on S is
numerically equivalent to zero. Thus for each point y ∈ T , L|π−1(π(C̄y))∩S

is numerically equivalent to zero. Here remark that E|π(C̄y) ×π(C̄y) C̄y
∼=

π∗E|C̄y
∼= OP1(1)⊕r−1 ⊕ OP1(s). Moreover let iy : P(π∗E|C̄y

) → P(E)
be a natural morphism induced by a canonical morphism C̄y → X. Then
iy

∗L = OP(O⊕r−1⊕O(s−1))(r + s− 1). Thus π−1(π(C̄y)) ∩ S is a union of finite
many sections C̄y and (probably) at most finite many points. Thus the func-
tion g is constant. By purity property we see that π is etale and therefore an
isomorphism by the following

Sublemma 4.10.1. Let U, V be smooth projective varieties and f : U →
V etale and finite. Assume that χ(U,OU ) = 1. Then f is an isomorhism.

See Proposition 1.4 in [Sa2].
By 3.9.1 E is a uniform vector bundle where E|l ∼= O(1)⊕r−1⊕O(2). Note

that each Sx corresponds to a quotient line bundle OPn(1) of E. Moreover the
above argument says that there is a set {Sx}x∈T so that Sx

∼= Pn via π and that
the closure of ∪x∈TSx is a divisor a(Z) in X . Now consider a homomorphism
f : E → OPn(1)⊕m induced by the above Sx’s. This f induces a rational map
f̄ from P(OPn(1)⊕m) to P(E). From the property of P(E) we see that the
image of f̄ is equal to a(Z). Thus we infer from Lemma 4.9 that f is surjective
with the following eaxct sequence:

0 → L→ E → OPn(1)⊕r−1 → 0 .
where L is a line bundle. Thus L = OPn(2) and E is OPn(1)⊕r−1 ⊕OPn(2).
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Remark 4.11. 1) Let E = OPn(1)⊕r−1⊕OPn(2) be a vector bundle
on Pn. Then under the natations a,Z,X as in section 3, we have a(Z) =
P(OPn(1)⊕r−1)(⊂ X ).

2) It is known in [Sa1] that the above uniform vector bundle with rank
E < n is a direct sum of line bundles.

5. Proof of Theorem 4.1 (II)

In this section we determine (X,E) of the table of (3.10.2.2). Let us
maintain the notations in Section 3. It is assumed that E is spanned.

In case of γ.1 and γ.2 we have the following condition:
(5.0) For each point x in an open set of a(Z) so that dimS2(x) = n− 1(≥ 2).
Note that dimS1(x) = n− 1.

Moreover since a is surjective, dimZ−dim a(Z) = dimZ−dimX = n−2.
As a consequence we get dimS2(x) = dimZ − dimX + 1 and therefore we
infer by Corollary 4.3 that S2(x) contains its irreducible component Sx which
is isomorphic to Pn−1.

Remark 5.0.1. If (X,E) is in the case γ.2 or if OP(E)(1) is very ample,
the induced morphism π|Sx

: Sx → π(Sx) is an isomorphism by 1) of Corollary
4.4.1 and Corollary 4.6. Moreover a smooth rational curve C̄ stated in section
4 is a line on such an (n− 1)-dimensional projective space and C = π(C̄) is a
line on the (n− 1)-dimensional projective space π(Pn−1).

From now on let us construct an algebraic family of Sx(∼= Pn−1) in X ,
which is a relative version in 2) of Corollary 3.6.2 to study the structure of
(X,E).

Let ā : Z × X → X ×X and b̄ : Z × X → Y ×X be canonical morphisms
as in (1.6) and moreover let a′ : X × X → X and b′ : Y × X → Y be the first
projections respectively.

(5.1) In view of Corollary 3.6.2 we can take an irreducible component J of
b̄(ā−1(S1(∆)))(⊂ Y × X ) satisfying the following conditions:
1) dim J = 3n+ r − 5.
2) For each point x in X dim Jx ≥ 2n− 4 where Jx := b′((Y × {x}) ∩ J).
3) There is an open set V ′ in X so that Jx is a (2n − 4 )-dimensional closed
subvariety in X for each point x in V ′.

Let JX = ā(b̄−1(J)) and for each point x in X let J(x) to be a closed
subscheme a′((X × {x}) ∩ JX ) of X .

Then we infer that
(5.2) there is an open set V in V ′ ⊂ X so that
1) an induced morphism (X×V )∩JX → V via the second projection X×X → X
is flat
2. (J(x), ξ|J(x)) ∼= (Pn−1,OPn−1(1)) for each point x in V by the condition 3)
of (5.1) and Corollary 4.3.

(5.3) In X let U be an irreducible component of the Hilbert scheme con-
taining J(x) for a general point x in V . Moreover let W ⊂ X ×U the universal
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space of U where j : W → X and t : W → U canonical projections. Then there
is a canonical morphism σ : V → U by the universality of Hilbert scheme.

For a point u in U let J [u] = j(t−1(u)). Note that
(5.3.1) (1) J [σ(x)] ∼= J(x)(⊂ X ) for each point x in V . The set of lines on such
J [σ(x)] is a (2n − 4)-dimensional Grassmann variety and can be canonically
taken as a closed subscheme in Y . Therefore

(2) Let Uσ be the closure of σ(V ). J [u] is an (n − 1)-dimensional closed
subscheme in X and the set of lines on such J [u] in Y is at least (2n − 4)-
dimensional closed subscheme.

Taking account of the fact that j∗ξ is t-ample, we have a

Proposition 5.4. (J [u], ξ|J[u]) ∼= (Pn−1,OPn−1(1)) for any point u of
Uσ.

Proof. First for a general point u in Uσ (J [u], ξ|J[u]) is known to be iso-
morphic to (Pn−1,OPn−1(1)) by (2) of 5.2. For each point u in Uσ J [u] has an
irreducible component J [u]1 so that dim J [u]1 = n − 1 and J [u]1 is swept out
by an (2n− 4)-dimensional closed subvariety of Y . Thus by Proposition 4.2 we
see that (J [u]1, ξ|J[u]1) ∼= (Pn−1,OPn−1(1)). Since the morphism t is flat, J [u]
is scheme-theoretically equal to J [u]1.

We summerize
Fact. 5.5. 1) X is swept out by (n − 1)-planes, namely j : W → X is

surjective.
2) Under the notations of (5.3) t|t−1(Uσ) : t−1(Uσ) → Uσ is Pn−1-bundle and
dimU ≥ dimUσ ≥ r.

Moreover we have

Proposition 5.6. Let us maintain the condition 5.0. Then j : W → X
is generically bijective.

Proof. It suffices to show that j : j−1(P ) → P is generically bijective
and finite. Thus if otherwise there is an (n − 1)-plane P = J [u] containing a
general point x in X so that t(j−1(P )) contains a curve D. Then S2(x) contains
j(t−1(t(j−1(P )))) which is of n-dimension, a contradiction to (5.0).

Let us begin with the case of γ.1. For each point u in Uσ recall that
π(J [u]) = Pn−1 by Remark 5.0.1. Moreover we have

Proposition 5.7. In case of γ.1 assume n > 2. Then we have
1) π−1(π(J [u])) is isomorphic to Pn−1 × Pr−1. Thus NJ[u]/π−1(π(J[u]))

∼=
O⊕r−1.

2) Nπ(J[u])/X
∼= O.

3) NJ[u]/X ∼= O⊕r. Thus j : W → X in γ.1 is an isomorphism.
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Proof. Let P = J [u]. Remarking from γ.1 that E|π(P ) is a uniform vector
bundle where E|l ∼= O(1)⊕r on each line on π(P ) from 3.10.2.2, we get 1) the
former part by [Sa1]. By the construction π−1(π(J [u])) ∼= Pn−1 × Pn−1 and
J [u] is Pn−1 × Q in Pn−1 × Pn−1 with some point Q in Pn−1. Hence we get
the latter part.

For 2) in view of the fact that X is swept out by an algebraic family
{π(J [u])}u∈U where π(J [u]) ∼= Pn−1, we see that the normal bundle Nπ(P )/X

is OPn−1(a) with a non-negative integer a. Then we have a = 0. In fact if a was
positive, then NS(X)×ZQ ∼= Q by Corollary 1.5 because such Pn−1’s intersect
each other, namely S2(x1)∩S2(x1) is not empty for two points x1, x2 in X. In
the same way as in the proof of Step 2 in Proposotion 5.6 a smooth projective
variety X is Pn by [Mo] and therefore −(KX .C) = n+1, a contradiction. Thus
we get a = 0.

The former of 3) is obtained from the following exact sequence:
0 → NP/π−1(π(P )) → NP/X → Nπ−1(π(P ))/X|P → 0.

Since H1(P,NP/X ) = 0, we infer that j is separable. Thus the latter of 3)
follows from Proposition 5.6.

Thus 2) of Proposition 5.7 implies that there is a morphism g : X → T
where T is a smooth curve and a general fiber is π(P ) ∼= Pn−1. Moreover
we see that every fiber is a finite union of π(P )’s which is connected. On the
other hand for any two points t1, t2 (gπ)−1(t1) is algebraically equivalent to
(gπ)−1(t1). Since ξ|π−1(π(P ))

∼= OP(OPn−1 (1)⊕r)(1), we infer that g is Pn−1-
bundle over T by taking the intersection number (ξ.ξ...ξ(n−times),(gπ)−1(t))
in X .

Summarizing the above argument, we get

Corollary 5.8. Let the condition as in (5.0). Assume that dim π̄(Y) =
2n−3(γ.1). Then there is a morphism g : X → T which is a Pn−1-bundle over
T .

Next we study the case of
(5.9) γ.2 ) dim π̄(Y) = 2n− 2.

(5.9.1) By Corollary 1.4 and Proposition 2.5 we have NS(X) ×Z Q ∼= Q.
Hereafter till the end of this section we assume that

(5.9.2) OP(E)(1) is very ample.
Note from Remak 5.0.1 that the induced morphism π|Sx

: Sx → π(Sx) is
an isomorphism. Thus since π(P )(∼= Pn−1) is an ample divisor in X we infer
that X is Pn and π(P ) is a hyperplane by [Mo1]. Note that π(C̄) is a line on
X(∼= Pn) and therefore −(KX .C) = n+ 1. Thus we see that (c(E).C) = r + 1
from (3.9) and by the ampleness of E that E is unform of the type that E|l ∼=
O(1)⊕r−1⊕O(2) for a line l on P .

Thus when r ≤ n− 1, then E ∼= OPn(1)⊕r−1⊕OPn(2) and when r = n, E
is either OPn(1)⊕n−1⊕OPn(2) or TPn by [Sa1] and [Ein]. But the former case
does not occur by Remark 4.10.

Hereafter we assume r ≥ n+ 1.
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For a point u in Uσ let P be (n− 1)-plane J [u] in X and let us fix it.
Now we have the following exact sequence:

0 → Ωπ ⊗ ξ → π∗E → ξ → 0
where Ωπ is the relative cotangent bundle of π. Note that an induced morphism
π : P → π(P ) is an isomorphism by Corollary 4.6 and that ξ|P = OP (1). Thus
the above exact sequence yields the following:
(5.10) 0 → Ωπ ⊗ ξ|P → E|π(P ) → O(1) → 0.
Let FP := Ωπ ⊗ ξ|P . Since E is a uniform vector bundle stated in (5.9), we
have
Fact (5.10.1) FP is a rank (r − 1) uniform vector bundle on π(P )(∼= Pn−1)
where for each line l on π(P ) FP |l = O(1)⊕r−2⊕O(2) and the type of a vector
bundle FJ(u) is independent of a choice of a point u in Uσ. On the other hand
the inclusion P ⊂ π−1(π(P )) ⊂ X yields the following exact sequence of normal
bundles:
(5.11.1) 0 → TP

i→ TX |P j→ NP/X → 0.
(5.11.2) 0 → NP/π−1(π(P )) → NP/X → Nπ−1(π(P ))/X |P → 0.
Here we see that Nπ−1(π(P ))/X |P = Nπ(P )/X = OPn−1(1) and NP/π−1(π(P )) =
Tπ|P . Here Tπ|P is dual to Ωπ. The last fact is obtained from the following

Sublemma. Let 0 → E2 → E1 → E3 → 0 be an exact sequence of vector
bundles on a smooth variety A with a linebundle E3. Let π : P(E1) → A be a
canonical projection and π. Then the normal bundle NP(E3)/P(E1) of P(E3) in
P(E1) is E2 ⊗ E3

It is left as an exercise.
(5.11.2) turns to be the following exact sequence:

(5.12) 0 → Tπ|P → NP/X → OP (1) → 0.

From now on we determine the structure of FP . Now we know that
Zariski tangent space TU,[P ] of the Hilbert scheme U at [P ] is isomorphic
to h0(P,NP/X ) ≥ dimU ≥ dimUσ ≥ r and by 2) of Fact 5.5. Therefore
h0(P, Tπ|P ) = h0(P, F̌P (1)) ≥ r − n.

Remarking from 5.10.1 that F̌P (1) = O⊕r−2⊕O(1). Thus we have by
Lemma 4.9
(5.13) 0 → FP,1 → FP → O(1)⊕r−n → 0.
where FP,1 is an uniform vector bundle on P where FP,1|l = O(1)⊕n−2⊕O(2).
Thus FP,1 is either TPn−1 or OPn−1(1)⊕n−2⊕OPn−1(2) by [Ein]. Moreover
from (5.13) and (5.10) we see that F |P,1 is either TPn−1⊕OPn−1(1)⊕r−n or
OPn−1(1)⊕r−2⊕OPn−1(2) and therefore thatE|π(P ) = TPn−1+OPn−1(1)⊕r−n+1

or OPn−1(1)⊕r−1⊕OPn−1(2).
Next to determine E we will show

Lemma 5.14. M is a rank r uniform vector bundle on Pn where for
a line l M |l = O⊕(r−1)⊕O(−1) with r > n ≥ 2. Then we have

1) If there is a (n− 1)-plane P on Pn so that M |P = ΩP (1)⊕O⊕r−n+1
P ,

then M is ΩPn(1)⊕OPn
⊕r−n.

2) If there is a (n− 1)-plane P on Pn so that M |P = OP (−1)⊕O⊕r−1
P ,

then M is OPn(−1)⊕OPn
⊕r−1.
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Proof. First we show 1). Let M(t) = M ⊗ OPn(t). We have an exact
sequence:

0 →M(t− 1) →M(t) →M(t)|P → 0.
The above yields a long exact sequence:

(5.14.1) 0 → H0(Pn,M(t− 1)) → H0(Pn,M(t)) → H0(P,M(t)|P )
→ H1(Pn,M(t− 1)) → H1(Pn,M(t)) → H1(P,M(t)|P ) →

Claim 1). When t ≤ −2, H1(Pn,M(t)) vanishes.
2) dimH1(Pn,M(−1)) = 0 or 1.
3) dimH0(Pn,M) = r − n+ 1 or r − n.
In fact H1(P,M(t)|P ) = 0 for t ≤ −2 by the assumption. dimH1(Pn,

M(t)) is a monotone-decreasing function with respect to t(≤ −2). Thanks to
Serre’s duality and Serre vanishing theorem, we get H1(Pn,M(t)) = Hn−1(Pn,
M̌(−t) ⊗KPn) = 0. Hence we complete the proof of 1).

For 2) we consider the exact sequence of t = −1. Since dimH1(Pn,M(−2))
= 0 and dimH1(P,M(−1)|P ) = 1, we get 2). Since M(−1)|l = O(−1)⊕(r−1)

⊕O(−2), we see dimH0(P,M(−1)) = 0. Thus 3) is trivial.
Hence M has a subbundle OPn

⊕r−n (or, OPn
⊕r−n+1) by Lemma 4.9 and

the quotient bundle M ′ where M ′ is a uniform vector bundle with M ′|l =
O(−1)O⊕(n−1) (or, O(−1)O⊕(n−2) resp.). By [Ein] M ′ is one of ΩPn(1), (or,
OPn(−1)⊕OPn

⊕n−2). By the assumption the only first case occurs. Thus we
can show 1) of this lemma. As for 2) we can show in the same manner.

Consequently combining Corollary 5.8, (5.9) and Lemma 5.14, we get

Proposition 5.15. Let (X,E) be as in the table of (3.10.2.2). As-
sume that E is spanned. Moreover for a general point x in a(Z) assume that
dimS2(x) = n− 1(≥ 2). Then we have

1) when dim π̄(Y) = 2n− 3, g : X → C has a Pn−1-bundle structure over
a smooth projective curve C and E|g−1(c)

∼= OPn−1(1)⊕r. (3.10.2.2. γ.1), or
2) when dim π̄(Y) = 2n− 2, NS(X) ×Z Q ∼= Q and P(E) is swept out by

(n−1)-dimensional projective spaces P with OP (E)(1)|P ∼= OPn−1(1). Moreover
suppose that OP (E)(1) is very ample. Then (X,E) is (Pn, TPn⊕OPn(1)⊕r−n).
(3.10.2.2. γ.2)

6. Theorem 4.1 (III)

In this section we determine (X,E) of the table (3.10.2.2). Let us maintain
the notations in Section 3. It is assumed that E is spanned and n > 4.

In case of γ.1 and γ.2 we have the following condition:
(6.0) For each point x in an open set X0 of a(Z)(= X ) so that dimS1(x) = n−1
and that dimS2(x) = n.

Hereafter fix X0. As a consequence it is shown that only the case γ.1
happens. (Proposition 6.15)

Remark that the arguments until Proposition 6.5 are made without using
the properties of table (3.10.2.2) except for the ones of dimS2(x) = n.
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(6.1) For a point x in X let a−1(x) = ∪i≥1Ai be the decomposition of a−1(x)
into the irreducible components. Note that dimAi = n− 2.

We study the situation of the cone a(b−1(b(Ai))) around the vertex x. We
maintain the notations in (3.3). Let C̄y = a(b−1(y)). We recall the following
facts from the statement before (4.2) and 2) of Proposition 4.4:
(6.2) Since the vector bundle E is spanned, for each point y in Y

1) b−1(y) is mapped biregularly to C̄y via the morphism a : Z → X .
2) C̄y is a smooth rational curve.
3) C̄y is mapped biregularly to a line φ(C̄y) via the morphism φ : Z → PN .
4) C̄y is mapped biregularly to π(C̄y) via the π : X → X.

In view of 1) of (6.2) for a morphism Z → X we define a natural morphism
Da : Z → P(ΩX ) as follows:

For a point (v, x) in ṼX × P1 (see Proposition 3.3) we have a natural
morphism D̃ : ṼX × P1 → ∪x∈XTX ,x where D̃(v, x) is defined as a tangent
vector dv∗,x( ∂

∂t ) in TX ,x and t is a local parameter of P1. AutP1 acts on
ṼX × P1 naturally and Φ is AutP1-invariant morphism. Thus an induced
morphism Da : Z → P(ΩX ) is defined.

Similarly for a morphism aφ : Z a→ X φ→ PN we define a morphism: Dφa

factors as Z Da→ D(Z)
Dφ→ P(ΩPN ). For a morphism πa : Z a→ X π→ X we

define a morphism: Dπa factors as Z Da→ D(Z) Dπ→ P(ΩX).

We come back to Ai stated in (6.1). First we have
Claim 6.3. An induced morphism Dφa : Ai → P(ΩPN ,φ(x))(∼= PN−1) is a

finite morphism. Consequently dimDa(Ai) = dimAi = n− 2.
Remark that Ai → b(Ai) is an isomorphism via q from 1) of (6.2). We

assume the contrary namely, there is a curve H in Ai so that Dφa(H) is a
point. From 3) of (6.2) and the property of a line it follows that a curve C̄q(z)

for each point z in H is mapped to a unique line in PN via the morphism φ.
Thus yields a contradiction to the finiteness of φ : X → PN .

Next we study the dimension of Dπa(Ai) in P(ΩX,x) to determine the
structure of X.

(6.3.1) Starting with each point x in X , we have an n-dimensional irre-
ducible component Sx of S2(x) and its open set R in Sx enjoying Remark
3.10.3. For every x′ in R take an (n-2)-dimensional irreducible component Bi

of a−1(x′). Hereafter without confusion we use the notation Ai in place of Bi.
Recall that x′ is a smooth point in Sx so that a(b−1(b(Ai))) is a cone with the
vertex x′ which contained in Sx.

Then Da(Ai) in P(ΩX ,x′)(∼= Pn+r−1) is already contained in P(ΩSx,x′)(∼=
Pn−1). Thus by Claim 6.3 we have a

Remark 6.4. Da : Ai → Da(Ai) is finite and Da(Ai) is its divisor in
P(ΩSx,x′).

Proposition 6.5. Let x, x′ be points as in (6.3.1). Assume that n > 4.
Then dimDπa(Ai) = dimAi = n− 2.
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Proof. Since dimDa(Ai) is a hypersurface in Pn−1(n−1 ≥ 4), we see that
PicDa(Ai) ∼= Z. Thus by Dπa(Ai) = Dπ(Da(Ai)) dim(Dπa(Ai)) is dimAi or
0. Now we assume that dimDπa(Ai) = 0. A canonical morphism π : S → X
with S = Sx yields a homomorphism dπ∗,x′(:= d) : TS,x′ → TX,π(x′). Let g :
TS,x′−{0} → P(ΩS,x′) be a canonical projection. Then g−1(Da(Ai))∪{0} is an
(n−1)-dimensional affine cone in TS,x′ . The assumption that dimDπa(Ai) = 0
says that g−1(Dπa(Ai)) ∪ {0} is tramsformed via the linear map d to a one-
dimensional subspace in TX,π(x′), namely the rank of d is 1. Thus we can take a
point z in Ai whose curve C̄b(z) induces a non-zero tangent vector v in TX,π(x′)
with dv = 0. On the other hand note from 4) of (6.2) that for each z in Ai each
smooth rational curve π(C̄π(z)) yields a non-zero tangent vector of TX,π(x′), a
contradiction.

Hereafter until the end of this section it is assumed that n > 4.
Next we make several preparations to show that πS : S → X is separable.
(6.6) Now we interpret the above situation in terms of normal bundle of a

smooth rational curve π(C̄y) of X.
We take a general point x in the open set X0 of X so that dimS2(x) = n.

Thus dimDπa(Ai) = dimAi = n− 2. Hereafter let C(y) = π(C̄y) for y of Y .
Remarking that each curve C(y) for a point y in b(Ai) yields a tangent

vector through the point x as stated above namely a global section of the normal
bundle NC(y)/X ⊗O(−1), we see by Proposiotion 6.5 that
(6.6.1) global sections of the normal bundle NC(y)/X ⊗O(−1) of C(y) generate
rank ≥ (n− 2) subsheaf of NC(y)/X ⊗O(−1).

Letting NC(y)/X ⊗ O(−1) = ⊕n
i=2O(ai) with a2 ≥ a3 ≥ ... ≥ an, we have

an−1 ≥ 0.

(6.7) Let us set Sx and Tx in (6.3.1) as S and T respectively. Let ZT :=
b−1(T ). Then we have canonical morphisms bT : ZT → T, aT : ZT → S
induced by a, b. Moreover let aT (b−1

T (bT (a−1
T (x′)))) be a cone with the vertex

x′ as Cone[x′](⊂ S).
From the two diagrams bT : ZT → T , aT : ZT → S and πaT : ZT → X we

first have
(6.7.0)NS(S)×ZQ ∼= Q by Corollary 1.5 and by dimS2(x) = n (6.0). Similarly
NS(S) ×Z Q ∼= Q by 2) of Corollary 3.4.

From now on we show that a natural morphism πS : S → X via π is
separable and consequently πS is etale and S is smooth.

First since Dπa(ZT ) is a divisor in P(ΩX), we divide into two cases:
(6.7.1) Dπa(ZT ) is a divisor of the tautological line bundle of ΩX namely for a
general point u in X Dπa(ZT )∩ c−1(u) is an (n-2)-dimensional linear subspace
in P(ΩX,u)(∼= Pn−1) where c : P(ΩX) → X is a canonical projection.
(6.7.2) Dπa(ZT ) is not a divisor of the tautological line bundle. It follows from
the remark in 6.6 that πS : S → X is separable.

We treat the case (6.7.1).
Claim. For each point u in X Dπa(ZT ) ∩ c−1(u) is an (n-2)-dimensional

hyperplane in P(ΩX,u).
In fact assume that there is a point u in X so that Dπa(ZT ) ∩ c−1(u) is equal
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to P(ΩX,u)(∼= Pn−1). Letting NC(z)/X ⊗O(−1) = ⊕n
i=2O(ai) with a2 ≥ a3 ≥

... ≥ an, we see that ai is non-negative for 2 ≤ i ≤ n by remark in (6.6). Thus
NC(z)/X

∼= ⊕n
i=2O(ai + 1) with a non-negative integer ai and (−KX .C(y)) =

n+ 1 + Σn
i=2ai ≥ n+ 1, a contradiction to (−KX .C(y)) = n.

The above claim implies that there is the following exact sequence:
0 → E1 → TX → L→ 0.

where E1 is a rank n-1 subbundle of TX and L a line bundle.
Here moreover we divide into two cases:
For a general point x in X

α) For a general point x1( �= x) in Cone(x) there is a point y in T so that
Cone(x) intersects C(y) at x1 transversally. Here Cone(x) := π(Cone[x]).

In this case a natural morphism πS : S → X via π is separable.
β) Each line C(y) (y ∈ T ) passing through a general point x1 �= x in Cone(x)
is tangent to the Cone(x) at x1.

We show that this case does not happen.
Since E1 yields a foliation on X, for a point x in U E1|Cone(x)reg

=
TCone(x)reg

and Cone(x) is smooth. Thus we see that the normal bundle NB(x)
of Cone(x) in X is L|Cone(x).

(6.7.3) Remark from (6.6.1) that
1) Since E1|C(y)

∼= O(2)⊕O(1)⊕n−2, (L.C(y)) = 0. Thus L is numerically
trivial by (6.7.0).

2) For some open set U in X there is an algebraic family {Cone(x)}x∈U in
X (by choosing Cone(x) induced by a suitable component of a−1

T (x) if neces-
sary). Then we see from the construction that the normal bundle of the cone
in X is nef and not numerically trivial.

Therefore 1) and 2) of Remark (6.7.3) contradict each other.

Consequently we get

Proposition 6.8. A natural morphism πS : S → X via π is separable.

Next we show etaleness of πS : S → X and the smoothness of X in the
same way as in (4.10).
The function
(6.9) g : X � x → #(π−1

S (x)) ∈ N
is lower semi-continuous in the Zariski topology. Next note that in this case
π(C̄y) = P1 (4 of (6.2)) and S = ∪y∈T C̄y. Moreover as shown in the proof of
Proposition 3.6 the restriction of the line bundle L = rξ − π∗ detE of X (=:
P (E)) on S is numerically equivalent to zero. Thus for each point y ∈ T
L|π−1(π(C̄y))∩S is numerically equivalent to zero. Here E|π(C̄y)

∼= OP1(1)⊕r and
L|π−1(π(C̄y)) = OP (OP1 (1)⊕r)(r). Thus π−1(π(C̄y)) ∩ S is a union of finite many
sections C̄y and (probably) at most finite many points. Thus the function g is
constant. By purity property we get

Proposition 6.10. A natural morphism πS : S → X via π is etale and
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S is smooth. Moreover every line bundle on S is numerically equivalent to bξS
with an integer b. Particularly −KS is numerically equivalent to nξS.

Proof. The first part is already shown. The second part is obtained by
PicS ×Z Q ∼= Q (6.7.0) and by (ξ.C̄y) = 1. The final part is trivial by the
property that (−KX .C(y)) = n and π(C̄y) = C(y).

Let φS : S → Pm be a morphism by the complete linear system by ξS with
m = h0(ξS) − 1. From now on we show
(6.11) φS : S → φS(S) is separable and φS(S) is a hyperquadric.

First φS(Cone[x]) is a cone with the vertex φ(x) in Pm. When φS(S) is
smooth at the point φ(x), the tangent space of φS(S) at the vertex contains
the cone φS(Cone[x]). Thus any hyperplane H in Pm containing the tangent
space contains the cone φS(Cone[x]). This implies that the cone Cone[x] in S
is contained in φ−1(H), the zero locus of a section of ξS . Thus by the second
fact of Proposition 6.10 we get

Step.1 For a general point x in S ξS = OS(Cone[x]) and Cone[x] is irreducible.
Moreover m is n+ 1 or n.

Moreover we have

Step.2 φS is generically injective.
In fact assume the contrary, for a general point u in φ(S) there are two points
v, w in S so that φ(v) = φ(w) = u and that the point w is on the cone Cone[v]
with the vertex v by the former part of Step 1. Since there is a smooth rational
curve C̄y pasing through two points v, w which is a generator of the cone and
since C̄y goes to a line via φ we have a contradiction to the assumption.

Recall the notations Da, Dφ in (6.1) and S, T, ZT in (6.7). First an induced
morphism ZT → S yields a canonical morphism DS : ZT → P (ΩS). Moreover
the composite morphism of ZT → S and φS : S → Pm yields a canonical
morphism e : ZT → P (ΩPm) where θ : P (ΩPm) → Pm is a canonical projection
in the same way as Dφa stated above. Let T̄ = e(ZT ). Then T̄ is a (2n-2)-
dimensional subvariety in P (ΩPm) since e is a finite morphism by the former
part of Claim 6.3. For a general point u in φ(S) T̄∩θ−1(u) is a (n-2)-dimensional
subvariety in P (ΩPm,u).

Hence we have a

Remark 6.11.1. 1) Suppose there is a point x in S so that T̄ ∩θ−1(φ(x))
is a (n-2)-dimensional linear subspace in P (ΩPm,φ(x)). Then φ(Cone[x]) is
(n− 1)-plane in φ(S) and m = n by Step 1 and the argument just before Step
1.

2) When there is a point u in φ(S) so that T̄ ∩ θ−1(u) is not a (n-2)-
dimensional linear subspace in P (ΩPm,u), φS : S → φ(S) is separable.

Thus we get
Step.3 The case m = n does not occur.
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Assume m = n. First we suppose φS is separable. By Step 2 φS is birational
and therefore an isomorphism S ∼= Pn, a contradiction to the assumption
(−KS .C̄) = n. Next we suppose φS is not separable. By 1) and 2) of Remark
(6.11.1) T̄ = e(ZT ) is an Pn−2-bundle which induecs a tautological line bundle
in P (ΩPn). Thus we have the following exact sequence:

0 → F → TPn → L→ 0
where F is a rank n− 1 bundle and L a line bundle. But there exists no such
exact sequence.

(6.12) Thus we get m = n + 1. Moreover by 1) of Remark 6.11.1 we see
that for each point x in S T̄ ∩ θ−1(φ(x)) is a hypersurface in P (ΩPm,φ(x)) of
degree > 1. Thus φS : S → Pn+1 is umramified and therefore it is a closed
embedding by virtue of Theorem due to Fulton and Hansen [FH].

By KS .C̄y = −n we have

Proposition 6.13. φ(S) is a smooth hyperquadric. Moreover S is a
smooth hyperquadric.

Since S is a smooth hyperquadric, we get χ(S,OS) = 1. Thus sublemma
4.10.1 yields

Corollary 6.14. πS is an isomorphism and X is a smooth hyper-
quadric.

Consequently the vector bundle E on smooth hyperquadric is uniform
vector bundle where the restriction of E ⊗O(−1) on any line on X is a trivial
vector bundle. Thus by Proposition 3.6.1 in [W] (whose proof is characteristic-
free) we have

Proposition 6.15. Let us maintain the notations X ,X0 and S1(x), S2(x)
used in Section 3. Assume that E is spanned and n > 4. Moreover for
each point x in some open set X0 of a(Z)(= X ) dimS1(x) = n − 1 and that
dimS2(x) = n. Then (X,E) is isomorphic to (Q,OQ(1)⊕r).

Hence we complete the proof of Theorem 4.1 by Thereoms 4.7, 4.10, Propo-
sitions 5.15 and 6.15.

Moreover we have

Theorem 6.16. Let E be an ample vector bundle of rank r = n − 1
on an n-dimensional smooth projective variety X. Assume that n > 4 and E
is spanned. Then KX + detE is nef unless (X,E) is one of the follwing

1) (Pn,OPn(1)⊕(n−1)).
2) φ : X → C has a Pn−1-bundle structure over a smooth projective curve

C and E|φ−1(c)
∼= OPn−1(1)⊕(n−1).

3) (Pn,OPn(1))⊕(n−2)⊕OPn(2)).
4) (Qn,OQn(1)⊕(n−1)).
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Proof. We do the same thing as in Theorem 4.7.2. Then by the assumption
there is an extremal rational curve C on X so that (−(KX .C), (c(E).C) =
(n+ 1, n− 1), (n, n− 1) or (n+ 1, n). Take the nomarization φ : C̄ → C of C.
Then φ∗E is O(1)⊕n−1 or O(1)⊕n−2O(2). Thus a direct summand O(1) yields
a rational curve C̃ on P(E) with (C̃.OP(E)(1)) = 1. Therefore we have two
cases: −(KP(E).C̄) = n+1, n. Note that C̃ is not in the fiber of the projection
P(E) → X. Thus by Theorem 4.1 we complete the proof.

As a byproduct we get

Theorem 6.17. Let L be an ample line bundle on an n-dimensional
smooth projective variety X defined over an algebraically closed field of any
characteristic. Assume that L is spanned. Then we have the following

1) KX + nL is nef unless (X,L) is (Pn,OPn(1)).
2) Assume that KX + nL is nef. If n > 4, KX + (n− 1)L is nef unless

(a) X is a hyperquadric and L = OX(1)).
(b) (X,L) is a scroll over a smooth curve.

Proof. We consider (1). Let E = L⊕n. Then since L is spanned, so is E.
Moreover KX + nL = KX + detE. When KX + nL is not nef, we see that
by Theorem 4.7.2 that (X,E) = (Pn,OPn(1)⊕n). Thus L is OPn(1) by Krull-
Schmit Theorem. Next considering case (2) in the same way as in (1), we infer
by Theorem 6.16 that (X,L) is one of (Pn,OPn(1)) and (a) (b) stated after
‘unless’ in the conclusion. But the first case is ruled out by the assumption.

The above result is a partial generalization of the one by Fujita [Fu1] to
positive characteristic under the assumption that E is spanned.

7. Applications

In this section we show

Thereom 7.1. Let X be an n-dimensional smooth projective variety
defined over an algebraically closed field of any characteristic and E an ample
vector bundle of rank n on X. Assume that E is spanned. Then the following
conditions are equivalent :

(a) cn(E) = 1.
(b) KX + c1(E) is not nef.
(c) (X,E) is isomorphic to (Pn,⊕nOPn(1)).

Remark 7.2. 1) To show (a) → (b) and (a) → (c) in Theorem 7.1 the
assumption that E is spanned is neccesary even in characteristic zero. In fact
as an counter example we can state an ample line bundle of degree 1 on an
elliptic curve.

2) Theorem 7.1 is a generalization of Theorem 3.4 in [W] in any charac-
teristic.
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We begin with the proof of Theorem 7.1.
If b) follows from a) in Theorem 7.1, we see b) → c) easily by Theorem 4.7.2.
Thus hereafter we show that b) is obtained from a). (See [LS] also.)

Since E is spanned, there is the following exact sequence:
0 → F̌ → O⊕h0(X,E)

X → E → 0.
where F̌ is dual to the vector bundle F .

Let π : P (F ) → X be the canonical projection. Since F is spanned, φ :
P (F ) → Pf−1 denotes a morphism induced by the complete linear system of the
tautological linebundle ξ of F with f = h0(X,F ). Since ξn+r−1 = cn(E) = 1
with r = rankF , φ is birational and φ(P (F )) is a projective space Pf−1. Thus
we have
(7.3) r + n = h0(X,F ).

Moreover take general (r-1) hyperplanes H1, ...Hr−1 in Pr+n−1 and let
Y = H1 ∩ ... ∩Hr−1. Consequently we infer that
(7.4) 1) The induced φY : Y → Pn via φ is birational and therefore Y is reduced
and irreducible.

2)As for the projection π Y is a rational section over X and therefore Y
is a rational variety.

3)The singular part Sing Y of Y is at least codimension 2 by Zariski Main
Theorem. Thus it is normal.

Moreover we have (7.5) ωY + ξ|Y = π∗(KX + detE).
By 3) of (7.4) we have a smooth rational curve C(⊂ Y ) off Sing Y so that

φ(C) is a lines in Pr+n−1 and π : C → π(C) is an isomorphism. From (7.5)
we get (ωY .C)+ (ξ|Y .C) = (π∗(KX +detE).C) and consequently π(C).(KX +
detE) = −n. Thus we are done.

Theorem 7.1 yields the following result which is a partial answer of con-
jecture by Ballico [B].

Theorem 7.6. Let X be an n-dimensional smooth projective variety
defined over an algebraically closed field of any characteristic and E1, E2, ...Es

ample vector bundles of rank r1, ...rs on X respectively with Σs
i=1ri = n. As-

sume that for each i Ei is spanned and cr1(E1).cr2(E2)., , , .crs
(Es) = 1. Then

X is Pn and Ei is isomorphic to ⊕riOPn(1).

Proof. We consider the vector bundle ⊕s
i=1Ei(=: E), which is easily shown

that the bundle E is spanned and it satisfies the condition (a) in Theorem 7.1.
Thus by virtue of Krull- Schmit’s Theorem we are done.
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