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Some estimates of the logarithmic Sobolev
constants on manifolds with boundary and

an application to the Ising models

By

Yuzuru Inahama

1. Introduction

In this article we will give some estimates of the logarithmic Sobolev con-
stant in terms of geometric quantities under the Neumann boudary condition
and will give an application to the logarithmic Sobolev inequality for the Ising
models.

Let M be a d-dimensional, smooth, compact and connected Riemannian
manifold with smooth boundary ∂M and let m be the Riemannian measure.
For a potential function U ∈ C∞(M), set dmU = e−Udm and LU by

LUf = �f − (∇U |∇f)

for f ∈ C∞(M) satisfying the Neumann boundary condition. In the first part
of this article we will consider the spectral gap and the logarithnic Sobolev in-
equality for LU (or equivalently, for

∫
M

(∇f,∇g)dmU ) and give some estimates
of the spectral gap constant and logarithmic Sobolev constant. Note that that
the logarithmic Sobolev inequality (hence the spectral gap, too) holds is proved
by using the strict positivity of the heat kernel (see Chapter VI of Deuschel and
Stroock [3]). In the latter part we will consider the Gibbs measures on MZν

determined by a finite range and shift-invariant potential and will apply those
results for finite dimensional manifolds to the Ising models.

In fact, our article is a generalization of Deuschel and Stroock [2] and based
on it. They argued those problems on smooth manifolds (without boundary)
by searching for constants which make the Bakry-Emery criterion [1] hold.
In our case a similar argument holds with a slight modification by adding a
certain term which includes the second fundamental form. When the second
fundamental form is non-negative our results in this article are the same as
those in [2]. So we will prepare some estimates of the second fundamental form
in Lemma 2.4 to have those estimates of the logarithmic Sobolev constant in
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a similar way to Deuschel and Stroock [2]. When the situation is not very
bad, we will obtain the estimates in terms of geometric quantities such as Ricci
tensor, HessU and the constants which we have in the estimates of the second
fundamental form.

Because logarithmic Sobolev inequalities demonstrate their real ability in
infinite dimensional situations, we would like to find such an application. As in
Deuschel and Stroock [2], we will consider finite range and shift-invariant po-
tential U and the Gibbs states with potential U. Because various objects which
are written in terms of the extreme elements of the Gibbs states with potential
U are easily obtained by finite dimensional approximation, we will show that
logarithmic Sobolev inequalities hold under some additional conditions.

The organization of this paper is as follows. In Section 2 we will prepare
some estimates from below of the second fundamental form and by using them
we will show spectral gap inequalities on finite dimensional manifolds with
boundary. In Section 3 we will show several versions of logarithmic Sobolev
inequalities. In Section 4 we will give two concrete examples for which we
can apply the results in Sections 2 and 3. In Section 5 we will construct the
stochastic Ising model whose spin space is a manifold with boundary and will
give a sufficient condition for the logarithmic Sobolev inequality.

2. Spectral gap

In this section we will consider the spectral gap inequality on a finite
dimensional manifold with boundary under the Neumann boundary condition.
Let N be the inner normal vector on ∂M and C∞

N (M) = {f ∈ C∞(M)|∇Nf =
0}. We define a bilinear Markovian form aU as

aU (f, g) =
∫

M

(∇f |∇g)dmU , f, g ∈ C∞
N (M),

and a second-order differential operator LU on C∞
N (M) as

LUf = �f − (∇U |∇f), f ∈ C∞
N (M).

Then it is well-known that the closure of aU is a Dirichlet form whose corre-
sponding generator is the closure of LU (we denote them again by aU and LU ,
respectively). We will denote the corresponding semigroup by PU

t .
We say that the spectral gap inequality (or Poincaré inequality) for aU (or

LU , PU
t ) holds if, for some C > 0,

‖f − 〈f〉mU‖2
L2(mU ) ≤

1
C

aU (f, f), f ∈ Dom(aU ).(2.1)

Remark 2.1. The best constant for which (2.1) holds is called the spec-
tral gap constant and is denoted by C(U). We adopt the definition of the spec-
tral gap constant in Deuschel-Stroock [2]. However, it is often defined as the
reciprocal number of our definition.
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By the general theory (2.1) is equivalent to either (2.2) or (2.3) below:

‖PU
t f − 〈f〉mU‖2

L2(mU ) ≤ e−Ct‖f − 〈f〉mU‖2
L2(mU ), t > 0, f ∈ L2(mU );

(2.2)

ker(LU ) = {constant}, Spec(−LU ) ⊂ {0} ∪ [C,∞).(2.3)

However, in order to show the spectral gap inequality, we will use the
following form;∫

M

|LUf |2dmU ≥ C

∫
M

‖∇f‖2dmU , f ∈ C∞
N (M).(2.4)

It is easy to see that (2.4) is equivalent to (2.1).
Before we show (2.4), we need some preparation. First we will prepare an

integration by parts formula. Though it is an easy formula, it will play a basic
role. Note that we will sometimes abuse the notation to write LUf , even if f
does not satisfy the Neumann boundary condition.

Lemma 2.2. Let dσ be the surface measure on ∂M and dσU = e−Udσ.
Then, for any smooth functions f and g, we have

−
∫

M

fLUgdmU =
∫

M

(∇f |∇g)dmU +
∫

∂M

f∇NgdσU .

In particular, if f, g ∈ C∞
N (M),

−
∫

M

fLUgdmU = aU (f, g).

Proof. By a straight-forward calculation we can easily see that the lemma
is reduced to the case U = 0, which is well-known.

Next we will introduce ΓU
2 (f, f). For f, g ∈ C∞

N (M), let us define

ΓU
2 (f, g) =

1
2
{LU (∇f |∇g) − (∇LUf |∇g) − (∇f |∇LUg)}.

Then by the Weitzenböck formula we have the following lemma.

Lemma 2.3. For any f ∈ C∞
N (M), ΓU

2 (f, f) is explicitly known as

ΓU
2 (f, f) = ‖Hessf‖2 + (Ric + HessU)(∇f,∇f).

Proof. This is well-known. So we omit the proof.

We will introduce a bilinear form on ∂M . For θ, η ∈ Γ(T ∗M) satisfying
(θ|N) = (η|N) = 0, let

A(θ, η) =
1
2
∇N (θ|η).
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It is known that A(·, ·) is tensorial on ∂M in the sense that

A(fθ, gη) = fgA(θ, η), f, g ∈ C∞
N (M).

A(·, ·) is called the second fundamental form.
Now we will show (2.4). By Lemmas 2.2 and 2.3 we have∫

M

|LUf |2dmU(2.5)

=
∫

M

{
ΓU

2 (f, f) − 1
2
LU‖∇f‖2

}
dmU

=
∫

M

{‖Hessf‖2 + (Ric + HessU)(∇f,∇f)}dmU

+
∫

∂M

A(∇f,∇f)dσU ,

for any f ∈ C∞
N (M).

Now we will give a simple estimate of
∫

∂M
A(∇f,∇f)dσU .

Lemma 2.4. For any positive constant K̄2, there exists a constant K̄1

depending on U such that∫
∂M

A(∇f,∇f)dσU ≥ −K̄2

∫
M

‖∇2f‖2dmU − K̄1

∫
M

‖∇f‖2dmU ,(2.6)

for any smooth f satisfying the Neumann boundary condition. Similarly, for
any positive constant K2, there exist a constant K1 depending on U such that

(2.7)
∫

∂M

A(∇f,∇f)dσU

≥ −K2

∫
M

{
‖∇2f‖2 − 1

d
|�f |2

}
dmU − K1

∫
M

‖∇f‖2dmU ,

for any smooth f satisfying the Neumann boundary condition.

Proof. It is sufficient to prove (2.7) for U = 0. First we write A(∇f,∇f)
in a local coordinate. Fix a point p ∈ ∂M . Then we may choose an open
neighbourhood of p coresponding to an open set in {x ∈ Rd; xd ≥ 0} in which
the Riemannian metric tensor g = (gij) satisfies gid = 0 if i �= d and gdd = 1.

Since ∇Nf = ∂d|xd=0f = 0 and commutativity of ∂d|xd=0 and ∂i(i �= d),
we have

A(∇f,∇f) =
1
2
∇N‖∇f‖2(2.8)

=
1
2
∂d|xd=0

d∑
i,j=1

gij∂if∂jf

=
1
2

d−1∑
i,j=1

(∂dg
ij)∂if∂jf,



�

�

�

�

�

�

�

�

Logarithmic Sobolev constants and an application to the Ising models 363

where (gij)d
i,j=1 is the inverse matrix of (gij)d

i,j=1.
Since M is compact, we may choose such finitely many connected open

sets Ω1, . . . , Ωn of ∂M and δ0 > 0 satisfying that σ(∂M) = σ(∪n
i=1Ω̄i) and

that σ(Ω̄i ∩ Ω̄j) = 0 if i �= j and that each Ω̄i is contained in a coordinate
neighborhood as above and so is Ω̄i × [0, δ0).

First we will express Hessf in the local coordinate which contains Ω̄1 as
follows;

Hessf =
∑

1≤i,j≤d




∑
k

gjk∂k∂if +
∑

k

∂ig
jk∂kf +

∑
k,s

Γj
kig

ks∂sf


 ∂

∂xj
⊗ dxi

(2.9)

=
∑

1≤i,j≤d

Zj
i

∂

∂xj
⊗ dxi, say.

Here Hessf is regarded as a smooth section of TM ⊗T ∗M and Γj
ki = (1/2)

∑
n

gjn(∂ignk +∂kgin −∂ngki) is the Christoffel symbol. Set j = d and i �= d. Then
we have

Zd
i = ∂d∂if +

1
2

∑
s

∂dg
is∂sf.(2.10)

Now we will show that

c

d−1∑
i=1

(Zd
i )2 ≤ ‖Hessf‖2 − 1

d
|�f |2(2.11)

for some positive constant c. Let 〈e1(x), · · · , ed−1(x)〉 be an orthonormal base
of TxM which is obtained from {∂/∂xj}d−1

1 by the Schmidt orthogonalization.
Let Ṽ (x) be a square matrix of size (d − 1) which represents the Schmidt
orthogonalization above i.e.,〈

∂

∂x1
, . . . ,

∂

∂xd−1

〉
Ṽ (x) = 〈e1(x), . . . , ed−1(x)〉.

We may assume that Ṽ (x) is continuous in x ∈ Ω̄1× [0, δ0] and, moreover, there
exist a constant c > 0 such that

c‖w‖2
Rd−1 ≤ ‖Ṽ −1(x)w‖2

Rd−1(2.12)

for every w ∈ Rd−1 and x. If we use the new base 〈e1(x), . . . , ed−1(x), ∂/(∂xd)〉
then Hessf , which is also regarded as a linear operator of TxM , is experessed
as V −1(x)Z(x)V (x), where Z = (Zj

i )d
i,j=1 and

V =




0

Ṽ
...
0

0 . . . 0 1


 .
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Set Z̃ = (Zj
i )d−1

i,j=1, w = (Zd
1 , . . . , Zd

d−1)
T ∈ Rd−1 and v = (Z1

d , . . . , Zd−1
d )T ∈

Rd−1. Then we have

V −1ZV =


 Ṽ −1Z̃Ṽ Ṽ −1w

vT Ṽ 1


 .(2.13)

Then by (2.12) and (2.13) and the fact that �f = Trace(Hessf), we have

c

d−1∑
i=1

(Zd
i )2 = c‖w‖2

Rd−1

≤ ‖Ṽ −1(x)w‖2
Rd−1

≤
d∑

i,j=1

{(V −1ZV )j
i}2 −

d∑
i=1

{(V −1ZV )i
i}2

≤ ‖Hessf‖2 − 1
d
|�f |2,

where (V −1ZV )j
i is the entities of V −1ZV . This shows (2.11).

On the other hand there exists a constant δ ∈ [0, δ0] such that

d−1∑
i,j=1

(∂dg
ij)(x1, . . . , xd−1, δ)(∂if∂jf)(x1, . . . , xd−1, δ)

=
1
δ0

∫ δ0

0

d−1∑
i,j=1

{(∂dg
ij)(∂if∂jf)}dxd.

Then we have

∣∣∣∣∣∣
d−1∑

i,j=1

(∂dg
ij)(x1, . . . , xd−1, 0)(∂if∂jf)(x1, . . . , xd−1, 0)

∣∣∣∣∣∣
(2.14)

=

∣∣∣∣∣∣
1
δ0

∫ δ0

0

d−1∑
i,j=1

{(∂dg
ij)(∂if∂jf)}dxd −

∫ δ

0

d−1∑
i,j=1

∂d{(∂dg
ij)(∂if∂jf)}dxd

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1
δ0

∫ δ0

0

d−1∑
i,j=1

{(∂dg
ij)(∂if∂jf)}dxd

−
∫ δ

0

d−1∑
i,j=1

{(∂2
dgij)(∂if∂jf) + 2(∂dg

ij∂jf)(∂d∂if)}dxd

∣∣∣∣∣∣
≤ c1

∫ δ0

0

‖∇f‖2dxd + c2

∫ δ0

0

d−1∑
i=1

{Zd
i }2dxd,
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where c1, c2 are positive constants independent of f . Note that we can take
c2 > 0 arbitrarily small (in that case c1 may be greater) if we use the fact that
2xy ≤ εx2 + ε−1y2 for x, y ∈ R and ε > 0.

Hence we have from (2.11) and (2.14) that there are positive constants c3

and c4 such that∫
Ω̄1

|A(∇f,∇f)|dσ

=
1
2

∫
Ω̄1

∣∣∣ d−1∑
i,j=1

(∂dg
ij)(x1, . . . , xd−1, 0)(∂if∂jf)(x1, . . . , xd−1, 0)

∣∣∣
×

√
det{(gij)d−1

i,j=1}(x1, . . . , xd−1, 0)dx1 · · · dxd−1

≤ c3

∫ δ0

0

∫
Ω̄1

‖∇f‖2
√

det{(gij)d
i,j=1}(x1, . . . , xd)dx1 · · · dxd

+ c4

∫ δ0

0

∫
Ω̄1

{
|Hessf |2 − 1

d
|�f |2

}√
det{(gij)d

i,j=1}(x1, . . . , xd)dx1 · · · dxd

≤ c3

∫
M

‖∇f‖2dm + c4

∫
M

{
|Hessf |2 − 1

d
|�f |2

}
dm.

Note that we can take c4 > 0 arbitrarily small (in tha case c3 may be greater).
Similarly we obtain the similar estimates for Ω̄2, . . . , Ω̄n. Summing them up,
we complete the proof.

For ε > 0 we set

K̄(U)(ε) = inf{K̄1 ∈ R|(2.6) holds for K̄2 = ε and K̄1}(2.15)

and

K(U)(ε) = inf{K1 ∈ R|(2.7) holds for K2 = ε and K1}.(2.16)

Lemma 2.5. K̄(U)(ε) and K(U)(ε) are decresing and continuous func-
tion of ε.

Proof. We prove the lemma only for K(U). That K(U) is decreasing is
easy. Noting that

K(U)(τε + (1 − τ )ε′) ≤ τK(U)(ε) + (1 − τ )K(U)(ε′)

for ε, ε′ > 0 and τ ∈ [0, 1], we see that K(U) is convex. Hence K(U) is
continuous.

We will show some versions of the spectral gap inequality by estimating
the right hand side of (2.5) in terms of K(U), K̄(U) and

ρ(U) = sup{ρ ∈ R|(Ric + HessU)(X, X) ≥ ρ‖X‖2, X ∈ Γ(TM)}.



�

�

�

�

�

�

�

�

366 Yuzuru Inahama

If the constants K̄1 and K̄2 in (2.6) of Lemma 2.4 can be taken so small
as K̄2 ≤ 1 and ρ(U) > K̄1, or equivalently,

ρ(U) > K̄(U)(1)(2.17)

then we have∫
M

|LUf |2dmU ≥ (1 − K̄2)
∫

M

‖∇2f‖2dmU + (ρ(U) − K̄1)
∫

M

‖∇f‖2dmU

≥ (ρ(U) − K̄1)
∫

M

‖∇f‖2dmU ,

which implies

C(U) ≥ ρ(U) − K̄(U)(1).

Next we consider the case U = 0. If the constants K1 and K2 in (2.7) of
Lemma 2.4 can be taken so small as K2 ≤ 1 and ρ(0) > K1, or equivalently,

ρ(0) > K(0)(1)(2.18)

then we have∫
M

|�f |2dm

≥ (1 − K2)
∫

M

‖∇2f‖2dm + K2

∫
M

1
d
|�f |2dm + (ρ(0) − K1)

∫
M

‖∇f‖2dm

≥ 1
d

∫
M

|�f |2dm + (ρ(0) − K1)
∫

M

‖∇f‖2dm.

which implies

C(0) ≥ d

d − 1
(ρ(0) − K(0)(1)).(2.19)

At the end of this section we will estimate C(U) in terms of C(0) and
K(U) under some assumptions.

Proposition 2.6. Assume that the constants K1 and K2 in (2.7) of
Lemma 2.4 could be taken so small as

1 ≥ K2 and
C(0)e−δ(U)

d
+ ρ(U) − K1 > 0,

or equivalently

C(0)e−δ(U)

d
+ ρ(U) − K(U)(1) > 0,(2.20)

where δ(U) = maxx∈M U(x) − minx∈M U(x). Then the spectral gap inequality
for EU holds and

C(U) ≥ C(0)e−δ(U)

d
+ ρ(U) − K(U)(1).
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Proof. For K2 ≤ 1 we have∫
M

|LUf |2dmU

≥
∫

M

‖∇2f‖2dmU + ρ(U)
∫

M

‖∇f‖2dmU

− K2

∫
M

{
‖∇2f‖2 − 1

d
|�f |2

}
dmU − K1

∫
M

‖∇f‖2dmU

≥ (1 − K2)
∫

M

‖∇2f‖2dmU +
e−max UK2

d

∫
M

|�f |2dm

+ (ρ(U) − K1)
∫

M

‖∇f‖2dmU

≥
(

C(0)e−δ(U)K2

d
+ ρ(U) − K1

) ∫
M

‖∇f‖2dmU .

Here we used the fact that d‖∇2f‖2 ≥ |�f |2 and the spectral gap inequality
for U = 0 for the last inequality above. Setting K2 = 1 and K1 = K(U)(1) we
complete the proof.

3. Logarithmic Sobolev inequality

In this section we will show the logarithmic Sobolev inequality with respect
to aU and represent the logarithmic Sobolev constant in terms of K(U), C(0)
and ρ(U).

Let LU , aU and PU
t be as in the previous sections. We will say the loga-

rithmic Sobolev inequality for aU (or LU , PU
t ) holds if∫

M

f2 log
f2

‖f‖2
L2(mU )

dmU ≤ 2
α

aU (f, f), f ∈ Dom(aU ).(3.1)

Remark 3.1. The best constant for which (3.1) holds is called the log-
arithmic Sobolev constant and is denoted by α(U). We adopt the definition of
the logarithmic Sobolev constant in Deuschel-Stroock [2]. However, it is often
defined as the reciprocal number of our definition.

It is well-known that the logarithmic Sobolev inequality (3.1) is equivalent
to the hypercontractivity;

‖PU
t f‖Lq(mU ) ≤ ‖f‖Lp(mU ), f ∈ Lp(mU ),(3.2)

where q = 1 + (p − 1) exp(2t/α) and p ∈ (1,∞).
We will show the logarithmic Sobolev inequality of the following form.

There is a positive constant α for which∫
M

f log
f

〈f〉mU

dmU ≤ 2
α

∫
M

(∇f1/2,∇f1/2)dmU ,(3.3)
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holds for any strictly positive f ∈ C∞
N (M). It is easy to see that (3.3) is

equivalent to (3.1).
Take an arbitrary positive function f ∈ C∞

N (M). Without loss of gen-
erality we may assume 〈f〉mU = 1. Set ft = PU

t f and Ht = 〈ft log ft〉mU .
Differentiating the both sides by t we have

H ′
t = 〈LUft log ft + LUft〉mU

= −〈(∇ft|∇ log ft)〉mU

= −
〈‖∇ft‖2

ft

〉
mU

= −4〈‖∇f
1/2
t ‖2〉mU

= −〈ft‖∇ log ft‖2〉mU .

Here we used Lemma 2.2 and that ∇Nft = 0.
By this equation we see that the logarithmic Sobolev inequality (3.3) is

equivalent to

H(0) ≤ − 1
2α

H ′(0).(3.4)

Since H(t) → 0 as t → ∞, in order to show (3.4) it is sufficient to prove

−H ′′(t) ≤ 2αH ′(t).(3.5)

Before we caluculate H ′′(t), we need to compute LU (log ft);

LU (log ft) =
LUft

ft
− ‖∇ft‖2

f2
t

=
LUft

ft
− ‖∇ log ft‖2.(3.6)

By (3.6) and integration by parts formula, we compute H ′′(t) as follows:

−H ′′(t)(3.7)

=
d

dt
〈(∇ log ft|∇ft)〉mU

=
〈(

∇LUft

ft
|∇ft

)〉
mU

+ 〈(∇ log ft|∇LUft)〉mU

= 〈(∇{LU (log ft) + ‖∇ log ft‖2}|∇ft)〉mU − 〈LU (log ft)LUft〉mU

= 2〈ft(∇LU (log ft)|∇ log ft)〉mU + 〈(∇ft|∇‖∇ log ft‖2)〉mU

= 2〈ft(∇LU (log ft)|∇ log ft)〉mU

−〈ftL
U‖ log ft‖2〉mU −

∫
∂M

ft∇N‖∇ log ft‖2dσU

= −2〈ftΓU
2 (log ft, log ft)〉mU − 2

∫
∂M

ftA(∇ log ft,∇ log ft)dσU .

By (3.5) and (3.7), we see that the following inequality (3.8) is sufficient
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in order to prove the logarithmic Sobolev inequality.

α(U)
〈‖∇f‖2

f

〉
mU

(3.8)

≤ 〈fΓU
2 (log f, log f)〉mU +

∫
∂M

fA(∇ log f,∇ log f)dσU

= 〈f{‖Hess(log f)‖2 + (Ric + HessU)(∇ log f,∇ log f)}〉mU

+
1
2

∫
∂M

f∇N‖∇ log f‖2dσU .

First we estimate the last term of the right hand side of (3.8). By (2.6) in
Lemma 2.4, we obtain∫

∂M

fA(∇ log f,∇ log f)dσU(3.9)

= 4
∫

∂M

A(∇f1/2,∇f1/2)dσU

≥ −4K̄2

∫
M

‖∇2f1/2‖2dmU − 4K̄1

∫
M

‖∇f1/2‖2dmU ,

= −4K̄2

∫
M

‖∇2f1/2‖2dmU − K̄1

∫
M

‖∇f‖2

f
dmU ,

or by (2.7) we obtain

(3.10)
∫

∂M

fA(∇ log f,∇ log f)dσU

≥ −4K2

∫
M

{
‖∇2f1/2‖2 − 1

d
|�f1/2|2

}
dmU − K1

∫
M

‖∇f‖2

f
dmU .

Lemma 3.2. Let f > 0 be a positive smooth function on M satisfying
∇Nf = 0. Then we have

〈f‖Hess(log f)‖2〉m
≥ 4

d + 2
〈2‖Hessf1/2‖2 + (�f1/2)2〉m

=
4

d + 2
〈3(�f1/2)2 − Ric(∇f1/2,∇f1/2)〉m

− 8
d + 2

∫
∂M

A(∇f1/2,∇f1/2)dσ.

Proof. The equation above is easily seen by the modified Weitzenböck
formula. We will give the same proof for the inequality as that in [2] for
readers’ convienience. By setting f1/2 = h and the fact that

Hess(log h) =
Hessh

h
− ∇h ⊗∇h

h2
,
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we have that

f‖Hess(log f)‖2 = 4h2‖Hess(log h)‖2

= 4
{
‖Hessh‖2 − 2Hessh(∇h,∇h)

h
+

‖∇h‖4

h2

}
.

By integration by parts formula and the fact that 2Hessh(∇h,∇h) =
(∇h,∇‖∇h‖2), we have that

〈f‖Hess(log f)‖2〉m(3.11)

= 4
{
〈‖Hessh‖2〉m −

〈
(∇h,∇‖∇h‖2)

h

〉
m

+
〈‖∇h‖4

h2

〉
m

}

= 4
{
〈‖Hessh‖2〉m + 〈� log h‖∇h‖2〉m +

〈‖∇h‖4

h2

〉
m

}

= 4
{
〈‖Hessh‖2〉m +

〈�h‖∇h‖2

h

〉
m

}
.

Here we used (3.6) to the last equality.
From (3.6) it is easy to see that

〈f(� log f)2〉m = 4〈h2(� log h)2〉m
= 4

{
〈(�h)2〉m − 2

〈�h‖∇h‖2

h

〉
m

+
〈‖∇h‖4

h2

〉
m

}
.

Since (� log f)2 ≤ d‖Hess(log f)‖2, we have

4
〈�h‖∇h‖2

h

〉
m

= 2〈(�h)2〉m + 2
〈‖∇h‖4

h2

〉
m

− 1
2
〈f(� log f)2〉m

≥ 2〈(�h)2〉m − d

2
〈f‖Hess(log f)‖2〉m.

Combining the above inequality with (3.11), we obtain

〈f‖Hess(log f)‖2〉m − 4〈‖Hessh‖2〉m
≥ 2〈(�h)2〉m − d

2
〈f‖Hess(log f)‖2〉m,

which completes the proof.

Now we will show several versions of the logarithmic Sobolev inequality by
Lemma 3.2 above and inequalities (3.9) and (3.10) and have estimates of α(U)
in terms of Ki’s, K(U), K̄(U), ρ(U) and C(0) by estimating the right hand side
of (3.8). We first deal with the terms involving the second order derivatives.
Assume there exist K̄1 and K̄2 such that

K̄2 ≤ 2e−δ(U)

d + 2
and

C(0)(e−δ(U) − K̄2)
d

+ ρ(U) − K̄1 > 0.(3.12)
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Then we have

〈f‖Hess(log f)‖2〉mU +
∫

∂M

fA(∇ log f,∇ log f)dσU

(3.13)

≥ e−max U 〈f‖Hess(log f)‖2〉m − 4K̄2〈‖Hessh‖2〉mU − K̄1

〈‖∇f‖2

f

〉
mU

≥ 4e−max U

d + 2
〈2‖Hessh‖2 + (�h)2〉m

− 4e−min U K̄2〈‖Hessh‖2〉m − K̄1

〈‖∇f‖2

f

〉
mU

≥
{

1
d

(
8e−max U

d + 2
− 4e−min UK̄2

)
+

4e−max U

d + 2

}
〈(�h)2〉m

− K̄1

〈‖∇f‖2

f

〉
mU

≥ 4
d
(e−max U − K̄2e

−min U )〈(�h)2〉m − K̄1

〈‖∇f‖2

f

〉
mU

.

Here we used the fact that (�h)2 ≤ d‖Hessh‖2 and condition (3.12).
By the spectral gap inequality for U = 0, we obtain 〈(�h)2〉m ≥

C(0)〈‖∇h‖2〉m. Hence,

〈f{‖Hess(log f)‖2 + (Ric + HessU)(∇ log f,∇ log f)}〉mU

(3.14)

+
∫

∂M

fA(∇ log f,∇ log f)dσU

≥ 4C(0)
d

(e−max U − K̄2e
−min U )〈‖∇h‖2〉m + (ρ(U) − K̄1)

〈‖∇f‖2

f

〉
mU

=
C(0)

d
(e−max U − K̄2e

−min U )
〈‖∇f‖2

f

〉
m

+ (ρ(U) − K̄1)
〈‖∇f‖2

f

〉
mU

≥
{

C(0)(e−δ(U) − K̄2)
d

+ ρ(U) − K̄1

} 〈‖∇f‖2

f

〉
mU

.

By (3.8) we see that the logarithmic Sobolev inequality holds under assumption
(3.12) with the logarithmic Sobolev constant α(U) satisfying that

α(U) ≥ C(0)(e−δ(U) − K̄2)
d

+ ρ(U) − K̄1.(3.15)

In a similar way as above, we will obtain another estimate of the right
hand side of (3.8) under assumption that there exist K1 and K2 such that

K2 ≤ 2e−δ(U)

d + 2
and

C(0)e−δ(U)

d
+ ρ(U) − K1 > 0,
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or equivalently,

C(0)e−δ(U)

d
+ ρ(U) − K(U)

(
2e−δ(U)

d + 2

)
> 0.(3.16)

Then we have by (3.10) that

〈f‖Hess(log f)‖2〉mU +
∫

∂M

fA(∇ log f,∇ log f)dσU(3.17)

≥ 4e−max U

d + 2
〈2‖Hessh‖2 + (�h)2〉m

− 4e−min UK2

〈{
‖Hessh‖2 − 1

d
(�h)2

}〉
m

− K1

〈‖∇f‖2

f

〉
mU

≥
{(

8e−max U

d + 2
− 4e−min UK2

)}
〈‖Hessh‖2〉m

+
{

4e−max U

d + 2
+

4e−min UK2

d

}
〈(�h)2〉m − K1

〈‖∇f‖2

f

〉
mU

≥ 4e−max U

d
〈(�h)2〉m − K1

〈‖∇f‖2

f

〉
mU

≥
{

C(0)e−δ(U)

d
− K1

}〈‖∇f‖2

f

〉
mU

.

Thus we have proved the following: Then the logarithmic Sobolev inequal-
ity (3.1) holds with the logarithmic Sobolev constant α(U) satisfying that

α(U) ≥ C(0)e−δ(U)

d
+ ρ(U) − K(U)

(
2e−δ(U)

d + 2

)
.(3.18)

By the second estimate of 〈f‖Hess(log f)‖2〉mU in Lemma 3.2, we will show
another version of the logarithmic Sobolev inequality under some additional
assumption on A(·, ·). For example, if we assume the non-negativity of A, i.e.,
A(∇f,∇f) ≥ 0 for any f ∈ C∞

N (M), then

α(U) ≥ 3C(0)e−δ(U) + Nρ(N+2
N U) + 2(1 − e−δ(U))(ρ(0) ∧ 0)

d + 2
.

This is the same result as in [2] and can be proved in a similar way as in [2].
So we omit the proof.

Here we will give a version of the logarithmic Sobolev inequality when
the second fundamental form is non-positive, i.e., A(∇f,∇f) ≤ 0 for any f ∈
C∞

N (M). Set

θ =
2 − (d + 2)K2e

δ(U)

2(1 + K2)
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and

Θ1 = C(0)e−δ(U)

(
1 + 2θ

d + 2
+

K2

d

(
1 − 2θe−δ(U)

d + 2

))
− K1

(
1 − 2θe−δ(U)

d + 2

)
,

(3.19)

Θ2 = 1 − 2θ

d + 2
,

Θ3 =
2θ(1 − e−δ(U))

d + 2
.

We will assume the following:

K2 ≤ 2e−δ(U)

d + 2
and Θ1 + Θ2ρ

(
U

Θ2

)
+ Θ3ρ(0) ∧ 0 > 0.(3.20)

Then by this assumption we see that θ ∈ [0, 1].
Applying Lemma 3.2 we have

〈f‖Hess(log f)‖2〉mU +
∫

∂M

fA(∇ log f,∇ log f)dσU

(3.21)

= θ〈f‖Hess(log f)‖2〉mU + (1 − θ)〈f‖Hess(log f)‖2〉mU

+
∫

∂M

fA(∇ log f,∇ log f)dσU

≥ 4θe−max U

d + 2
〈3(�h)2 − 2Ric(∇h,∇h)〉m

− 8θe−max U

d + 2

∫
∂M

A(∇f1/2,∇f1/2)dσ

+
4(1 − θ)e−max U

d + 2
〈2‖Hessh‖2 + (�h)2〉m +

∫
∂M

fA(∇ log f,∇ log f)dσU

≥ 4(1 + 2θ)e−max U

d + 2
〈(�h)2〉m − 8θe−max U

d + 2
〈Ric(∇h,∇h)〉m

+
8(1 − θ)e−max U

d + 2
〈‖Hessh‖2〉m

+
(

1 − 2θe−δ(U)

d + 2

)∫
∂M

fA(∇ log f,∇ log f)dσU .

Here we have used the non-positivity of the second fundamental form for the
last inequality. Applying (3.10) and the definition of θ (θ is determined so that
the coefficient of the term ‖Hessh‖2 should vanish in the following), the right
hand side of (3.21) is larger than or equal to

(3.22)
{

4(1 + 2θ)e−max U

d + 2
+

4K2e
−max U

d

(
1 − 2θe−δ(U)

d + 2

)}
〈(�h)2〉m

− 8θe−max U

d + 2
〈Ric(∇h,∇h)〉m − K1

(
1 − 2θe−δ(U)

d + 2

) 〈‖∇f‖2

f

〉
mU

.
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By the spectral gap inequality for U = 0 and the fact that

(3.23) − 〈e−max URic(∇h,∇h)〉m
≥ −〈e−URic(∇h,∇h)〉m + (1 − e−δ(U))〈e−URic(∇h,∇h) ∧ 0〉m,

we see that (3.22) is larger than or equal to

(3.24) Θ1

〈‖∇f‖2

f

〉
mU

− 8θ

d + 2
{〈Ric(∇h,∇h)〉mU − (1 − e−δ(U))〈Ric(∇h,∇h) ∧ 0〉mU }.

Combining (3.21), (3.22) and (3.24), we finally obtain an estimate of the
right hand side of (3.8) as follows;

〈f{‖Hess(log f)‖2 + (Ric + HessU)(∇ log f,∇ log f)}〉mU

(3.25)

+
∫

∂M

fA(∇ log f,∇ log f)dσU

≥ Θ1

〈‖∇f‖2

f

〉
mU

+
〈

1
f

{(
1 − 2θ

d + 2

)
Ric + HessU

}
(∇f,∇f)

〉
mU

+
2θ(1 − e−δ(U))

d + 2

〈
1
f

Ric(∇f,∇f) ∧ 0
〉

mU

≥
{

Θ1 + Θ2ρ

(
U

Θ2

)
+ Θ3ρ(0) ∧ 0

}〈‖∇f‖2

f

〉
mU

,

where the constants Θ1, Θ2 and Θ3 are given in (3.19). Here we have another
version of the logarithmic Sobolev inequality with the logarithmic Sobolev con-
stant α(U) satisfying that

α(U) ≥ Θ1 + Θ2ρ

(
U

Θ2

)
+ Θ3ρ(0) ∧ 0.(3.26)

Summing up the results in this section, we have proved the following propo-
sition.

Proposition 3.3. Assume (3.12), then we have

α(U) ≥ C(0)(e−δ(U) − K̄2)
d

+ ρ(U) − K̄1.

Assume (3.16), then we have

α(U) ≥ C(0)e−δ(U)

d
+ ρ(U) − K(U)

(
2e−δ(U)

d + 2

)
.
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Assume (3.20) and the non-positivity of the second fundamental form, then we
have

α(U) ≥ Θ1 + Θ2ρ

(
U

Θ2

)
+ Θ3ρ(0) ∧ 0.

4. Examples

Example 4.1. Let M be the closed interval [0, 1] in R and U = 0. We
calculate the logarithmic Sobolev constant for this case. In this case we see
by direct computation that A(∇f,∇f) = 0 for any smooth function which
satisfies the Neumann boundary condition. Applying (3.18) with d = 1 and
ρ(U) = 0, we obtain α(0) ≥ C(0). Since α(0) ≤ C(0) always holds, we obtain
α(0) = C(0).

The spectral gap constant C(0) is computed by solving the following eigen-
value problem; { −f ′′(x) = λf(x)

f ′(0) = f ′(1) = 0.

We see that the smallest non-zero eigenvalue is λ = π2, which is the spectral
gap C(0). Thus we have α(0) = C(0) = π2.

Example 4.2. Let S2 = {(x, y, z) ∈ R3; x2 + y2 + z2 = 1} be the 2-
dimensional sphere in R3. We introduce the polar coordinate on S2 as follows.
Any point (x, y, z) ∈ S2 is written as (x, y, z) = (sin φ cos θ, sin φ sin θ, cosφ),
for some θ ∈ [0, 2π] and φ ∈ [0, π].

Let M = {(x, y, z) ∈ S2; z ≥ cos φ0} and U = 0, where φ0 ∈ (π/2, π) is a
constant sufficiently close to π/2 (When φ0 ∈ (0, π/2] the second fundamental
form is non-negative and the problem is easy. When φ0 is close to π our method,
as we will see later, cannot be applied.).

Here we will give several facts without proofs. First Ric = Id at every point
in S2, so ρ(0) = 1. Next the Riemannian measure is written as dm = sin φdφdθ
and the surface measure as dσ = sin φdθ.

We express several terms in the polar coordinate;

‖∇f‖2 = (∂φf)2 +
(

1
sin φ

∂θf

)2

‖∇2f‖2 = (∂2
φf)2 + 2

∣∣∣∣∂φ

(
∂θf

sin φ

)∣∣∣∣
2

+
(

1
sin2 φ

∂2
θf +

cos φ

sin φ
∂φf

)2

.

We calculate A(∇f,∇f) and find it negative as follows;

A(∇f,∇f) =
1
2
∇N‖∇f‖2

= −1
2
∂φ|φ=φ0

{(
∂θf

sin φ

)2

+ (∂φf)2
}

=
cos φ0

sin φ0

(
∂θf

sin φ0

)2

≤ 0.
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By the mean value theorem there is a constant ξ ∈ (φ1, φ0) such that

∂θf(θ, ξ)
sin ξ

=
1

2| cos φ0|
∫ φ0

φ1

(
∂θf

sin φ

)
sin φdφ,

where φ1 = π − φ0.
Then we have

∂θf(θ, φ0)
sin φ0

=
∂θf(θ, ξ)

sin ξ
+

∫ φ0

ξ

∂φ

(
∂θf

sin φ

)
dφ

=
1

2| cos φ0|
∫ φ0

φ1

(
∂θf

sin φ

)
sin φdφ +

∫ φ0

ξ

∂φ

(
∂θf

sin φ

)
dφ.

By the Schwarz inequality we have
∣∣∣∣∂θf(θ, φ0)

sin φ0

∣∣∣∣
2

≤ 1 + c

2| cosφ0|
∫ φ0

φ1

(
∂θf

sin φ

)2

sin φdφ

+
(

1 +
1
c

) ∫ φ0

φ1

1
sin φ

dφ

∫ φ0

φ1

∣∣∣∣∂φ

(
∂θf

sin φ

)∣∣∣∣
2

sin φdφ,

where c is a positive constant which will be determined later.
We have an estimate the integral on the boundary as follows;∣∣∣∣

∫
∂M

A(∇f,∇f)dσ

∣∣∣∣
=

∫ 2π

0

| cos φ0|
sin φ0

(
∂θf

sin φ0

)2

sin φ0dθ

≤ 1 + c

2

∫ 2π

0

∫ φ0

φ1

(
∂θf

sin φ

)2

sin φdφdθ

+
(

1 +
1
c

) | cosφ0|
2

∫ φ0

φ1

1
sin φ

dφ

∫ 2π

0

∫ φ0

φ1

2
∣∣∣∣∂φ

(
∂θf

sin φ

)∣∣∣∣
2

sin φdφdθ

≤ 1 + c

2
〈‖∇f‖2〉m +

(
1 +

1
c

)
| cos φ0|

∫ φ0

π/2

1
sin φ

dφ

{〈
‖∇2f‖ − 1

2
|�f |2

〉
m

}
.

If there exist c > 0, for given φ0, which satisfies,

1 − 1 + c

2
> 0,(4.1) (

1 +
1
c

)
| cos φ0|

∫ φ0

π/2

1
sin φ

dφ ≤ 1,

then by (2.19), we see that spectral gap with the spectral gap constant C(0)
such that

C(0) ≥ 2


1 − 1

2(1 − | cos φ0|
∫ φ0

π/2
1

sin φdφ)


 .
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Suppose that there is the spectral gap constant C(0). If there exist ĉ > 0,
for given φ0, which satisfies,

C(0)
2

+ 1 − 1 + ĉ

2
> 0,(4.2) (

1 +
1
ĉ

)
| cos φ0|

∫ φ0

π/2

1
sin φ

dφ ≤ 1
2
,

then we see from (3.18) that the logarithmic Sobolev inequality holds with the
logarithmic Sobolev constant

α(0) ≥ C(0)
2

+ 1 − 1

2(1 − 2| cos φ0|
∫ φ0

π/2
1

sin φdφ)
.

Though we do not completely know for which φ0 the conditions (4.1) and
(4.2) hold, we make sure by direct computation that the both conditions are
true at least for φ0 ∈ [π/2, 2π/3]. For example, if φ0 = 2π/3, then we obtain

| cos φ0|
∫ φ0

π/2

1
sin φ

dφ ≤ 1
2
· π

12

{(
sin

2π

3

)−1

+
(

sin
7π

12

)−1
}

≤ 0.287

and conditions (4.1) and (4.2) are satisfied and

C(0) ≥ 0.597 and α(0) ≥ 0.125.

Unfortunately, our method cannot be applied when φ0 is close to π, at least
when φ0 ∈ [3π/4, π).

5. Applications to the stochastic Ising model

Let M be as in the preceding with the normalized Riemannian measure
m and let ν be some fixed positive natural number. Set E = MZν

and endow
E the product topology. Let m = mZν

be the product measure on (E,BE).
Given a non-empty subset Λ ⊂ Zν , set EΛ = MΛ. Let x ∈ E �→ xΛ ∈ EΛ

denote the natural projection. We define a mapping ΦΛ : E × E → E so that

ΦΛ(x|y)k =

{
xk if k ∈ Λ,

yk if k /∈ Λ.

We will sometimes think of ΦΛ(·|y) or ΦΛ(x|·) as a function on EΛ or EΛC .
As usual when Λ = {k} is a one-point set, we will write Ek, xk and Φk for
simplicity. For Λ ⊂ Zν we set BΛ = σ{xk|k ∈ Λ} and B̃Λ = σ{xk|k /∈ Λ}.

We introduce a differential structure in the same way as in [2]. Let C∞(E)
be the space of all continuous functions f on E such that, for each φ �= Λ ⊂⊂ Zν

(i.e., a finite non-empty subset),

x ∈ EΛc �→ f ◦ ΦΛ(·|x) ∈ C∞(EΛ)
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is continuous. We define differential operations on C∞(E) as the lift of those
on C∞(M). In other words differential operators on C∞(E) are the partial
differential operators. For example, for k ∈ Zν , we define

(Xkf)(x) = [X(f ◦ Φk(·|x))](xk) for X ∈ Γ(TM),
(∇kf)(x) = [∇(f ◦ Φk(·|x))](xk), etc.

Next we introduce measures on E. Let

U = {JF : φ �= F ⊂⊂ Zν}
be a shift-invariant, finite range potential on E. That is, for each F , JF ∈
C∞(E) which depends only on xF , JF+k = JF ◦ S−k, k ∈ Zν , where S is the
natural shift on Zν , and there is a fixed Λ ⊂⊂ Zν which contains 0 with the
property that, if F ⊃⊃ Λ, then JF ≡ 0 for any F containing 0.

Given Λ ⊂⊂ Zν , we set

UΛ(x|y) =
∑

F :F∩Λ �=∅
JF ◦ ΦΛ(x|y), x,y ∈ E,

and the probability measure µΛ(·|y) on (E,BΛ) (or EΛ) by

µΛ(dx|y) =
exp[−UΛ(x|y)]

ZΛ(y)
m(dx),

where ZΛ(y) =
∫

E
exp[−UΛ(x|y)]m(dx) is the normalizing constant. When

Λ = {k} is a one-point set, we simply write Uk, µk and Zk. It is easily verified
that {µΛ}Λ⊂⊂Zν are consistent family of finite dimensional distributions.

Definition 5.1. We will say that a probability measure µ on (E,BE)
is a Gibbs state with potential U and we will write µ ∈ G(U) if∫

E

fdµ =
∫

E

(∫
E

f ◦ ΦΛ(x|y)µΛ(dx|y)
)
µ(dy)

holds for any f ∈ C(E) and Λ ⊂⊂ Zν .

We will introduce the operator LU, which is the analogue of LU in the
finite dimensional case. We set the space G(E) of cylinder functions as follows;

G(E) = {f ∈ C∞(E)|f(x) = f̄(xΛ) for some Λ ⊂⊂ Zd and f̄ ∈ C∞
N (EΛ)}.

We then define the operator LU on G(E) by

LUf =
∑
k∈Zν

eUk

(
divk(e−Uk∇kf)

)
=

∑
k∈Zν

(
�kf − (∇kUk|∇kf)

)
,

where Uk = Uk(x|x). As in the finite dimensional case it is easy to see from
Definition 5.1 that, for µ ∈ G(U) and f, g ∈ G(E),

−
∫

E

(LUf)gdµ =
∑
k∈Zν

∫
E

(∇kf |∇kg)dµ.(5.1)
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In particular LU is symmetric in L2(µ).
Next we will show that (the closure of) the right hand side of (5.1) is a

Dirichlet form coresponding to LU for given µ ∈ G(U). Set, for h = 1, 2, 3, . . . ,

ah(f, g) =
∑
|k|≤h

∫
E

(∇kf |∇kg)dµ.

with its domain Dom(ah) = G(E). It is easy to see that {ah}h=1,2,3,... is a
family of Markovian forms on L2(µ) and that {ah}h=1,2,3,··· is asymptotically
regular in L2(µ), i.e., there exists a dense subset C ⊂ C(E), such that for every
f ∈ C we have

lim inf
h→∞

ah(fh, fh) < ∞, for some fh → f in L2(µ)

(In our case we set C = G(E)).
By the results in Section 4 of Mosco [7], we obtain the following (see Mosco

[7] for the precise definition of the terms in the following propositions):

Proposition 5.2. There exists a densely defined Dirichlet form a in
L2(µ), and a subsequence {ah′} of {ah}, such that ah′ Γ-converges to a in
L2(µ) as h′ → ∞. Moreover C ⊂ Dom(a) and āC is a regular Dirichlet form
with core C in L2(µ) and a is an extension of āC.

Proposition 5.3. Let {ah} be a sequence of strongly local, closable
Markovian forms defined on a common domain C = Dom(ah), C being the dense
separating subalgebra of C(E). Let ah Γ-converge to a in L2(µ) as h → ∞.
If the sequence of energy measures are bounded and absolutely continuous with
respect to µ in E, then C ⊂ Dom(a) and āC is also strongly local.

Since the energy measure is
∑

|k|≤h(∇kf |∇kg)dµ in our case, we may apply
the propositions above. It is obvious that āC is the desired Dirichlet form and

āC(f, f) =
∑
k∈Zν

∫
E

(∇kf |∇kf)dµ, f ∈ G(E).(5.2)

We denote by PU,µ
t the semigroup on L2(µ) corresponding to āC . In the same

way as in Holley-Stroock [6] and Dobrushin [4], [5] we obtain the following
proposition:

Proposition 5.4. G(U) is a convex and compact subset of the totality of
probability measures on E which is equipped with the weak topology. Moreover,
µ ∈ G(U) is an extreme element if and only if the tail field BT = ∩Λ⊂⊂Zν B̃Λ of
µ is trivial. It is also known that

lim
t→∞ ‖PU,µ

t f − µ[f |BT ]‖L2(µ) = 0 for every f ∈ L2(µ).

Therefore

lim
t→∞ ‖PU,µ

t f − 〈f〉µ‖L2(µ) = 0 for every f ∈ L2(µ)(5.3)

if and only if µ is an extreme element.
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Since the logarithmic Sobolev inequality or the spectral gap holds only if
(5.3) holds, we will think only of the extreme elements of G(U) in the following.

Let Λ ⊂⊂ Zν . We will consider the problems on EΛ. Let µΛ(·|y) be the
regular conditional distribution given the projection x ∈ E �→ xΛ ∈ EΛ as in
Definition 5.1. However, we regard µΛ(·|y) as a probability measure on EΛ.
We define an operator Ly,U

Λ = LΛ as follows:

LΛf(x) =
∑
k∈Λ

(
�kf − (∇kUk(x|ΦΛ(x|y))|∇kf)

)
,(5.4)

for f ∈ C∞
N (EΛ) (we will sometimes abuse the notation to denote LΛf for

a smooth function f , even if f does not satisfy the boundary condition and
will write Uk = Uk(x|ΦΛ(x|y)) for simplicity). Then by the consistency of the
conditional distributions we obtain an integration by parts formula as follows:

−
∫

EΛ

(f · LΛg)(x)µΛ(dx|y)(5.5)

=
∑
k∈Λ

∫
EΛ

(∇kf |∇kg)(x)µΛ(dx|y)

+
∑
k∈Λ

∫
EΛ

µΛ(dx|y)
∫

∂Ek

(f · ∇k,Ng)(x)σk(dxk|ΦΛ(x|y)),

for f, g ∈ C∞(EΛ) and y ∈ E. Here σk(dz|w) = Zk(w)−1e−Uk(z|w)σ(dz) is the
surface measure corresponding to µk(dz|w).

In order to make sure the validity of the finite dimensional approximation
we need to prove the following Lemma 5.5.

Lemma 5.5. Let µ ∈ G(U) be an extreme element and f a bounded
function on E.

If we set Λh = {k ∈ Zν ||k| ≤ h} (h = 1, 2, 3, . . . ) and

Ghf(y) =
∫

E

f ◦ ΦΛh
(x|y)µΛh

(dx|y),

then Ghf → 〈f〉µ as h → ∞ µ-almost surely and in L1(µ) (as a result in Lp(µ),
p ∈ [1,∞)).

Proof. Since Ghf = µ[f |B̃Λh ], {Ghf}h=1,2,3,... is a equi-continuous “re-
versed time” martingale. Hence Ghf converges µ-almost surely and in L1(µ).
Since lim Ghf is measurable with respect to the tail field BT , it is easily verified
that limGhf = 〈f〉µ by Proposition 5.4.

By Lemma 5.5 we may reduce the problems (the logarithmic Sobolev in-
equality and the spectral gap) for āC(·, ·) in (5.2) to the finite dimensional
cases. Indeed, suppose that we prove the logarithmic Sobolev inequality for
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(EΛ, µΛ(dx|y)) and Ly,U
Λ as follows;

(5.6)
∫

E

f log fµΛ(dx|y) −
∫

E

fµΛ(dx|y) log
∫

E

fµΛ(dx|y)

≤ 2
α

∫
E

∑
k∈Λ

‖∇kf1/2‖2µΛ(dx|y),

for every strictly positive f ∈ C∞
N (EΛ), with α independent of Λ and y. Then

by letting Λ = Λh, taking the expectation with respect to µ and letting h → ∞
we obtain∫

E

f log fdµ −
∫

E

fdµ log
∫

E

fdµ ≤ 2
α

∫
E

∑
k

‖∇kf1/2‖2dµ.(5.7)

By the denseness of the cylinder functions, this shows that the logarithmic
Sobolev inequality for āC(·, ·) holds. The same method works for the spectral
gap inequality (however, we omit the proof).

Let Ly,U
Λ = LΛ be as in (5.4). Then the square field operator in this case

is defined as follows;

ΓΛ
2 (f, f) =

1
2

∑
k∈Λ

LΛ(∇kf |∇kf) −
∑
k∈Λ

(∇kLΛf |∇kf).

As in Deuchel-Stroock [2] we define

Hessk,l(f)(Xk, Yl)(x) =

{
Hess(f ◦ Φ(·|x))(X, Y )(xk) (if k = l)
Xk ◦ Ylf(x) (if k �= l),

for f ∈ C∞(E) and X, Y are smooth vector fields on E, and

Hessk,l(U) =
∑

F :F�k,l

Hessk,l(JF ),

for k, l ∈ Zν . We also define

Γ2,k(f, f) = ‖Hessk,k(f)‖2 + (Rick + Hessk,k(U))(∇kf,∇kf),

where Rick be the Ricci tensor on Ek and

RΛ(f, f) =
∑

k,l∈Λ,k�=l

Hessk,l(U)(∇kf,∇lf).

Lemma 5.6. For every f ∈ G(E) we obtain

ΓΛ
2 (f, f) ≥

∑
k∈Λ

Γ2,k(f, f) + RΛ(f, f).
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Proof. Let Lif = �if−(∇iUi|∇if). If i �= j, then [∇j,∇i] = [∇j,�i] = 0.
Hence

1
2
Li(∇jf |∇jf) − (∇jLif |∇jf)

=
1
2
�i(∇jf |∇jf) − 1

2

(
∇iUi | ∇i(∇jf |∇jf)

)
−(�i∇jf |∇jf) +

(
∇j(∇iUi|∇if) | ∇jf

)
= ‖∇i∇jf‖2 + (∇j∇iUi|∇if ⊗∇jf).

If i = j, then by the same way as in the finite dimensional case we have

1
2
Lj(∇jf |∇jf) − (∇jLjf |∇jf) = ‖Hessj(f)‖2 + (Ricj + HessjUj)(∇jf,∇jf).

Summing up these results we see that Lemma 5.6 holds.

Let y ∈ E and Λ ⊂⊂ Zν be arbitrary. As we showed in the previous
sections, the spectral gap∫

EΛ

(f − 〈f〉µΛ(·|y))2µΛ(dx|y) ≤ 1
C

∑
k∈Λ

∫
EΛ

‖∇kf‖2µΛ(dx|y),(5.8)

for every f ∈ C∞
N (EΛ) is equivalent to

C
∑
k∈Λ

∫
EΛ

‖∇kf‖2(x)µΛ(dx|y) ≤
∫

EΛ

ΓΛ
2 (f, f)(x)µΛ(dx|y)(5.9)

+
∑
k∈Λ

∫
EΛ

µΛ(dx|y)
∫

∂Ek

Ak(∇kf,∇kf)(x)σk(dxk|Φ(x|y))

for every f ∈ C∞
N (EΛ).

Similarly, to prove the logarithmic Sobolev inequality (5.6), it is sufficient
to show

(5.10) α
∑
k∈Λ

∫
EΛ

‖∇kf‖2

f
(x)µΛ(dx|y) ≤

∫
EΛ

fΓΛ
2 (log f, log f)(x)µΛ(dx|y)

+
∑
k∈Λ

∫
EΛ

µΛ(dx|y)
∫

∂Ek

fAk(∇k log f,∇k log f)(x)σk(dxk|Φ(x|y))

for every strictly positive f ∈ C∞
N (EΛ).

Remark 5.7. First we prepare notations. set Sf = ∩{Ω ⊂ Zν |f is BΩ-
measurable} and |||f ||| =

∑
i∈Λ ‖∇if‖∞. Moreover, let us denote by dM the

the Riemannian distance of M and by dZν the distance of Zν which is defined
by dZν (k,k′) =

∑ν
i=1 |ki − k′

i| for k,k′ ∈ Zν . As usual we define dZν (Λ,k′) =
inf{dZν (k,k′)|k ∈ Λ}.
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By Stroock and Zegarlinski [8], [9], [10], Yoshida [11] etc., we see that the
following three conditions are equivalent;

1. there exists a constant C > 0 such that (5.8) holds for any y ∈ E and
Λ ⊂⊂ Zν .

2. there exists a constant α > 0 such that (5.6) holds for any y ∈ E and
Λ ⊂⊂ Zν .

3. there exists a constant c > 0 such that if Λ ⊂⊂ Zν , f ∈ C∞
N (EΛ),

k /∈ Λ and y = y′ off k, then

|〈f〉µΛ(dx|y) − 〈f〉µΛ(dx|y′)| ≤ B(f)dM (yk,y′
k) exp(−dZν (Sf ,k)/c),

where B(f) is a positive constant depending only on |Sf | and |||f |||.
Moreover, if one of the three conditions holds, then |G(U)| = 1. (The

proofs for the case of compact manifolds without boundary in [8], [9], [10], [11]
depend on finite dimensional analysis and applicable to our case with slight
modifications).

Now we define

δ(U) = sup{δ(U0(·|y))|y ∈ E},
ρ(U) = inf{ρ(U0(·|y))|y ∈ E},

β(U) = sup

{
β ∈ R|RZν

(f, f) ≥ β
∑
k∈Zν

‖∇kf‖2, f ∈ G(E)

}
,

K(U)(ε) = sup{K(U0(·|y))(ε)|y ∈ E}.
Let us consider the spectral gap (5.9). Let

C(U) = inf{C(U0(·|y))|y ∈ E}.
We can estimate C(U) from below by using the finite dimensional case. For
example we have by Proposition 2.6,

C(U) ≥ C(0)e−δ(U)

d
+ ρ(U) − K(U)(1).

Then for every k ∈ Λh and f ∈ C∞
N (EΛh

), we have by the shift-invariance that

C(U)
∫

Ek

‖∇kf‖2(x)µk(dxk|Φk(x|y))

≤
∫

Ek

Γ2,k(f, f)(x)µk(dxk|Φk(x|y))

+
∫

∂Ek

Ak(∇kf,∇kf)(x)σk(dxk|Φk(x|y)).

Integrating the both sides by µΛh
(dx|y) and summing them up with respect to

k, we see by Lemma 5.6 that (5.9) holds with C ≥ C(U) + β(U).
We have an estimate of β(U) as follows;
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Remark 5.8. Let

γ(k) = sup{‖Hess0,k(U)(X0, Yk)‖C(E)

|X, Y are smooth vector field on E and ‖‖X‖‖C(E) ∨ ‖‖Y ‖‖C(E) ≤ 1},
and

γ(U) =
∑
k�=0

γ(k).

In the same way as in Deuschel-Stroock [2], β(U) ≥ −γ(U) (see Deuschel-
Stroock [2] for the proof).

Proposition 5.9. Suppose

C(0)e−δ(U)

d
+ ρ(U) − K(U)(1) − γ(U) > 0.

Then spectral gap inequality (5.8) holds for any y ∈ E and Λ ⊂⊂ Zν with

C ≥ C(0)e−δ(U)

d
+ ρ(U) − K(U)(1) − γ(U).

In that case, |G(U)| = 1 by Remarks 5.7 and 5.8 and the following spectral gap
inequality holds:∫

E

(f − 〈f〉µ)2dµ ≤ 1
C

∑
k∈Zν

∫
E

‖∇kf‖2dµ, f ∈ G(E).

Next we will consider the logarithmic Sobolev inequality. Though there
are several versions as we showed in the finite dimensional case, here we will
show the simplest case only.

Let

α(U) =
C(0)e−δ(U)

d
+ ρ(U) − K(U)

(
2e−δ(U)

d + 2

)
.

Then by the shift-invariance

α(U)
∫

Ek

‖∇kf‖2

f
(x)µk(dxk|Φk(x|y))

≤
∫

Ek

fΓ2,k(log f, log f)(x)µk(dxk|Φk(x|y))

+
∫

∂Ek

fAk(∇k log f,∇k log f)(x)σk(dxk|Φk(x|y))

holds for every strictly positive f ∈ C∞
N (EΛh

). Then integrating the both sides
by µΛh

(dx|y) and summing them up with respect to k, we see by Lemma 5.6
that (5.10) holds with α ≥ α(U) + β(U). Thus we have proved the following
result.
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Proposition 5.10. Suppose α(U) − γ(U) > 0, Then the logarithmic
Sobolev inequality (5.6) holds for any y ∈ E and Λ ⊂⊂ Zν with α ≥ α(U) −
γ(U). In particular, |G(U)| = 1 by Remark 5.7 and the following logarithmic
Sobolev inequality holds with α ≥ α(U) − γ(U);

〈f log f〉µ − 〈f〉µ log〈f〉µ ≤ 2
α

∑
k∈Zν

〈‖∇kf1/2‖2〉µ, 0 < f ∈ G(E).(5.11)

In order to show that Proposition 5.10 is not useless, here we will give a
very simple example.

Example 5.1. Let M and U ∈ C∞(M) satisfy that

C(0)eδ(U)

d
+ ρ(U) − K(U)

(
2e−δ(U)

d + 2

)
> 0.

We assume further for simplicity that A(∇f,∇f) ≤ 0 for any f ∈ C∞
N (M) (such

M and U exist as we saw in Example 4.2). Now we construct measures on MZ.
For v, w ∈ C∞(M) and ε > 0, set JF (xi,xi+1) = U(xi) + εv(xi)w(xi+1) for
F = {i, i + 1} (for i ∈ Z) and otherwise JF = 0. Clearly this defines the Gibbs
state with potential Uε. Note that when ε = 0, the Gibbs state is the product
measure. By a straight forward computation we have

|γ(Uε)| ≤ 2ε‖∇v‖∞ · ‖∇w‖∞(5.12)
|δ(U) − δ(Uε)| ≤ ε(δ(v)|w|∞ + δ(w)|v|∞)(5.13)
|ρ(U) − ρ(Uε)| ≤ ε(‖Hessv‖∞|w|∞ + ‖Hessw‖∞|v|∞).(5.14)

We see by (5.13) and Lemma 2.5 that |K(U)(2e−δ(U)/d+2)−K(U)(2e−δ(Uε)/d+
2)| goes to 0 as ε goes to 0. Because we assumed the non-positivity of A, we
can easily see that

K(U)(t)e−δ(W ) ≤ K(U + W )(t) ≤ K(U)(t)eδ(W )

for any U, W ∈ C∞(M) and t > 0. Combining this with (5.13) we have∣∣∣∣K(Uε)
(

2e−δ(Uε)

d + 2

)
− K(U)

(
2e−δ(Uε)

d + 2

)∣∣∣∣
goes to 0 as ε goes to 0. Combining them with (5.12), (5.13) and (5.14), we see
that

C(0)eδ(Uε)

d
+ ρ(Uε) − K(Uε)

(
2e−δ(Uε)

d + 2

)
> 0

for sufficiently small ε > 0 and we can apply Proposition 5.10.
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