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On Absolute continuity of the Gibbs measure
under translations

By

Gaku SADASUE

1. Introduction

The question of absolute continuity of measures under transformations of
the spaces has been treated in many cases.

One typical example is the case of infinite product measures on R*: Kaku-
tani [10] proved that two infinite product measures are either equivalent or
mutually singular. Later, Shepp [23] showed that /2 is the space of admissible
shifts for infinite product measures on R,

Such properties, dichotomy between equivalence and mutual singularity,
and characterization of admissible shifts, were also shown in some different
cases: in the case of Gaussian measures [4], [7], [9], and in the case of the
Brownian motion measure and the pinned Brownian motion measure over the
compact Lie group [1], [14], [22], [24].

In this paper, we treat Gibbs measures of unbounded lattice spin systems.
We will show that each element of [2(Z?) is an admissible direction for the Gibbs
measure if the second derivative of the potential satisfies a certain integrability
condition. We will also show that, in one dimensional case, dichotomy between
equivalence and mutual singularity holds for the Gibbs measure if the self-
potential is uniformly convex. In this case, I>(Z) is the space of admissible
shifts.

The organization of this paper is as follows. In Section 2, we fix some
notation and collect known results about Gibbs measures which we need in the
later sections. In Section 3, we show that each element of [?(Z<) is an admissible
direction for the Gibbs measure. Lemma 3.2, which is based on (3.5), plays
an essential role. We give an expression for the Radon-Nikodym derivative
in terms of formal Hamiltonian which is defined reasonably. In Section 4, we
treat one dimensional case. We show that, in the case of uniformly convex
self-potentials, the Hellinger integral vanishes if the transformation is a shift

by h ¢ 12(Z).
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2. Notation and preliminaries

In this section, we fix notation, and recall some known results about Gibbs
measures which we need in the later sections.

We set Q := RZ". Let C be the class of all finite subsets of Z<.

For A C Z%, we denote by F, the o-algebra generated by the coordinate
map (z;);eze — x; (i € A). We use the symbol F if A = Z<.

For A € C, we denote by dx the Lebesgues measure on R*. For i € Z¢,
we set |Z‘ = maXxji<i<d |Zl|

The interaction for our lattice spin systems is given by a family & =
(PA)rec of functions on Q where

V(z;) if A= {i},
Pp(x) = q Wiz — ;) if A={i,j} (i#]),
0 otherwise.

Here, V,W; ; : R — R, and W, ; = W;; = W,_; are even functions.
Throughout this paper, we suppose the following conditions on V' and W ;:
(V.1)  There exist A > 0,C > 0 such that

V(z) > 242 - C.
(W.1)  There exists a positive decreasing function J on N such that

J(r) < Kr=@=¢ forsome K >0,e> 0,

Ji= Y J(r]) < A

reZ4\{0}
and
1
Wij(@)| < L J(li =gz
holds.
Remark 2.1.  We will use the convention W; ; = Wy = 0 and J(0) = 0.

Before introducing Gibbs measures for ®, we recall the notion of the regular
measure. For a probability measure p on (2, F) and for A € C, we denote by
ga(x|p) the probability density (with respect to dxa) of the image measure of
p by the projection 7 : Q — RA.

Definition 2.1. A probability measure p on (€2, F) is said to be regular
if there exist A > 0 and § > 0 independent of A € C such that

ga(zlp) < exp (— Z([la:f - 5)) for all A eC.

SN
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Next, we introduce the notion of the tempered measure. Set A; := {i €
74;]i| <1} for I € N. Let us define S, a subspace of 2, by

S=J sw,

NeN

_ ) 2
SN{:CGQ, sup 21+1dzm <N}.

>1 (

We say a probability measure p on (Q, F) is tempered if u(S) = 1. By the same
argument in [19, Proposition 5.2], one can show that each regular measure is
tempered.

For x € § and A € C, the following sum

HA(Q,‘) L= Z (I)A/(l‘)
AN NAAD
1
= Z V($Z) + 5 Z WiJ'(J?i - J?j) + Z WiJ' (1‘1 — l‘j)
iEA i,JEA iEA

jenc

is absolutely convergent from (W.1), and then the partition function

Zp(w) :/e_HA(mlw)dxA

is well-defined for all w € S. (We often use such notation as Hy (z|w) if we
consider Hy as a function on R x RA)
H, is naturally decomposed as Hy = Uy + Wy, where

1
= Z Vi(zi) + 5 Z Wi (@i — x;)
iEA i,JEA
and

= Z Wi’j(.’IJi — (Ej).

i€EA
JEAC

Remark 2.2.  From (V.1) and (W.1), U, satisfies
=Y ( Ax? — > (2.1)
i€A

which we call superstability. (See [19, Section 1].)
Moreover, for A, A € C with AN A =, by setting

J,‘A|xA ZW’J 1 ,

i€EA
JEA
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we have

3
Un(z) + W (zplza) + 5,42953 > > (427 -0) (2.2)
i€EA 1€EAUA

which is just the same condition as [13, Hypothesis 4.1].

Now, we define a family v = (ya(-|w))aec,wen of measures on Q by

gy e e (zlw)dey it wES,

Alw) =
Ak {0 it weQ\s,

where A € F and 14 denotes the indicator function of A.
We now give a definition of Gibbs measures on (2, F).

Definition 2.2. A Gibbs measure pu for the potential ® is a probability
measure on (2, F) satisfying

u(A) = /WA(A|w),u(dw) forall AeC. (2.3)

(2.3) is usually called DLR equation.

Remark 2.3. By a similar reason which is described in the paragraph
of [8, Definition (3.18)], the Gibbs measure in Definition 2.2 is tempered.

Remark 2.4. In Definition 2.2 above, we use the term ‘Gibbs measure’
as ‘tempered Gibbs measure’ in the sense of Ruelle [19].

The following theorem was shown in [12, Section 4 and appendix]. See also
[6] and [17].

Theorem 2.1.  Let Gi(®) denote the set of Gibbs measures for the po-
tential ®. If the condition (V.1) and (W.1) is satisfied, then Gi(®) is not
empty. And each p € Gi(®) is regular: more precisely, for each € > 0, there
exists 6 > 0 such that

ga(z|p) < exp {— Z((A — €z} — 5)} forall AeC. (2.4)
€A

Remark 2.5.  As for (2.4), we refer to [20, Theorem 2.2] and [12, The-
orems 1.1 and 4.4].

The proof of Theorem 2.1 relies on Ruelle type estimate, which was proved
in [19], [20] and [12]. See also [17].
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3. Quasi-invariance

In this section, we will show that the Gibbs measure is quasi-invariant
under the translation by square summable functions on Z%.

We keep the notation in the previous section. We denote by [2(Z¢) the
space of square summable functions on Z¢:

2z = {h = (hi) €Y |hf5:=> " hl < oo}.

€24
For convenience, we set
Un(z) = Ua, (2),
W (z|w) = Wy, (z|w),
Zn(w) = Zp, (W),
dX\p, = dzp,,
Fn=Fn,.

For a measure v on (Q, F) and h € Q, we denote by v" the image measure
of v by the map Sy : @ — Q which is defined by Sp(z) =  + h. For a general
measurable map f: Q — €, we use f.u to denote the image measure.

For two measures v1,v2 on a measurable space (X,B), we denote by
H (v3|v1) the relative entropy of vy with respect to vq:

V20 (log(g—ﬁ(w))) it vy <y,

00 otherwise.

H(va|v) :{

Here, we use such notation as v, to denote the integration by the measure v
in w.

We now start the study of the quasi-invariance of a Gibbs measure. Let
€ Gi(P). As was mentioned in Theorem 2.1, p is regular. Moreover, from
(2.4), it is easy to deduce that for each a < A, there exist 0 < M, < oo such
that

L (exp (ame)) < MM forall AecC. (3.1)
€A
Below, we fix such M, so that M, is increasing in a < A.
Throughout this section, besides (V.1) and (W.1), we suppose on V and

Wi;.; the following condition.
(V.2) V is C%-class and

" ].
V' (2)] < K1 for some K >0,0<a< §A.
(W.2) W is C%-class and

Z |
|W1J(m)| < EJ(‘Z*JD-
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We begin by the case of ‘finite dimensional translation’.
Let ¢ denote the following subspace of :

Qo :={w e Qw; =0 for all but finitely many i € Z%}.

Lemma 3.1. For h € €, set n := max{|i|;h(i) # 0}. Then, p"
absolutely continuous relative to p. Moreover, the Radon-Nikodym derivative
is given by

aph
g (@) = exp(Hn(@) = Hu(o = h). (3:2)

Proof.  (3.2) is an easy consequence of DLR equation (2.3) and well-known
(see, e.g., [2, Theorem 4.4]). But we give a proof for convenience.
For each bounded measurable function f on €2, we have

f(x+h
70) /fx+h|w) —Hu(@l) ), (2 )>

(
(Z 1(w) /f tluo)e (i (el)= Hae=h10) o= Ha @lo) g3, )>
p(f (@) exp(Hy(z) — Ho(z — h))).

The proof is completed. O

Next, we study the convergence of H,(x)— H,(x—h). First, we note that,
from (W.2),

H{z}(xl + e|w) — H{i} (xz|w)
€

0;H 3y (z;|w) == lgl})

exists for each w € S.
The following lemma plays a crucial role in this section.

Lemma 3.2.  Define the linear map T from Qo to L?(Q, i) by

i€z
Then, there exists a constant R > 0 independent of h € Qg such that
IT(R)ll2 < R|Rl (3.3)

where || - ||2 denotes the norm of L*(Q, ).
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Proof. First, we note that

R = sup p(|0;H;y?) < oo. (3.4)
i€z

To show (3.4), we deduce from (V.2) and (W.2) that |[V'(z)| < Ke®” for

some K > 0 and |[W/ ;(x)] < 1/2J(]i — j|)|z| respectively. By using these two
inequality, we have (3.4) as follows:

p(0:Hy ) < 2u([V' (@)) + 20 | | D WY (s — )
J#i

e 1 o
<22 4 g | | D0 (1= D il + )
J#i

J .
<2 Mo+ T | DI ) (il + fa)?
i
= 2K Mo + Jip [ Y (i = 1) (Jai* + | )
i
< 2K2Ma, + 2J7 sup o (27) .

2
Here, we have applied Schwarz inequality to (Zﬁéi J(|i =g (Jas| + |xj|)) in
the second line.

Second, we claim that, for i # j,

|10 H iy 05 H 5y)| < LJ(Ji = ) (3-5)
where we set L := sup; ; pu(|x;0; H;3]). To show (3.5), according to the follow-
ing decomposition of d; H;

OiHpy(x) = | V(@) + Y Wiglai —ax) | + W/, (ai — ;)
k#i,j
we write

O H 05 H ;)

=l V’(xl-) + Z Wi/,k(xi — xk) ajH{j} +u (W{J(% — xj)ajH{j}) .
k#i,j
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Since V'(z:) + 325 ; Wi (¥ — 21) does not depend on x;, we can show that
the first term vanishes. Indeed by noting that

/ajH{j}(ij)e_H{”(x”"”)dxj = —/8]- (B_H“}ww)) d;

we have

(e g e=en)oms)

(Zn< )/( () 2 Wil )3;1{]}(%@) H{”(ij)dxj)

k#i,j

Vi wi) + > wi (Wi — wg)
<( k;g ) - /ajH{j}(wjlw)efH{”(xj'“)dffj
(W

=0.
As for the second term,
(Wi (@i — ;)0 Hyjy)
1.
< 5= ghu (joi = 25110 H ;1)
...
< 5= ghm (il + |251)10; Hzy)
< LJ(Ji = ji).

We have obtained (3.5).
By combining (3.4) and (3.5), we have (3.3) as follows:

p(IT)P) =p| D hih;0iHn0;Hj
i,jEZLL
< N by (0iH iy 0, Hyjy ) |
i,jEZ4
<R Dm+L > |hibyla(i - jl)
A i,jezd
i#]
1/2 1/2
<SR Y RAL| Y R j)) > (i)
i€Z i,jezd i,jezd

i#j i#j
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< (R +LJy) Y b2
i€zd

The proof is completed. |

For h € Q2 and n € N, we define h™ € )y by

A = hj if ‘]‘Sna
! 0 if [j] >n.

Lemma 3.3.  Forh € 12(Z%), H,(x)—H, (x—h") converges in L'(Q, 11).

Proof. By Taylor expansion up to the second order and noting that (W.2)
ensures the absolute convergence for each z € S, we have

Hy(2) — Ho(x — h") (3.6)
1
=Y hV'(x) + 3 S (hi — bW (s — )
i€An i,5€A
Y Wi — )
s
1 1 .
-> h?/ / V" (@; + tsh)tdtds
i€A, 0 Jo
1 1 1 .,
—3 > (hi—hj)Q/ / W, (i — aj + ts(h; — hy))tdtds
i,jEMA, 0 J0
1 1 .
- Z hzZ/ / W, i(xi — xj + tshy)tdtds
lil<n 0 Jo
[Fl>n
= > hi0iHy ()
€N,
1 1 .
-> h?/ / V' (z; + tshy)tdtds
i€A,, 0 J0
1 1 1 .
D) Z (hi — hy)? W, j(xi — zj +ts(h; — hy))tdtds
,JEA, 0 0
1 1 .
- Z hi / W, i (xi — x5 + tshy)tdtds.
lil<n 0 JO
|jl>n

By Lemma 3.2, the first term converges in L' (€2, i) as n goes to infinity. Since
we have from (V.2)
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th(

)
<> hip < / / er(@ittshi) tdtds>

zEA

5 Z hfﬂ (eQazf—Q—Qah?)

i€EA,

1
5 O hiethian

i€EA,

/ V (z; + tsh;)tdtds

IA

IN

IN

1 2
SIHBee 0y,

the second term also converges in L(§2, ). As for the third term, we can show
uniform absolute convergence as follows:

thfh

—x; +ts(h; — h;))|tdtds

7J

i,J€EAR
gf > (hi—hy) // J(Ji — j|)tdtds
1,5€AR
<Y (h2+h2) J(li = j[)
,JEAR
Ji
§7|h|§~

The fourth term converges to 0 uniformly as n — oo. To see this, note that

Zh?/ / i — xj + tshy)tdtds

i#]

= ZhQ/ / ~J(|i — j|)tdtds

11| <n
[7|>n

< Zh2 (Ii = 41)

11| <n
[F|>n

J1

The proof is completed. O

We denote by H(z) — H(x — h) the above limit of H,(x) — H,(x —h™) in
LY, p).
Now, we close this section by the following theorem.

Theorem 3.1.  We suppose that the condition (V.1), (V.2), (W.1) and
(W.2) are satisfied. Let u € Gy(®). Then, for each h € I>(Z%), u* and u are
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equivalent and its Radon-Nikodym derivative is given by

du”
a(m) =exp(H(x) — H(x — h)). (3.7)

Proof. We first show that {(du”" /du) ()} is a uniformly integrable se-
quence. Indeed, by Lemma 3.1, we may give a following expression for H(u"" |p):

" (uh" Iu) = 1" (Hu(2) = Hy(x — h"))
— j(Ho(x + B — Hy (2)).

By the same method in the proof of Lemma 3.3, we can show that H,(z +
h™) — Hy,(x) converges in L'($, u). In particular

sup H (uhnm) < 0. (3.8)

(3.8) shows that {(du"" / dp)(z)} is a uniformly integrable sequence. Therefore,
by combining this with Lemma 3.3, we obtain that (d,uhn /du) (z) converges to
exp(H(z)—H(x—h)) in L*(Q, ). (See, e.g., [11, Theorem 1.2.8].) In particular,
u" is absolutely continuous relative to p and its Radon-Nikodym derivative is
given by (3.7).

Conversely, by considering p and u as (Sy,).u and (Sp,).pu~" respectively,
we have pu < pu". The proof is completed. ([

4.  Equivalence-singularity dichotomy

In this section, we treat one dimensional case. We will show that di-
chotomy between equivalence and singularity holds for Gibbs measures if the
self-potential is uniformly convex.

We keep the notation of the previous sections. And besides (V.1), (V.2),
(W.1) and (W.2), we suppose the following conditions:

1"

(V.3) V(z)>2m >0 foral zeR.
4

(W3) J1 < gm
oo

(W.4) Jg 1= Z nJ(n) < oco.
n=1

Remark 4.1. Under the conditions above, the uniqueness of (tempered)
Gibbs measure holds. For the uniqueness problem in one dimension, see [16].

The purpose of this section is to show the following theorem.

Theorem 4.1. Let d = 1 and suppose (V.1), (V.2), (V.3) and (W.1),
(W.2), (W.3), (W4). Let pn be the unique Gibbs measure for the potential
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®. Then, dichotomy between equivalence and singularity holds for u in the
following form:

(1) For each h € 1*(Z), u"* and p are equivalent.

(2)  For each h € Q\ 12(Z), u"* and p are mutually singular.

For the proof of Theorem 4.1, we use the Hellinger integral, which we

denote by p:
dvl [dv?
12y 3
f’(”’”—/\/ﬁ\/ﬁd”
2 .3

where, !, 2,3 are probability measures on 2 in relation that v, 2 < 3. It
is well-known that this definition is independent of the choice of such v3. See,
e.g. [25, Section 1.4].

We prepare some properties of p. For a probability measure v on (2, F),
we denote by v, the restriction of v to F,, and by v(X|F,) the conditional
expectation of X with respect to F,.

Proposition 4.1.  The following properties holds for p.

pv',v?) = lim p(vy,vy). (4.1)
p(vt,v?) =0 s equivalent to  v' L V2. (4.2)

Proof. Here we set

o) = Vaa), ar(a) = V) (p=12)

for short. First, as for (4.1), we note that
pvh ) = [ Vel Vaitoi:
- [ Vai@vaiww,

where we regard of (x) as a function on (2, F,,) in the first line and as on (2, F)
in the second line. Since a? = v*(aP|F,), aP, converges to o in L1 (2, 3). (See,
e.g., [11, Proposition 2.2.4 and Theorem 2.6.6].) We have obtained (4.1).

As for (4.2), we refer to [25, Lemma 1.4.1]. O

To show Theorem 4.1, we need the following lemma.

Lemma 4.1.  Suppose the same condition in Theorem 4.1, and let 1 be
a Gibbs measure. Then,

1 .
M :=supp | exp 1 E J(i = j]) (7 +23) < 0. (4.3)
" li|<n
l31>n
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Proof. The idea of the proof is the same as in [18, Lemma 7.1].
First, we note that

exp ZJ|Z—]| :v—i—:):)
e
1/2 1/2
exp ZJ (li — 4]z exp Zszﬂ
[i|<n |i|<n
[7]>n [31>n
We will show that
sup p | exp 1 Z J(|i —j])x3 < oo (4.4)
n 2 li|<n ! . .
l31>n

As for the other term, we can show the same conclusion by the same method
below. To show (4.4), we note that

oo Jli—jh<2 Z kJ (k (4.5)

jil<n.|j|>n+N k=N+1

holds for n, N € N. Indeed, we first rewrite the left hand side as

> J(|Z-_j|):z": > J(i— )+ Z > J(li— )

il <n.[j|>n+N i=—n j>n+N i=—n j<—(n+N)
n
= > Ji+ih+ Z > J(i+il)
i=—nj>n+N i=—n j>n+N
2n
:22 Z J(@i+j—mn)
1=0 j>n+N
2n
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Then, we set JV (i) = J(i + N) and obtain (4.5) as follows:

2n oo

S Tl =2 I +4) (4.6)

li|<n,|j|>n+N 1=0 j=1

g?iiJN(iJrj)

i=0 j=1

23 > JN(i+)

k=1i+j=k

=2 i EJN (k)
k=1

=2 kJ(k+N)
k=1

=2 i (k — N)J (k)

k=N+1

<2 i kJ (k).

k=N+1

From (4.5) and (W.4), we can fix N € N so that

n A
J3 1= sup J?() ) < 3 forall neN, (4.7
where J{" = Dlil<nljlsnn J (i = j]). We devide ZBE: J(li = j])z3 as

SoJ(i—ghad = Y J(i—ghai+ D J(li— )3,

li|<n li|<n lil<n
l31>n n<|jl<n+N ljl>ntN

and then by using Schwarz inequality, we have

1 o
plexp| 5 Z J(|z—j|)w§
His

1/2 1/2

<plep| > JUi—jhad || plew| > J(i-iDs
RH B
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As for the first integral, from (3.1) and (W.1), we obtain

| exp Z J(|i — j|)$§ <upulexp|J1 Z x? (4.8)
li|<n n<|j|<n+N
n<|jl<n+N

SM}lN < 00.

For the second term, we can show that

i | exp Z J(|i —j|)a:? < My, < oo.
jg‘ng+nN

To see this, set ag-n) =2 ij<n J(li—jl) and bg-n) = a§-n)/J?()n). Then b§-n) satisfies

lel>n+N b§") = 1. By using Holder’s inequality, we have

ploo| X Ji-ihe? (49)

il <n,|j[>n+N

=p | exp Z bg»n)ZJén)x?
[7|>n+N

< T ([ i)

n)
bj

By combining (4.8) and (4.9), we obtain

. 1/2

| exp E J(|Z*]|)x? §M2§3Mﬁ.
li|<n
131> n

The proof is completed. |
We now give the proof of Theorem 4.1.
Proof of Theorem 4.1. It is sufficient to give a proof for the case of h €
Q\ 13(Z). And since p?* L p if and only if pu L p~", we only have to show
that

lim p(uy,pp") =0 for  heQ\P(2).
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First, we note that (u"), = (u""), and use u" to denote this measure. And
then, we deduce from (3.1) that u” is absolutely continuous relative to y,, and
the Radon-Nikodym derivative is

h

At , (Ho (@)= Hn (2—h™))
G =n (e ) (4.10)

— e(Un(@)=Un(a=h)) , (e<wn<x>fwn<z7h”>>‘;n) .
From (W.2), we can show that

1 . .
< exp Z J Z—]‘ M| eXp Z Z J(|’L—j|)(x§+$§) Fn
li|<n li]<m
isn 31> n

(4.11)
To see this, it is sufficient to bound W; ;(z; —x;) — W, j(x; — x; — h;) as follows:
(Wi j (i — ) = Wi j(2i —
= |nW] ;( — h? / / W/ (z; — x; — sthy)tdtds
1 . .
< gl (i = DGl + kel + 37— )2
| .. 1o 2
= 2 (i DIl + 31— )iy + 3~ GRS

Lo Lo Lo
< (=D hE + ) + I (1i = 3D + 2F) + 77 (li = k2

4
3. . .. ..
= S = DR + (i = )3 + 370 - jl)a

By combining (4.10) and (4.11), we have
_ /2
dh dpg" )
(0%
dlun d,UJn

Sexp{—%(Un(x—l—h)—I—Un(x—h)—2Un( }exp Z J(|i — j|)h?

li|<n
m>n

1 .

ol | 3 3 Ji- i@ +a) || 7
li|<n
[il>n

And then, we obtain



Absolute continuity of the Gibbs measure under translations 273

(s ™) (4.12)
d,un —h
dpy, dun

< exp ZZJ(H—J'WL? n exp{—%(Un(x—Fh)—FUn(;v—h)—2Un(;v))}

li|<n
[i1>n

1 .

x | exp ZZJ(|Z—]|)(:U?+?L‘?) F
[i|<n

|7l>n

3 . 1
=exp | 7 E J(i —jDh? | p exp{—§(Un(x+h)—|—Un(a:—h)—2Un(a:))}
lil<n

li>n

1 .
xexp | 1 3 J(i— i)t +02)
li|<n

|g1>n

On the other hand, by using Taylor expansion and then from (V.3) and
(W.2), we obtain

Up(z + h) + Up(x — h) —2U,(z) (4.13)

=Y n / / (@i + tshy) + V' (i — tsh))tdtds

€A,
1 1
D (hz—hj)Q/ / W, (s — 2+ ts(hs — hy))tdtds
1,JEA,
+5 (hi — hy) / / W (s — 2 — ts(hs — hy)))tdtds
1,JEA,
> Z h2/ / 4mtdtds—— / / (|t — j|)tdtds
€N, ,JEA
>om Y K- g 3 (i )0+ )
i€EA, i,JEA,

By combining (4.12) and (4.13), and then (4.3), we obtain
pluys ")

3 L 1 S
Sexp [ 5D J(i—dDh? | exp (—mzh?> exp |5 Y J(li—ihni

li|<n i€EA, 1,j€NA,
[i|>n
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1 .
ol e | 5 30 G- i)t +a2)

[i|<n
[31>n
<o | 37 i i | s (- 3 )
|i\S;1 €N,
JEL

< M exp (ng Z hf) exp (—m Z h?) .

€A, i€,

Since m — 3/4J1 > 0 from (W.3),
p(u" p") = lim p(py, ")
=0.
The proof is completed. |
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