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On Absolute continuity of the Gibbs measure
under translations

By
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1. Introduction

The question of absolute continuity of measures under transformations of
the spaces has been treated in many cases.

One typical example is the case of infinite product measures on R
∞: Kaku-

tani [10] proved that two infinite product measures are either equivalent or
mutually singular. Later, Shepp [23] showed that l2 is the space of admissible
shifts for infinite product measures on R

∞.
Such properties, dichotomy between equivalence and mutual singularity,

and characterization of admissible shifts, were also shown in some different
cases: in the case of Gaussian measures [4], [7], [9], and in the case of the
Brownian motion measure and the pinned Brownian motion measure over the
compact Lie group [1], [14], [22], [24].

In this paper, we treat Gibbs measures of unbounded lattice spin systems.
We will show that each element of l2(Zd) is an admissible direction for the Gibbs
measure if the second derivative of the potential satisfies a certain integrability
condition. We will also show that, in one dimensional case, dichotomy between
equivalence and mutual singularity holds for the Gibbs measure if the self-
potential is uniformly convex. In this case, l2(Z) is the space of admissible
shifts.

The organization of this paper is as follows. In Section 2, we fix some
notation and collect known results about Gibbs measures which we need in the
later sections. In Section 3, we show that each element of l2(Zd) is an admissible
direction for the Gibbs measure. Lemma 3.2, which is based on (3.5), plays
an essential role. We give an expression for the Radon-Nikodym derivative
in terms of formal Hamiltonian which is defined reasonably. In Section 4, we
treat one dimensional case. We show that, in the case of uniformly convex
self-potentials, the Hellinger integral vanishes if the transformation is a shift
by h /∈ l2(Z).
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258 Gaku Sadasue

2. Notation and preliminaries

In this section, we fix notation, and recall some known results about Gibbs
measures which we need in the later sections.

We set Ω := R
Z

d

. Let C be the class of all finite subsets of Z
d.

For Λ ⊂ Z
d, we denote by FΛ the σ-algebra generated by the coordinate

map (xi)i∈Zd �→ xi (i ∈ Λ). We use the symbol F if Λ = Z
d.

For Λ ∈ C, we denote by dxΛ the Lebesgues measure on R
Λ. For i ∈ Z

d,
we set |i| = max1≤l≤d |il|.

The interaction for our lattice spin systems is given by a family Φ =
(ΦΛ)Λ∈C of functions on Ω where

ΦΛ(x) =




V (xi) if Λ = {i},
Wi,j(xi − xj) if Λ = {i, j} (i �= j),
0 otherwise.

Here, V, Wi,j : R → R, and Wi,j = Wj,i = Wi−j are even functions.
Throughout this paper, we suppose the following conditions on V and Wi,j :

(V.1) There exist A > 0, C > 0 such that

V (x) ≥ 2Ax2 − C.

(W.1) There exists a positive decreasing function J on N such that

J(r) ≤ Kr−d−ε for some K > 0, ε > 0,

J1 :=
∑

r∈Zd\{0}
J(|r|) < A,

and

|Wi,j(x)| ≤ 1
4
J(|i − j|)x2

holds.

Remark 2.1. We will use the convention Wi,i = W0 = 0 and J(0) = 0.

Before introducing Gibbs measures for Φ, we recall the notion of the regular
measure. For a probability measure µ on (Ω,F) and for Λ ∈ C, we denote by
gΛ(x|µ) the probability density (with respect to dxΛ) of the image measure of
µ by the projection πΛ : Ω → R

Λ.

Definition 2.1. A probability measure µ on (Ω,F) is said to be regular
if there exist Ā > 0 and δ̄ > 0 independent of Λ ∈ C such that

gΛ(x|µ) ≤ exp

(
−
∑
i∈Λ

(Āx2
i − δ̄)

)
for all Λ ∈ C.
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Next, we introduce the notion of the tempered measure. Set Λl := {i ∈
Z

d; |i| ≤ l} for l ∈ N. Let us define S, a subspace of Ω, by

S =
⋃

N∈N

SN ,

SN =
{

x ∈ Ω; sup
l≥1

1
(2l + 1)d

∑
i∈Λl

x2
i ≤ N2

}
.

We say a probability measure µ on (Ω,F) is tempered if µ(S) = 1. By the same
argument in [19, Proposition 5.2], one can show that each regular measure is
tempered.

For x ∈ S and Λ ∈ C, the following sum

HΛ(x) : =
∑

Λ′;Λ′∩Λ �=∅
ΦΛ′(x)

=
∑
i∈Λ

V (xi) +
1
2

∑
i,j∈Λ

Wi,j(xi − xj) +
∑
i∈Λ

j∈Λc

Wi,j(xi − xj)

is absolutely convergent from (W.1), and then the partition function

ZΛ(ω) =
∫

e−HΛ(x|ω)dxΛ

is well-defined for all ω ∈ S. (We often use such notation as HΛ(x|ω) if we
consider HΛ as a function on R

Λ × R
Λc

.)
HΛ is naturally decomposed as HΛ = UΛ + WΛ, where

UΛ(x) :=
∑
i∈Λ

V (xi) +
1
2

∑
i,j∈Λ

Wi,j(xi − xj)

and

WΛ(x) :=
∑
i∈Λ

j∈Λc

Wi,j(xi − xj).

Remark 2.2. From (V.1) and (W.1), UΛ satisfies

UΛ(x) ≥
∑
i∈Λ

(
3
2
Ax2

i − C

)
(2.1)

which we call superstability. (See [19, Section 1].)
Moreover, for Λ, ∆ ∈ C with Λ ∩ ∆ = ∅, by setting

W (xΛ|x∆) =
∑
i∈Λ
j∈∆

Wi,j(xi − xj),
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we have

UΛ(x) + W (xΛ|x∆) +
3
2
A
∑
i∈∆

x2
i ≥
∑

i∈Λ∪∆

(Ax2
i − C) (2.2)

which is just the same condition as [13, Hypothesis 4.1].

Now, we define a family γ = (γΛ(·|ω))Λ∈C,ω∈Ω of measures on Ω by

γΛ(A|ω) =

{
1

ZΛ(ω)

∫
e−HΛ(x|ω)1A(x|ω)dxΛ if ω ∈ S,

0 if ω ∈ Ω \ S,

where A ∈ F and 1A denotes the indicator function of A.
We now give a definition of Gibbs measures on (Ω,F).

Definition 2.2. A Gibbs measure µ for the potential Φ is a probability
measure on (Ω,F) satisfying

µ(A) =
∫

γΛ(A|ω)µ(dω) for all Λ ∈ C. (2.3)

(2.3) is usually called DLR equation.

Remark 2.3. By a similar reason which is described in the paragraph
of [8, Definition (3.18)], the Gibbs measure in Definition 2.2 is tempered.

Remark 2.4. In Definition 2.2 above, we use the term ‘Gibbs measure’
as ‘tempered Gibbs measure’ in the sense of Ruelle [19].

The following theorem was shown in [12, Section 4 and appendix]. See also
[6] and [17].

Theorem 2.1. Let Gt(Φ) denote the set of Gibbs measures for the po-
tential Φ. If the condition (V.1) and (W.1) is satisfied, then Gt(Φ) is not
empty. And each µ ∈ Gt(Φ) is regular : more precisely, for each ε > 0, there
exists δ̃ > 0 such that

gΛ(x|µ) ≤ exp

{
−
∑
i∈Λ

((A − ε)x2
i − δ̃)

}
for all Λ ∈ C. (2.4)

Remark 2.5. As for (2.4), we refer to [20, Theorem 2.2] and [12, The-
orems 1.1 and 4.4].

The proof of Theorem 2.1 relies on Ruelle type estimate, which was proved
in [19], [20] and [12]. See also [17].
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3. Quasi-invariance

In this section, we will show that the Gibbs measure is quasi-invariant
under the translation by square summable functions on Z

d.
We keep the notation in the previous section. We denote by l2(Zd) the

space of square summable functions on Z
d:

l2(Zd) =
{

h = (hi) ∈ Ω; |h|22 :=
∑
i∈Zd

h2
i < ∞

}
.

For convenience, we set

Un(x) = UΛn
(x),

Wn(x|ω) = WΛn
(x|ω),

Zn(ω) = ZΛn
(ω),

dλn = dxΛn
,

Fn = FΛn
.

For a measure ν on (Ω,F) and h ∈ Ω, we denote by νh the image measure
of ν by the map Sh : Ω → Ω which is defined by Sh(x) = x + h. For a general
measurable map f : Ω → Ω, we use f∗µ to denote the image measure.

For two measures ν1, ν2 on a measurable space (X,B), we denote by
H(ν2|ν1) the relative entropy of ν2 with respect to ν1:

H(ν2|ν1) =

{
ν2,ω

(
log
(

dν2
dν1

(ω)
))

if ν2 � ν1,

∞ otherwise.

Here, we use such notation as ν2,ω to denote the integration by the measure ν2

in ω.
We now start the study of the quasi-invariance of a Gibbs measure. Let

µ ∈ Gt(Φ). As was mentioned in Theorem 2.1, µ is regular. Moreover, from
(2.4), it is easy to deduce that for each a < A, there exist 0 < Ma < ∞ such
that

µx

(
exp
(

a
∑
i∈Λ

x2
i

))
≤ M |Λ|

a for all Λ ∈ C. (3.1)

Below, we fix such Ma so that Ma is increasing in a < A.
Throughout this section, besides (V.1) and (W.1), we suppose on V and

Wi,j the following condition.
(V.2) V is C2-class and

|V ′′
(x)| ≤ K1e

ax2
for some K1 > 0, 0 < a <

1
2
A.

(W.2) W is C2-class and

|W ′′
i,j(x)| ≤ 1

2
J(|i − j|).
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We begin by the case of ‘finite dimensional translation’.
Let Ω0 denote the following subspace of Ω:

Ω0 := {ω ∈ Ω; ωi = 0 for all but finitely many i ∈ Z
d}.

Lemma 3.1. For h ∈ Ω0, set n := max{|i|; h(i) �= 0}. Then, µh is
absolutely continuous relative to µ. Moreover, the Radon-Nikodym derivative
is given by

dµh

dµ
(x) = exp(Hn(x) − Hn(x − h)). (3.2)

Proof. (3.2) is an easy consequence of DLR equation (2.3) and well-known
(see, e.g., [2, Theorem 4.4]). But we give a proof for convenience.

For each bounded measurable function f on Ω, we have

µh(f) = µ(f(x + h))

= µω

(
1

Zn(ω)

∫
f(x + h|ω)e−Hn(x|ω)dλn(x)

)

= µω

(
1

Zn(ω)

∫
f(x|ω)e−Hn(x−h|ω)dλn(x)

)

= µω

(
1

Zn(ω)

∫
f(x|ω)e

(
Hn(x|ω)−Hn(x−h|ω)

)
e−Hn(x|ω)dλn(x)

)
= µ
(
f(x) exp(Hn(x) − Hn(x − h))

)
.

The proof is completed.

Next, we study the convergence of Hn(x)−Hn(x−h). First, we note that,
from (W.2),

∂iH{i}(xi|ω) := lim
ε→0

H{i}(xi + ε|ω) − H{i}(xi|ω)
ε

exists for each ω ∈ S.
The following lemma plays a crucial role in this section.

Lemma 3.2. Define the linear map T from Ω0 to L2(Ω, µ) by

T (h) =
∑
i∈Zd

hi∂iH{i}(x).

Then, there exists a constant R > 0 independent of h ∈ Ω0 such that

‖T (h)‖2 ≤ R|h|2 (3.3)

where ‖ · ‖2 denotes the norm of L2(Ω, µ).
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Proof. First, we note that

R′ := sup
i∈Zd

µ(|∂iH{i}|2) < ∞. (3.4)

To show (3.4), we deduce from (V.2) and (W.2) that |V ′(x)| ≤ Keax2
for

some K > 0 and |W ′
i,j(x)| ≤ 1/2J(|i − j|)|x| respectively. By using these two

inequality, we have (3.4) as follows:

µ(|∂iH{i}|2) ≤ 2µ(|V ′(xi)|2) + 2µ



∣∣∣∣∣∣
∑
j �=i

W ′
i,j(xi − xj)

∣∣∣∣∣∣
2



≤ 2K2µ(e2ax2
i ) +

1
2
µ




∑

j �=i

J(|i − j|)(|xi| + |xj |)



2



≤ 2K2M2a +
J1

2
µ


∑

j �=i

J(|i − j|)(|xi| + |xj |)2



= 2K2M2a + J1µ


∑

j �=i

J(|i − j|) (|xi|2 + |xj |2
)

≤ 2K2M2a + 2J2
1 sup

i
µ
(
x2

i

)
.

Here, we have applied Schwarz inequality to
(∑

j �=i J(|i − j|)(|xi| + |xj |)
)2

in
the second line.

Second, we claim that, for i �= j,

|µ(∂iH{i}∂jH{j})| ≤ LJ(|i − j|) (3.5)

where we set L := supi,j µ(|xi∂jH{j}|). To show (3.5), according to the follow-
ing decomposition of ∂iH{i}

∂iH{i}(x) =


V ′(xi) +

∑
k �=i,j

W ′
i,k(xi − xk)


+ W ′

i,j(xi − xj),

we write

µ(∂iH{i}∂jH{j})

= µ




V ′(xi) +

∑
k �=i,j

W ′
i,k(xi − xk)


 ∂jH{j}


+ µ

(
W ′

i,j(xi − xj)∂jH{j}
)
.
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Since V ′(xi) +
∑

k �=i,j W ′
i,k(xi − xk) does not depend on xj , we can show that

the first term vanishes. Indeed, by noting that∫
∂jH{j}(xj |ω)e−H{j}(xj |ω)dxj = −

∫
∂j

(
e−H{j}(xj |ω)

)
dxj

= 0,

we have

µ




V ′(xi) +

∑
k �=i,j

W ′
i,k(xi − xk)


 ∂jH{j}




= µω


 1

Zn(ω)

∫ V ′(ωi)+
∑

k �=i,j

W ′
i,k(ωi − ωk)


∂jH{j}(xj |ω)e−H{j}(xj |ω)dxj




= µω



(
V ′(ωi) +

∑
k �=i,j W ′

i,k(ωi − ωk)
)

Zn(ω)

∫
∂jH{j}(xj |ω)e−H{j}(xj |ω)dxj




= 0.

As for the second term,

|µ(W ′
i,j(xi − xj)∂jH{j})|

≤ 1
2
J(|i − j|)µ (|xi − xj ||∂jH{j}|

)
≤ 1

2
J(|i − j|)µ ((|xi| + |xj |)|∂jH{j}|

)
≤ LJ(|i − j|).

We have obtained (3.5).
By combining (3.4) and (3.5), we have (3.3) as follows:

µ
(|T (h)|2) = µ


 ∑

i,j∈Zd

hihj∂iH{i}∂jH{j}




≤
∑

i,j∈Zd

∣∣hihjµ
(
∂iH{i}∂jH{j}

)∣∣

≤


R′∑

i∈Zd

h2
i + L

∑
i,j∈Zd

i�=j

|hihj |J(|i − j|)




≤ R′∑
i∈Zd

h2
i + L


 ∑

i,j∈Zd

i�=j

h2
i J(|i − j|)




1/2
 ∑

i,j∈Zd

i�=j

h2
jJ(|i − j|)




1/2
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≤ (R′ + LJ1)
∑
i∈Zd

h2
i .

The proof is completed.

For h ∈ Ω and n ∈ N, we define hn ∈ Ω0 by

hn
j =

{
hj if |j| ≤ n,

0 if |j| > n.

Lemma 3.3. For h ∈ l2(Zd), Hn(x)−Hn(x−hn) converges in L1(Ω, µ).

Proof. By Taylor expansion up to the second order and noting that (W.2)
ensures the absolute convergence for each x ∈ S, we have

Hn(x) − Hn(x − hn) (3.6)

=
∑
i∈Λn

hiV
′(xi) +

1
2

∑
i,j∈Λn

(hi − hj)W ′
i,j(xi − xj)

+
∑
|i|≤n
|j|>n

hiW
′
i,j(xi − xj)

−
∑
i∈Λn

h2
i

∫ 1

0

∫ 1

0

V
′′
(xi + tshi)tdtds

− 1
2

∑
i,j∈Λn

(hi − hj)2
∫ 1

0

∫ 1

0

W
′′
i,j(xi − xj + ts(hi − hj))tdtds

−
∑
|i|≤n
|j|>n

h2
i

∫ 1

0

∫ 1

0

W
′′
i,j(xi − xj + tshi)tdtds

=
∑
i∈Λn

hi∂iH{i}(x)

−
∑
i∈Λn

h2
i

∫ 1

0

∫ 1

0

V
′′
(xi + tshi)tdtds

− 1
2

∑
i,j∈Λn

(hi − hj)2
∫ 1

0

∫ 1

0

W
′′
i,j(xi − xj + ts(hi − hj))tdtds

−
∑
|i|≤n
|j|>n

h2
i

∫ 1

0

∫ 1

0

W
′′
i,j(xi − xj + tshi)tdtds.

By Lemma 3.2, the first term converges in L1(Ω, µ) as n goes to infinity. Since
we have from (V.2)



�

�

�

�

�

�

�

�

266 Gaku Sadasue

∑
i∈Λn

h2
i µ

(∣∣∣∣
∫ 1

0

∫ 1

0

V
′′
(xi + tshi)tdtds

∣∣∣∣
)

≤
∑
i∈Λn

h2
i µ

(∫ 1

0

∫ 1

0

ea(xi+tshi)
2
tdtds

)

≤ 1
2

∑
i∈Λn

h2
i µ
(
e2ax2

i +2ah2
i

)

≤ 1
2

∑
i∈Λn

h2
i e

2ah2
i M2a

≤ 1
2
|h|22e2a|h|22M2a,

the second term also converges in L1(Ω, µ). As for the third term, we can show
uniform absolute convergence as follows:

1
2

∑
i,j∈Λn

(hi − hj)2
∣∣∣∣
∫ 1

0

∫ 1

0

W
′′
i,j(xi − xj + ts(hi − hj))

∣∣∣∣ tdtds

≤ 1
2

∑
i,j∈Λn

(hi − hj)2
∫ 1

0

∫ 1

0

1
2
J(|i − j|)tdtds

≤
∑

i,j∈Λn

(
h2

i + h2
j

) 1
4
J(|i − j|)

≤ J1

2
|h|22.

The fourth term converges to 0 uniformly as n → ∞. To see this, note that

∑
i �=j

h2
i

∣∣∣∣
∫ 1

0

∫ 1

0

W
′′
i,j(xi − xj + tshi)tdtds

∣∣∣∣
=
∑
|i|≤n
|j|>n

h2
i

∫ 1

0

∫ 1

0

1
2
J(|i − j|)tdtds

≤
∑
|i|≤n
|j|>n

h2
i

1
4
J(|i − j|)

≤ J1

4
|h|22 < ∞.

The proof is completed.

We denote by H(x)−H(x− h) the above limit of Hn(x)−Hn(x− hn) in
L1(Ω, µ).

Now, we close this section by the following theorem.

Theorem 3.1. We suppose that the condition (V.1), (V.2), (W.1) and
(W.2) are satisfied. Let µ ∈ Gt(Φ). Then, for each h ∈ l2(Zd), µh and µ are
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equivalent and its Radon-Nikodym derivative is given by

dµh

dµ
(x) = exp(H(x) − H(x − h)). (3.7)

Proof. We first show that {(dµhn

/dµ
)
(x)} is a uniformly integrable se-

quence. Indeed, by Lemma 3.1, we may give a following expression for H(µhn |µ):

H
(
µhn |µ
)

= µhn

(Hn(x) − Hn(x − hn))

= µ(Hn(x + hn) − Hn(x)).

By the same method in the proof of Lemma 3.3, we can show that Hn(x +
hn) − Hn(x) converges in L1(Ω, µ). In particular

sup
n

H
(
µhn |µ
)

< ∞. (3.8)

(3.8) shows that {(dµhn/
dµ)(x)} is a uniformly integrable sequence. Therefore,

by combining this with Lemma 3.3, we obtain that
(
dµhn

/dµ
)
(x) converges to

exp(H(x)−H(x−h)) in L1(Ω, µ). (See, e.g., [11, Theorem 1.2.8].) In particular,
µh is absolutely continuous relative to µ and its Radon-Nikodym derivative is
given by (3.7).

Conversely, by considering µh and µ as (Sh)∗µ and (Sh)∗µ−h respectively,
we have µ � µh. The proof is completed.

4. Equivalence-singularity dichotomy

In this section, we treat one dimensional case. We will show that di-
chotomy between equivalence and singularity holds for Gibbs measures if the
self-potential is uniformly convex.

We keep the notation of the previous sections. And besides (V.1), (V.2),
(W.1) and (W.2), we suppose the following conditions:

(V.3) V
′′
(x) ≥ 2m > 0 for all x ∈ R.

(W.3) J1 <
4
3
m.

(W.4) J2 :=
∞∑

n=1

nJ(n) < ∞.

Remark 4.1. Under the conditions above, the uniqueness of (tempered)
Gibbs measure holds. For the uniqueness problem in one dimension, see [16].

The purpose of this section is to show the following theorem.

Theorem 4.1. Let d = 1 and suppose (V.1), (V.2), (V.3) and (W.1),
(W.2), (W.3), (W.4). Let µ be the unique Gibbs measure for the potential



�

�

�

�

�

�

�

�

268 Gaku Sadasue

Φ. Then, dichotomy between equivalence and singularity holds for µ in the
following form:

(1) For each h ∈ l2(Z), µh and µ are equivalent.
(2) For each h ∈ Ω \ l2(Z), µh and µ are mutually singular.

For the proof of Theorem 4.1, we use the Hellinger integral, which we
denote by ρ:

ρ(ν1, ν2) =
∫ √

dν1

dν3

√
dν2

dν3
dν3

where, ν1, ν2, ν3 are probability measures on Ω in relation that ν1, ν2 � ν3. It
is well-known that this definition is independent of the choice of such ν3. See,
e.g. [25, Section 1.4].

We prepare some properties of ρ. For a probability measure ν on (Ω,F),
we denote by νn the restriction of ν to Fn, and by ν(X|Fn) the conditional
expectation of X with respect to Fn.

Proposition 4.1. The following properties holds for ρ.

ρ(ν1, ν2) = lim
n→∞ ρ(ν1

n, ν2
n). (4.1)

ρ(ν1, ν2) = 0 is equivalent to ν1 ⊥ ν2. (4.2)

Proof. Here we set

αp
n(x) :=

dνp
n

dν3
n

(x), αp(x) :=
dνp

dν3
(x) (p = 1, 2)

for short. First, as for (4.1), we note that

ρ(ν1
n, ν2

n) =
∫ √

α1
n(x)
√

α2
n(x)dν3

n

=
∫ √

α1
n(x)
√

α2
n(x)dν3,

where we regard αp
n(x) as a function on (Ω,Fn) in the first line and as on (Ω,F)

in the second line. Since αp
n = ν3(αp|Fn), αp

n converges to αp in L1(Ω, ν3). (See,
e.g., [11, Proposition 2.2.4 and Theorem 2.6.6].) We have obtained (4.1).

As for (4.2), we refer to [25, Lemma 1.4.1].

To show Theorem 4.1, we need the following lemma.

Lemma 4.1. Suppose the same condition in Theorem 4.1, and let µ be
a Gibbs measure. Then,

M := sup
n

µ


exp


1

4

∑
|i|≤n
|j|>n

J(|i − j|) (x2
i + x2

j

)



 < ∞. (4.3)
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Proof. The idea of the proof is the same as in [18, Lemma 7.1].
First, we note that

µ


exp


1

4

∑
|i|≤n
|j|>n

J(|i − j|) (x2
i + x2

j

)



≤ µ


exp


1

2

∑
|i|≤n
|j|>n

J(|i − j|)x2
i






1/2

µ


exp


1

2

∑
|i|≤n
|j|>n

J(|i − j|)x2
j






1/2

.

We will show that

sup
n

µ


exp


1

2

∑
|i|≤n
|j|>n

J(|i − j|)x2
j




 < ∞. (4.4)

As for the other term, we can show the same conclusion by the same method
below. To show (4.4), we note that

∑
|i|≤n,|j|>n+N

J(|i − j|) ≤ 2
∞∑

k=N+1

kJ(k) (4.5)

holds for n, N ∈ N. Indeed, we first rewrite the left hand side as

∑
|i|≤n,|j|>n+N

J(|i − j|) =
n∑

i=−n

∑
j>n+N

J(|i − j|) +
n∑

i=−n

∑
j<−(n+N)

J(|i − j|)

=
n∑

i=−n

∑
j>n+N

J(|i + j|) +
n∑

i=−n

∑
j>n+N

J(|i + j|)

= 2
2n∑
i=0

∑
j>n+N

J(i + j − n)

= 2
2n∑
i=0

∑
j>N

J(i + j).
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Then, we set JN (i) = J(i + N) and obtain (4.5) as follows:

∑
|i|≤n,|j|>n+N

J(|i − j|) = 2
2n∑
i=0

∞∑
j=1

JN (i + j) (4.6)

≤ 2
∞∑

i=0

∞∑
j=1

JN (i + j)

= 2
∞∑

k=1

∑
i+j=k

JN (i + j)

= 2
∞∑

k=1

kJN (k)

= 2
∞∑

k=1

kJ(k + N)

= 2
∞∑

k=N+1

(k − N)J(k)

≤ 2
∞∑

k=N+1

kJ(k).

From (4.5) and (W.4), we can fix N ∈ N so that

J3 := sup
n

J
(n)
3 <

A

2
for all n ∈ N, (4.7)

where J
(n)
3 :=

∑
|i|≤n,|j|>n+N J(|i − j|). We devide

∑
|i|≤n
|j|>n

J(|i − j|)x2
j as

∑
|i|≤n
|j|>n

J(|i − j|)x2
j =

∑
|i|≤n

n<|j|≤n+N

J(|i − j|)x2
j +
∑
|i|≤n

|j|>n+N

J(|i − j|)x2
j ,

and then by using Schwarz inequality, we have

µ


exp


1

2

∑
|i|≤n
|j|>n

J(|i − j|)x2
j






≤ µ


exp


 ∑

|i|≤n
n<|j|≤n+N

J(|i − j|)x2
j






1/2

µ


exp


 ∑

|i|≤n
|j|>n+N

J(|i − j|)x2
j






1/2

.
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As for the first integral, from (3.1) and (W.1), we obtain

µ


exp


 ∑

|i|≤n
n<|j|≤n+N

J(|i − j|)x2
j




 ≤ µ


exp


J1

∑
n<|j|≤n+N

x2
j




 (4.8)

≤ M2N
J1

< ∞.

For the second term, we can show that

µ


exp


 ∑

|i|≤n
j>n+N

J(|i − j|)x2
j




 ≤ M2J3 < ∞.

To see this, set a
(n)
j =
∑

|i|≤n J(|i−j|) and b
(n)
j = a

(n)
j /J

(n)
3 . Then b

(n)
j satisfies∑

|j|>n+N b
(n)
j = 1. By using Hölder’s inequality, we have

µ


exp


 ∑

|i|≤n,|j|>n+N

J(|i − j|)x2
j




 (4.9)

= µ


exp


 ∑

|j|>n+N

b
(n)
j 2J

(n)
3 x2

j






≤
∏

|j|>n+N

(∫
e2J

(n)
3 x2

j dµ(ω)
)b

(n)
j

≤
∏

|j|>n+N

M
b
(n)
j

2J
(n)
3

≤ M2J3 .

By combining (4.8) and (4.9), we obtain

µ


exp


∑

|i|≤n
|j|>n

J(|i − j|)x2
j




 ≤ M

1/2
2J3

MN
J1

.

The proof is completed.

We now give the proof of Theorem 4.1.

Proof of Theorem 4.1. It is sufficient to give a proof for the case of h ∈
Ω \ l2(Z). And since µ2h ⊥ µ if and only if µh ⊥ µ−h, we only have to show
that

lim
n→∞ ρ(µh

n, µ−h
n ) = 0 for h ∈ Ω \ l2(Zd).
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First, we note that (µh)n = (µhn

)n and use µh
n to denote this measure. And

then, we deduce from (3.1) that µh
n is absolutely continuous relative to µn and

the Radon-Nikodym derivative is

dµh
n

dµn
(x) = µ

(
e(Hn(x)−Hn(x−hn))|Fn

)
(4.10)

= e(Un(x)−Un(x−h))µ
(
e(Wn(x)−Wn(x−hn))|Fn

)
.

From (W.2), we can show that

µ
(
e(Wn(x)−Wn(x−hn))|Fn

)

≤ exp


3

4

∑
|i|≤n
|j|>n

J(|i − j|)h2
i


µ


exp


 1

4

∑
|i|≤n
|j|>n

J(|i − j|)(x2
i + x2

j)



∣∣∣∣∣∣∣Fn


 .

(4.11)

To see this, it is sufficient to bound Wi,j(xi−xj)−Wi,j(xi−xj −hi) as follows:

|Wi,j(xi − xj) − Wi,j(xi − xj − hi)|

=
∣∣∣∣hiW

′
i,j(xi − xj) − h2

i

∫ 1

0

∫ 1

0

W ′′
i,j(xi − xj − sthi)tdtds

∣∣∣∣
≤ 1

2
|hi|J(|i − j|)(|xi| + |xj |) +

1
4
J(|i − j|)h2

i

=
1
2
J(|i − j|)|hixi| + 1

2
J(|i − j|)|hixj | + 1

4
J(|i − j|)h2

i

≤ 1
4
J(|i − j|)(h2

i + x2
i ) +

1
4
J(|i − j|)(h2

i + x2
j) +

1
4
J(|i − j|)h2

i

=
3
4
J(|i − j|)h2

i +
1
4
J(|i − j|)x2

i +
1
4
J(|i − j|)x2

j .

By combining (4.10) and (4.11), we have

(
dµh

n

dµn
(x)

dµ−h
n

dµn
(x)
)1/2

≤ exp
{
−1

2
(
Un(x + h) + Un(x − h) − 2Un(x)

)}
exp


3

4

∑
|i|≤n
|j|>n

J(|i − j|)h2
i




× µ


exp


 1

4

∑
|i|≤n
|j|>n

J(|i − j|)(x2
i + x2

j)



∣∣∣∣∣∣∣Fn


 .

And then, we obtain
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ρ(µh
n, µ−h

n ) (4.12)

= µ



√

dµh
n

dµn

√
dµ−h

n

dµn




≤ exp


3

4

∑
|i|≤n
|j|>n

J(|i − j|)h2
i


µ


exp
{
−1

2
(Un(x + h) + Un(x − h) − 2Un(x))

}

× µ


exp


1

4

∑
|i|≤n
|j|>n

J(|i − j|)(x2
i + x2

j )



∣∣∣∣∣∣∣Fn






= exp


3

4

∑
|i|≤n
|j|>n

J(|i − j|)h2
i


µ


exp
{
−1

2
(Un(x + h) + Un(x − h) − 2Un(x))

}

× exp


1

4

∑
|i|≤n
|j|>n

J(|i − j|)(x2
i + x2

j )




 .

On the other hand, by using Taylor expansion and then from (V.3) and
(W.2), we obtain

Un(x + h) + Un(x − h) − 2Un(x) (4.13)

=
∑
i∈Λn

h2
i

∫ 1

0

∫ 1

0

(
V

′′
(xi + tshi) + V

′′
(xi − tshi)

)
tdtds

+
1
2

∑
i,j∈Λn

(hi − hj)2
∫ 1

0

∫ 1

0

W
′′
i,j(xi − xj + ts(hi − hj))tdtds

+
1
2

∑
i,j∈Λn

(hi − hj)2
∫ 1

0

∫ 1

0

W
′′
i,j(xi − xj − ts(hi − hj)))tdtds

≥
∑
i∈Λn

h2
i

∫ 1

0

∫ 1

0

4mtdtds − 1
2

∑
i,j∈Λn

(hi − hj)2
∫ 1

0

∫ 1

0

J(|i − j|)tdtds

≥ 2m
∑
i∈Λn

h2
i −

1
2

∑
i,j∈Λn

J(|i − j|)(h2
i + h2

j).

By combining (4.12) and (4.13), and then (4.3), we obtain

ρ(µh
n, µ−h

n )

≤ exp


3

4

∑
|i|≤n
|j|>n

J(|i − j|)h2
i


 exp

(
−m
∑
i∈Λn

h2
i

)
exp


1

2

∑
i,j∈Λn

J(|i − j|)h2
i



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× µ


exp


1

4

∑
|i|≤n
|j|>n

J(|i − j|)(x2
i + x2

j)






≤ M exp


3

4

∑
|i|≤n

j∈Zd

J(|i − j|)h2
i


 exp

(
−m
∑
i∈Λn

h2
i

)

≤ M exp

(
3
4
J1

∑
i∈Λn

h2
i

)
exp

(
−m
∑
i∈Λn

h2
i

)
.

Since m − 3/4J1 > 0 from (W.3),

ρ(µh, µ−h) = lim
n→∞ ρ(µh

n, µ−h
n )

= 0.

The proof is completed.
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