The mod 2 cohomology ring of the symmetric space $E \mathrm{VI}$

By
Masaki NAKAGAWA

1. Introduction

The compact 1-connected irreducible symmetric spaces have been classified (E. Cartan, etc.). For classical cases, their cohomologies are well known (A. Borel, etc.). For exceptional cases, the integral cohomology rings of $E I, E I I$, EIII, $E \mathrm{IV}, E \mathrm{VII}, F \mathrm{I}, F \mathrm{II}$ and G are already determined ([6], [8], [11], [1], [12], [7], [3]). The remaining symmetric spaces $E \mathrm{~V}, E \mathrm{VI}, E \mathrm{VIII}$ and $E \mathrm{IX}$ have 2torsion, so their cohomologies are much more complicated. The purpose of this paper is to determine the mod 2 cohomology ring of E VI. Since E VI has only 2 -torsion and the torsion elements of its integral cohomology are all of order 2 the additive structure of the integral cohomology can be completely determined by its mod 2 cohomology. As a homogeneous space, it is given by

$$
E \mathrm{VI}=E_{7} / U_{1}, \quad U_{1}=S^{3} \cdot \operatorname{Spin}(12), \quad S^{3} \cap \operatorname{Spin}(12) \cong \mathbb{Z}_{2}
$$

where E_{7} is the compact 1-connected simple Lie group of type E_{7}, U_{1} is the identity component of the centralizer of an element $x_{1} \in E_{7}$. Let C_{1} be the centralizer of a suitable one dimensional torus containing x_{1}. Then

$$
C_{1}=T^{1} \cdot \operatorname{Spin}(12), \quad T^{1} \cap \operatorname{Spin}(12) \cong \mathbb{Z}_{2}
$$

and we have a fibration:

$$
\begin{equation*}
S^{2} \cong U_{1} / C_{1} \longrightarrow E_{7} / C_{1} \xrightarrow{p} E_{7} / U_{1}=E \mathrm{VI} . \tag{1.1.1}
\end{equation*}
$$

We consider the Gysin sequence associated with (1.1.1). In this case it is reduced to the following exact sequences since E_{7} / C_{1} has no torsion and no odd dimensional part in its integral cohomology ([4]):

$$
\begin{aligned}
(*)_{i} \quad 0 \longrightarrow H^{2 i-3}(E \mathrm{VI} ; A) & \xrightarrow{h} H^{2 i}(E \mathrm{VI} ; A) \xrightarrow{p^{*}} H^{2 i}\left(E_{7} / C_{1} ; A\right) \\
& \xrightarrow{\theta} H^{2 i-2}(E \mathrm{VI} ; A) \xrightarrow{h} H^{2 i+1}(E \mathrm{VI} ; A) \longrightarrow 0
\end{aligned}
$$

Received 9 August, 2000
where $\chi \in H^{3}(E \mathrm{VI} ; A), 2 \chi=0$ and $A=\mathbb{Z}$ or \mathbb{Z}_{2}. The homomorphisms θ and h satisfy

$$
\theta\left(p^{*}(x) y\right)=x \theta(y), \quad h(x)=\chi \cdot x .
$$

On the other hand we determined the integral and mod 2 cohomology ring of E_{7} / C_{1} ([10], [9]). Hence by considering the above exact sequences inductively, we will determine the mod 2 cohomology ring of $E V I$. The paper is organized as follows: In Section 2 we compute the invariant subalgebras of the Weyl groups in order to determine the rational cohomology ring of E VI. In Section 3 we discuss the integral and mod 2 cohomology of $E \mathrm{VI}$ in low degrees. In the final section, Section 4 we determine the mod 2 cohomology ring of E VI. Throughout this paper $\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)$ denotes the i-th elementary symmetric function in the variables x_{1}, \ldots, x_{n}.

I would like to express my hearty thanks to Professor Akira Kono for his various advice and encouragement.

2. The rational cohomology ring of $E \mathrm{VI}$

Let T be a maximal torus of E_{7}. According to [5] the completed Dynkin diagram of E_{7} is

where $\alpha_{i}(1 \leq i \leq 7)$ are the simple roots and $\tilde{\alpha}=2 \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+$ $3 \alpha_{5}+2 \alpha_{6}+\alpha_{7}$ is the highest root. As usual we may regard each root as an element of $H^{1}(T ; \mathbb{Z}) \xrightarrow{\sim} H^{2}(B T ; \mathbb{Z})$.

Let C_{1} be the centralizer of a one dimensional torus determined by $\alpha_{i}=$ $0(i \neq 1)$ and U_{1} the identity component of the centralizer of an element x_{1} such that $\alpha_{i}\left(x_{1}\right)=0$ for $i \neq 1$ and $\alpha_{1}\left(x_{1}\right)=1 / 2$. Then the Weyl groups $W(\cdot)$ of E_{7}, U_{1} and C_{1} are given as follows:

$$
\begin{aligned}
& W\left(E_{7}\right)=\left\langle R_{i}(1 \leq i \leq 7)\right\rangle, \quad W\left(U_{1}\right)=\left\langle R_{i}(i \neq 1), \tilde{R}\right\rangle, \\
& W\left(C_{1}\right)=\left\langle R_{i}(i \neq 1)\right\rangle,
\end{aligned}
$$

where R_{i} (resp. $\left.\tilde{R}\right)$ denotes the reflection to the hyperplane $\alpha_{i}=0($ resp. $\tilde{\alpha}=0)$.
Note that ([7])

$$
\begin{aligned}
& U_{1}=S^{3} \cdot \operatorname{Spin}(12), \quad S^{3} \cap \operatorname{Spin}(12) \cong \mathbb{Z}_{2} . \\
& C_{1}=T^{1} \cdot \operatorname{Spin}(12), \quad T^{1} \cap \operatorname{Spin}(12) \cong \mathbb{Z}_{2} .
\end{aligned}
$$

Let $\left\{w_{i}\right\}_{1 \leq i \leq 7}$ be the fundamental weights corresponding to the system of the simple roots $\left\{\alpha_{i}\right\}_{1 \leq i \leq 7}$. We also regard each weight as an element of
$H^{2}(B T ; \mathbb{Z})$ and then $\left\{w_{i}\right\}_{1 \leq i \leq 7}$ forms a basis of $H^{2}(B T ; \mathbb{Z})$. The action of R_{i} 's and \tilde{R} on $\left\{w_{i}\right\}_{1 \leq i \leq 7}$ is given as follows:

$$
\begin{aligned}
& R_{i}\left(w_{i}\right)=w_{i}-\sum_{j=1}^{7} \frac{2\left\langle\alpha_{i}, \alpha_{j}\right\rangle}{\left\langle\alpha_{j}, \alpha_{j}\right\rangle} w_{j}, \quad R_{i}\left(w_{k}\right)=w_{k} \quad \text { for } \quad k \neq i \\
& \tilde{R}\left(w_{i}\right)=w_{i}-m_{i} w_{1} \quad \text { for } \quad \tilde{\alpha}=\sum_{i=1}^{7} m_{i} \alpha_{i} .
\end{aligned}
$$

Following [12] we define

$$
\begin{aligned}
& t_{7}=w_{7}, \quad t_{i}=R_{i+1}\left(t_{i+1}\right)(2 \leq i \leq 6), \quad t_{1}=R_{1}\left(t_{2}\right), \\
& c_{i}=\sigma_{i}\left(t_{1}, \ldots, t_{7}\right), \quad t=w_{2}=\frac{1}{3} c_{1} .
\end{aligned}
$$

Then t and t_{i} 's span $H^{2}(B T ; \mathbb{Z})$ since each w_{i} is an integral linear combination of t and t_{i} 's and we have the following isomorphism:

$$
H^{*}(B T ; \mathbb{Z})=\mathbb{Z}\left[t_{1}, \ldots, t_{7}, t\right] /\left(3 t-c_{1}\right)
$$

Furthermore the action of R_{i} 's and \tilde{R} on these elements is given by the following table:

	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}	\tilde{R}
t_{1}	t_{2}	$t-t_{2}-t_{3}$						
t_{2}	t_{1}	$t-t_{1}-t_{3}$	t_{3}					$t_{1}+t_{2}-t$
t_{3}		$t-t_{1}-t_{2}$	t_{2}	t_{4}				$t_{1}+t_{3}-t$
t_{4}				t_{3}	t_{5}			$t_{1}+t_{4}-t$
t_{5}					t_{4}	t_{6}		$t_{1}+t_{5}-t$
t_{6}						t_{5}	t_{7}	$t_{1}+t_{6}-t$
t_{7}						t_{6}	$t_{1}+t_{7}-t$	
t		$-t+t_{4}+t_{5}+t_{6}+t_{7}$						$2 t_{1}-t$

where blanks indicate the trivial action.
Putting

$$
t_{0}=t-t_{1} \quad \text { and } \quad \epsilon_{i}=t_{i+1}-\frac{1}{2} t_{0}(1 \leq i \leq 6)
$$

we have

$$
H^{*}(B T ; \mathbb{Q})=\mathbb{Q}\left[t_{1}, \ldots, t_{7}\right]=\mathbb{Q}\left[t_{0}, \epsilon_{1}, \ldots, \epsilon_{6}\right]
$$

and the following table of the action:

	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}	\tilde{R}
t_{0}							$-t_{0}$
ϵ_{1}	$-\epsilon_{2}$	ϵ_{2}					
ϵ_{2}	$-\epsilon_{1}$	ϵ_{1}	ϵ_{3}				
ϵ_{3}			ϵ_{2}	ϵ_{4}			
ϵ_{4}				ϵ_{3}	ϵ_{5}		
ϵ_{5}					ϵ_{4}	ϵ_{6}	
ϵ_{6}						ϵ_{5}	

From this table
Lemma 2.1. The invariant subalgabras of the Weyl groups $W\left(C_{1}\right), W\left(U_{1}\right)$ are given as follows:
(i) $H^{*}(B T ; \mathbb{Q})^{W\left(C_{1}\right)}=\mathbb{Q}\left[t_{0}, p_{1}, p_{2}, e, p_{3}, p_{4}, p_{5}\right]$.
(ii) $H^{*}(B T ; \mathbb{Q})^{W\left(U_{1}\right)}=\mathbb{Q}\left[t_{0}^{2}, p_{1}, p_{2}, e, p_{3}, p_{4}, p_{5}\right]$
where

$$
p_{i}=\sigma_{i}\left(\epsilon_{1}^{2}, \cdots, \epsilon_{6}^{2}\right) \quad \text { and } \quad e=\prod_{i=1}^{6} \epsilon_{i} .
$$

Next as in [12] we put

$$
x_{i}=2 t_{i}-t(1 \leq i \leq 7) \quad \text { and } \quad x_{8}=t .
$$

Then we have the following $W\left(E_{7}\right)$-invariant subset

$$
S=\left\{x_{i}+x_{j},-x_{i}-x_{j}(1 \leq i<j \leq 8)\right\} \subset H^{2}(B T ; \mathbb{Q}) .
$$

Thus we have $W\left(E_{7}\right)$-invariant forms

$$
I_{n}=\sum_{y \in S} y^{n} \in H^{2 n}(B T ; \mathbb{Q})^{W\left(E_{7}\right)}
$$

Consider the following elements $\left(J_{i} \in H^{2 i}(B T ; \mathbb{Q})\right)$:

$$
\begin{aligned}
J_{2}= & c_{2}-4 t^{2}, \\
J_{6}= & c_{3}^{2}+8 c_{6}-4 c_{5} t-4 c_{3} t^{3}+4 t^{6}, \\
J_{8}= & 2 c_{4}^{2}-3 c_{3} c_{5}+12 c_{7} t-3 c_{3} c_{4} t-30 c_{6} t^{2}+24 c_{5} t^{3}+2 c_{4} t^{4}+2 t^{8}, \\
J_{10}= & c_{5}^{2}-4 c_{3} c_{7}-2 c_{4} c_{5} t+2 c_{3} c_{5} t^{2}+c_{4}^{2} t^{2}-2 c_{3} c_{4} t^{3}+12 c_{7} t^{3}-8 c_{6} t^{4}+4 c_{4} t^{6}, \\
J_{12}= & -6 t_{0}^{8} u+9 t_{0}^{4} u^{2}+2 t_{0}^{6} v-12 t_{0}^{2} u v+u^{3}+3 v^{2}, \\
J_{14}= & t_{0}^{14}-6 t_{0}^{10} u-3 t_{0}^{6} u^{2}+4 t_{0}^{8} v-6 t_{0}^{4} u v-3 u^{2} v+3 t_{0}^{2} v^{2}, \\
J_{18}= & -8 t_{0}^{14} u+24 t_{0}^{6} u^{3}+9 t_{0}^{2} u^{4}-8 t_{0}^{8} u v-48 t_{0}^{4} u^{2} v-12 u^{3} v-4 t_{0}^{6} v^{2} \\
& +24 t_{0}^{2} u v^{2}-8 v^{3},
\end{aligned}
$$

where

$$
t_{0}=t-t_{1}, \quad u=\frac{1}{6} p_{2}-\frac{13}{32} t_{0}^{4}, \quad v=e+\frac{3}{4} t_{0}^{2} u-\frac{43}{64} t_{0}^{6}
$$

Then the following facts are proved ([12], [9]).
Lemma 2.2. The invariant subalgebra of the Weyl group $W\left(E_{7}\right)$ is given as follows:

$$
H^{*}(B T ; \mathbb{Q})^{W\left(E_{7}\right)}=\mathbb{Q}\left[I_{2}, I_{6}, I_{8}, I_{10}, I_{12}, I_{14}, I_{18}\right] .
$$

Lemma 2.3.

(i) $\quad I_{2}=-2^{5} \cdot 3 J_{2}, \quad I_{6} \equiv 2^{8} \cdot 3^{2} J_{6} \bmod \mathfrak{a}_{6}$, $I_{8} \equiv 2^{12} \cdot 5 J_{8} \quad \bmod \mathfrak{a}_{8}, \quad I_{10} \equiv 2^{12} \cdot 3^{2} \cdot 5 \cdot 7 J_{10} \bmod \mathfrak{a}_{10}$. In $H^{*}(B T ; \mathbb{Q})^{W\left(C_{1}\right)}=\mathbb{Q}\left[t_{0}, p_{1}, p_{2}, e, p_{3}, p_{4}, p_{5}\right]$ we have
(ii) $I_{2}=24\left(2 p_{1}+t_{0}^{2}\right), \quad I_{6}=2^{8} \cdot 3^{2} p_{3}+2^{9} \cdot 3^{2} \cdot 5 e+$ decomp., $I_{8}=2^{11} \cdot 3 \cdot 5 p_{4}+$ decomp.,$\quad I_{10}=2^{12} \cdot 3^{2} \cdot 5 \cdot 7 p_{5}+$ decom p.
(iii) $I_{12} \equiv-2^{16} \cdot 3^{4} \cdot 5 J_{12} \bmod \mathfrak{b}_{12}, I_{14} \equiv 2^{17} \cdot 3 \cdot 7 \cdot 11 \cdot 29 J_{14} \bmod \mathfrak{b}_{12}$, $I_{18} \equiv 2^{20} \cdot 3^{3} \cdot 1229 J_{18} \bmod \mathfrak{b}_{12}$
where decomp. means decomposable elements and $\mathfrak{a}_{\mathfrak{i}}$ (resp. $\mathfrak{b}_{\mathfrak{i}}$) denotes the ideal of $H^{*}(B T ; \mathbb{Q})\left(\right.$ resp. $\left.H^{*}(B T ; \mathbb{Q})^{W\left(C_{1}\right)}\right)$ generated by I_{j} 's for $j<i, j \in$ $\{2,6,8,10,12,14,18\}$.

Now we briefly review the classical results of A. Borel ([2]). Let G be a compact connected Lie group, U be a closed connected subgroup of G of maximal rank and T be a common maximal torus. Then both the rational cohomology spectral sequences for the fibrations

$$
G / T \xrightarrow{\iota_{0}} B T \xrightarrow{\rho_{0}} B G, \quad G / U \xrightarrow{\iota} B U \xrightarrow{\rho} B G
$$

collapse. In particular

$$
\begin{aligned}
& \rho_{0}^{*}: H^{*}(B G ; \mathbb{Q}) \rightarrow H^{*}(B T ; \mathbb{Q}), \rho^{*}: H^{*}(B G ; \mathbb{Q}) \rightarrow H^{*}(B U ; \mathbb{Q}) \text { injective, } \\
& \iota_{0}^{*}: H^{*}(B T ; \mathbb{Q}) \rightarrow H^{*}(G / T ; \mathbb{Q}), \iota^{*}: H^{*}(B U ; \mathbb{Q}) \rightarrow H^{*}(G / U ; \mathbb{Q}) \text { surjective, } \\
& \text { and } \operatorname{Ker} \iota_{0}^{*}=\left(\rho_{0}^{*} H^{+}(B G ; \mathbb{Q})\right),{\operatorname{Ker} \iota^{*}}^{*}=\left(\rho^{*} H^{+}(B G ; \mathbb{Q})\right) .
\end{aligned}
$$

Furthermore $\operatorname{Im} \rho_{0}^{*}$ coincides with the invariant subalgebra $H^{*}(B T ; \mathbb{Q})^{W(G)}$. Therefore we have the following description of $H^{*}(G / U ; \mathbb{Q})$:

$$
\begin{aligned}
& H^{*}(G / U ; \mathbb{Q}) \stackrel{\stackrel{i^{*}}{\sim}}{\sim} H^{*}(B U ; \mathbb{Q}) /\left(\rho^{*} H^{+}(B G ; \mathbb{Q})\right) \\
& \cong H^{*}(B T ; \mathbb{Q})^{W(U)} /\left(H^{+}(B T ; \mathbb{Q})^{W(G)}\right) .
\end{aligned}
$$

We apply this to the case $U=C_{1}$ and U_{1}. Then using Lemmas 2.1, 2.2 and 2.3 we have (For later use we replaced v by $v^{\prime}=v-t_{0}^{2} u$)

Lemma 2.4.

(i) $\quad H^{*}\left(E_{7} / C_{1} ; \mathbb{Q}\right)=\mathbb{Q}\left[t_{0}, u, v^{\prime}\right] /\left(J_{12}^{\prime}, J_{14}^{\prime}, J_{18}^{\prime}\right)$.
(ii) $\quad H^{*}(E \mathrm{VI} ; \mathbb{Q})=\mathbb{Q}[a, b, c] /\left(r_{12}, r_{14}, r_{18}\right)$,
where a, b and c are elements of $H^{*}(E \mathrm{VI} ; \mathbb{Q})$ determined by $p^{*}(a)=t_{0}^{2}, p^{*}(b)=$
$2 u$ and $p^{*}(c)=v^{\prime}$,

$$
\begin{aligned}
J_{12}^{\prime}= & -4 t_{0}^{8} u+2 t_{0}^{6} v^{\prime}-6 t_{0}^{2} u v^{\prime}+u^{3}+3 v^{\prime 2}, \\
J_{14}^{\prime}= & t_{0}^{14}-2 t_{0}^{10} u-6 t_{0}^{6} u^{2}+4 t_{0}^{8} v^{\prime}-3 t_{0}^{2} u^{3}-3 u^{2} v^{\prime}+3 t_{0}^{2} v^{\prime 2}, \\
J_{18}^{\prime}= & -8 t_{0}^{14} u-8 t_{0}^{6} u^{3}-3 t_{0}^{2} u^{4}-16 t_{0}^{8} u v^{\prime}-12 t_{0}^{10} u^{2}-24 t_{0}^{4} u^{2} v^{\prime}-12 u^{3} v^{\prime} \\
& -4 t_{0}^{6} v^{2}-8 v^{\prime 3}, \\
r_{12}= & -2 a^{4} b+2 a^{3} c-3 a b c+\frac{1}{8} b^{3}+3 c^{2}, \\
r_{14}= & a^{7}-a^{5} b+4 a^{4} c-\frac{3}{2} a^{3} b^{2}-\frac{3}{8} a b^{3}+3 a c^{2}-\frac{3}{4} b^{2} c, \\
r_{18}= & -4 a^{7} b-3 a^{5} b^{2}-8 a^{4} b c-a^{3} b^{3}-4 a^{3} c^{2}-6 a^{2} b^{2} c-\frac{3}{16} a b^{4}-\frac{3}{2} b^{3} c-8 c^{3} .
\end{aligned}
$$

Remark 2.5. As proved in the next section, a, b and c are all integral cohomology classes.

Furthermore we determined the integral cohomology ring of E_{7} / C_{1} ([9], Theorem 5.7):

Theorem 2.6.

$$
H^{*}\left(E_{7} / C_{1} ; \mathbb{Z}\right)=\mathbb{Z}\left[t_{0}, u, v^{\prime}, w\right] /\left(\sigma_{9}^{\prime}, \sigma_{12}^{\prime}, \sigma_{14}^{\prime}, \sigma_{18}^{\prime}\right)
$$

where $\operatorname{deg}\left(t_{0}\right)=2, \operatorname{deg}(u)=8, \operatorname{deg}\left(v^{\prime}\right)=12, \operatorname{deg}(w)=18$ and

$$
\begin{aligned}
\sigma_{9}^{\prime} & =2 w-t_{0} u^{2} \\
\sigma_{12}^{\prime} & =-4 t_{0}^{8} u+2 t_{0}^{6} v^{\prime}-6 t_{0}^{2} u v^{\prime}+u^{3}+3{v^{\prime 2}}^{2} \\
\sigma_{14}^{\prime} & =t_{0}^{14}-2 t_{0}^{10} u-6 t_{0}^{6} u^{2}+4 t_{0}^{8} v^{\prime}-3 t_{0}^{2} u^{3}-3 u^{2} v^{\prime}+3 t_{0}^{2}{v^{2}}^{2} \\
\sigma_{18}^{\prime} & =-2 t_{0}^{14} u-2 t_{0}^{6} u^{3}-3 w^{2}-4 t_{0}^{8} u v^{\prime}-3 t_{0}^{10} u^{2}-6 t_{0}^{4} u^{2} v^{\prime}-3 u^{3} v^{\prime}-t_{0}^{6} v^{\prime 2}-2{v^{\prime}}^{3}
\end{aligned}
$$

From this theorem (see also [10], Theorem 5.5) we have the following

Theorem 2.7.

$$
H^{*}\left(E_{7} / C_{1} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[t_{0}, u, v^{\prime}, w\right] /\left(t_{0} u^{2}, u^{3}+v^{\prime 2}, t_{0}^{14}+u^{2} v^{\prime}, w^{2}+v^{\prime 3}\right)
$$

Squaring operations on t_{0}, u, v^{\prime}, w are given as follows:

$$
\begin{aligned}
& S q^{2}\left(t_{0}\right)=t_{0}^{2}, S q^{2}(u)=t_{0} u, S q^{4}(u)=t_{0}^{2} u+v^{\prime} \\
& S q^{2}\left(v^{\prime}\right)=t_{0}^{7}+t_{0} v^{\prime}, S q^{4}\left(v^{\prime}\right)=t_{0}^{8}+t_{0}^{2} v^{\prime}, S q^{8}\left(v^{\prime}\right)=t_{0}^{6} u+t_{0}^{4} v^{\prime}+t_{0} w+u v^{\prime} \\
& S q^{2}(w)=t_{0}^{10}+t_{0}^{6} u+u v^{\prime}, S q^{4}(w)=t_{0}^{11}+t_{0}^{7} u \\
& S q^{8}(w)=t_{0}^{13}+t_{0}^{9} u+t_{0}^{7} v^{\prime}+u w, S q^{16}(w)=t_{0}^{13} u+t_{0} u v^{\prime 2}+u^{2} w
\end{aligned}
$$

Corollary 2.8. (i) An additive basis of $H^{*}\left(E_{7} / C_{1} ; \mathbb{Z}\right)$ as a free module for degree ≤ 20 is given as follows:

deg	0	2	4	6	8	10	12	14	16	18	20
	1	t_{0}	t_{0}^{2}	t_{0}^{3}	t_{0}^{4}	t_{0}^{5}	t_{0}^{6}	t_{0}^{7}	t_{0}^{8}	t_{0}^{9}	t_{0}^{10}
					u	$t_{0} u$	$t_{0}^{2} u$	$t_{0}^{3} u$	$t_{0}^{4} u$	$t_{0}^{5} u$	$t_{0}^{6} u$
							v^{\prime}	$t_{0} v^{\prime}$	$t_{0}^{2} v^{\prime}$	$t_{0}^{3} v^{\prime}$	$t_{0}^{4} v^{\prime}$
									u^{2}	w	$t_{0} w$
											$u v^{\prime}$

(ii) An additive basis of $H^{*}\left(E_{7} / C_{1} ; \mathbb{Z}_{2}\right)$ as a \mathbb{Z}_{2}-vector space is given as follows:

$$
\left\{\begin{array}{l}
t_{0}^{i}, t_{0}^{i} u, t_{0}^{i} v^{\prime}, t_{0}^{i} w, t_{0}^{i} u v^{\prime}, t_{0}^{i} u w, t_{0}^{i} v^{\prime} w, t_{0}^{i} u v^{\prime} w(0 \leq i \leq 13), \\
u^{2}, v^{\prime 2}, u^{2} v^{\prime}, u v^{\prime 2}, u^{2} w, v^{\prime 3}, u^{2} v^{\prime 2}, v^{\prime 2} w, u^{2} v^{\prime} w, u v^{\prime 2} w, v^{\prime 4} \\
v^{\prime 3} w, u^{2} v^{\prime 2} w, v^{\prime 4} w
\end{array}\right\} .
$$

3. The cohomology of $E \mathrm{VI}$ in low degrees

In this section we consider the integral and mod 2 cohomology of EVI in low degrees. As is mentioned in the introduction, we consider the Gysin sequence associated with the 2 -sphere bundle $S^{2} \cong U_{1} / C_{1} \longrightarrow E_{7} / C_{1} \xrightarrow{p}$ $E_{7} / U_{1}=E \mathrm{VI}:$

$$
\begin{aligned}
(*)_{i} \quad 0 \longrightarrow H^{2 i-3}(E \mathrm{VI} ; A) & \xrightarrow{h} H^{2 i}(E \mathrm{VI} ; A) \xrightarrow{p^{*}} H^{2 i}\left(E_{7} / C_{1} ; A\right) \\
& \xrightarrow{\theta} H^{2 i-2}(E \mathrm{VI} ; A) \xrightarrow{h} H^{2 i+1}(E \mathrm{VI} ; A) \longrightarrow 0
\end{aligned}
$$

where $A=\mathbb{Z}$ or \mathbb{Z}_{2} and the homomorphisms θ and h satisfy

$$
\theta\left(p^{*}(x) y\right)=x \theta(y), \quad h(x)=\chi \cdot x
$$

for some $\chi \in H^{3}(E \mathrm{VI} ; A)$ such that $2 \chi=0$. Since $H^{2 i}\left(E_{7} / C_{1} ; \mathbb{Z}\right)$ is free, it follows from (*) that

$$
\begin{equation*}
H^{\text {odd }}(E \mathrm{VI} ; \mathbb{Z})=\chi \cdot H^{\text {even }}(E \mathrm{VI} ; \mathbb{Z}) \subset \operatorname{Im} h=\operatorname{Tor} H^{*}(E \mathrm{VI} ; \mathbb{Z}) \tag{3.3.1}
\end{equation*}
$$

and the latter is an elementary abelian 2-group. ($\operatorname{Tor} H^{*}(E \mathrm{VI} ; \mathbb{Z})$ means the torsion subgroup of $H^{*}(E \mathrm{VI} ; \mathbb{Z})$)

Since E_{7} is 2-connected, $\pi_{1}(E \mathrm{VI}) \cong \pi_{0}\left(U_{1}\right)=0, \pi_{2}(E \mathrm{VI}) \cong \pi_{1}\left(U_{1}\right) \cong \mathbb{Z}_{2}$. Therefore

$$
H_{1}(E \mathrm{VI} ; \mathbb{Z})=0, \quad H_{2}(E \mathrm{VI} ; \mathbb{Z})=\mathbb{Z}_{2}
$$

and by the universal coefficient theorem we have

$$
H^{1}(E \mathrm{VI} ; \mathbb{Z})=H^{2}(E \mathrm{VI} ; \mathbb{Z})=0, \quad H^{3}(E \mathrm{VI} ; \mathbb{Z}) \neq 0
$$

Then by $(*)_{1}$:

$$
0 \longrightarrow\left\langle t_{0}\right\rangle \xrightarrow{\theta}\langle 1\rangle \xrightarrow{\chi} H^{3}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0
$$

we deduce

$$
H^{3}(E \mathrm{VI} ; \mathbb{Z})=\langle\chi\rangle \cong \mathbb{Z}_{2}, \quad \text { and } \quad \theta\left(t_{0}\right)=2
$$

Here we change θ to $-\theta$ if it is necessary. Consider $(*)_{1}$ with $\bmod 2$ coefficient

$$
0 \longrightarrow H^{2}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}\right\rangle \xrightarrow{\theta}\langle 1\rangle \xrightarrow{y_{3} \cdot} H^{3}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
$$

where $y_{3}=\chi \bmod 2$. Since $\theta\left(t_{0}\right)=2$ with integer coefficient, $\theta\left(t_{0}\right) \equiv 0$ $\bmod 2$. Hence by the exactness there exists an element $y_{2} \in H^{2}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$ such that $p^{*}\left(y_{2}\right)=t_{0}$ and we have

$$
H^{2}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}\right\rangle \quad \text { and } \quad H^{3}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{3}\right\rangle
$$

Next consider $(*)_{2}$:

$$
0 \longrightarrow H^{4}(E \mathrm{VI} ; \mathbb{Z}) \xrightarrow{p^{*}}\left\langle t_{0}^{2}\right\rangle \xrightarrow{\theta} 0 \xrightarrow{\chi} H^{5}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0
$$

From this there exists an element $a \in H^{4}(E \mathrm{VI} ; \mathbb{Z})$ such that $p^{*}(a)=t_{0}^{2}$ and we have

$$
H^{4}(E \mathrm{VI} ; \mathbb{Z})=\langle a\rangle \cong \mathbb{Z} \quad \text { and } \quad H^{5}(E \mathrm{VI} ; \mathbb{Z})=0
$$

Considering with mod 2 coefficient

$$
0 \longrightarrow H^{4}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{2}\right\rangle \xrightarrow{\theta}\left\langle y_{2}\right\rangle \xrightarrow{y_{3} .} H^{5}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
$$

we have $\theta\left(t_{0}^{2}\right)=\theta\left(p^{*}\left(y_{2}^{2}\right)\right)=0$ and we deduce

$$
H^{4}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{2}\right\rangle \quad \text { and } \quad H^{5}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2} y_{3}\right\rangle
$$

Note that $a \bmod 2=y_{2}^{2}$ since $p^{*}(a)=t_{0}^{2}$.
Next consider $(*)_{3}$:

$$
0 \longrightarrow\langle\chi\rangle \xrightarrow{\chi \cdot} H^{6}(E \mathrm{VI} ; \mathbb{Z}) \xrightarrow{p^{*}}\left\langle t_{0}^{3}\right\rangle \xrightarrow{\theta}\langle a\rangle \xrightarrow{\chi \cdot} H^{7}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0 .
$$

Since $\theta\left(t_{0}^{3}\right)=\theta\left(p^{*}(a) t_{0}\right)=a \theta\left(t_{0}\right)=2 a$, we deduce

$$
\left.H^{6}(E \mathrm{VI} ; \mathbb{Z})=\left\langle\chi^{2}\right\rangle \cong \mathbb{Z}_{2}, \quad \text { and } \quad H^{7}(E \mathrm{VI} ; \mathbb{Z})=\langle a\rangle\right\rangle \cong \mathbb{Z}_{2}
$$

Considering with mod 2 coefficient

$$
0 \longrightarrow\left\langle y_{3}\right\rangle \xrightarrow{y_{3} .} H^{6}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{3}\right\rangle \xrightarrow{\theta}\left\langle y_{2}^{2}\right\rangle \xrightarrow{y_{3} .} H^{7}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
$$

we have $\theta\left(t_{0}^{3}\right)=\theta\left(p^{*}\left(y_{2}^{3}\right)\right)=0$ and we deduce

$$
H^{6}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{3}, y_{3}^{2}\right\rangle \quad \text { and } \quad H^{7}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{2} y_{3}\right\rangle
$$

Next consider (*) ${ }_{4}$:

$$
0 \longrightarrow H^{8}(E \mathrm{VI} ; \mathbb{Z}) \xrightarrow{p^{*}}\left\langle t_{0}^{4}, u\right\rangle \xrightarrow{\theta}\left\langle\chi^{2}\right\rangle \xrightarrow{\chi \cdot} H^{9}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0 .
$$

Then $\theta\left(t_{0}^{4}\right)=\theta\left(p^{*}\left(a^{2}\right)\right)=0$. As to the image of u, there are two possibilities:
(i) $\theta(u)=\chi^{2}$,
(ii) $\theta(u)=0$.

Lemma 3.1. (ii) does not occur.

Proof. If (ii) $\theta(u)=0$ is true, $\theta(u) \equiv 0 \bmod 2$. By the exactness there exists an element $y_{8} \in H^{8}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$ such that $p^{*}\left(y_{8}\right)=u$. Then $\theta\left(v^{\prime}\right)=$ $\theta\left(v+t_{0}^{2} u\right)=\theta\left(S q^{4}(u)+t_{0}^{2} u\right)=\theta\left(p^{*}\left(S q^{4}\left(y_{8}\right)+y_{2}^{2} y_{8}\right)\right)=0$. Hence there exists an element $y_{12} \in H^{12}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$ such that $p^{*}\left(y_{12}\right)=v^{\prime}$. Applying $S q^{8}$ on both sides, we have $p^{*}\left(S q^{8}\left(y_{12}\right)\right)=S q^{8}\left(v^{\prime}\right)=t_{0}^{6} u+t_{0}^{4} v^{\prime}+t_{0} w+u v^{\prime}$. Therefore by the exactness

$$
\begin{aligned}
0 & =\theta\left(t_{0}^{6} u\right)+\theta\left(t_{0}^{4} v^{\prime}\right)+\theta\left(t_{0} w\right)+\theta\left(u v^{\prime}\right) \\
& =\theta\left(p^{*}\left(y_{2}^{6} y_{8}\right)\right)+\theta\left(p^{*}\left(y_{2}^{4} y_{12}\right)\right)+\theta\left(p^{*}\left(y_{2}\right) w\right)+\theta\left(p^{*}\left(y_{8} y_{12}\right)\right) \\
& =y_{2} \theta(w)
\end{aligned}
$$

and also $y_{3} \theta(w)=0$. On the other hand since $p^{*}\left(y_{8}^{3}+y_{12}^{2}\right)=u^{3}+{v^{\prime}}^{2}=$ $0, p^{*}\left(y_{2}^{14}+y_{8}^{2} y_{12}\right)=t_{0}^{14}+u^{2} v^{\prime}=0$ by Theorem 2.7 , we may put

$$
y_{8}^{3}+y_{12}^{2}=y_{3} \cdot f \quad \text { and } \quad y_{2}^{14}+y_{8}^{2} y_{12}=y_{3} \cdot g
$$

for some elements $f, g \in H^{*}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$. Then using these relations

$$
\begin{aligned}
\theta\left(v^{\prime 4} w\right) & =\theta\left(p^{*}\left(y_{12}^{4}\right) w\right)=y_{12}^{4} \theta(w)=y_{12}^{2}\left(y_{8}^{3}+y_{3} \cdot f\right) \theta(w) \\
& =y_{12}^{2} y_{8}^{3} \theta(w)=y_{12} y_{8}\left(y_{2}^{14}+y_{3} \cdot g\right) \theta(w)=0 .
\end{aligned}
$$

This contradicts the fact that $\theta: H^{66}\left(E_{7} / C_{1} ; \mathbb{Z}_{2}\right)=\left\langle v^{\prime 4} w\right\rangle \longrightarrow H^{64}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$ is an isomorphism.

Therefore (i) $\theta(u)=\chi^{2}$ is true. Then from $(*)_{4}$ there exists an element $b \in H^{8}(E \mathrm{VI} ; \mathbb{Z})$ such that $p^{*}(b)=2 u$ and we have

$$
H^{8}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a^{2}, b\right\rangle \cong \mathbb{Z} \oplus \mathbb{Z} \quad \text { and } \quad H^{9}(E \mathrm{VI} ; \mathbb{Z})=0, \chi^{3}=0
$$

Considering with mod 2 coefficient

$$
0 \longrightarrow\left\langle y_{2} y_{3}\right\rangle \xrightarrow{y_{3} \cdot} H^{8}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{4}, u\right\rangle \xrightarrow{\theta}\left\langle y_{2}^{3}, y_{3}^{2}\right\rangle \xrightarrow{y_{3} \cdot} H^{9}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
$$

we have $\theta\left(t_{0}^{4}\right)=\theta\left(p^{*}\left(y_{2}^{4}\right)\right)=0, \theta(u)=y_{3}^{2}$ and therefore

$$
H^{8}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{4}, y_{2} y_{3}^{2}\right\rangle \quad \text { and } \quad H^{9}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{3} y_{3}\right\rangle
$$

where $b \bmod 2=y_{2} y_{3}^{2}$.
Next consider $(*)_{5}$:

$$
0 \longrightarrow\langle a \chi\rangle \xrightarrow{\chi} H^{10}(E \mathrm{VI} ; \mathbb{Z}) \xrightarrow{p^{*}}\left\langle t_{0}^{5}, t_{0} u\right\rangle \xrightarrow{\theta}\left\langle a^{2}, b\right\rangle \xrightarrow{\chi \cdot} H^{11}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0 .
$$

Then $\theta\left(t_{0}^{5}\right)=\theta\left(t_{0} p^{*}\left(a^{2}\right)\right)=a^{2} \theta\left(t_{0}\right)=2 a^{2}, 2 \theta\left(t_{0} u\right)=\theta\left(2 t_{0} u\right)=\theta\left(t_{0} p^{*}(b)\right)=$ $b \theta\left(t_{0}\right)=2 b$ and therefore $\theta\left(t_{0} u\right)=b$ since $H^{8}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a^{2}, b\right\rangle$ is free. Hence θ is injective and we have

$$
H^{10}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a \chi^{2}\right\rangle \cong \mathbb{Z}_{2} \quad \text { and } \quad H^{11}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a^{2} \chi\right\rangle \cong \mathbb{Z}_{2}, b \chi=0
$$

Considering with mod 2 coefficient

$$
\begin{aligned}
0 \longrightarrow\left\langle y_{2}^{2} y_{3}\right\rangle \xrightarrow{y_{3} \cdot} H^{10}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & \xrightarrow{p^{*}}\left\langle t_{0}^{5}, t_{0} u\right\rangle \\
& \xrightarrow{\theta}\left\langle y_{2}^{4}, y_{2} y_{3}^{2}\right\rangle \xrightarrow{y_{3} .} H^{11}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
\end{aligned}
$$

we have $\theta\left(t_{0}^{5}\right)=\theta\left(p^{*}\left(y_{2}^{5}\right)\right)=0, \theta\left(t_{0} u\right)=\theta\left(p^{*}\left(y_{2}\right) u\right)=y_{2} \theta(u)=y_{2} y_{3}^{2}$ and therefore

$$
H^{10}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{5}, y_{2}^{2} y_{3}^{2}\right\rangle \quad \text { and } \quad H^{11}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{4} y_{3}\right\rangle
$$

Next consider $(*)_{6}$:

$$
0 \longrightarrow H^{12}(E \mathrm{VI} ; \mathbb{Z}) \xrightarrow{p^{*}}\left\langle t_{0}^{6}, t_{0}^{2} u, v^{\prime}\right\rangle \xrightarrow{\theta}\left\langle a \chi^{2}\right\rangle \xrightarrow{\chi \cdot} H^{13}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0 .
$$

Then $\theta\left(t_{0}^{6}\right)=\theta\left(p^{*}\left(a^{3}\right)\right)=0, \theta\left(t_{0}^{2} u\right)=\theta\left(p^{*}(a) u\right)=a \theta(u)=a \chi^{2}$. As to the image of v^{\prime}, there are two possibilities:
(i) $\theta\left(v^{\prime}\right)=a \chi^{2}$,
(ii) $\theta\left(v^{\prime}\right)=0$.

Now we assume the following lemma which will be proved at the end of this section.

Lemma 3.2. (i) does not occur.
Thererfore (ii) $\theta\left(v^{\prime}\right)=0$ is true. Then from $(*)_{6}$ there exists an element $c \in H^{12}(E \mathrm{VI} ; \mathbb{Z})$ such that $p^{*}(c)=v^{\prime}$ and we have

$$
H^{12}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a^{3}, a b, c\right\rangle \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \quad \text { and } \quad H^{13}(E \mathrm{VI} ; \mathbb{Z})=0
$$

Considering with mod 2 coefficient

$$
\begin{aligned}
0 \longrightarrow\left\langle y_{2}^{3} y_{3}\right\rangle \xrightarrow{y_{3}} H^{12}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & \xrightarrow{p^{*}}\left\langle t_{0}^{6}, t_{0}^{2} u, v^{\prime}\right\rangle \\
& \xrightarrow{\theta}\left\langle y_{2}^{5}, y_{2}^{2} y_{3}^{2}\right\rangle \xrightarrow{y_{3} .} H^{13}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
\end{aligned}
$$

we have $\theta\left(t_{0}^{6}\right)=\theta\left(p^{*}\left(y_{2}^{6}\right)\right)=0, \theta\left(t_{0}^{2} u\right)=\theta\left(p^{*}\left(y_{2}^{2}\right) u\right)=y_{2}^{2} \theta(u)=y_{2}^{2} y_{3}^{2}, \theta\left(v^{\prime}\right)=0$ and therefore

$$
H^{12}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{6}, y_{2}^{3} y_{3}^{2}, y_{12}\right\rangle \quad \text { and } \quad H^{13}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{5} y_{3}\right\rangle
$$

where $y_{12}=c \bmod 2$.
We continue this argument up to degree ≤ 20.
Next consider $(*)_{7}$:

$$
\begin{aligned}
0 \longrightarrow\left\langle a^{2} \chi\right\rangle \xrightarrow{\chi} H^{14}(E \mathrm{VI} ; \mathbb{Z}) & \xrightarrow{p^{*}}\left\langle t_{0}^{7}, t_{0}^{3} u, t_{0} v^{\prime}\right\rangle \\
& \xrightarrow{\theta}\left\langle a^{3}, a b, c\right\rangle \xrightarrow{\chi} H^{15}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0 .
\end{aligned}
$$

Then $\theta\left(t_{0}^{7}\right)=\theta\left(p^{*}\left(a^{3}\right) t_{0}\right)=a^{3} \theta\left(t_{0}\right)=2 a^{3}, \theta\left(t_{0}^{3} u\right)=\theta\left(p^{*}(a) t_{0} u\right)=a \theta\left(t_{0} u\right)=$ $a b, \theta\left(t_{0} v^{\prime}\right)=\theta\left(p^{*}(c) t_{0}\right)=c \theta\left(t_{0}\right)=2 c$ and hence θ is injective and we have

$$
H^{14}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a^{2} \chi^{2}\right\rangle \quad \text { and } \quad H^{15}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a^{3} \chi, c \chi\right\rangle
$$

Considering with mod 2 coefficient

$$
\begin{aligned}
0 \longrightarrow\left\langle y_{2}^{4} y_{3}\right\rangle \xrightarrow{y_{3} \cdot} H^{14}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & \xrightarrow{p^{*}}\left\langle t_{0}^{7}, t_{0}^{3} u, t_{0} v^{\prime}\right\rangle \\
& \xrightarrow{\theta}\left\langle y_{2}^{6}, y_{12}, y_{2}^{3} y_{3}^{2}\right\rangle \xrightarrow{y_{3}} H^{15}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
\end{aligned}
$$

we have $\theta\left(t_{0}^{7}\right)=\theta\left(p^{*}\left(y_{2}^{7}\right)\right)=0, \theta\left(t_{0}^{3} u\right)=\theta\left(p^{*}\left(y_{2}^{3}\right) u\right)=y_{2}^{3} \theta(u)=y_{2}^{3} y_{3}^{2}, \theta\left(t_{0} v^{\prime}\right)=$ $\theta\left(p^{*}\left(y_{2} y_{12}\right)\right)=0$ and therefore

$$
H^{14}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{7}, y_{2} y_{12}, y_{2}^{4} y_{3}^{2}\right\rangle \quad \text { and } \quad H^{15}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{6} y_{3}, y_{3} y_{12}\right\rangle
$$

Next consider $(*)_{8}$:

$$
0 \longrightarrow H^{16}(E \mathrm{VI} ; \mathbb{Z}) \xrightarrow{p^{*}}\left\langle t_{0}^{8}, t_{0}^{4} u, t_{0}^{2} v^{\prime}, u^{2}\right\rangle \xrightarrow{\theta}\left\langle a^{2} \chi^{2}\right\rangle \xrightarrow{\chi} H^{17}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0
$$

Then $\theta\left(t_{0}^{8}\right)=\theta\left(p^{*}\left(a^{4}\right)\right)=0, \theta\left(t_{0}^{4} u\right)=\theta\left(p^{*}\left(a^{2}\right) u\right)=a^{2} \theta(u)=a^{2} \chi^{2}, \theta\left(t_{0}^{2} v^{\prime}\right)=$ $\theta\left(p^{*}(a c)\right)=0$. As to the image of u^{2}, there are two possibilities:
(i) $\theta\left(u^{2}\right)=a^{2} \chi^{2}$,
(ii) $\theta\left(u^{2}\right)=0$.

Lemma 3.3. (i) does not occur.

Proof. Consider

$$
\theta: H^{18}\left(E_{7} / C_{1} ; \mathbb{Z}\right)=\left\langle t_{0}^{9}, t_{0}^{5} u, t_{0}^{3} v^{\prime}, w\right\rangle \longrightarrow H^{16}(E \mathrm{VI} ; \mathbb{Z})
$$

Since $2 w=t_{0} u^{2}$ we have

$$
4 \theta(w)=\theta(4 w)=\theta\left(2 t_{0} u^{2}\right)=\theta\left(p^{*}(b) t_{0} u\right)=b \theta\left(t_{0} u\right)=b^{2} .
$$

Therefore if we put $\theta(w)=d$ then $b^{2}=4 d$ and $4 p^{*}(d)=4 u^{2}$. Thus $p^{*}(d)=u^{2}$ since $H^{16}\left(E_{7} / C_{1} ; \mathbb{Z}\right)$ is free. By the exactness we conclude $\theta\left(u^{2}\right)=0$.

Hence we have

$$
H^{16}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a^{4}, a^{2} b, a c, d\right\rangle, 4 d=b^{2} \quad \text { and } \quad H^{17}(E \mathrm{VI} ; \mathbb{Z})=0
$$

Considering with mod 2 coefficient

$$
\begin{aligned}
0 \longrightarrow\left\langle y_{2}^{5} y_{3}\right\rangle \xrightarrow{y_{3} \cdot} H^{16}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & \xrightarrow{p^{*}}\left\langle t_{0}^{8}, t_{0}^{4} u, t_{0}^{2} v^{\prime}, u^{2}\right\rangle \\
& \xrightarrow{\theta}\left\langle y_{2}^{7}, y_{2} y_{12}, y_{2}^{4} y_{3}^{2}\right\rangle \xrightarrow{y_{3}} H^{17}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
\end{aligned}
$$

we have $\theta\left(t_{0}^{8}\right)=\theta\left(p^{*}\left(y_{2}^{8}\right)\right)=0, \theta\left(t_{0}^{4} u\right)=\theta\left(p^{*}\left(y_{2}^{4}\right) u\right)=y_{2}^{4} \theta(u)=y_{2}^{4} y_{3}^{2}, \theta\left(t_{0}^{2} v^{\prime}\right)=$ $\theta\left(p^{*}\left(y_{2}^{2} y_{12}\right)\right)=0, \theta\left(u^{2}\right)=0$ and therefore $H^{16}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{8}, y_{2}^{2} y_{12}, y_{16}, y_{2}^{5} y_{3}^{2}\right\rangle \quad$ and $\quad H^{17}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{7} y_{3}, y_{2} y_{3} y_{12}\right\rangle$ where $y_{16}=d \bmod 2$.

Next consider $(*)_{9}$:

$$
\begin{aligned}
0 \longrightarrow\left\langle a^{3} \chi, c \chi\right\rangle \xrightarrow{\chi} H^{18}(E \mathrm{VI} ; \mathbb{Z}) & \xrightarrow{p^{*}}\left\langle t_{0}^{9}, t_{0}^{5} u, t_{0}^{3} v^{\prime}, w\right\rangle \\
& \xrightarrow{\bullet}\left\langle a^{4}, a^{2} b, a c, d\right\rangle \xrightarrow{\chi} H^{19}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0 .
\end{aligned}
$$

Then $\theta\left(t_{0}^{9}\right)=\theta\left(p^{*}\left(a^{4}\right) t_{0}\right)=a^{4} \theta\left(t_{0}\right)=2 a^{4}, \theta\left(t_{0}^{5} u\right)=\theta\left(p^{*}\left(a^{2}\right) t_{0} u\right)=a^{2} \theta\left(t_{0} u\right) a^{2} b$, $\theta\left(t_{0}^{3} v^{\prime}\right)=\theta\left(p^{*}(a c) t_{0}\right)=a c \theta\left(t_{0}\right)=2 a c, \theta(w)=d$ and hence θ is injective and we have

$$
H^{18}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a^{3} \chi^{2}, c \chi^{2}\right\rangle \quad \text { and } \quad H^{19}(E \mathrm{VI} ; \mathbb{Z})=\left\langle a^{4} \chi, a c \chi\right\rangle, d \chi=0
$$

Considering with mod 2 coefficient

$$
\begin{aligned}
0 \longrightarrow\left\langle y_{2}^{6} y_{3}, y_{3} y_{12}\right\rangle & \xrightarrow{y_{3} \cdot} H^{18}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{9}, t_{0}^{5} u, t_{0}^{3} v^{\prime}, w\right\rangle \\
& \xrightarrow{\theta}\left\langle y_{2}^{8}, y_{2}^{2} y_{12}, y_{16}, y_{2}^{5} y_{3}^{2}\right\rangle \xrightarrow{y_{3}} H^{19}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
\end{aligned}
$$

we have $\theta\left(t_{0}^{9}\right)=\theta\left(p^{*}\left(y_{2}^{9}\right)\right)=0, \theta\left(t_{0}^{5} u\right)=\theta\left(p^{*}\left(y_{2}^{5}\right) u\right)=y_{2}^{5} \theta(u)=y_{2}^{5} y_{3}^{2}, \theta\left(t_{0}^{3} v^{\prime}\right)$ $=\theta\left(p^{*}\left(y_{2}^{3} y_{12}\right)\right)=0, \theta(w)=y_{16}$. On the other hand $p^{*}\left(y_{12}\right)=v^{\prime}$ implies $p^{*}\left(S q^{8}\left(y_{12}\right)\right)=S q^{8}\left(v^{\prime}\right)=t_{0}^{6} u+t_{0}^{4} v^{\prime}+t_{0} w+u v^{\prime}$ and by the exactness we have

$$
\begin{aligned}
0 & =\theta\left(t_{0}^{6} u\right)+\theta\left(t_{0}^{4} v^{\prime}\right)+\theta\left(t_{0} w\right)+\theta\left(u v^{\prime}\right) \\
& =\theta\left(p^{*}\left(y_{2}^{6}\right) u\right)+\theta\left(p^{*}\left(y_{2}^{4} y_{12}\right)\right)+\theta\left(p^{*}\left(y_{2}\right) w\right)+\theta\left(p^{*}\left(y_{12}\right) u\right) \\
& =y_{2}^{6} \theta(u)+y_{2} \theta(w)+y_{12} \theta(u) \\
& =y_{2}^{6} y_{3}^{2}+y_{2} y_{16}+y_{3}^{2} y_{12} .
\end{aligned}
$$

Therefore we deduce

$$
\begin{aligned}
& H^{18}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{9}, y_{2}^{3} y_{12}, y_{2}^{6} y_{3}^{2}, y_{3}^{2} y_{12}\right\rangle, \quad y_{2} y_{16}=y_{3}^{2} y_{12}+y_{2}^{6} y_{3}^{2} . \\
& H^{19}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{8} y_{3}, y_{2}^{2} y_{3} y_{12}\right\rangle, \quad y_{3} y_{16}=0 .
\end{aligned}
$$

Next consider $(*)_{10}$:

$$
\begin{aligned}
& 0 \longrightarrow H^{20}(E \mathrm{VI} ; \mathbb{Z}) \xrightarrow{p^{*}}\left\langle t_{0}^{10}, t_{0}^{6} u, t_{0}^{4} v^{\prime}, t_{0} w, u v^{\prime}\right\rangle \\
& \xrightarrow{\theta}\left\langle a^{3} \chi^{2}, c \chi^{2}\right\rangle \xrightarrow{\chi} H^{21}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow 0 .
\end{aligned}
$$

Then $\theta\left(t_{0}^{10}\right)=\theta\left(p^{*}\left(a^{5}\right)\right)=0, \theta\left(t_{0}^{6} u\right)=\theta\left(p^{*}\left(a^{3}\right) u\right)=a^{3} \theta(u)=a^{3} \chi^{2}, \theta\left(t_{0}^{4} v^{\prime}\right)=$ $\theta\left(p^{*}\left(a^{2} c\right)\right)=0, \theta\left(u v^{\prime}\right)=\theta\left(p^{*}(c) u\right)=c \theta(u)=c \chi^{2}$. Considering with mod 2 coefficient we have $\theta\left(t_{0} w\right)=\theta\left(p^{*}\left(y_{2}\right) w\right)=y_{2} \theta(w)=y_{2} y_{16}=y_{3}^{2} y_{12}+y_{2}^{6} y_{3}^{2}$. This implies $\theta\left(t_{0} w\right)=a^{3} \chi^{2}+c \chi^{2}$ with integer coefficient. Therefore if we put $x=t_{0} w-t_{0}^{6} u-u v^{\prime}$ we have $\theta(x)=0$ and by the exactness there exists an element $e \in H^{20}(E \mathrm{VI} ; \mathbb{Z})$ such that $p^{*}(e)=x$. Then $p^{*}(2 e)=2 x=2 t_{0} w-$ $2 t_{0}^{6} u-2 u v^{\prime}=p^{*}\left(a d-a^{3} b-b c\right)$ and we have $2 e=a d-a^{3} b-b c$ since p^{*} is injective. Using x we have $H^{20}\left(E_{7} / C_{1} ; \mathbb{Z}\right)=\left\langle t_{0}^{10}, t_{0}^{6} u, t_{0}^{4} v^{\prime}, x, u v^{\prime}\right\rangle$ as a free module and we see easily

$$
\begin{aligned}
H^{20}(E \mathrm{VI} ; \mathbb{Z}) & =\left\langle a^{5}, a^{3} b, a^{2} c, b c, e\right\rangle, 2 e=a d-a^{3} b-b c \\
H^{21}(E \mathrm{VI} ; \mathbb{Z}) & =0
\end{aligned}
$$

Considering with mod 2 coefficient

$$
\begin{aligned}
0 \longrightarrow\left\langle y_{2}^{7} y_{3}, y_{2} y_{3} y_{12}\right\rangle & \xrightarrow{y_{3}} H^{20}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{10}, t_{0}^{6} u, t_{0}^{4} v^{\prime}, x, u v^{\prime}\right\rangle \\
& \xrightarrow{\theta}\left\langle y_{2}^{9}, y_{2}^{3} y_{12}, y_{2}^{6} y_{3}^{2}, y_{3}^{2} y_{12}\right\rangle \xrightarrow{y_{3}} H^{21}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0
\end{aligned}
$$

we have $\theta\left(t_{0}^{10}\right)=\theta\left(p^{*}\left(y_{2}^{10}\right)\right)=0, \theta\left(t_{0}^{6} u\right)=\theta\left(p^{*}\left(y_{2}^{6}\right) u\right)=y_{2}^{6} \theta(u)=y_{2}^{6} y_{3}^{2}, \theta\left(t_{0}^{4} v^{\prime}\right)=$ $\theta\left(p^{*}\left(y_{2}^{4} y_{12}\right)\right)=0, \theta(x)=0, \theta\left(u v^{\prime}\right)=\theta\left(p^{*}\left(y_{12}\right) u\right)=y_{12} \theta(u)=y_{3}^{2} y_{12}$ and therefore

$$
\begin{aligned}
H^{20}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{10}, y_{2}^{4} y_{12}, y_{20}, y_{2}^{7} y_{3}^{2}, y_{2} y_{3}^{2} y_{12}\right\rangle \\
H^{21}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{9} y_{3}, y_{2}^{3} y_{3} y_{12}\right\rangle
\end{aligned}
$$

where $y_{20}=e \bmod 2$.
Thus we have determined $H^{*}(E \mathrm{VI} ; \mathbb{Z}), H^{*}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$ up to degree ≤ 20 :

Lemma 3.4.

(i) $\quad H^{*}(E \mathrm{VI} ; \mathbb{Z})=\mathbb{Z}[\chi, a, b, c, d, e] /\left(2 \chi, \chi^{3}, b \chi, 4 d-b^{2}, d \chi, 2 e-a d+b c+\right.$ $a^{3} b$),
(ii) $H^{*}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[y_{2}, y_{3}, y_{12}, y_{16}, y_{20}\right] /\left(y_{3}^{3}, y_{2} y_{16}+y_{3}^{2} y_{12}+y_{2}^{6} y_{3}^{2}, y_{3} y_{16}\right)$ for degree ≤ 20.

We continue the computation with mod 2 coefficient up to degree ≤ 30.
Consider ($*)_{11}$:

$$
\begin{aligned}
& 0 \longrightarrow\left\langle y_{2}^{8} y_{3}, y_{2}^{2} y_{3} y_{12}\right\rangle \xrightarrow{y_{3} \cdot} H^{22}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{11}, t_{0}^{7} u, t_{0}^{5} v^{\prime}, t_{0} x, t_{0} u v^{\prime}\right\rangle \\
& \xrightarrow{\theta}\left\langle y_{2}^{10}, y_{2}^{4} y_{12}, y_{20}, y_{2}^{7} y_{3}^{2}, y_{2} y_{3}^{2} y_{12}\right\rangle \xrightarrow{y_{3} .} H^{23}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0 .
\end{aligned}
$$

Then $\theta\left(t_{0}^{11}\right)=\theta\left(p^{*}\left(y_{2}^{11}\right)=0, \theta\left(t_{0}^{7} u\right)=\theta\left(p^{*}\left(y_{2}^{7}\right) u\right)=y_{2}^{7} \theta(u)=y_{2}^{7} y_{3}^{2}, \theta\left(t_{0}^{5} v^{\prime}\right)=\right.$ $\theta\left(p^{*}\left(y_{2}^{5} y_{12}\right)\right)=0, \theta\left(t_{0} x\right)=\theta\left(p^{*}\left(y_{2} y_{20}\right)=0, \theta\left(t_{0} u v^{\prime}\right)=\theta\left(p^{*}\left(y_{2} y_{12}\right) u\right)\right.$ $=y_{2} y_{12} \theta(u)=y_{2} y_{3}^{2} y_{12}$ and therefore

$$
\begin{aligned}
H^{22}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{11}, y_{2}^{5} y_{12}, y_{2} y_{20}, y_{2}^{8} y_{3}^{2}, y_{2}^{2} y_{3}^{2} y_{12}\right\rangle \\
H^{23}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{10} y_{3}, y_{2}^{4} y_{3} y_{12}, y_{3} y_{20}\right\rangle
\end{aligned}
$$

Next consider $(*)_{12}$:

$$
\begin{aligned}
& 0 \longrightarrow\left\langle y_{2}^{9} y_{3}, y_{2}^{3} y_{3} y_{12}\right\rangle \xrightarrow{y_{3} \cdot} H^{24}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{12}, t_{0}^{8} u, t_{0}^{6} v^{\prime}, t_{0}^{2} x, t_{0}^{2} u v^{\prime}, v^{\prime 2}\right\rangle \\
& \xrightarrow{\theta}\left\langle y_{2}^{11}, y_{2}^{5} y_{12}, y_{2} y_{20}, y_{2}^{8} y_{3}^{2}, y_{2}^{2} y_{3}^{2} y_{12}\right\rangle \xrightarrow{y_{3} \cdot} H^{25}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0 .
\end{aligned}
$$

Then $\theta\left(t_{0}^{12}\right)=\theta\left(p^{*}\left(y_{2}^{12}\right)\right)=0, \theta\left(t_{0}^{8} u\right)=\theta\left(p^{*}\left(y_{2}^{8}\right) u\right)=y_{2}^{8} \theta(u)=y_{2}^{8} y_{3}^{2}, \theta\left(t_{0}^{6} v^{\prime}\right)=$ $\theta\left(p^{*}\left(y_{2}^{6} y_{12}\right)\right)=0, \theta\left(t_{0}^{2} x\right)=\theta\left(p^{*}\left(y_{2}^{2} y_{20}\right)\right)=0, \theta\left(t_{0}^{2} u v^{\prime}\right)=\theta\left(p^{*}\left(y_{2}^{2} y_{12}\right) u\right)=$ $y_{2}^{2} y_{12} \theta(u)=y_{2}^{2} y_{3}^{2} y_{12}, \theta\left({v^{\prime}}^{2}\right)=\theta\left(p^{*}\left(y_{12}^{2}\right)\right)=0$ and therefore

$$
\begin{aligned}
& H^{24}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{12}, y_{2}^{6} y_{12}, y_{2}^{2} y_{20}, y_{12}^{2}, y_{2}^{9} y_{3}^{2}, y_{2}^{3} y_{3}^{2} y_{12}\right\rangle . \\
& H^{25}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2}^{11} y_{3}, y_{2}^{5} y_{3} y_{12}, y_{2} y_{3} y_{20}\right\rangle .
\end{aligned}
$$

Before considering $(*)_{13}$, we need to determine the action of the squaring operations on $y_{2}, y_{3}, y_{12}, y_{16}, y_{20}$.

Lemma 3.5.

$S q^{1}\left(y_{2}\right)=y_{3}, S q^{1}\left(y_{3}\right)=0, S q^{1}\left(y_{12}\right)=0, S q^{1}\left(y_{16}\right)=0, S q^{1}\left(y_{20}\right)=0$,
$S q^{2}\left(y_{3}\right)=y_{2} y_{3}$.

Proof. Since $H^{2}(E \mathrm{VI} ; \mathbb{Z})=0, H^{3}(E \mathrm{VI} ; \mathbb{Z})=\langle\chi\rangle \cong \mathbb{Z}_{2}, S q^{1}\left(y_{2}\right)=\rho(\chi)=$ y_{3} by definition of $S q^{1}$. Since $y_{3}, y_{12}, y_{16}, y_{20}$ are all mod 2 reductions of integral cohomology classes, $S q^{1}$ on them are trivial. $S q^{1} S q^{2}\left(y_{3}\right)=S q^{3}\left(y_{3}\right)=y_{3}^{2} \neq 0$ implies $S q^{2}\left(y_{3}\right)$ does not vanish. As $H^{5}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\left\langle y_{2} y_{3}\right\rangle, S q^{2}\left(y_{3}\right)=y_{2} y_{3}$.

Lemma 3.6.

$$
\begin{aligned}
& S q^{2}\left(y_{12}\right)=y_{2}^{7}+y_{2} y_{12}+y_{2}^{4} y_{3}^{2}, \\
& S q^{4}\left(y_{12}\right)=y_{2}^{8}+y_{2}^{2} y_{12}+\alpha^{\prime} y_{2}^{5} y_{3}^{2}, \\
& S q^{8}\left(y_{12}\right)=y_{20}+y_{2}^{4} y_{12}+\alpha^{\prime \prime} y_{2}^{7} y_{3}^{2}+\beta^{\prime \prime} y_{2} y_{3}^{2} y_{12}
\end{aligned}
$$

for some $\alpha^{\prime}, \alpha^{\prime \prime}, \beta^{\prime \prime} \in \mathbb{Z}_{2}$.

Proof. Applying $S q^{2}$ on both sides of $p^{*}\left(y_{12}\right)=v^{\prime}$, we have $p^{*}\left(S q^{2}\left(y_{12}\right)\right)=$ $t_{0}^{7}+t_{0} v^{\prime}=p^{*}\left(y_{2}^{7}+y_{2} y_{12}\right)$ from Theorem 2.7. Therefore in view of $(*)_{7}$, we may put

$$
S q^{2}\left(y_{12}\right)=y_{2}^{7}+y_{2} y_{12}+\alpha y_{2}^{4} y_{3}^{2}
$$

for some $\alpha \in \mathbb{Z}_{2}$. Applying $S q^{2}$ on both sides, we have

$$
(\alpha+1) y_{2}^{5} y_{3}^{2}=0 \quad \text { in } H^{16}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $\alpha=1$ by Lemma 3.4 and we obtain the first assertion. Similarly we obtain the second and third assertions.

Lemma 3.7.

$$
\begin{aligned}
& S q^{2}\left(y_{16}\right)=0 \\
& S q^{4}\left(y_{16}\right)=y_{2}^{7} y_{3}^{2} \\
& S q^{8}\left(y_{16}\right)=y_{12}^{2}+\gamma^{\prime \prime} y_{2}^{9} y_{3}^{2}+\delta^{\prime \prime} y_{2}^{3} y_{3}^{2} y_{12}
\end{aligned}
$$

for some $\gamma^{\prime \prime}, \delta^{\prime \prime} \in \mathbb{Z}_{2}$.

Proof. Applying $S q^{2}, S q^{4}$ on both sides of $p^{*}\left(y_{16}\right)=u^{2}$, we have $p^{*}\left(S q^{2}\right.$ $\left.\left(y_{16}\right)\right)=0, p^{*}\left(S q^{4}\left(y_{16}\right)\right)=0$ from Theorem 2.7. Therefore in view of $(*)_{9},(*)_{10}$, we may put

$$
\begin{aligned}
& S q^{2}\left(y_{16}\right)=\gamma y_{2}^{6} y_{3}^{2}+\delta y_{3}^{2} y_{12} \\
& S q^{4}\left(y_{16}\right)=\gamma^{\prime} y_{2}^{7} y_{3}^{2}+\delta^{\prime} y_{2} y_{3}^{2} y_{12}
\end{aligned}
$$

for some $\gamma, \delta, \gamma^{\prime}, \delta^{\prime} \in \mathbb{Z}_{2}$. Now we apply $S q^{2}$ on both sides of the relation $y_{2} y_{16}=y_{3}^{2} y_{12}+y_{2}^{6} y_{3}^{2}$ and we have

$$
\gamma y_{2}^{7} y_{3}^{2}+\delta y_{2} y_{3}^{2} y_{12}=0 \quad \text { in } H^{20}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $\gamma=\delta=0$ by Lemma 3.4 and we obtain the first assertion. Furthermore applying $S q^{4}$, we have

$$
\left(\gamma^{\prime}+1\right) y_{2}^{8} y_{3}^{2}+\delta^{\prime} y_{2}^{2} y_{3}^{2} y_{12}=0 \quad \text { in } H^{22}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $\gamma^{\prime}=1, \delta^{\prime}=0$ and we obtain the second assertion. The third assertion follows similarly.

Similarly we can prove

Lemma 3.8.

$$
\begin{aligned}
& S q^{2}\left(y_{20}\right)=y_{2}^{11}+y_{2} y_{20}+\mu y_{2}^{8} y_{3}^{2}+\nu y_{2}^{2} y_{3}^{2} y_{12}, \\
& S q^{4}\left(y_{20}\right)=y_{12}^{2}+y_{2}^{6} y_{12}+\mu^{\prime} y_{2}^{9} y_{3}^{2}+\nu^{\prime} y_{2}^{3} y_{3}^{2} y_{12}, \\
& S q^{8}\left(y_{20}\right)=y_{12} y_{16}+y_{2}^{8} y_{12}+\lambda^{\prime \prime} y_{2}^{11} y_{3}^{2}+\mu^{\prime \prime} y_{2}^{5} y_{3}^{2} y_{12}+\nu^{\prime \prime} y_{2} y_{3}^{2} y_{20}
\end{aligned}
$$

for some $\mu, \nu, \mu^{\prime}, \nu^{\prime}, \lambda^{\prime \prime}, \mu^{\prime \prime}, \nu^{\prime \prime} \in \mathbb{Z}_{2}$.
Now we apply $S q^{8}$ on both sides of the relation $y_{2} y_{16}=y_{3}^{2} y_{12}+y_{2}^{6} y_{3}^{2}$. Then using Lemmas 3.6 and 3.7 we have

Lemma 3.9. There exists a relation of the form

$$
\begin{equation*}
y_{2} y_{12}^{2}=y_{3}^{2} y_{20}+\gamma^{\prime \prime} y_{2}^{10} y_{3}^{2}+\delta^{\prime \prime} y_{2}^{4} y_{3}^{2} y_{12} \tag{3.3.2}
\end{equation*}
$$

where $\gamma^{\prime \prime}, \delta^{\prime \prime}$ are as in Lemma 3.7.
Moreover applying $S q^{1}$ on both sides of (3.3.2), we have
Lemma 3.10. There exists a relation of the form

$$
\begin{equation*}
y_{3} y_{12}^{2}=0 . \tag{3.3.3}
\end{equation*}
$$

Now consider $(*)_{13}$:

$$
\begin{aligned}
& 0 \longrightarrow\left\langle y_{2}^{10} y_{3}, y_{2}^{4} y_{3} y_{12}, y_{3} y_{20}\right\rangle \xrightarrow{y_{3} \cdot} H^{26}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{13}, t_{0}^{9} u, t_{0}^{7} v^{\prime}, t_{0}^{3} x, t_{0}^{3} u v^{\prime}, u w\right\rangle \\
& \xrightarrow{\theta}\left\langle y_{2}^{12}, y_{2}^{6} y_{12}, y_{2}^{2} y_{20}, y_{12}^{2}, y_{2}^{9} y_{3}^{2}, y_{2}^{3} y_{3}^{2} y_{12}\right\rangle \xrightarrow{y_{3}} H^{27}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0 .
\end{aligned}
$$

Then $\theta\left(t_{0}^{13}\right)=\theta\left(p^{*}\left(y_{2}^{13}\right)\right)=0, \theta\left(t_{0}^{9} u\right)=\theta\left(p^{*}\left(y_{2}^{9}\right) u\right)=y_{2}^{9} \theta(u)=y_{2}^{9} y_{3}^{2}, \theta\left(t_{0}^{7} v^{\prime}\right)=$ $\theta\left(p^{*}\left(y_{2}^{7} y_{12}\right)\right)=0, \theta\left(t_{0}^{3} x\right)=\theta\left(p^{*}\left(y_{2}^{3} y_{20}\right)\right)=0, \theta\left(t_{0}^{3} u v^{\prime}\right)=\theta\left(p^{*}\left(y_{2}^{3} y_{12}\right) u\right)=y_{2}^{3} y_{12}$ $\times \theta(u)=y_{2}^{3} y_{3}^{2} y_{12}$. As to the image of $u w$

Lemma 3.11.

$$
\theta(u w)=y_{12}^{2}+y_{2}^{3} y_{3}^{2} y_{12} .
$$

Proof. Since $2 w=t_{0} u^{2}$ with integer coefficient

$$
\begin{aligned}
2 u w=t_{0} u^{3} & =t_{0}\left(4 t_{0}^{8} u-2 t_{0}^{6} v^{\prime}+6 t_{0}^{2} u v^{\prime}-3 v^{\prime 2}\right) \\
& =4 t_{0}^{9} u-2 t_{0}^{7} v^{\prime}+6 t_{0}^{3} u v^{\prime}-3 t_{0} v^{\prime 2}
\end{aligned}
$$

by Theorem 2.6. Then

$$
\begin{aligned}
2 \theta(u w) & =4 \theta\left(t_{0}^{9} u\right)-2 \theta\left(t_{0}^{7} v^{\prime}\right)+6 \theta\left(t_{0}^{3} u v^{\prime}\right)-3 \theta\left(t_{0} v^{\prime 2}\right) \\
& =4 a^{4} b-4 a^{3} c+6 a b c-6 c^{2} .
\end{aligned}
$$

Therefore

$$
\theta(u w)=2 a^{4} b-2 a^{3} c+3 a b c-3 c^{2}
$$

since $H^{24}(E V I ; \mathbb{Z})$ is free. Applying the $\bmod 2$ reduction ρ, we have the required result.

Therefore we have

$$
\begin{aligned}
H^{26}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{13}, y_{2}^{7} y_{12}, y_{2}^{3} y_{20}, y_{2}^{10} y_{3}^{2}, y_{2}^{4} y_{3}^{2} y_{12}, y_{3}^{2} y_{20}\right\rangle, \\
y_{2} y_{12}^{2} & =y_{3}^{2} y_{20}+\gamma^{\prime \prime} y_{2}^{10} y_{3}^{2}+\delta^{\prime \prime} y_{2}^{4} y_{3}^{2} y_{12} . \\
H^{27}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{12} y_{3}, y_{2}^{6} y_{3} y_{12}, y_{2}^{2} y_{3} y_{20}\right\rangle, \quad y_{3} y_{12}^{2}=0 .
\end{aligned}
$$

Before considering $(*)_{14}$, we need a lemma.
Lemma 3.12. There exists a relation of the form

$$
\begin{equation*}
y_{2}^{14}=y_{12} y_{16}+y_{2}^{11} y_{3}^{2}+y_{2}^{5} y_{3}^{2} y_{12} \tag{3.3.4}
\end{equation*}
$$

Proof. By Lemma 2.4 there exists a relation

$$
\begin{equation*}
r_{14}=a^{7}-a^{5} b+4 a^{4} c-\frac{3}{2} a^{3} b^{2}-\frac{3}{8} a b^{3}+3 a c^{2}-\frac{3}{4} b^{2} c=0 \tag{3.3.5}
\end{equation*}
$$

in $H^{28}(E \mathrm{VI} ; \mathbb{Q})$. Substituting $b^{2}=4 d, b^{3}=4 b d=16 a^{4} b-16 a^{3} c+24 a b c-$ $24 c^{2}, 2 e=a d-b c-a^{3} b$ into (3.3.5), we have

$$
\begin{equation*}
a^{7}-13 a^{5} b+10 a^{4} c-15 a^{2} b c-12 a^{2} e+12 a c^{2}-3 c d=0 \tag{3.3.6}
\end{equation*}
$$

in $H^{28}(E \mathrm{VI} ; \mathbb{Z})$ since a, b, c, d, e are all integral cohomology classes. Therefore applying the $\bmod 2$ reduction ρ to (3.3.6) we have the required result.

Now consider $(*)_{14}$:
$0 \longrightarrow\left\langle y_{2}^{11} y_{3}, y_{2}^{5} y_{3} y_{12}, y_{2} y_{3} y_{20}\right\rangle \xrightarrow{y_{3} .} H^{28}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{10} u, t_{0}^{8} v^{\prime}, t_{0}^{4} x, t_{0}^{4} u v^{\prime}\right.$, $\left.t_{0} u w, u^{2} v^{\prime}\right\rangle \xrightarrow{\theta}\left\langle y_{2}^{13}, y_{2}^{7} y_{12}, y_{2}^{3} y_{20}, y_{2}^{10} y_{3}^{2}, y_{2}^{4} y_{3}^{2} y_{12}, y_{3}^{2} y_{20}\right\rangle \xrightarrow{y_{3} \cdot} H^{29}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0$.

Then $\theta\left(t_{0}^{10} u\right)=\theta\left(p^{*}\left(y_{2}^{10}\right) u\right)=y_{2}^{10} \theta(u)=y_{2}^{10} y_{3}^{2}, \theta\left(t_{0}^{8} v^{\prime}\right)=\theta\left(p^{*}\left(y_{2}^{8} y_{12}\right)\right)=$ $0, \theta\left(t_{0}^{4} x\right)=\theta\left(p^{*}\left(y_{2}^{4} y_{20}\right)\right)=0, \theta\left(t_{0}^{4} u v^{\prime}\right)=\theta\left(p^{*}\left(y_{2}^{4} y_{12}\right) u\right)=y_{2}^{4} y_{12} \theta(u)=y_{2}^{4} y_{3}^{2} y_{12}$, $\theta\left(u^{2} v^{\prime}\right)=\theta\left(p^{*}\left(y_{12} y_{16}\right)\right)=0$ and

$$
\begin{aligned}
\theta\left(t_{0} u w\right) & =\theta\left(p^{*}\left(y_{2}\right) u w\right)=y_{2} \theta(u w)=y_{2} y_{12}^{2}+y_{2}^{4} y_{3}^{2} y_{12} \\
& =y_{3}^{2} y_{20}+\gamma^{\prime \prime} y_{2}^{10} y_{3}^{2}+\left(\delta^{\prime \prime}+1\right) y_{2}^{4} y_{3}^{2} y_{12} .
\end{aligned}
$$

Therefore we deduce

$$
\begin{aligned}
H^{28}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{8} y_{12}, y_{2}^{4} y_{20}, y_{12} y_{16}, y_{2}^{11} y_{3}^{2}, y_{2}^{5} y_{3}^{2} y_{12}, y_{2} y_{3}^{2} y_{20}\right\rangle, \\
y_{2}^{14} & =y_{12} y_{16}+y_{2}^{11} y_{3}^{2}+y_{2}^{5} y_{3}^{2} y_{12} . \\
H^{29}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{13} y_{3}, y_{2}^{7} y_{3} y_{12}, y_{2}^{3} y_{3} y_{20}\right\rangle .
\end{aligned}
$$

Next consider $(*)_{15}$:
$0 \longrightarrow\left\langle y_{2}^{12} y_{3}, y_{2}^{6} y_{3} y_{12}, y_{2}^{2} y_{3} y_{20}\right\rangle \xrightarrow{y_{3} \cdot} H^{30}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \xrightarrow{p^{*}}\left\langle t_{0}^{11} u, t_{0}^{9} v^{\prime}, t_{0}^{5} x, t_{0}^{5} u v^{\prime}, t_{0}^{2} u w\right.$, $\left.v^{\prime} w\right\rangle \xrightarrow{\theta}\left\langle y_{2}^{8} y_{12}, y_{2}^{4} y_{20}, y_{12} y_{16}, y_{2}^{11} y_{3}^{2}, y_{2}^{5} y_{3}^{2} y_{12}, y_{2} y_{3}^{2} y_{20}\right\rangle \xrightarrow{y_{3}} H^{31}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) \longrightarrow 0$.
Then $\theta\left(t_{0}^{11} u\right)=\theta\left(p^{*}\left(y_{2}^{11}\right) u\right)=y_{2}^{11} \theta(u)=y_{2}^{11} y_{3}^{2}, \theta\left(t_{0}^{9} v^{\prime}\right)=\theta\left(p^{*}\left(y_{2}^{9} y_{12}\right)\right)=$ $0, \theta\left(t_{0}^{5} x\right)=\theta\left(p^{*}\left(y_{2}^{5} y_{20}\right)\right)=0, \theta\left(t_{0}^{5} u v^{\prime}\right)=\theta\left(p^{*}\left(y_{2}^{5} y_{12}\right) u\right)=y_{2}^{5} y_{12} \theta(u)=y_{2}^{5} y_{3}^{2} y_{12}$, $\theta\left(t_{0}^{2} u w\right)=\theta\left(p^{*}\left(y_{2}^{2}\right) u w\right)=y_{2}^{2} \theta(u w)=y_{2} y_{3}^{2} y_{20}+\gamma^{\prime \prime} y_{2}^{11} y_{3}^{2}+\left(\delta^{\prime \prime}+1\right) y_{2}^{5} y_{3}^{2} y_{12}, \theta\left(v^{\prime} w\right)$ $=\theta\left(p^{*}\left(y_{12}\right) w\right)=y_{12} \theta(w)=y_{12} y_{16}$ and therefore

$$
\begin{aligned}
H^{30}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{9} y_{12}, y_{2}^{5} y_{20}, y_{2}^{12} y_{3}^{2}, y_{2}^{6} y_{3}^{2} y_{12}, y_{2}^{2} y_{3}^{2} y_{20}\right\rangle \\
H^{31}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right) & =\left\langle y_{2}^{8} y_{3} y_{12}, y_{2}^{4} y_{3} y_{20}\right\rangle
\end{aligned}
$$

From these results we can determine $\gamma^{\prime \prime}, \delta^{\prime \prime}$ as follows: First we apply $S q^{2}$ on both sides of (3.3.2). Then we have

$$
\left(\gamma^{\prime \prime}+\delta^{\prime \prime}+1\right) y_{2}^{11} y_{3}^{2}=0 \quad \text { in } H^{28}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $\delta^{\prime \prime}=\gamma^{\prime \prime}+1$. Furthermore we apply $S q^{4}$ on both sides of (3.3.2) $\left(\delta^{\prime \prime}=\gamma^{\prime \prime}+1\right)$. Then using Lemma 3.12 and (3.3.3) we have

$$
\gamma^{\prime \prime} y_{2}^{6} y_{3}^{2} y_{12}=0 \quad \text { in } H^{30}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $\gamma^{\prime \prime}=0$. Thus there exists a relation of the form

$$
\begin{equation*}
y_{2} y_{12}^{2}=y_{3}^{2} y_{20}+y_{2}^{4} y_{3}^{2} y_{12} . \tag{3.3.7}
\end{equation*}
$$

Lemma 3.13. Moreover there exists relations of the form:
(i) $y_{12}^{3}=y_{16} y_{20}+y_{2}^{5} y_{3}^{2} y_{20}$,
(ii) $y_{12} y_{16}^{2}=y_{2}^{13} y_{3}^{2} y_{12}$,
(iii) $y_{16}^{2} y_{20}=y_{2}^{13} y_{3}^{2} y_{20}$.

Proof. Applying $S q^{8}$ to (3.3.4), the first assertion follows. Since $p^{*}\left(y_{2}^{13} y_{20}\right)=$ $t_{0}^{13}\left(t_{0} w+t_{0}^{6} u+u v^{\prime}\right)=u^{2} v^{\prime} w+t_{0}^{13} u v^{\prime}$,

$$
0=\theta p^{*}\left(y_{2}^{13} y_{20}\right)=\theta\left(u^{2} v^{\prime} w\right)+\theta\left(t_{0}^{13} u v^{\prime}\right)=y_{12} y_{16}^{2}+y_{2}^{13} y_{3}^{2} y_{12}
$$

by the exactness and the second assertion follows. Applying $S q^{8}$ on both sides of $y_{12} y_{16}^{2}=y_{2}^{13} y_{3}^{2} y_{12}$, the last assertion follows.

Proof of Lemma 3.2. If $\theta\left(v^{\prime}\right)=a \chi^{2}$ is true, $\theta(v)=\theta\left(v^{\prime}+t_{0}^{2} u\right)=a \chi^{2}+$ $a \chi^{2}=0$. Hence there exists an element $c^{\prime} \in H^{12}(E \mathrm{VI} ; \mathbb{Z})$ such that $p^{*}\left(c^{\prime}\right)=v$. Then we can discuss $(*)_{7} \sim(*)_{15}$ in the same way as above and we have elements d, e^{\prime} of $H^{*}(E V I ; \mathbb{Z})$ such that

$$
p^{*}(d)=u^{2}, p^{*}\left(e^{\prime}\right)=x^{\prime}=t_{0} w+u v .
$$

Putting $y_{12}^{\prime}=c^{\prime} \bmod 2, y_{16}=d \bmod 2, y_{20}^{\prime}=e^{\prime} \bmod 2$ we obtain
(i) $y_{3}^{3}=0, y_{2} y_{16}=y_{3}^{2} y_{12}^{\prime}, y_{3} y_{16}=0, y_{2} y_{12}^{\prime}{ }^{2}=y_{3}^{2} y_{20}^{\prime}+\gamma^{\prime \prime} y_{2}^{10} y_{3}^{2}+$ $\delta^{\prime \prime} y_{2}^{4} y_{3}^{2} y_{12}^{\prime}, y_{3} y_{12}^{\prime}{ }^{2}=0, y_{2}^{14}+y_{12}^{\prime} y_{16}+y_{2}^{2} y_{12}^{\prime}{ }^{2}+y_{2}^{11} y_{3}^{2}=0$.
(ii) $\quad S q^{1}\left(y_{12}^{\prime}\right)=0, S q^{2}\left(y_{12}^{\prime}\right)=y_{2}^{7}+y_{2} y_{12}^{\prime}+y_{2}^{4} y_{3}^{2}$,

$$
S q^{4}\left(y_{12}^{\prime}\right)=y_{2}^{8}+\alpha^{\prime} y_{2}^{5} y_{3}^{2}, S q^{8}\left(y_{12}^{\prime}\right)=y_{20}^{\prime}+\alpha^{\prime \prime} y_{2}^{7} y_{3}^{2}+\beta^{\prime \prime} y_{2} y_{3}^{2} y_{12}^{\prime},
$$

$$
S q^{1}\left(y_{16}\right)=0, S q^{2}\left(y_{16}\right)=y_{2}^{6} y_{3}^{2}, S q^{4}\left(y_{16}\right)=y_{2} y_{3}^{2} y_{12}^{\prime}
$$

$$
S q^{8}\left(y_{16}\right)=y_{12}^{\prime}{ }^{2}+\gamma^{\prime \prime} y_{2}^{9} y_{3}^{2}+\delta^{\prime \prime} y_{2}^{3} y_{3}^{2} y_{12}^{\prime}
$$

for some $\alpha^{\prime}, \alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}, \delta^{\prime \prime} \in \mathbb{Z}_{2}$. Now we apply $S q^{4}$ on both sides of $y_{2}^{14}+$ $y_{12}^{\prime} y_{16}+y_{2}^{2} y_{12}^{\prime}{ }^{2}+y_{2}^{11} y_{3}^{2}=0$. Then using above results we obtain $y_{2}^{13} y_{3}^{2}=0$. On the other hand by $(*)_{14}$ we see that $y_{2}^{13} y_{3} \neq 0$. Since $H^{29}\left(E V I ; \mathbb{Z}_{2}\right) \xrightarrow{y_{3} \cdot}$ $H^{32}\left(E V I ; \mathbb{Z}_{2}\right)$ is injective we have $y_{2}^{13} y_{3}^{2} \neq 0$. This is a contradiction.

4. The mod 2 cohomology ring of $E \mathrm{VI}$

In this section we determine the $\bmod 2$ cohomology ring of $E \mathrm{VI}$.
From Lemma 3.4 we have elements $y_{i} \in H^{i}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)(i=2,3,12,16,20)$ such that
(4.a)(i) $p^{*}\left(y_{2}\right)=t_{0}, p^{*}\left(y_{3}\right)=0, p^{*}\left(y_{12}\right)=v^{\prime}, p^{*}\left(y_{16}\right)=u^{2}$,

$$
p^{*}\left(y_{20}\right)=x=t_{0} w+t_{0}^{6} u+u v^{\prime} .
$$

(ii) $\quad \theta(u)=y_{3}^{2}, \theta(w)=y_{16}, \theta(u w)=y_{12}^{2}+y_{2}^{3} y_{3}^{2} y_{12}$.
(iii) $y_{3}^{3}=0, y_{2} y_{16}=y_{3}^{2} y_{12}+y_{2}^{6} y_{3}^{2}, y_{3} y_{16}=0, y_{2} y_{12}^{2}=y_{3}^{2} y_{20}+y_{2}^{4} y_{3}^{2} y_{12}$, $y_{3} y_{12}^{2}=0, y_{2}^{14}=y_{12} y_{16}+y_{2}^{11} y_{3}^{2}+y_{2}^{5} y_{3}^{2} y_{12}, y_{12}^{3}=y_{16} y_{20}+y_{2}^{5} y_{3}^{2} y_{20}$, $y_{12} y_{16}^{2}=y_{2}^{13} y_{3}^{2} y_{12}, y_{16}^{2} y_{20}=y_{2}^{13} y_{3}^{2} y_{20}$.

We define the graded \mathbb{Z}_{2}-vector spaces as follows ($\left.\operatorname{deg}\left(y_{j}\right)=j\right)$:

$$
\begin{aligned}
& B_{0}^{*}=\left\langle y_{16}, y_{12}^{2}, y_{16}^{2}, y_{12} y_{16}, y_{12}^{2} y_{16}, y_{16} y_{20}, y_{12} y_{16} y_{20}\right\rangle, \\
& B_{1}^{*}=\left\langle y_{2}^{i}, y_{2}^{i} y_{12}, y_{2}^{i} y_{20}, y_{2}^{i} y_{12} y_{20}(0 \leq i \leq 13)\right\rangle, \\
& B_{2}^{*}=\left\langle y_{2}^{i} y_{3}^{2}, y_{2}^{i} y_{3}^{2} y_{12}, y_{2}^{i} y_{3}^{2} y_{20}, y_{2}^{i} y_{3}^{2} y_{12} y_{20}(0 \leq i \leq 13)\right\rangle, \\
& B^{*}=B_{0}^{*} \oplus B_{1}^{*} \oplus B_{2}^{*}, \\
& C^{*}=\left\langle y_{2}^{i} y_{3}, y_{2}^{i} y_{3} y_{12}, y_{2}^{i} y_{3} y_{20}, y_{2}^{i} y_{3} y_{12} y_{20}(0 \leq i \leq 13)\right\rangle .
\end{aligned}
$$

Moreover define the homomorphisms

$$
\begin{aligned}
& h: C^{*} \longrightarrow B^{*} \quad \text { by } h(\xi)=y_{3} \cdot \xi, \quad \xi \in C^{*}, \\
& h^{\prime}: B^{*} \longrightarrow C^{*} \quad \text { by } h^{\prime}\left(B_{0}^{*}\right)=0, h^{\prime}\left(B_{2}^{*}\right)=0, h^{\prime}(\xi)=y_{3} \cdot \xi, \quad \xi \in B_{1}^{*}, \\
& p^{*}: B^{*} \longrightarrow H^{*}\left(E_{7} / C_{1} ; \mathbb{Z}_{2}\right) \quad \text { by } \\
& p^{*}\left(y_{2}\right)=t_{0}, p^{*}\left(y_{3}\right)=0, p^{*}\left(y_{12}\right)=v^{\prime}, p^{*}\left(y_{16}\right)=u^{2}, \\
& p^{*}\left(y_{20}\right)=x=t_{0} w+t_{0}^{6} u+u v^{\prime} \text { and the multiplicativity } p^{*}(\xi \eta)=p^{*}(\xi) p^{*}(\eta) .
\end{aligned}
$$

For each monomial basis of Corollary 2.8 define

$$
\left.\begin{array}{l}
\theta: H^{*}\left(E_{7} / C_{1} ; \mathbb{Z}_{2}\right) \longrightarrow B^{*} \quad \text { by } \\
(4 . \mathrm{b}) \tag{4.b}\\
\theta\left(t_{0}^{i}\right)=0(0 \leq i \leq 13), \quad \theta\left(t_{0}^{i} u\right)=y_{2}^{i} y_{3}^{2}(0 \leq i \leq 13), \\
\theta\left(t_{0}^{i} v^{\prime}\right)=0(0 \leq i \leq 13), \quad \theta\left(t_{0}^{i} w\right)= \begin{cases}y_{16} \\
y_{2}^{i-1} y_{3}^{2} y_{12}+y_{2}^{i+5} y_{3}^{2} & 1 \leq i \leq 8 \\
y_{2}^{i-1} y_{3}^{2} y_{12} & 9 \leq i \leq 13\end{cases} \\
\theta\left(t_{0}^{i} u v^{\prime}\right)=y_{2}^{i} y_{3}^{2} y_{12}(0 \leq i \leq 13), \quad \theta\left(t_{0}^{i} u w\right)=\left\{\begin{array}{ll}
y_{12}^{2}+y_{2}^{3} y_{3}^{2} y_{12} & i=0 \\
y_{2}^{i-1} y_{3}^{2} y_{20} & 1 \leq i \leq 13
\end{array},\right. \\
\theta\left(t_{0}^{i} v^{\prime} w\right)= \begin{cases}y_{12} y_{16} & i=0 \\
y_{2}^{i+5} y_{3}^{2} y_{12} & 1 \leq i \leq 8, \\
0 & 9 \leq i \leq 13\end{cases} \\
\theta\left(t_{0}^{i} u v^{\prime} w\right)= \begin{cases}y_{16} y_{20}+y_{2}^{5} y_{3}^{2} y_{20} & i=0 \\
y_{2}^{i-1} y_{3}^{2} y_{12} y_{20} & 1 \leq i \leq 13,\end{cases} \\
\theta\left(u^{2}\right)=0, \quad \theta\left(v^{\prime 2}\right)=0, \quad \theta\left(u^{2} v^{\prime}\right)=0, \quad \theta\left(u v^{\prime 2}\right)=0, \quad \theta\left(u^{2} w\right)=y_{16}^{2},
\end{array}\right\} \begin{aligned}
& \theta\left(v^{\prime 3}\right)=0, \quad \theta\left(u^{2} v^{\prime 2}\right)=0, \quad \theta\left(v^{\prime 2} w\right)=y_{12}^{2} y_{16}, \quad \theta\left(u^{2} v^{\prime} w\right)=y_{2}^{13} y_{3}^{2} y_{12},
\end{aligned} \begin{aligned}
& \theta\left(v^{\prime 4}\right)=0, \quad \theta\left(u v^{\prime 2} w\right)=y_{12} y_{16} y_{20}+y_{2}^{5} y_{3}^{2} y_{12} y_{20}, \quad \theta\left(v^{\prime 3} w\right)=y_{2}^{13} y_{3}^{2} y_{20},
\end{aligned} \begin{aligned}
& \theta\left(u^{2} v^{\prime 2} w\right)=0, \quad \theta\left(v^{\prime 4} w\right)=y_{2}^{13} y_{3}^{2} y_{12} y_{20} .
\end{aligned}
$$

Then
Lemma 4.1. For each n, the following sequece is exact:

$$
0 \longrightarrow C^{2 n-3} \xrightarrow{h} B^{2 n} \xrightarrow{p^{*}} H^{2 n}\left(E_{7} / C_{1} ; \mathbb{Z}_{2}\right) \xrightarrow{\theta} B^{2 n-2} \xrightarrow{h^{\prime}} C^{2 n+1} \longrightarrow 0 .
$$

Proof. By the definition of $h: C^{*} \longrightarrow B^{*}, h^{\prime}: B^{*} \longrightarrow C^{*}$, we see easily that h is injective, h^{\prime} is surjective and $\operatorname{Im} h=B_{2}^{*}, \operatorname{Ker} h^{\prime}=B_{0}^{*} \oplus B_{2}^{*}$. On the other hand by the definition of θ, it is verified directly that $\operatorname{Im} \theta=B_{0}^{*} \oplus B_{2}^{*}$
and therefore $\operatorname{Im} \theta=\operatorname{Ker} h^{\prime}$ and $\operatorname{Ker} \theta$ has a basis

$$
\begin{aligned}
& t_{0}^{i}(0 \leq i \leq 13), \quad t_{0}^{i} v^{\prime}(0 \leq i \leq 13), \quad \begin{cases}t_{0}^{i} v^{\prime} w+t_{0}^{i+5} u v^{\prime} & 1 \leq i \leq 8 \\
t_{0}^{i} v^{\prime} w & 9 \leq i \leq 13\end{cases} \\
& \left\{\begin{array}{ll}
t_{0}^{i} w+t_{0}^{i+5} u+t_{0}^{i-1} u v^{\prime} & 1 \leq i \leq 8 \\
t_{0}^{i} w+t_{0}^{i-1} u v^{\prime} & 9 \leq i \leq 13
\end{array}, \quad u^{2} v^{\prime} w+t_{0}^{13} u v^{\prime},\right. \\
& u^{2},{v^{\prime 2}}^{2}, u^{2} v^{\prime}, u v^{\prime 2}, v^{\prime 3}, u^{2} v^{\prime 2}, v^{\prime 4}, u^{2} v^{\prime 2} w .
\end{aligned}
$$

Then considering the image of $B_{0}^{*} \oplus B_{1}^{*}$ under p^{*}, we see that $B_{0}^{*} \oplus B_{1}^{*}$ is mapped isomorphically onto $\operatorname{Ker} \theta$. Thus the exactness of the sequence is proved.

Theorem 4.2. An additive basis of $H^{*}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$ as a \mathbb{Z}_{2}-vector space is given as follows:

$$
\left\{\begin{array}{l}
y_{2}^{i}, y_{2}^{i} y_{12}, y_{2}^{i} y_{20}, y_{2}^{i} y_{12} y_{20}, \\
y_{2}^{i} y_{3}, y_{2}^{i} y_{3} y_{12}, y_{2}^{i} y_{3} y_{20}, y_{2}^{i} y_{3} y_{12} y_{20}, \\
y_{2}^{i} y_{3}^{2}, y_{2}^{i} y_{3}^{2} y_{12}, y_{2}^{i} y_{3}^{2} y_{20}, y_{2}^{i} y_{3}^{2} y_{12} y_{20}(0 \leq i \leq 13), \\
y_{16}, y_{12}^{2}, y_{16}^{2}, y_{12} y_{16}, y_{12}^{2} y_{16}, y_{16} y_{20}, y_{12} y_{16} y_{20}
\end{array}\right\}
$$

Proof. We prove that the natural maps

$$
f_{n}: B^{2 n} \longrightarrow H^{2 n}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right), \quad g_{n}: C^{2 n+1} \longrightarrow H^{2 n+1}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

are isomorphisms by induction on n. In view of Lemma 4.1 and $(*)_{n}$, it is sufficient to prove that the formulae for (4.b) is still valid for $\theta: H^{2 n}\left(E_{7} / C_{1} ; \mathbb{Z}_{2}\right) \longrightarrow$ $H^{2 n-2}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$ under the inductive hypothesis on $H^{2 n-2}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$. This can be done using (4.a) and the property $\theta\left(p^{*}(x) y\right)=x \theta(y)$.

In order to determine the ring structure of $H^{*}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$, we consider another relations between $y_{2}, y_{3}, y_{12}, y_{16}, y_{20}$.

Lemma 4.3. There exists relations of the form
(i) $y_{20}^{2}=y_{12}^{2} y_{16}+y_{2}^{11} y_{3}^{2} y_{12}$,
(ii) $y_{12}^{2} y_{20}=y_{2}^{13} y_{3}^{2} y_{12}+y_{2}^{3} y_{3}^{2} y_{12} y_{20}$,
(iii) $y_{16}^{3}=y_{12} y_{16} y_{20}+y_{2}^{5} y_{3}^{2} y_{12} y_{20}$.

Proof. Since $p^{*}\left(y_{20}^{2}+y_{12}^{2} y_{16}\right)=0$, we may put

$$
\begin{equation*}
y_{20}^{2}=y_{12}^{2} y_{16}+p y_{2}^{11} y_{3}^{2} y_{12}+q y_{2}^{7} y_{3}^{2} y_{20}+r y_{2} y_{3}^{2} y_{12} y_{20} \tag{4.4.1}
\end{equation*}
$$

for some $p, q, r \in \mathbb{Z}_{2}$. First we apply $S q^{2}$ on both sides of (4.4.1). Then

$$
0=r\left(y_{2}^{8} y_{3}^{2} y_{20}+y_{2}^{12} y_{3}^{2} y_{12}+y_{2}^{2} y_{3}^{2} y_{12} y_{20}\right) \quad \text { in } H^{42}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $r=0$ by Theorem 4.2. Next we apply $S q^{4}$ on both sides of (4.4.1) $(r=0)$. Then using Lemma 3.13 we have

$$
(p+q+1) y_{2}^{13} y_{3}^{2} y_{12}=0 \quad \text { in } H^{44}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $q=p+1$. Furthermore we apply $S q^{8}$, we have

$$
(p+1) y_{2}^{11} y_{3}^{2} y_{20}=0 \quad \text { in } H^{48}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $p=1$ and the first assertion follows. Since $p^{*}\left(y_{12}^{2} y_{20}\right)=0$, we may put

$$
\begin{equation*}
y_{12}^{2} y_{20}=p^{\prime} y_{2}^{13} y_{3}^{2} y_{12}+q^{\prime} y_{2}^{9} y_{3}^{2} y_{20}+r^{\prime} y_{2}^{3} y_{3}^{2} y_{12} y_{20} \tag{4.4.2}
\end{equation*}
$$

for some $p^{\prime}, q^{\prime}, r^{\prime} \in \mathbb{Z}_{2}$. Multiplying by y_{2} on both sides of (4.4.2), we obtain

$$
y_{2}^{4} y_{3}^{2} y_{12} y_{20}=q^{\prime} y_{2}^{10} y_{3}^{2} y_{20}+r^{\prime} y_{2}^{4} y_{3}^{2} y_{12} y_{20} \quad \text { in } H^{46}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $q^{\prime}=0, r^{\prime}=1$. Furthremore multiplying by y_{20}, we obtain

$$
y_{2}^{13} y_{3}^{2} y_{12} y_{20}=p^{\prime} y_{2}^{13} y_{3}^{2} y_{12} y_{20} \quad \text { in } H^{64}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $p^{\prime}=1$ and the second assertion follows. Similarly since $p^{*}\left(y_{16}^{3}+\right.$ $\left.y_{12} y_{16} y_{20}\right)=0$, we may put

$$
\begin{equation*}
y_{16}^{3}=y_{12} y_{16} y_{20}+p^{\prime \prime} y_{2}^{5} y_{3}^{2} y_{12} y_{20}+q^{\prime \prime} y_{2}^{11} y_{3}^{2} y_{20} \tag{4.4.3}
\end{equation*}
$$

for some $p^{\prime \prime}, q^{\prime \prime} \in \mathbb{Z}_{2}$. Multiplying by y_{2} on both sides of (4.4.3), we obtain

$$
0=\left(p^{\prime \prime}+1\right) y_{2}^{6} y_{3}^{2} y_{12} y_{20}+q^{\prime \prime} y_{2}^{12} y_{3}^{2} y_{20} \quad \text { in } H^{50}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)
$$

Hence $p^{\prime \prime}=1, q^{\prime \prime}=0$ and the last assertion follows.
Theorem 4.4. The mod 2 cohomology ring of EVI is given as follows:

$$
H^{*}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[y_{2}, y_{3}, y_{12}, y_{16}, y_{20}\right] / J
$$

for the ideal
$J=\left(\begin{array}{l}y_{3}^{3}, y_{2} y_{16}+y_{3}^{2} y_{12}+y_{2}^{6} y_{3}^{2}, y_{3} y_{16}, y_{2} y_{12}^{2}+y_{3}^{2} y_{20}+y_{2}^{4} y_{3}^{2} y_{12}, \\ y_{3} y_{12}^{2}, y_{2}^{14}+y_{12} y_{16}+y_{2}^{11} y_{3}^{2}+y_{2}^{5} y_{3}^{2} y_{12}, y_{12}^{3}+y_{16} y_{20}+y_{2}^{5} y_{3}^{2} y_{20}, \\ y_{20}^{2}+y_{12}^{2} y_{16}+y_{2}^{11} y_{3}^{2} y_{12}, y_{12}^{2} y_{20}+y_{2}^{13} y_{3}^{2} y_{12}+y_{2}^{3} y_{3}^{2} y_{12} y_{20}, \\ y_{12} y_{16}^{2}+y_{2}^{13} y_{3}^{2} y_{12}, y_{16}^{3}+y_{12} y_{16} y_{20}+y_{2}^{5} y_{3}^{2} y_{12} y_{20}, y_{16}^{2} y_{20}+y_{2}^{13} y_{3}^{2} y_{20}\end{array}\right)$.

Proof. By the previous arguments we see that J vanishes in $H^{*}\left(E \mathrm{VI} ; \mathbb{Z}_{2}\right)$. By use of the relations in J, we see that every monomial in $y_{2}, y_{3}, y_{12}, y_{16}, y_{20}$ is a linear combination of the basis in Theorem 4.2. Thus Theorem 4.4 is established.

Finally we comment the additive structure of $H^{*}(E \mathrm{VI} ; \mathbb{Z})$. Using Lemma 3.5 and Theorem 4.2 we see that

$$
\operatorname{Im} S q^{1}=\left\langle\begin{array}{l}
y_{2}^{2 i} y_{3}, y_{2}^{2 i} y_{3} y_{12}, y_{2}^{2 i} y_{3} y_{20}, y_{2}^{2 i} y_{3} y_{12} y_{20}, \\
y_{2}^{2 i} y_{3}^{2}, y_{2}^{2 i} y_{3}^{2} y_{12}, y_{2}^{2 i} y_{3}^{2} y_{20}, y_{2}^{2 i} y_{3}^{2} y_{12} y_{20}(0 \leq i \leq 6)
\end{array}\right\rangle
$$

as a \mathbb{Z}_{2}-vector space. Because $S q^{1}$ is the mod 2 Bockstein homomorphism and $\operatorname{Tor} H^{*}(E \mathrm{VI} ; \mathbb{Z})$ consists of elements of order 2 we deduce

Proposition 4.5. The $\bmod 2$ reduction $\rho: H^{*}(E \mathrm{VI} ; \mathbb{Z}) \longrightarrow H^{*}(E \mathrm{VI}$; $\left.\mathbb{Z}_{2}\right)$ maps $\operatorname{Tor} H^{*}(E \mathrm{VI} ; \mathbb{Z})$ isomorphically onto $\operatorname{Im} S q^{1}$.

Using this proposition and the results of $H^{*}(E \mathrm{VI} ; \mathbb{Q})$ the additive structure of $H^{*}(E \mathrm{VI} ; \mathbb{Z})$ can be completely determined.

Department of Mathematics Graduate School of Science Kyoto University Kyoto 606-8502 Japan

References

[1] S. Araki, Cohomology modulo 2 of the compact exceptional groups E_{6} and E_{7}, J. Math. Osaka City Univ., 12 (1961), 43-65.
[2] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115207.
[3] A. Borel and F. Hirzebruch, Characteristic classes ans homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538.
[4] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251-282.
[5] N. Bourbaki, Groupes et Algèbre de Lie IV - VI, Masson, Paris, 1968.
[6] K. Ishitoya, Integral cohomology ring of the symmetric space EII, J. Math. Kyoto Univ., 17 (1977), 375-397.
[7] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ., 17 (1977), 225-243.
[8] K. Ishitoya, Cohomology of the symmetric space EI, Proc. Japan. Acad. Ser. A Math. Sci., 53 (1977), 56-60.
[9] M. Nakagawa, The integral cohomology ring of E_{7} / T, J. Math. Kyoto Univ., 41 (2001), 303-321.
[10] M. Nakagawa, On the mod 2 cohomology of some homogeneous spaces of E_{7}, Master's thesis, Kyoto Univ., 1999.
[11] H. Toda and T. Watanabe, The integral cohomology ring of F_{4} / T and E_{6} / T, J. Math. Kyoto Univ., 14 (1974), 257-286.
[12] T. Watanabe, The integral cohomology ring of the symmetric space EVII, J. Math. Kyoto Univ., 15 (1974), 363-385.

