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The mod 2 cohomology ring of the symmetric
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1. Introduction

The compact 1-connected irreducible symmetric spaces have been classified
(E. Cartan, etc.). For classical cases, their cohomologies are well known (A.
Borel, etc.). For exceptional cases, the integral cohomology rings of EI, EII,
ETII, EIV, EVIL, F1, FII and G are already determined ([6], [8], [11], [1], [12],
[7], [3]). The remaining symmetric spaces EV, EVI, EVIII and EIX have 2-
torsion, so their cohomologies are much more complicated. The purpose of this
paper is to determine the mod 2 cohomology ring of EVI. Since E'VI has only
2-torsion and the torsion elements of its integral cohomology are all of order 2
the additive structure of the integral cohomology can be completely determined
by its mod 2 cohomology. As a homogeneous space, it is given by

EVI= E; /Uy, Uy = 8% Spin(12), SN Spin(12) = Z,

where F; is the compact 1-connected simple Lie group of type Er, U; is the
identity component of the centralizer of an element xy, € E7. Let C; be the
centralizer of a suitable one dimensional torus containing x;. Then

Cy =T'- Spin(12), T'N Spin(12) = Z,
and we have a fibration:
(1.1.1) S$2 >~ 1,/C, — E;/Cy - E; /U, = EVL.

We consider the Gysin sequence associated with (1.1.1). In this case it is
reduced to the following exact sequences since E;/C7 has no torsion and no
odd dimensional part in its integral cohomology ([4]):

(#); 0 — HY3(EVL A) S H2(EVL A) 2 HY(B;/C): A)
L H%2(EVL A) X HYH(EVL A) — 0
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where x € H3(EVL; A), 2x = 0 and A = Z or Zy. The homomorphisms 6 and
h satisfy

O(p*(x)y) = 20(y), h(x)=x "=

On the other hand we determined the integral and mod 2 cohomology ring of
E;/C1 ([10], [9]). Hence by considering the above exact sequences inductively,
we will determine the mod 2 cohomology ring of EVI. The paper is organized
as follows: In Section 2 we compute the invariant subalgebras of the Weyl
groups in order to determine the rational cohomology ring of EVI. In Section
3 we discuss the integral and mod 2 cohomology of EVI in low degrees. In
the final section, Section 4 we determine the mod 2 cohomology ring of EVI.
Throughout this paper o;(z1,...,z,) denotes the i-th elementary symmetric
function in the variables x1, ..., z,.

I would like to express my hearty thanks to Professor Akira Kono for his
various advice and encouragement.

2. The rational cohomology ring of EVI

Let T be a maximal torus of E7. According to [5] the completed Dynkin
diagram of Fr is

—Q 1 [0 % (67} (07 Qg (0%
© O

(6]

where a; (1 < i < 7) are the simple roots and & = 2a; + 2as + 3z + 4oy +
3as + 2a6 + a7 is the highest root. As usual we may regard each root as an
element of H(T;7Z) —» H*(BT;7Z).

Let C; be the centralizer of a one dimensional torus determined by «; =
0 (¢ # 1) and U; the identity component of the centralizer of an element z;
such that o;(x1) =0 for i # 1 and «y(x1) = 1/2. Then the Weyl groups W (-)
of E7,U; and C; are given as follows:

W(Er) = (R; (1<i<7), W)= (R (i #1),R),
W(C1) = (R; (i #1)),

where R; (resp. ]:?) denotes the reflection to the hyperplane o; = 0 (resp. & = 0).
Note that ([7])

Uy = 8% Spin(12), SN Spin(12) = Z,.
Cy =T"- Spin(12), T'N Spin(12) = Z,.

Let {w;}1<i<7 be the fundamental weights corresponding to the system
of the simple roots {a;}1<i<7. We also regard each weight as an element of
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H?(BT;Z) and then {w; }1<;<7 forms a basis of H*(BT;Z). The action of R;’s
and R on {w; }1<;<7 is given as follows:

7
WUevs . s
Ri(wi):wi_zwwﬁ Ri(wy) =wy  for k#1,

Following [12] we define

tr =wr, ti=Rip1(tiy1) (2<i<6), t1=Ri(ta),
1

CiZO'i(tl,...,t7), t:w2:§cl.

Then t and t;’s span H?(BT};Z) since each w; is an integral linear combination
of t and t;’s and we have the following isomorphism:

H*(BT;Z) = Zlty,. .. . t7,1]/(3t — c1).

Furthermore the action of R;’s and R on these elements is given by the following
table:

Ry Ro Rs Ry Rs Rg Ry R
t to t—to — t3
to i t—t] — 13 t3 t1+1to—t
t3 t—1t1 —to to ty4 t1+t3—t
ty ts3 ts t1+ty—1t
ts t4 te t1 +1t5 —t
te ts tr  t1+tg—1
tr tg th+t7y—t
t —t+1ty4+15 +16 + 17 2t —t
where blanks indicate the trivial action.
Putting
1
tQ:t—tl and szti+1—§t0 (1SZ§6),
we have

H*(BT, Q) = Q[th NN ,t7] = Q[t07617 NN ,66]
and the following table of the action:

Ry, R3 Ry Rs R¢ Ry R
to —tp

€1 | —€2 €2

€2 | —€1 €1 €3

€3 €2 €4

€4 €3 €5

€5 €4 €6
€6 €5
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From this table

Lemma 2.1.  The invariant subalgabras of the Weyl groups W (C1), W (Uy)
are given as follows:

(i) H*(BT;Q)"%) = Qlto, p1,pa, €, p3; Pa; Ps)-

(i) H*(BT; Q)W) = Q[t3, p1,p2, €, ps, pa, ps)
where

€;.
1

6
pi:oi(e%,~-~ ,eé) and e=

K2

Next as in [12] we put
x; =2t —t(1<i<7) and ag=t.
Then we have the following W (E7)-invariant subset
S ={z;+x;,—x;—x; (1<i<j<8)}c H*BT;Q).
Thus we have W (Er)-invariant forms

I, =Y y" € H(BT; Q)"
yeSs

Consider the following elements (J; € H**(BT;Q)):

Jo = co — 412,
Jg = c% + 8cg — dest — dest® + 4t6,
Jg = 2¢2 — 3czcs + 12¢7t — 3ezeat — 30c6t + 24cest® + 2c4t™ + 245,
Jio = cg — deser — 2eq05t + 20305t + thQ — 2cgeqtd + 1273 — 806t4 + 4C4t6,
Jig = —6t5u + 9tau® + 2t5v — 12t3uv + u® + 307,
Jia = 13t — 6t5%u — 3tdu? + dthv — 6tguv — 3utv + 3t3v?,
Jig = —8titu + 24t5u® + 9tZut — Stuv — 48tjuv — 12uv — 4t50?

+ 24t3uv® — 8v3,

where

to=t—t u*} fgt‘l v*e+§t2uf§t6
0= 1, 76132 39 0’ = 40 640'

Then the following facts are proved ([12], [9]).

Lemma 2.2.  The invariant subalgebra of the Weyl group W (FE7) is
given as follows:

H*(BT; QW) = Q[I, I, Is, 10, T2, 14, [1s)-
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Lemma 2.3.
(l) IQ = —25 '3J2, IG = 28 . 32J6 mod ag,
Is=2%.5J3 modag, Io=22%-32-5-7J1p mod a,o.
In H*(BT; Q)" () = Q[to, p1,p2, €, 3, pa, ps] we have
(i) Iy = 24(2p; +t3), Is =28 -3%p3 + 29 3% - e + decomp.,
Ig =21 . 3. 5ps + decomp., Io =2'2-32.5.Tps + decomp.
(iii) I = —2'6.3%*.5J;5 mod b,,, I14, =2'7-3-7-11-29J14 mod b,,,
Ig =220.3%.1229J;5 mod b,,
where decomp. means decomposable elements and a; (resp. b;) denotes the
ideal of H*(BT;Q) (resp. H*(BT;Q)W (V) generated by I;’s for j < i,j €
{2,6,8,10,12,14,18}.

Now we briefly review the classical results of A. Borel ([2]). Let G be
a compact connected Lie group, U be a closed connected subgroup of G of
maximal rank and T be a common maximal torus. Then both the rational
cohomology spectral sequences for the fibrations

G/T % BT *% BG, G/U - BU - BG
collapse. In particular

py: H*(BG;Q) — H*(BT;Q), p*: H*(BG;Q) — H*(BU;Q) injective,
1y H*(BT;Q) — H*(G/T;Q), " : H*(BU;Q) — H*(G/U;Q) surjective,
and Keri = (ps HT(BG;Q)), Kert* = (p*H'(BG;Q)).

Furthermore Impf, coincides with the invariant subalgebra H*(BT;Q)" (%),
Therefore we have the following description of H*(G/U;Q):

¥

H*(G/U:Q) «—H"(BU;Q)/(p" H* (BG; Q)
=H*(BT; Q)" /(H*(BT; Q)"().

We apply this to the case U = C7 and U;. Then using Lemmas 2.1, 2.2 and
2.3 we have (For later use we replaced v by v/ = v — t2u)

Lemma 2.4.
(i)  H*(E7/C1;;Q) = Qlto, u,v']/ (2, J1a, Jis)-
(ii) H*(EVLQ) = Qla,b,c]/(r12,714,718),
where a,b and c are elements of H*(EVI; Q) determined by p*(a) = t3, p*(b) =
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/

2u and p*(c) =/,

Jiy = — dthu + 2t50" — 6t2uv’ 4+ u® + 37/2,
Ji =tht — 2680 — 6t5u? + 430’ — 3t2u® — 3uv’ + 3t20'7,
Jig = — 8tptu — 8tdu® — 3t2u* — 16t5un’ — 12t%u? — 24tgu*v’ — 12030

12 13

— 4t 8v',

1
r19 = — 2a*b 4 2a3c — 3abe + gbg + 3¢,

3 3 3
ris =a” — a®b + 4a’c — §a3b2 — gab3 + 3ac® — 1[720,

rig = — 4a"b — 3a°b® — 8a*be — a®b® — 4a3c? — 6a%b%c — 3

= ab* — §b?’c — 8.
16 2

Remark 2.5. As proved in the next section, a,b and ¢ are all integral
cohomology classes.

Furthermore we determined the integral cohomology ring of E;/Cy ([9],
Theorem 5.7):

Theorem 2.6.
H*(E7/Cy; Z) = Zto, u, v, w]/(0g, 019, 014, 015)
where deg(tg) = 2, deg(u) = 8, deg(v’) = 12, deg(w) = 18 and
oy = 2w — tou?,
0y = —Athu + 2t5v" — 6t2uv’ +ud + 307,

ol = b — 2t80u — 6t8u? + 4tdy’ — 3t2u3 — 3uP + 3t

2 3
ohg = =23 — 2t8u® — 3w? — 4tdun’ — 3t}0u? — 6tguy’ — 3udv — tSu’T — 20",

From this theorem (see also [10], Theorem 5.5) we have the following
Theorem 2.7.
H*(Eq7/Cy; L) = Loto, u, v, w]/(tou?, u® + v'Z,té‘l +u w? +0).

Squaring operations on tg,u,v’,w are given as follows:

Sq*(to) = t3, S¢*(u) = tou, Sq*(u) = tiu + ',

SP (W) =t +tov', Sg*(v) =15 + 120, SB(W') = thu + tiv’ + tow + uv/,
S (w) =t + tSu +w’, Sq¢t(w) = ti* + thu,

Sqd(w) =53 + t9u + T’ + uw, S¢'S(w) = th3u + tour’* + vPw.

Corollary 2.8. (i) An additive basis of H*(E7/C1;7Z) as a free module
for degree < 20 is given as follows:
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deg | O 2 4 6 8 10 12 14 16 18 20
1 to t2 8 t5 ¢ 5 T 8 oty t°

u  tou tRu  thu  thu  tju  tSu

vt 30 3 i

u? w tow

wv’

(ii) An additive basis of H*(E7/C1;Z2) as a Zo-vector space is given as
follows:

b, thu, tho! thw, thuv', thuw, tho'w, thuv'w (0 <i < 13),

2 2 3 2 2 2 4
w2, v, WP, w's) Wdw, 07, w0, v, w'w, w'fw, v,

3 2 4
v w, wiw, v w

3. The cohomology of EVI in low degrees

In this section we consider the integral and mod 2 cohomology of EVI
in low degrees. As is mentioned in the introduction, we consider the Gysin
sequence associated with the 2-sphere bundle S? = U;/C; — E7/C} 2,
E7/U1 = FEVIL

(#)i 0 — H*3(EVL A) LS H¥(EVE A) 25 HY(E7/Cy; A)
LHY2(EVE A) 1 HPFY(EVI A) — 0
where A = Z or Zs and the homomorphisms 6 and h satisfy
0(p*(2)y) = 20(y), h(z)=x-z

for some y € H3(EVI; A) such that 2y = 0. Since H*(E;/C1;Z) is free, it
follows from () that

(3.3.1) H°Y(EVL,Z) = x - HY**(EVL; Z) C Imh = TorH*(EVT; Z)

and the latter is an elementary abelian 2-group. (TorH*(EVI;Z) means the
torsion subgroup of H*(EVI; Z))

Since E7 is 2-connected, w1 (EVI) & mo(Uy) = 0, mo(EVI) & 7y (Uy) =2 Zs.
Therefore

Hi(EVLZ) =0, Hy(EVLZ)=1Z,
and by the universal coefficient theorem we have
HY(EVL,Z) = H*(EVL,;Z) =0, H?*(EVIL;Z) #0.

Then by (%)1:

0—s(to) — (1) X5 H3(BEVLZ) — 0
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we deduce
H*(EVLZ) = (x) 2 Zy, and 6(tg) = 2.

Here we change 6 to —0 if it is necessary. Consider (x); with mod 2 coefficient

0 — H2(EVL Zo) 2= (o) % (1) ¥ H3(EVL Zs) — 0

where y3 = x mod 2. Since 0(ty) = 2 with integer coefficient, 6(ty) = 0
mod 2. Hence by the exactness there exists an element y, € H?(EVI; Zz) such
that p*(y2) = to and we have

H*(EVLZy) = (y2) and H*(EVILZy) = (y3).

Next consider (x)s:

0 — HYBVLZ) 2> (12 25 0 2% H5(EVLZ) — 0.

From this there exists an element a € H*(EVI; Z) such that p*(a) = t3 and we
have

HYEVLZ) = {a) =7 and H°(EVLZ)=0.
Considering with mod 2 coefficient
0 — HYBVEZy) 25 (88) 5 (yo) 2> HY(EVEZy) — 0
we have 0(t3) = 0(p*(y3)) = 0 and we deduce
HYEVL;Zs) = (y3) and H°(EVLZs) = (yays).

Note that @ mod 2 = yZ since p*(a) = 3.

Next consider (x)s:

0— (x) X5 HY(BVLZ) 25 13y -2 (a) X5 HT(BEVLZ) — 0.
Since 0(t3) = 0(p*(a)ty) = ab(ty) = 2a, we deduce
HY(EVLZ) = (X*) 2 Zy, and H'(EVLZ)= (ax) = Zs.

Considering with mod 2 coefficient

0 — (y3) L5 HS(EVL Zy) £ <t0) s 02y B HY(EVL Zs) — 0
we have 6(t3) = 0(p*(y3)) = 0 and we deduce

HY(EVLZs) = (y3,y3) and  H'(EVLZ2) = (y3y3).
Next consider (x)4:

0

0 — H3(BVLZ) 25 (4 u) -2 (v?) 25 HY(BVLZ) — 0.

Then 0(t3) = 0(p ( 2)) = 0. As to the image of u, there are two possibilities:

(i) O(u) =X,
(i) O(u) = 0.
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Lemma 3.1.  (ii) does not occur.

Proof. If (ii) O(u) = 0 is true, §(u) = 0 mod 2. By the exactness there
exists an element yg € H®(EVI;Zy) such that p*(ys) = u. Then 0(v') =
O(v + tdu) = 0(Sq*(u) + tiu) = 0(p*(Sq*(ys) + y3ys)) = 0. Hence there exists
an element y15 € H'?(EVI; Zy) such that p*(yi2) = v'. Applying S¢® on both
sides, we have p*(Sq¢®(y12)) = S¢®(v') = tSu + t§v' + tow + uv’. Therefore by
the exactness

0 = 0(t5u) + 0(tgv") + O(tow) + O(uv’)

= 0(p* (y5ys)) + 0(p* (y3y12)) + O(p* (y2)w) + O(p* (ysy12))
=12 0(w)

and also y3 0(w) = 0. On the other hand since p*(y3 + y2,) = u® +v/* =
0, p* (y3* + y2y12) = t4* + u*v’ = 0 by Theorem 2.7, we may put

vs+yta=ys-f and ' +yivia=ys-g
for some elements f,g € H*(EVI;Zs). Then using these relations
4 *
0(v" w) = 0(p" (yiz)w) = yiy 0(w) = yia (v +ys3 - f) O(w)
= Y129z O(w) = y12ys (2" +ys - 9) B(w) = 0.

This contradicts the fact that 6 : HS¢(E;/Cy; Zy) = (v 'w) — HS*(EVI; Zy)
is an isomorphism. O

Therefore (i) 6(u) = x? is true. Then from (x)4 there exists an element
b € H3(EVI;Z) such that p*(b) = 2u and we have

H¥(EVLZ) = {a®>,b) 2 Z®7Z and H°(EVLZ)=0, x*=0.
Considering with mod 2 coefficient
0 — {yaya) 2 HY(EVEZa) 2 (15, u) < (43,93) 2 HO(EVE:Zy) — 0
we have 0(t3) = 0(p*(y3)) = 0,0(u) = y3 and therefore
H(EVT Z5) = (y3,093)  and  HY(EVEZo) = (y3ys)

where b mod 2 = yo13.
Next consider (*)s:

0 — (ax) X5 HYO(BVLZ) 25 (3, tou) —2 (a2,b) 2> H(EVL Z) — 0.

Then 0(t5) = 0(top*(a®)) = a?0(ty) = 2a%,20(tou) = 0(2tou) = O(top* (b)) =
bl (to) = 2b and therefore §(tgu) = b since H®(EVI;Z) = {a?,b) is free. Hence
0 is injective and we have

HY(EVLZ) = (ax®) 2 Zy and H'“Y(EVLZ) = (a®x) = Za, by = 0.
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Considering with mod 2 coefficient
0 — (y2y3) 22 HO(BVL Zy) 25 (83, tou)
0 -
(Y2, y293) > HY(EVL Zg) — 0

we have 0(t5) = 0(p*(¥3)) = 0,0(tou) = 0(p*(y2)u) = y20(u) = yoy2 and
therefore

H'Y(EVI;Zy) = (y5,9y5y3) and  H™(EVLZs) = (y3y3).

Next consider (x)g:
0 — H2(EVLZ) 25 (8, 2u,v') -5 (ax?) 25 H¥(EVLZ) — 0.

Then 0(t§) = 0(p*(a®)) = 0,0(t3u) = 0(p*(a)u) = ab(u) = ax?®. As to the
image of v, there are two possibilities:

() 0)=ax?,

(ii) 6(v") =0.
Now we assume the following lemma which will be proved at the end of this
section.

Lemma 3.2. (i) does not occur.

Thererfore (ii) #(v') = 0 is true. Then from (x)g there exists an element
c € H?(EVI; Z) such that p*(c) = v/ and we have

H@(EVLZ) = (a® ab,c) 2 Z®Z®Z and H?(EVLZ)=0.
Considering with mod 2 coefficient
0 — (y3ys) 25 H2(EVL Zp) 215, t3u, ')
(3, y3y3) 2 HY (EVT Z5) — 0

we have 0(t5) = 0(p*(y5)) = 0,0(t5u) = 0(p* (y3)u) = y30(u) = y3y3,0(v') =0
and therefore

H2(EVL Zy) = (3,953, y12) and  H(EVL Zy) = (y3ys)

where y12 = ¢ mod 2.
We continue this argument up to degree < 20.
Next consider ()7:

0 — (a?y) 2> HY(EVLZ) 2o (1], thu, tov')
(a3, ab, ¢) X HYS(EVLZ) — 0.

Then 0(t§) = 0(p*(a®)to) = a®0(to) = 24a°,0(tgu) = 0(p*(a)tou) = ab(tou) =
ab, B(tov') = O(p*(c)to) = cb(tp) = 2¢ and hence 6 is injective and we have

HYEVLZ) = (a®>x*) and HY™(EVLZ) = (a®x, cx).
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Considering with mod 2 coefficient
0 — (ysys) —— H'(EVL; Zy) T(t], thu, tov’)
7] .
— (Y8, 112, y3y3) > HY(EVL Zg) — 0

we have 0(t]) = 0(p*(y5)) = 0,0(t3u) = 0(p* (y3)u) = y30(u) = y3y3,0(tev') =
0(p* (y2y12)) = 0 and therefore

H"(EVL; Zy) = (y3, y2y12,y3y3)  and  H(EVL Zs) = (ySys, ysyra).

Next consider (x)s:

0 — HS(EVLZ) 25 (#8, thu, 20, u?) -5 (a®x?) X5 HY(EVL Z) — 0.

Then 0(t8) = 0(p*(a*)) = 0,0(t{u) = 0(p*(a®)u) = a®0(u) = a®x%,0(t3v') =
O(p*(ac)) = 0. As to the image of u?, there are two possibilities:

(i)  0(u®) =a’x?

(i) O(u?) =0.

Lemma 3.3. (i) does not occur.

Proof. Consider
0: H'®(E;/C1;Z) = (), tou, tgv', w)— H' (EVT; Z).
Since 2w = tou® we have
40(w) = 0(4w) = 0(2tgu?) = 0(p* (b)tou) = b(tou) = b>.

Therefore if we put 6(w) = d then b?> = 4d and 4p*(d) = 4u?. Thus p*(d) = u?
since H®(E;/C1;Z) is free. By the exactness we conclude 6(u?) = 0. O

Hence we have
H'(EVLZ) = (a*,a®b,ac,d), 4d=b> and H'(EVLZ)=0.
Considering with mod 2 coefficient
0 — (y3us) 22> H'(BVI; Zo) L (85, thu, 130", u?)
oy, oy, i) 2 HY(EVE Z) — 0

we have 0( ) 9(p*(y )) =0, g(téu) _ 0( ( ) ) _ yQG( ) _ y2y370( 2 /) _
0(p*(y3y12)) = 0,0(u?) = 0 and therefore

H'(EVL Zs) = (5, y3y12, 16, y5y3)  and  H'(EVL Zo) = (y3ys, y2ysy12)

where y16 = d mod 2.
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Next consider (x)g:
0 — (a®x,ex) = H®(EVL Z) L(tg,tgu,tgv',w>
i>(a47 a?b, ac,d) 2> H¥(EVLZ) — 0.

Then 0(t)) = 0(p*(a*)to) = a*0(ty) = 2a*, 0(tu) = 0(p* (a®)tou) = a0(tou)ab,
0(t3v') = 0(p*(ac)ty) = ach(to) = 2ac,f(w) = d and hence 6 is injective and we
have

H¥(EVLZ) = (a®*x?,ex?) and HY(EVLZ) = (ax,acy), dx = 0.
Considering with mod 2 coefficient
0 — (ySys, ysyra) LSHS(EVL Z) 2 (13, 3, 130/, w)

—><yzayzy12ayl6ay2y3> =, HIQ(EVI'ZQ) — 0
we have 0(t) = 0(p*(y3)) = 0,0(tgu) = 0(p*(y3)u) = y30(u) = yzyg,ﬂ( t')
= 0(p*(Y3y12)) = 0,9(w) = y16 On the other hand p*(y;2) = v’ implies
p* (qu(ylg)) Sq®(v') = tu + tgv' + tow + wv’ and by the exactness we have
= O(tu) + 0(tgv') + O(tow) + O(uv')
= 0(p* (y3)u) + 0(p* (y2912)) + 0(p* (y2)w) + 0(p* (y12)w)
= y50(u) + y20(w) + y120(u)
= YSy3 + Y2vi6 + Y3Y12-

Therefore we deduce

H"™(EVLZs) = (43, y3y12. YSY3, Y3y12),  Ya¥16 = Y3y12 + YSy3.
HY(EVL Zo) = (ySys, y3ysv12),  ysyie = 0.

Next consider (x)10:
0 — H*(EVLZ) 25 (1, thu, 4! tow, ut')
— (@®x*, ex?) =5 H?(EVLZ) — 0.

Then 0(t{%) = 0(p*(a®)) = 0,0(t5u) = 0(p*(a®)u) = a®0(u) = a3x?,0(tiv") =
O(p*(ac)) = 0,0(uv’) = O(p*(c)u) = ch(u) = cx?. Considering with mod 2
coefficient we have §(tow) = 0(p*(y2)w) = y20(w) = yay16 = Y3y12 + YSY3.
This implies 0(tow) = ax? + cx? with integer coefficient. Therefore if we put
r = tow — tSu — uv’ we have 0(z) = 0 and by the exactness there exists an
element e € H?°(EVI;Z) such that p*(e) = x. Then p*(2e) = 22 = 2tow —
2t8u — 2uv’ = p*(ad — a®b — be) and we have 2e = ad — ab — be since p*
is injective. Using x we have H?Y(E;/Cy1;Z) = (t{°, tSu,tav’, z,uv’) as a free
module and we see easily

H®(EVLZ) = (a®,a®b,a’c, be, e), 2e = ad — a®b — be.
H*(EVL,Z) = 0.
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Considering with mod 2 coefficient
<téo,t8u tov', , u’)
> H*(EVL Zy) — 0

0 — (y3ys, Yaysy12) —>H20(EVI 7o) L
<y2,y2y12,y2y3,y3y12>
(y5)u) = y50(u )—y2y3,9(4 g

we have 0(t3°) = 0(p* (y3°)) = 0, 0(t5u) = 0(p* (3§
0(p*(y3y12)) = 0,0(x) = 0,0(uv’) = O(p*(y12)u) = y120(u) = y3y12 and there-

fore
H*(EVI; Zy) =
H*(EVL, Zy) =

(30, Y3 Y12, Y20, YaYa, Y2Yayi2)

(Y23, Y3 y3y12)
), H*(EVI; Zs) up to degree < 20

where Y20 = e mod 2
Thus we have determined H*(EVI
[x,a,b,c,d, e]/(2x, X3, bx, 4d — b%, dx, 2e — ad + be +

Lemma 3.4.
(i) H*(EVLZ)=Z b, e, d,
a®b),
Zalyz, Y3, y12, Y16 Y20) / (Y3, Y216 +Y3Y12+Y5Y3, Y3y16)

(il) H*(EVLZ.) =
for degree < 20.
We continue the computation with mod 2 coefficient up to degree < 30

Consider (*)11:
8 2 22 11
0— <y2y3,y2y3y12> =5 H**(EVI; Zg) <t0 ,tou tov tor, touv’)
(3%, Yay12. Y20, Y33, Yoy yi2) —= H**(EVL Zy) — 0.
$u) = y30(u) = yiu3,0(t5') =
= 0(p*(y2y12)u)

) = 0,0(tfu) = 0(p*(
= 0,0(touv’)

Then 6(tg") = 6(p*(y3") = 0,
0(p*(y5y12)) = 0,0(tox) = 0(p*(y2y20)
= y2y120(u) = y2y3y12 and therefore
H?*(EVL Zs) = (y3', ysy12, Y2120, Y5 Y3, Y33 Y12)
H?(EVL Zs) = (y5°ys, Ysy3y12, Y3Y20)-

Next consider (*)12
<t(1)2> t()uu tSv’, t%:t, t(z)uu v 2)

0— <y2y3,y2y3y12> L H*(EVL Zy) 2
(3" Y3 y12, Y2y20, Y5 Y3, Y3 Y3 Y12) > H*P(EVL Zo) — 0
2 gvl) —

Ju) = y50(u) = y5y3,0(t
= 0(p* (y5y12)u)

Then 6(t5*) = 0(p* (y5°)) = 0,0(t5u) = 0(p* (y3
0(p*(ysy12)) = 079(%1‘)2 = 0(p*(y3y20)) = 0,0(tfur’) =
Y3y120(u) = y3y3y12,0(v'") = O(p*(y7,)) = 0 and therefore

(Y32, YSY12, Y3 Y20, Yios YSY2, Yo yaY12)

H*(EVT; Zy) =
HP(EVL Zs) = (y5'y3, y3y3Y12, Y2y3Y20)
Before considering (*)13, we need to determine the action of the squaring

operations on ¥, ¥3, Y12, Y16, Y20
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Lemma 3.5.

Sq'(y2) = y3, Sq*(y3) =0, Sq'(y12) =0, Sq* (y16) =0, Sq* (y20) =0,

Sq*(ys) = yays.

Proof. Since H*(EVLZ) = 0, H3(EVL, Z) = (x) & Z2, 5S¢ (y2) = p(x) =
y3 by definition of Sq'. Since y3, Y12, Y16, Y20 are all mod 2 reductions of integral

cohomology classes, Sq! on them are trivial. Sq'Sq?(y3) = S¢3(y3) = y3 # 0
implies Sq?(y3) does not vanish. As H%(EVI; Zs) = (y2y3), S¢*(y3) = y2y3. O

Lemma 3.6.
Sq*(y12) = ys + yoy12 + yay3,
Sq*(y12) = v5 + Y3y12 + Y33,
8 _ 4 "7 2 1 2
Sq®(y12) = yao + Yavr2 + "ysy3 + 6" y2u3012
for some o', ", 3" € Zs.
Proof. Applying Sq? on both sides of p*(y12) = v/, we have p*(S¢*(y12)) =

t5+tov’ = p*(y3 +y2y12) from Theorem 2.7. Therefore in view of ()7, we may
put

Sq*(y12) = ys + Yau12 + Yy
for some o € Zy. Applying Sq? on both sides, we have
(a+1)ysys =0 in H'®(EVL Zy).

Hence a = 1 by Lemma 3.4 and we obtain the first assertion. Similarly we
obtain the second and third assertions. O

Lemma 3.7.
S¢*(y16) = 0,
Sq*(y16) = ¥3y3,
Sq®(y16) = yis + 7" y5y3 + 0" vsy3yr2

for some 7", 8" € Zs.

Proof. Applying Sq?, Sq* on both sides of p*(y16) = u?, we have p*(Sq>
(y16)) = 0,p*(Sq*(y16)) = 0 from Theorem 2.7. Therefore in view of (x)g, (*)10,
we may put

Sa®(yi6) = VYSY3 + 6y3yi2,
Sq*(yi6) = v'ysys + 6'y2y3y12



The mod 2 cohomology Ting 549
for some 7,d,7',6' € Zy. Now we apply Sq? on both sides of the relation
YoU16 = Y3y12 + ySy3 and we have

VW3Y5 + 0yayzyia = 0 in H*(EVL; Zy).

Hence v = § = 0 by Lemma 3.4 and we obtain the first assertion. Furthermore
applying Sq¢*, we have

(Y +1) 4595 + 0'y3y3yia =0 in H(EVL Zy).

Hence v/ = 1,0’ = 0 and we obtain the second assertion. The third assertion
follows similarly. O

Similarly we can prove

Lemma 3.8.

Sq*(y20) = ya' + yay20 + LYSY3 + VYIS Y3 Y12,

Sq(y20) = y3s + Y512 + WySY2 + VYY1,

Sq®(y20) = y12y16 + Yayi2 + N'y3'y3 + 1" y3y3 v + v Y2520

for some p, v, 1,V Ny v € Zo.

Now we apply S¢® on both sides of the relation yay16 = y3y12 +y5y3. Then
using Lemmas 3.6 and 3.7 we have

Lemma 3.9.  There exists a relation of the form
(3.3.2) Yayis = y3ye0 + 7" y2 3 + 0" Y23y
where v, 8" are as in Lemma 3.7.

Moreover applying Sq' on both sides of (3.3.2), we have

Lemma 3.10.  There exists a relation of the form

(3.3.3) ysyis = 0.

Now consider (*)13:

0 — (y3° yg,yzygylg,ygygo> L H*(EVIL Zz) (t S, to i, thun’, uw)
3,y 10, Y220, ey YSYR, Y3 YR Y1e) L5 HYT(EVT; Z) — 0.

Then 0(t5°) = 0(p*(y3°)) = 0,0(tgu) = O(p*(y3)u) = y30(u) = y3y3, 0(t5v’) =
0(p" (y3y12)) = 0,0(tgz) = 0(p*(y3y20)) = 0,0(tfuv’) = O(p* (y3y12)u) = Y3y12
x 0(u) = y3y3y12. As to the image of uw

Lemma 3.11.

0(uw) = yiy + Y3y3y12.
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Proof. Since 2w = tyu? with integer coefficient
Quw = tou® =to(4t5u — 250’ + 6t2uv’ — 30'%)
—4tJu — 270" + 6t3ur’ — 3tov"
by Theorem 2.6. Then

20(uw) = 40(t3u) — 20(tT0") + 66(t3uv’) — 30(tgv'?)
= 4a*b — 4a3¢ + 6abc — 662.

Therefore
O(uw) = 2a*b — 2a3c + 3abc — 3c?

since H>*(EVI; Z) is free. Applying the mod 2 reduction p, we have the required
result. O

Therefore we have

H*(EVT; Zs) = (Y3, ysvi2, Yay20, Y3' U3, Yayayi2, Yay20),
.10, 2

Y2yts = Y3y20 +7"Y2°Y3 + 8 yay3 2.
H?' (BT, Zs) = (y3°ys, y3ysy12, Y3Ysy20),  Ysyiz = 0.
Before considering (#)14, we need a lemma.

Lemma 3.12.  There exists a relation of the form

(3.3.4) Yo' = yrav16 + U5 Y3 + Yo3Y1a-

Proof. By Lemma 2.4 there exists a relation
7 5 4 3 39 3 3 2 39
(3.3.5) T4 =a —ab+4ac—§ab —gab + 3ac —ZbCZO

in H®(EVI; Q). Substituting v? = 4d, b3 = 4bd = 16a*b — 16a®c + 24abc —
24¢2, 2e = ad — be — a®b into (3.3.5), we have

(3.3.6) a’ —13a’b 4 10a*c — 15a%bc — 12a%e + 12ac® — 3ed = 0

in H*®(EVL; Z) since a, b, ¢, d, e are all integral cohomology classes. Therefore
applying the mod 2 reduction p to (3.3.6) we have the required result. O

Now consider (#)14:
0 — (423, ¥3ysy12, Yaysyao) — H*(EVL Za) +— (tp’u, 50’ thz, tgu',

9 .
touw, u?v') — (Y3>, Y3 Y12, Y3y20, Y3 Y3, Y3 Y312, Yayo) —— H* (EVL Zy) — 0.
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y"y3,0(tgv') = 0(p* (y3y12)) =

Then 0(t5%u) = 0(p*(y2°)u) = ¥3°0(u) =
= ) = = 0(p*(yay12)u) = Y31120(u) = Y3y3Y12,

( 0z) = 0(p* (y3y20)) = 0, O(tguv’)
( v") = 0(p*(y12916)) = 0 and

O(touw) = 0(p* (y2)uw) = y20(uw) = Yayis + Y3y3Y12
=320 + 7123 + (8" + Dyay3ura.

Therefore we deduce

H?(EVT; Zs) = (y5y12, Ysy20, Y12Y16: Y3 Y3, Yo y3y12, Y2Y3Y20),
Y3t = yr1ayi6 + Y3 V3 + Y5 Y3 Y.
H?(EVL; Z2) = (y3>ys, yaysyi2, Yaysy20)-

Next consider (*)15:

0— <y52y3, ygy3y127y§y3y20> H3O(EVI Zg) (t(l)l tgv',tga:,tguv',t%uw,
v'w) — (YSy1, Y320, Y2916, Ys Y3, Yo YA Y12, Y2Yaya0) —r HP(EVI; Zy) — 0.

Then 0(t5'u) = 0(p*(y2')u) = y3'0(u) = y3'y3,0(tv
0,0(t5z) = 0(p* (y3y20)) = 0, 0(tgun’) = O(p*(y3y12)u) =
O(t3uw) = 6(p* (y3)uw) = y30(uw) = yoy2yso-+ "yl y3+(
= 0(p*(y12)w) = y120(w) = y12y16 and therefore

) = 0(p *(ygylz)) =
Ysy120(u) = y3y3yiz,
6"+ )929324127 O(v'w)

H(BEVY; Zs) = (ySy12, Yay20, Y32 Y3, YSYay12, Yayaya0)-
H¥(EVL Zs) = (ySysv12, Y2 y3yao)-

From these results we can determine 7", 8" as follows: First we apply S¢° on
both sides of (3.3.2). Then we have

(Y'+06" +1) yaly2 =0 in H®(EVLZy).

Hence §” = 4" + 1. Furthermore we apply Sq* on both sides of (3.3.2)
(6" =~" +1). Then using Lemma 3.12 and (3.3.3) we have

Y'ySyay1e =0 in H3O(EVI; Zy).
Hence v = 0. Thus there exists a relation of the form
(3.3.7) Y2Uta = Y3y + Y3Y3Y12.

Lemma 3.13.  Moreover there exists relations of the form:
(i) yt2 = Yi6Y20 + Y33 Y20,

(i) yi2yis = ¥2°y3u12,

(i) y3sy20 = Y5 Y3Yy20-

Proof. Applying Sq® to (3.3.4), the first assertion follows. Since p*(ya3y20) =
53 (tow + tou + wv') = uv'w + t§Bur’,

0 = 0p" (y3°y20) = O(u*v'w) + O(t5°uv’) = y12y7s + Y3 Yay12
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by the exactness and the second assertion follows. Applying S¢® on both sides
of y12y36 = y33y3y12, the last assertion follows. O

Proof of Lemma 3.2. If (v') = ax? is true, 0(v) = 0(v' + t3u) = ax? +
ax? = 0. Hence there exists an element ¢’ € H'?(EVI; Z) such that p*(c’) = v.
Then we can discuss (x)7 ~ (%)15 in the same way as above and we have
elements d, e’ of H*(EVI; Z) such that

p*(d) = u?, p*(e/) = 2’ = tow + uv.

Putting yj, = ¢ mod 2, y16 =d mod 2, y4; =€’ mod 2 we obtain

) 2
(1) ¥3 =0, yoyi6 = Y3¥lia, Ysyie = 0, Yayis~ = yayho + 7" y2ly3+

"y3y3Yia, Ysyia® = 0, bt + yioyae + ¥3ule” + ya'y3 = 0,
(i) Sq'(¥12) =0, SG*(Y12) = 3 + Yoyis + Y343,
Sq*(yi2) = y5 + a'y393, Sa®(Yi2) = yao + a"y3y3 + B"Y2y3Y1a,
Sq' (y16) = 0, S¢*(y16) = Y53, Sq*(Y16) = Y23 Y12,
Sa®(yi6) = lo” + 7" Y3Y3 + 0" Y3YAYL
for some o/, a”,3",4",8" € Zy. Now we apply Sq¢* on both sides of yi* +
Yiay16 + y%y’uQ + y3ly3 = 0. Then using above results we obtain y3y2 = 0.

On the other hand by (%)14 we see that yi3ys # 0. Since H**(EVI; Zy) 25
H32(EVI; Zs) is injective we have y33y3 # 0. This is a contradiction. O

4. The mod 2 cohomology ring of EVI

In this section we determine the mod 2 cohomology ring of EVL
From Lemma 3.4 we have elements y; € H*(EVL; Zs) (i = 2,3,12,16,20)
such that

(4d.a)(i) p*(y2) = to, p*(y3) =0, p*(y12) = V', p*(y16) = u?,
p*(y20) = = = tow + tgu + uv'.
(i) O(u) =v3, O(w) = yi6, O(uw) = Y5y + Ysy3y12.
(iil) ¥3 =0, yayic = Y2y12 + YSY3, Ysyic = 0, Yayis = Y220 + Yayayi2,
2 14 112 5 2 3 _ 5. 2
ysyi2 = 0, 2" = y12Y16 + Y2 Y3 + Y2Y3Y12, Y12 = Y16Y20 + Y2Y3Y20,

91221%6 = y%3y§y12, y%6y20 = y%?’y%ygo-

We define the graded Za-vector spaces as follows (deg (y;) = j):

Bg = (y1e, y%27 y%Gv Y12Y16, y%2:916a Y1620, Y12Y16Y20),
B = (y5, Ysy12, Y3Y20, Ysy12y20 (0 < i < 13)),

By = (Y55, ysy3u12, Ysy3y205 Ysy3ua2ye0 (0 < i < 13)),
B* = B; ® B} & B;,

C* = (Y4ys, YaysYia, Ysysyao, Ysyayiayeo (0 < i < 13)).
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Moreover define the homomorphisms
h:C* — B* by h(§)=ys-§ &€l
h':B*— C* by W(Bf)=0, W(B5)=0, h()=ys-& &€ BT,
p*:B" — H"(E7/Cy;Zs) by
P*(y2) = to, " (y3) = 0, p*(y12) =, P*(y16) = v,
p*(y20) = & = tow + tyu + wv' and the multiplicativity p*(£n) = p*(€)p* (n).
For each monomial basis of Corollary 2.8 define
GH*(E7/01,Z2)—>B* by
(4.b)
0(td) =0 (0 < <13), O(thu) = yhys (0 <i < 13),

Y16 1 =0
O(tpv') =0 (0<i<13), O(tqw) = Qus 'wiya +u5" "y 1<i<8
Y5 Y3y 9<i<13
2 3,2
i i ) i +y5ysy12 1 =10
O(thuv’) = yhy? 0<i<13), O(thuw) = Y12 ,
(touv") = yay3y12 (0 < i < 13),  O(touw) Y1y l<i<13
Y12Y16 1=0
O(thv'w) = S Y5 Y3y 1<i<8
0 9<: <13
5,2 .
. =0
9(t6uv/w) = y15¥202+ y2y3y20 ' . )
Y2 Y3Y12Y20 1<:<13
O(u?) =0, (') =0, O@*')=0, Ouw')=0, 0w w)=7y>,
0”) =0, Ou*'®) =0, 0 w)=yhys Ouv'w) =y yue,
4 2 3
0(v"") =0, O(w' w) = y12y16Y20 + Y5y3y12920, O(v""w) = y3>y3y00,
9(u2v’2w) =0, 9(1/410) = Y2 Y2y10Y20.

Lemma 4.1.  For each n, the following sequece is exact:

0 — o2n—=3 M, pon EaN H2 (B /Ch: Z) _0, gen—2 M ol ).

Proof. By the definition of h : C* — B*, i/ : B* — C*, we see easily
that h is injective, b’ is surjective and Imh = Bj, Kerh’ = B§ & Bj. On the
other hand by the definition of 0, it is verified directly that Im60 = B§ ® B3
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and therefore Im @ = Ker b’ and Ker 6 has a basis

; ; thv'w + 5P’ 1<i <8
th(0<i<13), thv' (0<i<13), 0 0 -
L4ty + 87w’ 1<i<8
0 9. , 0 — T P w P,
thw +ty uv 9<+1<13

2 2 3 2 4
w2, v WP, w0, W' 0" WP w.

Then considering the image of B @ B} under p*, we see that By ® B} is mapped
isomorphically onto Ker f. Thus the exactness of the sequence is proved. [

Theorem 4.2.  An additive basis of H*(EVI;Zs) as a Ze-vector space
is given as follows:

Y3, YaY12, Y5Y20, YoY12Y20,

Y2y3, YalsYi2, YalsY20, YsY3Y12Y20,

YSY3, YSY3Y12, YaY3Y20, YaY3Y12y20 (0 < i < 13),
Y16, y%27 yfﬁ, Y12Y16, y%zylﬁa Y16Y20, Y12Y16Y20

Proof. We prove that the natural maps

fn i B*" — H*™(EVL Zs), gn:C*"" — H*""Y(EVL Zy)

are isomorphisms by induction on n. In view of Lemma 4.1 and (), it is suffi-
cient to prove that the formulae for (4.b) is still valid for 6 : H*"(E7/C1; Zg) —
H?"=2(EVI; Zy) under the inductive hypothesis on H?"~2(EVI;Zy). This can
be done using (4.a) and the property 0(p*(z)y) = 20(y). O

In order to determine the ring structure of H*(EVI;Z,), we consider an-
other relations between yo, y3, Y12, Y16, Y20-

Lemma 4.3.  There exists relations of the form
() Y30 = yiavis + Y3 Y3u12,
(il)  yi2y20 = Y3°Y3Y12 + Y3Y3Y12Y20,
(ili) yis = y12y16Y20 + YY3Y12Y20-
Proof.  Since p*(y3y + y32y16) = 0, we may put
(4.4.1) Y30 = yhayie + pY3 YaY12 + QUiYAYe0 + rY23Y12920
for some p, q,r € Zy. First we apply Sq? on both sides of (4.4.1). Then
0 = r(Y3y5y20 + Y2 Y312 + Y5Y3Y12020) i H?(EVL Zy).

Hence r = 0 by Theorem 4.2. Next we apply Sq* on both sides of (4.4.1)
(r = 0). Then using Lemma 3.13 we have

(p+q+1)ys2y2y1o =0 in HY(EVL Zy).
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Hence ¢ = p + 1. Furthermore we apply Sq¢®, we have
(p+1) y3'y3ys0 =0 in H®(EVL Zy).
Hence p = 1 and the first assertion follows. Since p*(yZ,y20) = 0, we may put
(4.4.2) Yia20 = P'Y2 Y312 + Y5 Y3 Y20 + Y3 Y3Y12Y20
for some p’, ¢, 1’ € Zy. Multiplying by y2 on both sides of (4.4.2), we obtain
Y2y3yi2y20 = 4'Y3 Y3y20 + 'Ysy3y12ye0  in HO(EVL Zy).

Hence ¢’ = 0,7' = 1. Furthremore multiplying by y20, we obtain

Y2 Yay2y20 = D'y Y3iayeo  in HOY(EVL Zs).

Hence p = 1 and the second assertion follows. Similarly since p*(y?6 +
Y12Y16Y20) = 0, we may put

(4.4.3) Yis = yay1620 + P Y3y3y12920 + 4" v3 Y3Y20

for some p”,q"” € Zs. Multiplying by y2 on both sides of (4.4.3), we obtain
0= (p" + Dysyyrayzo +q"92°y3y20  in H(EVL Zy).

Hence p” = 1,¢” = 0 and the last assertion follows. O

Theorem 4.4. The mod 2 cohomology ring of EV1 is given as follows:

H*(EVI Zy) = Zs[y2, Y3, Y12, Y16, Y20 /J

for the ideal

Y3, yay16 + Y3y12 + YSY3, Ysyie, Y2l + Y3Y20 + Ysy3yi2,
J— y;;,y%Q, g§4 + y12?1/%62+ y%lygz + y§y§y11:))2,2y‘;’2 + y§6y220 + Y3Y3Y20,
Y20 T Yi2Y16 + Y2 Y3Y12, Y12¥20 + Y2 Y3Y12 + YoY3Y12Y20,
Yi2Uis + U5 Y3Y12, Yis + Y12Y16Y20 + YSY3Y12020, YieY20 + Y3 Y3Y20

Proof. By the previous arguments we see that J vanishes in H*(EVT; Zs).
By use of the relations in J, we see that every monomial in ys,ys, y12, Y16, Y20
is a linear combination of the basis in Theorem 4.2. Thus Theorem 4.4 is
established. O

Finally we comment the additive structure of H*(EVI;Z). Using Lemma
3.5 and Theorem 4.2 we see that

21,2

Im Sq' = < Y33, y%f%ylz, y%i_ygym, ygi,y3y12y2o, . >
Y3'Y3, Y5 Y312, U3'Y3Y20, Y3 Y3Y12y20 (0 <0 < 6)

as a Zs-vector space. Because S¢' is the mod 2 Bockstein homomorphism and
TorH*(EVI, Z) consists of elements of order 2 we deduce
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Proposition 4.5.  The mod 2 reduction p : H*(EVL;Z) — H*(EVT,

Zso) maps Tor H*(EVT; Z) isomorphically onto Tm Sqt.

Using this proposition and the results of H*(EVI; Q) the additive structure

of H*(EVI; Z) can be completely determined.
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