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3-graded decompositions of exceptional Lie
algebras g and group realizations of

gev,g0 and ged

Part I, G = G2, F4, E6

By

Ichiro Yokota

The ν-graded decomposition of simple Lie algebras g, g =
∑ν

k=−ν gk, [gi, gj ]
⊂ gi+j , has been studied by many mathematicians. Firstly the case of ν = 1
was studied by S. Kobayashi–T. Nagano [4]. The case of ν = 2, S. Kaneyuki
[3] classified and determined the types of subalgebras gev, g0 of g and in the
exceptional case, S. Gomyo [1] gave explicit realization of each gk, I. Yokota [8],
[9], [10] gave group realization of gev, g0. Now, recently M. Hara [2] classified
the 3-graded decomposition of simple Lie algebras g,

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

and determined the types of subalgebras gev = g−2 ⊕ g0 ⊕ g2, g0 and ged =
g−3 ⊕ g0 ⊕ g3 of g. The following table is the results of gev, g0, ged for the
exceptional Lie algebras g of type G2, F4 and E6.

g dim g1, dim g2, dim g3 gev

g0 ged

g2
C 2, 1, 2 sl(2, C) ⊕ sl(2, C)

C ⊕ sl(2, C) sl(3, C)
g2(2) 2, 1, 2 sl(2,R) ⊕ sl(2,R)

R ⊕ sl(2,R) sl(3,R)

f4
C 12, 6, 2 sl(2, C) ⊕ sp(3, C)

C ⊕ sl(2, C) ⊕ sl(3, C) sl(3, C) ⊕ sl(3, C)
f4(4) 12, 6, 2 sl(2,R) ⊕ sp(3,R)

R ⊕ sl(2,R) ⊕ sl(3,R) sl(3,R) ⊕ sl(3,R)

e6
C 18, 9, 2 sl(2, C) ⊕ sl(6, C)

C ⊕ sl(2, C) ⊕ sl(3, C) ⊕ sl(3, C) sl(3, C) ⊕ sl(3, C) ⊕ sl(3, C)
e6(6) 18, 9, 2 sl(2,R) ⊕ sl(6,R)

R ⊕ sl(2,R) ⊕ sl(3,R) ⊕ sl(3,R) sl(3,R) ⊕ sl(3,R) ⊕ sl(3,R)
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450 Ichiro Yokota

e6(2) 18, 9, 2 sl(2,R) ⊕ su(3, 3)
R ⊕ sl(2,R) ⊕ sl(3, C) sl(3,R) ⊕ sl(3, C)

e6
C 16, 9, 4 sl(2, C) ⊕ sl(6, C)

C ⊕ C ⊕ sl(2, C) ⊕ sl(4, C) C ⊕ sl(2, C) ⊕ sl(5, C)
e6(6) 16, 9, 4 sl(2,R) ⊕ sl(6,R)

R ⊕ R ⊕ sl(2,R) ⊕ sl(4,R) R ⊕ sl(2,R) ⊕ sl(5,R)

e6
C 15, 10, 1 C ⊕ so(10, C)

C ⊕ C ⊕ sl(5, C) C ⊕ sl(2, C) ⊕ sl(5, C)
e6(6) 15, 10, 1 R ⊕ so(5, 5)

R ⊕ R ⊕ sl(5,R) R ⊕ sl(2,R) ⊕ sl(5,R)

e6
C 11, 10, 5 C ⊕ so(10, C)

C ⊕ C ⊕ sl(5, C) C ⊕ sl(6, C)
e6(6) 11, 10, 5 R ⊕ so(5, 5)

R ⊕ R ⊕ sl(5,R) R ⊕ sl(6,R)

e6
C 8, 8, 8 C ⊕ so(10, C)

C ⊕ C ⊕ so(8, C) C ⊕ so(10, C)
e6(6) 8, 8, 8 R ⊕ so(5, 5)

R ⊕ R ⊕ so(4, 4) R ⊕ so(5, 5)
e6(−26) 8, 8, 8 R ⊕ so(1, 9)

R ⊕ R ⊕ so(8) R ⊕ so(1, 9)

Now, for the exceptional Lie groups G of type G2, F4 and E6, we realize
the subgroups Gev, G0, Ged of G corresponding to the subalgebras gev, g0, ged

of g = LieG. Our results are as follows.

G dim g1, dim g2, dim g3 Gev

G0 Ged

G2
C 2, 1, 2 (Sp(1, C)× Sp(1, C))/Z2

(Sp(1, C)× C∗)/Z2 SL(3, C)
G2(2) 2, 1, 2 (Sp(1,R) × Sp(1,R))/Z2 × 2
(Sp(1,R) × R+) × 2 SL(3,R)

F4
C 12, 6, 2 (Sp(1, C)× Sp(3, C))/Z2

(Sp(1, C)× C∗ × SL(3, C))/Z6 (SL(3, C)× SL(3, C))/Z3

F4(4) 12, 6, 2 (Sp(1,R) × Sp(3,R))/Z2 × 2
(Sp(1,R) × R+ × SL(3,R)) × 2 (SL(3,R) × SL(3,R)) × 3

E6
C 18, 9, 2 (Sp(1, C)× SL(6, C))/Z2

(Sp(1, C)×C∗× SL(3, C)×SL(3, C))/Z6 (SL(3, C)×SL(3, C)×SL(3, C))/Z3

E6(6) 18, 9, 2 (Sp(1,R) × SL(6,R))/Z2 × 2
(Sp(1,R)× R+×SL(3,R)× SL(3,R))×2 (SL(3,R)×SL(3,R)× SL(3,R))×3
E6(2) 18, 9, 2 (Sp(1,R) × SU(3, 3))/Z2 × 2
(Sp(1,R) × R+ × SL(3, C))× 2 SL(3,R) × SL(3, C)

E6
C 16, 9, 4 (Sp(1, C)× SL(6, C))/Z2

(C∗×C∗× SL(2, C)×SL(4, C))/(Z2×Z2) (Sp(1, C)× C∗ × SL(5, C))/Z2
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E6(6) 16, 9, 4 (Sp(1,R) × SL(6,R))/Z2 × 2
(R+ × R+ × SL(2,R) × SL(4,R)) × 2 (Sp(1,R)×R+×SL(5,R))×2

E6
C 15, 10, 1 (C∗ × Spin(10, C))/Z4

(C∗ × C∗ × SL(5, C))/Z2 (Sp(1, C)× C∗ × SL(5, C))/Z2

E6(6) 15, 10, 1 (R+ × spin(5, 5))× 2
(R+ × R+ × SL(5,R)) × 2 (Sp(1,R)×R+×SL(5,R))×2

E6
C 11, 10, 5 (C∗ × Spin(10, C))/Z4

(C∗ × C∗ × SL(5, C))/Z2 (C∗ × SL(6, C))/Z2

E6(6) 11, 10, 5 (R+ × spin(5, 5))× 2
(R+ × R+ × SL(5,R)) × 2 (R+ × SL(6,R)) × 2

E6
C 8, 8, 8 (C∗ × Spin(10, C))/Z4

(C∗ × C∗ × Spin(8, C))/(Z2 × Z4) (C∗ × Spin(10, C))/Z4

E6(6) 8, 8, 8 (R+ × spin(5, 5))× 2
(R+ × R+ × spin(4, 4)) × 22 (R+ × spin(5, 5))× 2
E6(−26) 8, 8, 8 R+ × Spin(9, 1)
(R+ × R+ × Spin(8)) × 22 R+ × Spin(9, 1)

1. Group G2

1.1. Lie groups of type G2 and some subgroups of G2
C

We use the same notations and definitions as in [8]. For example,
the Cayley algebra C = H ⊕ He4 and algebras C′,H ′,
the groups G2

C = {α ∈ IsoC(CC) |α(xy) = (αx)(αy)}, G2 and G2(2),
the involutive automorphisms γ, γ1, γ2 of G2 and G2(2) = (G2

C)τγ1 ,
the Lie algebra so(8) = so(C) of the group SO(8) = SO(C), elements Gkl

of so(8) and the Lie algebra g2
C of the group G2

C ,
group isomorphisms Sp(n,HC) ∼= Sp(n,C), SU(n,CC) ∼= SL(n,C),

SU(n,C′) ∼= SL(n,R), U(1,CC) ∼= C∗, U(1,C′) ∼= R∗ etc.
We shall review and add some notations and definitions. The Cayley alge-

bra C naturally contains the field C of complex numbers as C = {x+ye1 |x, y ∈
R}. Now, to an element

x = a+m1e2 +m2e4 +m3e6, a,m1,m2,m3 ∈ C

of C, we associate an element

a+


m1

m2

m3




of the algebra C ⊕ C3 with the multiplication

(a+ m)(b+ n) = (ab− 〈m,n〉) + (an + bm − m × n),

where 〈m,n〉 = tmn and m × n is the exterior product of m,n. Note that
C ⊕ C3 is a left C-module. Hereafter we identify C = H ⊕ He4 and C ⊕ C3.
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We define ϕ : Sp(1) × Sp(1) → G2 and ψ : SU(3) → G2 by

ϕ(p, q)(m+ ne4) = qmq + (pnq)e4, m+ ne4 ∈ H ⊕ He4 = C,

ψ(P )(a+ m) = a+ Pm, a+ m ∈ C ⊕ C3 = C,

respectively. Then for the induced mappings ϕ∗ : sp(1) ⊕ sp(1) → g2 of ϕ and
ψ∗ : su(3) → g2 of ψ, we have

ϕ∗(e1, 0) = −G45 +G67, ϕ∗(0, e1) = −2G23 +G45 +G67,

ψ∗(diag(e1,−e1, 0)) = −G23 +G45, ψ∗(diag(0, e1,−e1)) = −G45 +G67.

Now, we define R-linear transformations γ, δ4 and w3 of C by

γ = ϕ(1,−1), δ4 = ϕ(1,−e1), w3 = ψ(diag(ω1, ω1, ω1)),

where ω1 = −(1/2) + (
√

3/2)e1 ∈ C ⊂ H ⊂ C. The explicit forms of γ, δ4 and
w3 are

γ(m+ ne4) = m− ne4,

δ4(m+ ne4) = −e1me1 + (ne1)e4,
m+ ne4 ∈ H ⊕ He4,

w3(a+ m) = a+ ω1m,

δ4(a+ m) = a+D4m,
a+ m ∈ C ⊕ C3,

where D4 = diag(−1, e1, e1) ∈ SU(3). Then γ, δ4, w3 ∈ G2 ⊂ G2
C and γ2 =

1, δ44 = 1, w3
3 = 1.

1.2. Subgroups of type C1
C ⊕ C1

C ,C1
C ⊕ C and A2

C of G2
C

In the Lie algebra g2
C = LieG2

C , let

Z = i(−2G23 +G45 +G67).

Theorem 1.1. The 3-graded decomposition of g2(2) = (g2
C)τγ1 (or

g2
C),

g2(2) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = i(−2G23 +G45 +G67), is given by

g0 = {i(2G23 −G45 −G67), i(G45 −G67), G46 +G57, i(G47 −G56)} 4

g−1 =
{

(2G15 +G26 −G37) − i(2G14 +G27 +G36),
(2G17 −G24 +G35) − i(2G16 −G25 −G34)

}
2

g−2 = {(−2G13 +G46 −G57) − i(2G12 −G47 −G56)}1
g−3 = {(G24 +G35) + i(G25 −G34), (G26 +G37) + i(G27 −G36)}2
g1 = τ (g−1)τ, g2 = τ (g−2)τ, g3 = τ (g−3)τ.
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Proof. We can prove this theorem in a way similar to [8] Theorem 1.6,
using [8] Lemmas 1.2 and 1.5.

Since iZ = 2G23 − G45 − G67 = ϕ∗(0,−e1) = ψ∗(diag(−2e1, e1, e1)), we
have

z2 = exp
2πi
2
Z = γ, z4 = exp

2πi
4
Z = δ4, z3 = exp

2πi
3
Z = w3.

Now, since (g2
C)ev = (g2

C)z2 , (g2
C)0 = (g2

C)z4 , (g2
C)ed = (g2

C)z3 , we
shall determine the group structures of

(G2
C)ev = (G2

C)z2 , (G2
C)0 = (G2

C)z4 , (G2
C)ed = (G2

C)z3 .

Theorem 1.2. (1) (G2
C)ev

∼= (Sp(1, C) × Sp(1, C))/Z2,Z2 = {(1, 1),
(−1,−1)}.

(2) (G2
C)0 ∼= (Sp(1, C)× C∗)/Z2,Z2 = {(1, 1), (−1,−1)}.

(3) (G2
C)ed

∼= SL(3, C).

Proof. (1) We define ϕ : Sp(1,HC)×Sp(1,HC) → (G2
C)ev = (G2

C)z2 =
(G2

C)γ by

ϕ(p, q)(m+ ne) = qmq + (pnq)e4, m+ ne ∈ HC ⊕ HCe4 = CC .

Then ϕ is well-defined, is a homomorphism and Kerϕ = Z2. Since (G2
C)γ

is connected and dimC(sp(1, HC) ⊕ sp(1,HC)) = 3 + 3 = 6 = 4 + 1 × 2 =
dimC((g2

C)ev) (Theorem 1.1), ϕ is onto. Therefore (G2
C)ev

∼= (Sp(1,HC) ×
Sp(1,HC))/Z2

∼= (Sp(1, C)× Sp(1, C))/Z2.
(2) The restriction mapping ϕ : Sp(1,HC) × U(1,CC) → (G2

C)0 =
(G2

C)z4 = (G2
C)δ4 of ϕ of (1) above is well-defined and Kerϕ = Z2. Since

(G2
C)δ4 is connected and dimC(sp(1,HC) ⊕ u(1,CC)) = 3 + 1 = 4 = dimC

×((g2
C)0) (Theorem 1.1), ϕ is onto. Therefore (G2

C)0 ∼= (Sp(1,HC) × U(1,
CC))/Z2

∼= (Sp(1, C)× C∗)/Z2.
(3) We define ψ : SU(3,CC) → (G2

C)ed = (G2
C)z3 = (G2

C)w3 by

ψ(P )(a+ m) = a+ Pm, a+ m ∈ CC ⊕ (CC)3 = CC .

Then ψ is well-defined, is a homomorphism and one-to-one. Since (G2
C)w3 is

connected and dimC(su(3,CC)) = 8 = 4 + 2 × 2 = dimC((g2
C)ed) (Theorem

1.1), ψ is onto. Therefore (G2
C)ed

∼= SU(3,CC) ∼= SL(3, C).

1.2.1. Subgroups of type C1(1) ⊕ C1(1),C1(1) ⊕ R and A2(2) of G2(2)

We use the same notations as in 1.2. Since (g2(2))ev = (g2
C)z2 ∩ (g2

C)τγ1 ,

(g2(2))0 = (g2
C)z4 ∩(g2

C)τγ1 , (g2(2))ed = (g2
C)z3 ∩(g2

C)τγ1 , we shall determine
the group structures of

(G2(2))ev = (G2
C)z2 ∩ (G2

C)τγ1 , (G2(2))0 = (G2
C)z4 ∩ (G2

C)τγ1 ,

(G2(2))ed = (G2
C)z3 ∩ (G2

C)τγ1 .
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Theorem 1.3. (1) (G2(2))ev
∼= (Sp(1,R) × Sp(1,R))/Z2 × {1, γ2},Z2

= {(1, 1), (−1,−1)}.
(2) (G2(2))0 ∼= (Sp(1,R) × R+) × {1, γ2}.
(3) (G2(2))ed

∼= SL(3,R).

Proof. (1) For α ∈ (G2(2))ev ⊂ (G2
C)γ , there exist p, q ∈ Sp(1,HC)

such that α = ϕ(p, q) (Theorem 1.2 (1)). From γ1τατγ1 = α, we have
ϕ(γ1τp, γ1τq) = ϕ(p, q) ([8], Lemma 1.8 (2)). Hence

γ1τp = p, γ1τq = q or γ1τp = −p, γ1τq = −q.

In the former case, p, q ∈ Sp(1,H ′). Hence the group of the former case is
(Sp(1,H ′) × Sp(1,H ′))/Z2

∼= (Sp(1,R) × Sp(1,R))/Z2. In the latter case,
p = q = e1 satisfies these conditions and ϕ(e1, e1) = γ2 ([8], Lemma 1.8 (1)).
Therefore (G2(2))ev

∼= (Sp(1,R) × Sp(1,R))/Z2 × {1, γ2}.
(2) For α ∈ (G2(2))0 ⊂ (G2

C)δ4 , there exist p ∈ Sp(1,HC) and a ∈
U(1,CC) such that α = ϕ(p, a) (Theorem 1.2 (2)). From γ1τατγ1 = α, we
have ϕ(γ1τp, γ1τa) = ϕ(p, a) ([8], Lemma 1.8 (2)). Hence

γ1τp = p, γ1τa = a or γ1τp = −p, γ1τa = −a.

In the former case, p ∈ Sp(1,H ′), a ∈ U(1,C′), hence the group of the former
case is (Sp(1,H ′) × U(1,C′))/Z2

∼= (Sp(1,R) × R∗)/Z2(Z2 = {(1, 1), (−1,
−1)}) ∼= Sp(1,R)×R+. In the latter case, p = a = e1 satisfies these conditions
and ϕ(e1, e1) = γ2 ([8], Lemma 1.8 (1)). Therefore (G2(2))0 ∼= (Sp(1,R) ×
R+) × {1, γ2}.

(3) For α ∈ (G2(2))ed ⊂ (G2
C)w3 , there exists P ∈ SU(3,CC) such that

α = ψ(P ) (Theorem 1.2 (3)). Using τψ(P )τ = ψ(τP ) and γ1ψ(P )γ1 = ψ(P ),
from γ1τατγ1 = α, we have ψ(τP ) = ψ(P ). Hence τP = P , that is, P ∈
SU(3,C′). Therefore (G2(2))ed

∼= SU(3,C′) ∼= SL(3,R).

2. Group F4

2.1. Lie groups of type F 4 and some subgroups of F 4
C

We use the same notations and definitions as in [8]. For example,
the Jordan algebras J = J(3,C), J(3,H), J(3,C) with the Jordan multi-

plication X ◦ Y , the inner product (X,Y ) and the Freudenthal multiplication
X × Y and elements Ek, Fk(x) of JC ,

the groups F4
C = {α ∈ IsoC(JC) |α(X × Y ) = αX × αY }, F4 and F4(4),

the involutive automorphisms γ1, γ2, σ of F4 and F4(4) = (F4
C)τγ1 ,

the Lie algebras f4
C , f4, f4(4) and elements Ãk(a) of f4

C ,
the principle of triality and the identification D1 ∈ so(8) ↔ δ(D1, D2, D3)

∈ f4, etc.
We shall review and add some notations and definitions. To an element
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X =


ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3


 ∈ J(3,C), we associate an element


 ξ1 m3 m2

m3 ξ2 m1

m2 m1 ξ3


 + (n1, n2, n3), xk = mk + nke4 ∈ H ⊕ He4 = C

of the algebra J(3,H) ⊕ H3 with the multiplication

(M1 + n1) × (M2 + n2)

=
(
M1 ×M2 − 1

2
(n1

∗n2 + n2
∗n1)

)
− 1

2
(n1M2 + n2M1).

The R-linear transformations γ and δ4 of C are extended to the R-linear trans-
formations of J(3,C) as

γ(M + n) =M − n,
δ4(M + n) =−De1MDe1 + nDe1 ,

M + n ∈ J(3,H) ⊕ H3 = J(3,C),

whereDe1 = diag(e1, e1, e1) ∈ Sp(3). Furthermore, to an element


ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3




∈ J(3,C), we associate an element
ξ1 a3 a2

a3 ξ2 a1

a2 a1 ξ3


 + (m1,m2,m3), xk = ak + mk ∈ C ⊕ C3 = C

of the algebra J(3,C)⊕M(3,C) with the multiplication and the inner product

(X +M) × (Y +N) =
(
X × Y − 1

2
(M∗N +N∗M)

)

−1
2
(MY +NX −M ×N),

(X +M,Y +N) = (X,Y ) + tr(M∗N +N∗M),

where for M = (m1,m2,m3), N = (n1,n2,n3) ∈M(3,C), M ×N ∈M(3,C)
is defined as

M ×N =


m2 × n3 m3 × n1 m1 × n2

+ + +
n2 × m3 n3 × m1 n1 × m2


 .

The R-linear transformations δ4 and w3 of C are extended to the R-linear
transformations of J(3,C) as

δ4(X +M) = X +D4M,

w3(X +M) = X + ω1M,
X +M ∈ J(3,C) ⊕M(3,C) = J(3,C).
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2.2. Subgroups of type C1
C ⊕C3

C ,C1
C ⊕C ⊕A2

C and A2
C ⊕A2

C of
F 4

C

In the Lie algebra f4
C , let

Z = i(−2G23 +G45 +G67).

Theorem 2.1. The 3-graded decomposition of f4(4) = (f4
C)τγ1 (or f4

C),

f4(4) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = i(−2G23 +G45 +G67), is given by

g0 =
{
G46 +G57, i(G47 −G56),
iG01, iG23, iG45, iG67,

Ã1(1), Ã2(1), Ã3(1),
iÃ1(e1), iÃ2(e1), iÃ3(e1)

}
12

g−1 =




(2G15 +G26 −G37) − i(2G14 +G27 +G36),
(2G17 −G24 +G35) − i(2G16 −G25 −G34),
G04 + iG05, G06 + iG07, iG14 −G15, iG16 −G17,

Ã1(e4 + ie5), Ã2(e4 + ie5), Ã3(e4 + ie5),
Ã1(e6 + ie7), Ã2(e6 + ie7), Ã3(e6 + ie7)


 12

g−2 =
{
G02 − iG03, (−2G13 +G46 −G57) − i(2G12 −G47 −G56),
iG12 +G13, Ã1(e2 − ie3), Ã2(e2 − ie3), Ã3(e2 − ie3)

}
6

g−3 = {(G24 +G35) + i(G25 −G34), (G26 +G37) + i(G27 −G36)} 2
g1 = τ (g−1)τ, g2 = τ (g−2)τ, g3 = τ (g−3)τ.

Proof. Note that for D1 = −2G23 + G45 + G67 ∈ so(8) we have also
D2 = D3 = −2G23 + G45 + G67. We can then prove this theorem in a way
similar to Theorem 1.1, using [8] Lemmas 1.5 and 2.3.

As is shown in G2
C , we have

z2 = exp
2πi
2
Z = γ, z4 = exp

2πi
4
Z = δ4, z3 = exp

2πi
3
Z = w3.

Now, since (f4
C)ev = (f4

C)z2 , (f4
C)0 = (f4

C)z4 , (f4
C)ed = (f4

C)z3 , we shall
determine the group structures of

(F4
C)ev = (F4

C)z2 , (F4
C)0 = (F4

C)z4 , (F4
C)ed = (F4

C)z3 .

Theorem 2.2. (1) (F4
C)ev

∼= (Sp(1, C)× Sp(3, C))/Z2, Z2 = {(1, E),
(−1,−E)}.

(2) (F4
C)0 ∼= (Sp(1, C)×C∗ ×SL(3, C))/Z6, Z6 = {(1, 1, E), (1, ω, ω2E),

(1, ω2E,ωE), (−1,−1, E), (−1,−ω, ω2E), (−1,−ω2, ωE)}.
(3) (F4

C)ed
∼= (SL(3, C) × SL(3, C))/Z3, Z3 = {(1, E), (ωE, ωE), (ω2E,

ω2E)}.
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Where ω = −(1/2) + (
√

3/2)i ∈ C.

Proof. (1) We define ϕ : Sp(1,HC)×Sp(3,HC) → (F4
C)ev = (F4

C)z2 =
(F4

C)γ by

ϕ(p,A)(M + n) = AMA∗ + pnA∗, M + n ∈ J(3,HC) ⊕ (HC)3 = J(3,CC).

We can then prove this in a way similar to Theorem 1.2 (1).
(2) Using the restriction mapping ϕ : Sp(1,HC) × U(3,CC) → (F4

C)0 =
(F4

C)z4 = (F4
C)δ4 of ϕ, in a way similar to (1) above, we have (F4

C)0 ∼=
(Sp(1,HC) × U(3,CC))/Z2(Z2 = {(1, E), (−1,−E)}) ∼= (Sp(1,HC) × U(1,
CC)×SU(3,CC))/(Z2 ×Z3) (Z3 = {(1, 1, E), (1, ω1, ω1

2E), (1, ω1
2, ω1E)}) ∼=

(Sp(1, C)×C∗×SL(3, C))/Z6. (Note that under the isomorphism f : SL(3, C)
→ SU(3,CC), ω is translated to ω1

2).
(3) We define ψ : SU(3,CC) × SU(3,CC) → (F4

C)ed = (F4
C)z3 =

(F4
C)w3 by

ψ(P,A)(X+M) = AXA∗+PMA∗, X+M ∈ J(3,CC)⊕M(3,CC) = J(3,CC).

Then ψ is well-defined ([5]), is a homomorphism and Kerψ = Z3. Since (F4
C)w3

is connected and dimC(su(3,CC) ⊕ su(3,CC)) = 8 + 8 = 16 = 12 + 2 × 2 =
dimC((f4

C)ed) (Theorem 2.1), ψ is onto. Therefore (F4
C)ed

∼= (SU(3,CC) ×
SU(3,CC))/Z3

∼= (SL(3, C) × SL(3, C))/Z3.

2.2.1. Subgroups of type C1(1) ⊕ C3(3),C1(1) ⊕ R ⊕ A2(2) and A2(2)⊕
A2(2) of F 4(4)

We use the same notations as in 2.2. Since (f4(4))ev = (f4
C)z2 ∩ (f4

C)τγ1 ,

(f4(4))0 = (f4
C)z4 ∩ (f4

C)τγ1 , (f4(4))ed = (f4
C)z3 ∩ (f4

C)τγ1 , we shall determine
the group structures of

(F4(4))ev = (F4
C)z2 ∩ (F4

C)τγ1 , (F4(4))0 = (F4
C)z4 ∩ (F4

C)τγ1 ,

(F4(4))ed = (F4
C)z3 ∩ (F4

C)τγ1 .

Theorem 2.3. (1) (F4(4))ev
∼= (Sp(1,R) × Sp(3,R))/Z2 × {1, γ2}, Z2

= {(1, E), (−1,−E)}.
(2) (F4(4))0 ∼= (Sp(1,R) × R+ × SL(3,R)) × {1, γ2}.
(3) (F4(4))ed

∼= (SL(3,R) × SL(3,R)) × {1, ω1, ω21}.

Proof. (1) and (2) are proved from Theorem 2.2 in a way similar to The-
orem 1.3 (1) and (2), using [8] Lemma 2.6.

(3) For α ∈ (F4(4))ed ⊂ (F4
C)w3 , there exist P,A ∈ SU(3,CC) such that

α = ψ(P,A) (Theorem 2.2 (3)). Using γ1τψ(P,A)τγ1 = ψ(τP , τA), from
γ1τατγ1 = α we have ψ(τP , τA) = ψ(P,A). Hence{

τP = P
τA = A

,

{
τP = ωP
τA = ωA

, or
{
τP = ω2P
τA = ω2A

.
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In the first case, P,A ∈ SU(3,C′) ∼= SL(3,R), so the group of the first case is
SL(3,R)×SL(3,R). In the last two cases, P = A = ωE (resp. P = A = ω2E)
satisfies the conditions and ψ(ωE, ωE) = ω21 (resp. ψ(ω2E,ω2E) = ω1).
Therefore (F4(4))ed

∼= (SL(3,R) × SL(3,R)) × {1, ω1, ω21}.

3. Group E6

3.1. Lie groups of type E6 and some subgroups of E6
C

We use the same notations and definitions as in [8]. For example,
the groups E6

C = {α ∈ IsoC(JC) | detαX = detX} = {α ∈ IsoC(JC) | tα−1

(X × Y ) = αX × αY }, E6, E6(6), E6(2) and E6(−26),
the involutive automorphisms γ, γ1, σ, σ

′, λ, τ1 of the group E6 and E6(6) =
(E6

C)τγ1 , E6(2) = (E6
C)λτγ1 , E6(−26) = (E6

C)τ1 ,
the Lie algebra e6

C of the group E6
C and elements F̃k(a) of e6

C etc.
We shall review and add some notations and definitions. Let k : M(3,HC)

→MJ(6,CC) = {P ∈M(6,CC)|JP = PJ} (resp. k : (HC)3 →MJ(2, 6,CC)
= {P ∈M(2, 6,CC)|JP = PJ}) be the C-linear isomorphism defined by

k

(
(a+ be2)

)
=

((
a b

−b a

))
, a, b ∈ CC ,

and we denote the inverse k−1 of k by h. We define ϕ1 : Sp(1,HC) ×
SU∗(6,CC) → (E6

C)γ by

ϕ1(p,A)(M + n) = (hA)M(hA)∗ + pn(hA)−1,

M + n ∈ J(3,HC) ⊕ (HC)3 = JC .

Then ϕ1 is well-defined, is a homomorphism and Kerϕ1 = {(1, E), (−1−E)} =
Z2. Since (E6

C)γ is connected and dimC(sp(1,HC) ⊕ su∗(6,CC)) = 3 + 35 =
38 = 36 + 2 = dimC((e6C)γ) (see Theorems 3.1 and 3.2 (1)), ϕ1 is onto.
Therefore (E6

C)γ ∼= (Sp(1,HC) × SU∗(6,CC))/Z2,Z2 = {(1, E), (−1,−E)}
([6], Proposition 3.5.4). Furthermore, note that the mapping f : SL(6, C) →
SU∗(6,CC), f(A) = εA − εJAJ , where ε = (1/2)(1 + ie1), gives an iso-
morphism, and we define ϕ : Sp(1,HC) × SL(6, C) → (E6

C)γ by ϕ(p,A) =
ϕ1(p, f(A)), then we have also an isomorphism

(E6
C)γ ∼= (Sp(1,HC) × SL(6, C))/Z2.

Then for the induced mapping ϕ∗ : sp(1,HC) ⊕ sl(6, C) → e6
C of ϕ, we have

ϕ∗(e1, diag(0, 0, 0, 0, 0, 0)) = −G45 +G67

ϕ∗(0, diag(i,−i, 0, 0, 0, 0)) = −G45 −G67

ϕ∗(0, diag(0, i,−i, 0, 0, 0)) = −1
2G01 − 1

2G23 + 1
2G45 + 1

2G67 + i(E1 − E2)∼

ϕ∗(0, diag(0, 0, i,−i, 0, 0)) = G01 +G23

ϕ∗(0, diag(0, 0, 0, i,−i, 0)) = −G23 + i(E2 − E3)∼

ϕ∗(0, diag(0, 0, 0, 0, i,−i)) = −G01 +G23.
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From the facts above, we have also

G01 = ϕ∗(0, diag(0, 0, i/2,−i/2,−i/2, i/2))
G23 = ϕ∗(0, diag(0, 0, i/2,−i/2, i/2,−i/2))
G45 = ϕ∗(−e1/2, diag(−i/2, i/2, 0, 0, 0, 0))
G67 = ϕ∗(e1/2, diag(−i/2, i/2, 0, 0, 0, 0))

i(E1 − E2) = ϕ∗(0, diag(i/2, i/2,−i/2,−i/2, 0, 0))
i(E2 − E3) = ϕ∗(0, diag(0, 0, i/2, i/2,−i/2,−i/2)).

For θ ∈ C, θ �= 0 and a ∈ CC , aa = 1, we define C-linear transformations
φ(θ) and D(a) of JC by

φ(θ)


 ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3


 =


 θ4ξ1 θx3 θx2

θx3 θ−2ξ2 θ−2x1

θx2 θ−2x1 θ−2ξ3,


 ,

D(a)


 ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3


 =


 ξ1 x3a ax2

x3a ξ2 ax1a
ax2 ax1a ξ3


 ,

respectively. Then φ(θ), D(a) ∈ E6
C . Usually we denote σ = D(−1).

The mapping ϕ : Sp(1,HC) × SL(6, C) → E6
C has the following proper-

ties.
ϕ(1, diag(ω, ω, ω, ω, ω, ω)) = ω21,
ϕ(1, diag(−1,−1,−1,−1,−1,−1)) = γ,

ϕ(e1, diag(−i, i,−i, i,−i, i)) = γ2,

ϕ(1, diag(i,−i, i,−i, i,−i)) = δ4,

ϕ(1, diag(1, 1,−1,−1,−1,−1)) = σ,

ϕ(1, diag(1, 1, i,−i,−i, i)) = D(e1),
ϕ(1, diag(ω, ω2, ω, ω2, ω, ω2)) = w3.

3.2. Subgroups of type C1
C ⊕ A5

C ,C1
C ⊕ C ⊕ A2

C ⊕ A2
C and A2

C ⊕
A2

C ⊕ A2
C of E6

C

In the Lie algebra e6
C , let

Z = i(−2G23 +G45 +G67).

Theorem 3.1. The 3-graded decomposition of e6(6) = (e6C)τγ1 (or e6
C),

e6(6) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3
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with respect to adZ,Z = i(−2G23 +G45 +G67), is given by

g0 =




G46 +G57, i(G47 −G56),
iG01, iG23, iG45, iG67,
(E1 − E2)∼, (E2 − E3)∼,

Ã1(1), Ã2(1), Ã3(1),
iÃ1(e1), iÃ2(e1) iÃ3(e1),
F̃1(1), F̃2(1), F̃3(1),
iF̃1(e1), iF̃2(e1), iF̃3(e1)


 20

g−1 =




(2G15 +G26 −G37) − i(2G14 +G27 +G36),
(2G17 −G24 +G35) − i(2G16 −G25 −G34),
G04 + iG05, G06 + iG07, iG14 −G15, iG16 −G17,

Ã1(e4 + ie5), Ã1(e6 + ie7), F̃1(e4 + ie5), F̃1(e6 + ie7),
Ã2(e4 + ie5), Ã2(e6 + ie7), F̃2(e4 + ie5), F̃2(e6 + ie7),
Ã3(e4 + ie5), Ã3(e6 + ie7), F̃3(e4 + ie5), F̃3(e6 + ie7)


 18

g−2 =




(−2G13 +G46 −G57) − i(2G12 −G47 −G56),
G02 − iG03, Ã1(e2 − ie3), Ã2(e2 − ie3), Ã3(e2 − ie3),
iG12 +G13, F̃1(e2 − ie3), F̃2(e2 − ie3), F̃3(e2 − ie3)


 9

g−3 = {(G24 +G35) + i(G25 −G34), (G26 +G37) + i(G27 −G36)} 2
g1 = τ (g−1)τ, g2 = τ (g−2)τ, g3 = τ (g−3)τ.

Proof. We can prove this theorem in a way similar to Theorem 2.1, using
[8] Lemma 3.3.

Since iZ = 2G23 −G45 −G67 = ϕ∗(0, diag(i,−i, i,−i, i,−i)), we have

z2 = exp
2πi
2
Z = ϕ(1, diag(−1,−1,−1,−1,−1,−1)) = γ,

z4 = exp
2πi
4
Z = ϕ(1, diag(i,−i, i,−i, i,−i)) = δ4,

z3 = exp
2πi
3
Z = ϕ(1, diag(ω, ω2, ω, ω2, ω, ω2)) = w3.

Now, we shall determine the group structures of

(E6
C)ev = (E6

C)z2 , (E6
C)0 = (E6

C)z4 , (E6
C)ed = (E6

C)z3 .

Theorem 3.2. (1) (E6
C)ev

∼= (Sp(1, C)×SL(6, C))/Z2, Z2 = {(1, E),
(−1,−E)}.

(2) (E6
C)0 ∼= (Sp(1, C)×C∗ ×SL(3, C)×SL(3, C))/Z6, Z6 = {(1, 1, E,

E), (1, ω, ω2E,ωE), (1, ω2, ωE, ω2E), (−1,−1, E,E), (−1,−ω, ω2E,ωE), (−1,
−ω2, ωE, ω2E)}.

(3) (E6
C)ed

∼= (SL(3, C) × SL(3, C) × SL(3, C))/Z3, Z3 = {(E,E,E),
(ωE, ωE, ωE), (ω2E,ω2E,ω2E)}.

Proof. (1) (E6
C)ev = (E6

C)z2 = (E6
C)γ ∼= (Sp(1, C) × SL(6, C))/Z2 is

already shown.
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(2) Since z4 is conjugate to

z4
′ = ϕ(1, diag(i, i, i,−i,−i,−i))

under the adjoint action of SL(6,R) ⊂ (E6
C)τγ1 , we use z4

′ instead of z4.
Now, using the restriction mapping ϕ : Sp(1,HC)×S(GL(3, C)×GL(3, C)) →
(E6

C)0 = (E6
C)z4

′
of ϕ, in a way similar to Theorem 1.2, we have (E6

C)0 ∼=
(Sp(1,HC) × S(GL(3, C) × GL(3, C)))/Z2, Z2 = {(1, E), (−1,−E)}. Since
h : C∗ × SL(3, C) × SL(3, C) → S(GL(3, C) × GL(3, C)), h(z,A1, A2) =(
zA1 0
0 z−1A2

)
induces an isomorphism S(GL(3, C) × GL(3, C)) ∼= (C∗ ×

SL(3, C) × SL(3, C))/Z3,Z3 = {(1, E,E), (ω, ω2E,ωE), (ω2, ωE, ω2E)}, we
have (E6

C)0 ∼= (Sp(1, C)× C∗ × SL(3, C) × SL(3, C))/Z6.
(3) We define ψ : SU(3,CC) × SU(3,CC) × SU(3,CC) → (E6

C)ed =
(E6

C)z3 = (E6
C)w3 by

ψ(P,A,B)(X +M) = h(A,B)Xh(A,B)∗ + PMτh(A,B)∗,

X +M ∈ J(3,CC) ⊕M(3,CC) = JC ,

where h : M(3,CC) ×M(3,CC) →M(3,CC) is the mapping defined by

h(A,B) = εA+ εB, ε =
1 + ie1

2
.

Using
th(A,B)−1 = τh(A,B) = h(τB, τA),

we can verify that ψ is well-defined ([5]), ψ is a homomorphism and Kerψ = Z3.
Since (E6

C)w3 is connected and dimC(su(3,CC) ⊕ su(3,CC) ⊕ su(3,CC)) =
8 + 8 + 8 = 24 = 20 + 2 × 2 = dimC((e6C)ed) (Theorem 3.1), ψ is onto.
Therefore (E6

C)ed
∼= (SU(3,CC)×SU(3,CC)×SU(3,CC))/Z3

∼= (SL(3, C)×
SL(3, C) × SL(3, C))/Z3.

3.2.1. Subgroups of type C1(1) ⊕ A5(5),C1(1) ⊕ R ⊕ A2(2) ⊕ A2(2) and
A2(2) ⊕ A2(2) ⊕ A2(2) of E6(6)

Using the same notations as in 3.2, we shall determine the group structures
of

(E6(6))ev = (E6
C)z2 ∩ (E6

C)τγ1 , (E6(6))0 = (E6
C)z4

′ ∩ (E6
C)τγ1 ,

(E6(6))ed = (E6
C)z3 ∩ (E6

C)τγ1 .

Theorem 3.3. (1) (E6(6))ev ∼= (Sp(1,R)×SL(6,R))/Z2×{1, γ2}, Z2

= {(1, E), (−1,−E)}.
(2) (E6(6))0 ∼= (Sp(1,R) × R+ × SL(3,R) × SL(3,R)) × {1, γ2}.
(3) (E6(6))ed

∼= (SL(3,R) × SL(3,R) × SL(3,R)) × {1, ω1, ω21}.
Proof. (1) and (2) Using γ1τϕ(p,A)τγ1 = ϕ(γ1τp, τA), p ∈ Sp(1,HC), A

∈ SL(6, C) ([8], Lemma 3.6) and ϕ(e1,−iI) = γ2 in Theorem 3.2, we can prove
this in a way similar to Theorem 1.3 (1) and (2).
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(3) Using γ1τψ(P,A,B)τγ1 = ψ(τP , τA, τB), P,A,B ∈ SU(3,CC), we
can prove this in a way similar to Theorem 2.3 (3).

3.2.2. Subgroups of type C1(1)⊕A5(1),C1(1)⊕R ⊕A2
C and A2(2)⊕A2

C

of E6(2)

Theorem 3.4. The 3-graded decomposition of e6(2) = (e6C)λτγ1 ,

e6(2) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = i(−2G23 +G45 +G67), is given by exchanging

Fk(a) → iFk(a), iFk(a) → Fk(a),
(E1 − E2)∼ → i(E1 − E2)∼, (E2 − E3)∼ → i(E2 − E3)∼,

in the table of Theorem 3.1.

Proof. We can prove this theorem in a way similar to Theorem 3.1, using
[8] Lemma 3.8.

Using the same notations as in 3.2, we shall determine the group structures
of

(E6(2))ev = (E6
C)z2 ∩ (E6

C)λτγ1 , (E6(2))0 = (E6
C)z4 ∩ (E6

C)λτγ1 ,

(E6(6))ed = (E6
C)z3 ∩ (E6

C)λτγ1 ,

Theorem 3.5. (1) (E6(2))ev
∼= (Sp(1,R) × SU(3, 3))/Z2 × {1, γ2},

Z2 = {(1, E), (−1,−E)}.
(2) (E6(2))0 ∼= (Sp(1,R) × R+ × SL(3, C))× {1, γ2}.
(3) (E6(2))ed

∼= SL(3,R) × SL(3, C).

Proof. (1) For α ∈ (E6(2))ev ⊂ (E6
C)γ , there exist p ∈ Sp(1,HC) and

A ∈ SL(6, C) such that α = ϕ(p,A) (Theorem 3.2 (1)). From γ1τ
tα−1τγ1 = α,

we have ϕ(γ1τp,−J t(τA)−1J) = ϕ(p,A) ([8], Lemmas 3.6 (2) and 3.10). Hence

γ1τp = p, −J t(τA)−1J = A or γ1τp = −p, −J t(τA)−1J = −A.
In the former case, p ∈ Sp(1,H ′) ∼= Sp(1,R) and the group {A ∈ SL(6, C) | −
J t(τA)−1J = A} is {A ∈ SL(6, C) | t(τA)JA = J} ∼= {A ∈ SL(6, C) | t(τA)IA
= I} ∼= SU(3, 3). Hence the group of the former case is (Sp(1,R)×SU(3, 3))/Z2.
In the latter case, p = e1 and A = −iI satisfy these conditions and ϕ(e1,−iI) =
γ2. Therefore (E6(2))ev

∼= (Sp(1,R) × SU(3, 3))/Z2 × {1, γ2}.
(2) For α ∈ (E6(2))0 ⊂ (E6

C)δ4 , there exist p ∈ Sp(1,HC) and A ∈
SL(6, C), δA δ−1 = A (δ = diag(i,−i, i,−i, i,−i) = iI) such that α = ϕ(p,A)
(Theorem 3.2 (2)). From γ1τ

tα−1τγ1 = α, we have ϕ(γ1τp,−J t(τA)−1J) =
ϕ(p,A) as in (1) above. Hence

γ1τp = p,−J t(τA)−1J = A or γ1τp = −p,−J t(τA)−1J = −A.
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In the former case, p ∈ Sp(1,H ′) ∼= Sp(1,R) and

G = {A ∈ SL(6, C)|δAδ−1 = A, t(τA)JA = J}
∼=

{
A =

(
A1 0
0 A2

)
∈ SL(6, C), A1, A2 ∈ GL(3, C)∣∣∣∣

(
t(τA1) 0

0 t(τA2)

) (
0 E

−E 0

) (
A1 0
0 A2

)
=

(
0 E

−E 0

)}

=
{
A ∈ SL(6, C)

∣∣∣∣A =
(
A1 0
0 t(τA1)−1

)
, A1 ∈ GL(3, C)

}
.

From detA = 1, we have detA1(τ (detA1)−1) = 1, so detA1 ∈ R, hence
G ∼= {A1 ∈ GL(3, C) | detA1 ∈ R} ∼= R∗×SL(3, C). Thus the group of the for-
mer case is (Sp(1,H′) × R∗ × SL(3, C))/Z2 (Z2 = {(1, 1, E), (−1,−1, E)}) ∼=
Sp(1,R) × R+ × SL(3, C). In the latter case, p = e1, A = −iI satisfy these
conditions and ϕ(e1,−iI) = γ2. Therefore (E6(2))ed

∼= (Sp(1,R) × R+ ×
SL(3, C)) × {1, γ2}.

(3) For α ∈ (E6(2))ed ⊂ (E6
C)w3 , there exist P,A,B ∈ SU(3,CC) such

that α = ψ(P,A,B) (Theorem 3.2 (3)). Since tψ(P,A,B)−1 = ψ(P, τB, τA)
(Theorem 3.2 (3)), we have γ1τ

tψ(P,A,B)−1τγ1 = ψ(τγ1P,B,A). From
γ1τ

tα−1τγ1 = α, we have ψ(τγ1P,B, A) = ψ(P,A,B). Hence

{
τγ1P = P

B = A
,



τγ1P = ωP

A = ωB

B = ωA

, or



τγ1P = ω2P

A = ω2B

B = ω2A

.

In the first case, P ∈ SL(3,C′) ∼= SL(3,R) and A ∈ SL(3,CC) ∼= SL(3, C).
The last two cases are false. Therefore (E6(2))ed

∼= SL(3,R) × SL(3, C).

3.3. Subgroups of type C1
C ⊕A5

C ,C ⊕C⊕A1
C ⊕A3

C and C1
C ⊕C ⊕

A4
C of E6

C

In the Lie algebra e6
C , let

Z = i(G45 −G67) +
4
3
(2E1 − E2 − E3)∼.

Theorem 3.6. The 3-graded decomposition of e6(6) = (e6C)τγ1 (or e6
C),

e6(6) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = i(G45 −G67) + (4/3)(2E1 − E2 − E3)∼, is given by
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g0 =




iG01, G02, iG03, iG12, G13, iG23, (E1 − E2)∼,
iG45, iG67, G46 −G57, i(G47 +G56), (E2 − E3)∼,
Ã1(1), iÃ1(e1), Ã1(e2), iÃ1(e3),
F̃1(1), iF̃1(e1), F̃1(e2), iF̃1(e3)


 20

g−1 =




G04 + iG05, G06 − iG07, iG14 −G15, iG16 +G17,
G24 + iG25, G26 − iG27, iG34 −G35, iG36 +G37,

Ã1(e4 + ie5), Ã1(e6 − ie7), F̃1(e4 + ie5), F̃1(e6 − ie7),
Ã2(e4 + ie5) − F̃2(e4 + ie5), Ã2(e6 + ie7) + F̃2(e6 + ie7),
Ã3(e4 − ie5) − F̃3(e4 − ie5), Ã3(e6 + ie7) − F̃3(e6 + ie7)


 16

g−2 =




(G46 +G57) − i(G47 −G56),
Ã2(1) + F̃2(1), iÃ2(e1) + iF̃2(e1), Ã2(e2) + F̃2(e2),
iÃ2(e3) + iF̃2(e3), Ã3(1) − F̃3(1), iÃ3(e1) − iF̃3(e1),
Ã3(e2) − F̃3(e2), iÃ3(e3) − iF̃3(e3)


 9

g−3 =
{
Ã2(e4 + ie5) + F̃2(e4 + ie5), Ã2(e6 − ie7) + F̃2(e6 − ie7),
Ã3(e4 + ie5) − F̃3(e4 + ie5), Ã3(e6 − ie7) − F̃3(e6 − ie7)

}
4

g1 = τ (λ(g−1))τ, g2 = τ (λ(g−2))τ, g3 = τ (λ(g−3))τ.

Proof. Note that for D1 = G45 − G67 ∈ so(8) we have also D2 = D3 =
G45 −G67. Then we can prove this theorem in the similar way to [8] Theorem
3.9, using [8] Lemmas 2.3, 3.3 and 3.17.

Since iZ = (−G45+G67)+(4/3)i(2E1−E2−E3)∼ = ϕ∗(e1, diag(4i/3, 4i/3,
−2i/3,−2i/3,−2i/3,−2i/3)), we have

z2 = exp
2πi
2
Z = ϕ(−1, diag(ω2, ω2, ω2, ω2, ω2, ω2)) = ωγ,

z4 = exp
2πi
4
Z = ϕ(e1, diag(ω, ω,−ω,−ω,−ω,−ω))

= ω2ϕ(e1, diag(1, 1,−1,−1,−1,−1)),(
z3 = exp

2πi
3
Z = ϕ(ω1, diag(ν4, ν4, ν−2, ν−2, ν−2, ν−2))

)
, ν = e2πi/9.

Since Z ′ = i(−G45 − G67) + (4/3)(2E1 − E2 − E3)∼ is conjugate to Z =
i(G45 − G67) + (4/3)(2E1 − E2 − E3)∼ under the adjoint action of (E6

C)τγ1 ,
(in fact, for δ = exp(πG24) ∈ F4 ∩ (E6

C)τγ1 , we have δ−1Z ′δ = Z), we use the
following z3′ instead of z3. Since iZ ′ = (G45 +G67)+(4/3)i(2E1−E2−E3)∼ =
ϕ∗(0, diag(i/3, 7i/3,−2i/3, −2i/3,−2i/3,−2i/3)), we have

z3
′ = exp

2πi
3
Z ′ = ϕ(1, diag(ν, ν−2, ν−2, ν−2, ν−2, ν−2)).

Now, we shall determine the group structures of

(E6
C)ev = (E6

C)z2 , (E6
C)0 = (E6

C)z4 , (E6
C)ed = (E6

C)z3
′
.

Theorem 3.7. (1) (E6
C)ev

∼= (Sp(1, C)×SL(6, C))/Z2, Z2 = {(1, E),
(−1, −E)}.
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(2) (E6
C)0 ∼= (C∗ × C∗ × SL(2, C) × SL(4, C))/(Z2 × Z2),Z2 × Z2 =

{(1, 1, E, E), (1,−1,−E,−E), (−1, 1,−E,−E), (−1,−1, E,E)}.
(3) (E6

C)ed
∼= (Sp(1, C) × C∗ × SL(5, C))/Z2,Z2 = {(1, 1, E), (−1,−1,

−E)}.

Proof. (1) (E6
C)ev = (E6

C)z2 = (E6
C)ωγ = (E6

C)γ (since ω1 is a central
element of E6

C) ∼= (Sp(1, C)× SL(6, C))/Z2 (Theorem 3.2 (1)).
(2) Using the restriction mapping ϕ : U(1,CC)× S(GL(2, C)×GL(4, C))

→ (E6
C)0 = (E6

C)z4 of ϕ, we can prove this in a similar way to Theorem 3.2
(2).

(3) Using the restriction mapping ϕ : Sp(1,HC)×S(GL(1, C)×GL(5, C))
→ (E6

C)ed = (E6
C)z3

′
of ϕ, we can prove this in a way similar to (2) above.

3.3.1. Subgroups of type C1(1)⊕A5(5),R ⊕ R ⊕ A1(1)⊕A3(3) and C1(1)

⊕R ⊕ A4(4) of E6(6)

Using the same notations as in 3.3, we shall determine the group structures
of

(E6(6))ev = (E6
C)z2 ∩ (E6

C)τγ1 , (E6(6))0 = (E6
C)z4 ∩ (E6

C)τγ1 ,

(E6(6))ed = (E6
C)z3

′ ∩ (E6
C)τγ1 .

Theorem 3.8. (1) (E6(6))ev
∼= (Sp(1,R)×SL(6,R))/Z2 ×{1, γ2}, Z2

= {(1, E), (−1,−E)}.
(2) (E6(6))0 ∼= (R+ × R+ × SL(2,R) × SL(4,R)) × {1, γ2}.
(3) (E6(6))ed

∼= (Sp(1,R) × R+ × SL(5,R)) × {1, γ2}.

Proof. We can prove this theorem from Theorem 3.7, in a way similar to
Theorem 3.3 (1) and (2), using [8] Lemma 3.6.

3.4. Subgroups of type C ⊕D5
C ,C ⊕C ⊕A4

C and C1
C ⊕C ⊕A4

C of
E6

C

In the Lie algebra e6
C , let

Z = i(−G45 + 2G67) +
1
3
(2E1 − E2 − E3)∼.

Theorem 3.9. The 3-graded decomposition of e6(6) = (e6C)τγ1 (or e6
C),

e6(6) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = i(−G45 + 2G67) + (1/3)(2E1 −E2 −E3)∼, is given by
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g0 =




iG01, G02, iG03, iG12, G13, iG23, iG45, iG67,

Ã1(1), iÃ1(e1), Ã1(e2), iÃ1(e3), (E1 − E2)∼,
F̃1(1), iF̃1(e1), F̃1(e2), iF̃1(e3), (E2 − E3)∼,
Ã2(1 + ie1) − F̃2(1 + ie1), Ã2(1 − ie1) + F̃2(1 − ie1),
Ã2(e2 + ie3) + F̃2(e2 + ie3), Ã2(e2 − ie3) − F̃2(e2 − ie3),
Ã3(1 + ie1) − F̃3(1 + ie1), Ã3(1 − ie1) + F̃3(1 − ie1),
Ã3(e2 + ie3) − F̃3(e2 + ie3), Ã3(e2 − ie3) + F̃3(e2 − ie3)


 26

g−1 =




G04 − iG05, iG14 +G15, G24 − iG25, iG34 +G35,

(G46 −G57) + i(G47 +G56), Ã1(e4 − ie5), F̃1(e4 − ie5),
Ã2(1 + ie1) + F̃2(1 + ie1), Ã2(e2 − ie3) + F̃2(e2 − ie3),
Ã2(e4 − ie5) − F̃2(e4 − ie5), Ã2(e6 + ie7) − F̃2(e6 + ie7),
Ã3(1 − ie1) − F̃3(1 − ie1), Ã3(e2 − ie3) − F̃3(e2 − ie3),
Ã3(e4 − ie5) + F̃3(e4 − ie5), Ã3(e6 − ie7) − F̃3(e6 − ie7)


 15

g−2 =




G06 + iG07, iG16 −G17, G26 + iG27, iG36 −G37,

Ã1(e6 + ie7), F̃1(e6 + ie7),
Ã2(e4 − ie5) + F̃2(e4 − ie5), Ã2(e6 + ie7) + F̃2(e6 + ie7),
Ã3(e4 − ie5) − F̃3(e4 − ie5), Ã3(e6 + ie7) − F̃3(e6 + ie7)


 10

g−3 = {(G46 +G57) + i(G47 −G56)} 1
g1 = τ (λ(g−1))τ, g2 = τ (λ(g−2))τ, g3 = τ (λ(g−3))τ.

Proof. Note that for D1 = −G45 + 2G67 ∈ so(8) we have

D2 =
1
2
G01 − 1

2
G23 − 3

2
G45 +

3
2
G67, D3 = −1

2
G01 − 1

2
G23 − 3

2
G45 +

3
2
G67.

We can then prove this theorem in a way similar to Theorem 3.6.

Since iZ = (G45−2G67)+(1/3)i(2E1−E2−E3)∼ = ϕ∗(−3e1/2, diag(5i/6,
−i/6,−i/6,−i/6,−i/6,−i/6)), we have(
z2 = exp

2πi
2
Z. = ϕ(e1, diag(θ5, θ−1, θ−1, θ−1, θ−1, θ−1, θ−1)), θ = eπi/6

)
,

z4 = exp
2πi
4
Z = ϕ(−δ, diag(µ5, µ−1, µ−1, µ−1, µ−1, µ−1)),

{
δ = eπe1/4

µ = eπi/12,

z3 = exp
2πi
3
Z = ϕ(−1, diag(κ5, κ−1, κ−1, κ−1, κ−1, κ−1)), κ = eπi/9.

Since Z ′ = i(G01 −2G23)+(1/3)(2E1−E2−E3)∼ is conjugate to Z = i(G45 −
2G67)+(1/3)(2E1−E2−E3)∼ under the adjoint action of (E6

C)τγ1 , (in fact, for
δ = exp((π/2)(G04 +G15 +G26 +G37)) ∈ F4∩ (E6

C)τγ1 , we have δ−1Z ′δ = Z),
we consider the following z2′, moreover z2′′ instead of z2. Since iZ ′ = (−G01 +
2G23)+(1/3)i(2E1−E2−E3)∼ = ϕ∗(0, diag(i/3, i/3, i/3,−2i/3, 4i/3,−5i/3)),
we have

z2
′ = exp

2πi
2
Z ′ = ϕ(1, diag(−ω2,−ω2,−ω2, ω2, ω2,−ω2))

= ωϕ(1, diag(−1,−1,−1, 1, 1,−1))
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which is conjugate to

z2
′′ = ωϕ(1, diag(1, 1,−1,−1,−1,−1)) = ωσ

under the adjoint action of SL(6,R) ⊂ (E6
C)τγ1 .

Now, we shall determine the group structures of

(E6
C)ev = (E6

C)z2
′′
, (E6

C)0 = (E6
C)z4 , (E6

C)ed = (E6
C)z3 .

Theorem 3.10. (1) (E6
C)ev

∼= (C∗ × Spin(10, C))/Z4, Z4 = {(1, 1),
(−1, σ), (i, φ(−i)), (−i, φ(i))}.

(2) (E6
C)0 ∼= (C∗ × C∗ × SL(5, C))/Z2,Z2 = {(1, 1, E), (−1,−1,−E)}.

(3) (E6
C)ed

∼= (Sp(1, C) × C∗ × SL(5, C))/Z2,Z2 = {(1, 1, E), (−1,−1,
−E)}.

Proof. (1) Let Spin(10, C) = (E6
C)E1 ([8], Proposition 3.22 (2)). We

define φ : U(1,CC)×Spin(10, C) → (E6
C)ev = (E6

C)z2
′′

= (E6
C)ωσ = (E6

C)σ

by
φ(θ, β) = φ(θ)β.

Then φ is well-defined, is a homomorphism and Kerφ = Z4. Since (E6
C)σ is

connected and dimC(u(1,CC) ⊕ so(10, C)) = 1 + 45 = 46 = 26 + 10 × 2 =
dimC((e6C)ev) (Theorem 3.9), φ is onto. Therefore (E6

C)ev
∼= (U(1,CC) ×

Spin(10, C))/Z4
∼= (C∗ × Spin(10, C))/Z4.

(2) Using the restriction mapping ϕ : U(1,CC)× S(GL(1, C)×GL(5, C))
→ (E6

C)z4 of ϕ, we can prove this in a similar way to Theorems 3.2 (2) and
3.7 (2).

(3) is proved in a way similar to Theorem 3.7 (3).

3.4.1. Subgroups of type R ⊕D5(5),R ⊕R ⊕A4(4) and C1(1)⊕R ⊕A4(4)

of E6(6)

Using the same notations as in 3.4, we shall determine the group structures
of

(E6(6))ev = (E6
C)z2

′′ ∩ (E6
C)τγ1 , (E6(6))0 = (E6

C)z4 ∩ (E6
C)τγ1 ,

(E6(6))ed = (E6
C)z3 ∩ (E6

C)τγ1 .

We define ρ ∈ E6 ⊂ E6
C by

ρ = ϕ(1, diag(1,−1, 1,−1, 1, 1)).

Theorem 3.11. (1) (E6(6))ev
∼= (R+ × spin(5, 5)) × {1, ρ}.

(2) (E6(6)0 ∼= (R+ × R+ × SL(5,R)) × {1, γ2}.
(3) (E6(6)ed

∼= (Sp(1,R) × R+ × SL(5,R)) × {1, γ2}.

Proof. (1) (E6(6))ev = (E6
C)σ ∩ (E6

C)τγ1 ∼= (R+ × spin(5, 5)) × {1, ρ}
([8], Theorem 3.25 (1)).
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(2) is proved from Theorem 3.10, in a way similar to Theorem 3.8 (2).
(3) is as same as Theorem 3.8 (3).

3.5. Subgroups of type C ⊕ D5
C ,C ⊕ C ⊕ A4

C and C ⊕ A5
C of E6

C

In the Lie algebra e6
C , let

Z = i(G45 + 2G67) + (2E1 − E2 − E3)∼.

Theorem 3.12. The 3-graded decomposition of e6(6) = (e6C)τγ1 (or
e6

C),
e6(6) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = i(G45 + 2G67) + (2E1 − E2 − E3)∼, is given by

g0 =




iG01, G02, iG03, iG12, G13, iG23, iG45, iG67,

Ã1(1), iÃ1(e1), Ã1(e2), iÃ1(e3), (E1 − E2)∼,
F̃1(1), iF̃1(e1), F̃1(e2), iF̃1(e3), (E2 − E3)∼,
Ã2(1 + ie1) − F̃2(1 + ie1), Ã2(1 − ie1) + F̃2(1 − ie1),
Ã2(e2 + ie3) + F̃2(e2 + ie3), Ã2(e2 − ie3) − F̃2(e2 − ie3),
Ã3(1 + ie1) − F̃3(1 + ie1), Ã3(1 − ie1) + F̃3(1 − ie1),
Ã3(e2 + ie3) − F̃3(e2 + ie3), Ã3(e2 − ie3) + F̃3(e2 − ie3)


 26

g−1 =




G04 + iG05, iG14 −G15, G24 + iG25, iG34 −G35,

(G46 +G57) − i(G47 −G56), Ã1(e4 + ie5), F̃1(e4 + ie5),
Ã2(e4 + ie5) + F̃2(e4 + ie5), Ã2(e6 − ie7) + F̃2(e6 − ie7),
Ã3(e4 + ie5) − F̃3(e4 + ie5), Ã3(e6 − ie7) − F̃3(e6 − ie7)


 11

g−2 =




G06 + iG07, iG16 −G17, G26 + iG27, iG36 −G37,

Ã1(e6 + ie7), F̃1(e6 + ie7),
Ã2(e4 − ie5) + F̃2(e4 − ie5), Ã2(e6 + ie7) + F̃2(e6 + ie7),
Ã3(e4 − ie5) − F̃3(e4 − ie5), Ã3(e6 + ie7) − F̃3(e6 + ie7)


 10

g−3 =




(G46 −G57) + i(G47 +G56),
Ã2(1 + ie1) + F̃2(1 + ie1), Ã2(e2 − ie3) + F̃2(e2 − ie3),
Ã3(1 − ie1) − F̃3(1 − ie1), Ã3(e2 − ie3) − F̃3(e2 − ie3)


 5

g1 = τ (λ(g−1))τ, g2 = τ (λ(g−2))τ, g3 = τ (λ(g−3))τ.

Proof. Note that for D1 = G45 + 2G67 ∈ so(8) we have

D2 =
3
2
G01 − 3

2
G23 − 1

2
G45 +

1
2
G67, D3 = −3

2
G01 − 3

2
G23 − 1

2
G45 +

1
2
G67.

We can then prove this theorem in a way similar to Theorem 3.9, using [8]
Lemmas 2.14, 3.3 and 3.29.
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Since iZ = (−G45−2G67)+i(2E1−E2−E3)∼ = ϕ∗(−e1/2, diag(5i/2,−i/2,
−i/2,−i/2,−i/2,−i/2)), we have

(
z2 = exp

2πi
2
Z = ϕ(−e1, diag(i,−i,−i,−i,−i,−i))

)
,

z4 = exp
2πi
4
Z = ϕ(δ−1, diag(d5, d−1, d−1, d−1, d−1, d−1)),

{
δ = eπe1/4

d = eπi/4,

z3 = exp
2πi
3
Z = ϕ(−ω1, diag(−ω,−ω,−ω,−ω,−ω,−ω))

= ω2ϕ(ω1, (1, 1, 1, 1, 1, 1)).

Since Z ′ = i(G01 + 2G23) + (2E1 −E2 −E3)∼ is conjugate to i(G45 + 2G67) +
(2E1 − E2 − E3)∼ under the adjoint action of F4 ∩ (E6

C)τγ1 (see 3.4), we
consider the following z2

′, moreover z2′′ instead of z2. Since iZ ′ = (−G01 −
2G23) + i(2E1 − E2 − E3)∼ = ϕ∗(0, diag(i, i,−2i, i,−i, 0)), we have

z2
′ = exp

2πi
2
Z ′ = ϕ(1, diag(−1,−1, 1,−1,−1, 1)),

which is conjugate to

z2
′′ = ϕ(1, diag(1, 1,−1,−1,−1,−1)) = σ

under the adjoint action of SL(6,R) ⊂ (E6
C)τγ1 .

Now, we shall determine the group structures of

(E6
C)ev = (E6

C)z2
′′
, (E6

C)0 = (E6
C)z4 , (E6

C)ed = (E6
C)z3 .

Theorem 3.13. (1) (E6
C)ev

∼= (C∗ × Spin(10, C))/Z4, Z4 = {(1, 1),
(−1, σ), (i, φ(−i)), (−i, φ(i))}.

(2) (E6
C)0 ∼= (C∗ × C∗ × SL(5, C))/Z2, Z2 = {(1, 1, E), (−1,−1,−E)}.

(3) (E6
C)ed

∼= (C∗ × SL(6, C))/Z2,Z2 = {(1, 1), (−1,−E)}.

Proof. (1) and (2) are proved in a way similar to Theorem 3.10 (1) and
(2).

(3) Using the restriction mapping ϕ : U(1,CC) × SL(6, C) → (E6
C)z3 of

ϕ, we can prove this in a way similar to Theorem 3.7 (2).

3.5.1. Subgroups of type R ⊕ D5(5),R ⊕ R ⊕ A4(4) and R ⊕ A5(5) of
E6(6)

Using the same notations as in 3.5, we shall determine the group structures
of

(E6(6))ev = (E6
C)z2

′′ ∩ (E6
C)τγ1 , (E6(6))0 = (E6

C)z4 ∩ (E6
C)τγ1 ,

(E6(6))ed = (E6
C)z3 ∩ (E6

C)τγ1 .
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Theorem 3.14. (1) (E6(6))ev
∼= (R+ × spin(5, 5)) × {1, ρ}.

(2) (E6(6)0 ∼= (R+ × R+ × SL(5,R)) × {1, γ2}.
(3) (E6(6)ed

∼= (R+ × SL(6,R)) × {1, γ2}.

Proof. (1) is as same as Theorem 3.11 (1).
(2) is as same as Theorem 3.11 (2).
(3) is proved from Theorem 3.13 in a way similar to Theorem 3.8 (2).

3.6. Subgroups of type C ⊕ D5
C ,C ⊕ C ⊕ D4

C and C ⊕ D5
C of E6

C

In the Lie algebra e6
C , let

Z = 2iG01 +
4
3
(2E1 − E2 − E3)∼.

Theorem 3.15. The 3-graded decomposition of e6(6) = (e6C)τγ1 (or
e6

C),
e6(6) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = 2iG01 + (4/3)(2E1 − E2 − E3)∼, is given by

g0 =




iG01, iG23, G24, iG25, G26, iG27, iG34, G35, (E1 − E2)∼,
iG36, G37, iG45, G46, iG47, iG56, G57, iG67, (E2 − E3)∼,
Ã1(e2), iÃ1(e3), Ã1(e4), iÃ1(e5), Ã1(e6), iÃ1(e7),
F̃1(e2), iF̃1(e3), F̃1(e4), iF̃1(e5), F̃1(e6), iF̃1(e7)


 30

g−1 =




Ã2(1 + ie1) + F̃2(1 + ie1), Ã2(e2 + ie3) + F̃2(e2 + ie3),
Ã2(e4 + ie5) + F̃2(e4 + ie5), Ã2(e6 + ie7) + F̃2(e6 + ie7),
Ã3(1 + ie1) − F̃3(1 + ie1), Ã3(e2 − ie3) − F̃3(e2 − ie3),
Ã3(e4 − ie5) − F̃3(e4 − ie5), Ã3(e6 − ie7) − F̃3(e6 − ie7)


 8

g−2 =
{
G02 − iG12, iG03 +G13, G04 − iG14, Ã1(1 − ie1),
iG05 +G15, G06 − iG16, iG07 +G17, F̃1(1 − ie1)

}
8

g−3 =




Ã2(1 − ie1) + F̃2(1 − ie1), Ã2(e2 − ie3) + F̃2(e2 − ie3),
Ã2(e4 − ie5) + F̃2(e4 − ie5), Ã2(e6 − ie7) + F̃2(e6 − ie7),
Ã3(1 − ie1) − F̃3(1 − ie1), Ã3(e2 + ie3) − F̃3(e2 + ie3),
Ã3(e4 + ie5) − F̃3(e4 + ie5), Ã3(e6 + ie7) − F̃3(e6 + ie7)


 8

g1 = τ (λ(g−1))τ, g2 = τ (λ(g−2))τ, g3 = τ (λ(g−3))τ.

Proof. Note that for D1 = 2G01 ∈ so(8) we have

D2 = −G01 −G23 −G45 −G67, D3 = −G01 +G23 +G45 +G67.

We can then prove this theorem in a way similar to [8] Theorem 3.21, using [8]
Lemmas 3.3 and 3.17.
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Since iZ = −2G01+(4/3)i(2E1−E2−E3)∼ = ϕ∗(0, diag(4i/3, 4i/3,−5i/3,
i/3, i/3,−5i/3), we have

z2 = exp
2πi
2
Z = ϕ(1, diag(ω2, ω2,−ω2,−ω2,−ω2,−ω2)) = ωσ,

z4 = exp
2πi
4
Z = ϕ(1, diag(ω, ω, iω,−iω,−iω, iω)) = ω2D(e1),(

z3 = exp
2πi
3
Z = ϕ(1, diag(ν4, ν4, ν4, ν, ν, ν4))

)
, ν = e2πi/9.

z3 is conjugate to
z3

′ = ϕ(1, diag(ν, ν, ν4, ν4, ν4, ν4))

under the adjoint action of SL(6,R) ⊂ (E6
C)τγ1 . The explicit form of z3′ is

z3
′


ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3


 =


ν2ξ1 ν5x3 ν5x2

ν5x3 ν8ξ2 ν8x1

ν5x2 ν8x1 ν8ξ3


 .

Now, we shall determine the group structures of

(E6
C)ev = (E6

C)z2 , (E6
C)0 = (E6

C)z4 , (E6
C)ed = (E6

C)z3
′
.

Theorem 3.16. (1) (E6
C)ev

∼= (C∗ × Spin(10, C))/Z4, Z4 = {(1, 1),
(−1, σ), (i, φ(−i)), (−i, φ(i))}.

(2) (E6
C)0 ∼= (C∗ × C∗ × Spin(8, C))/(Z2 × Z4),Z2 = {(1, 1, 1), (1,−1,

σ)},Z4 = {(1, 1, 1), (−1,−1, 1), (i, e1, φ(−i)D(−e1)), (−i,−e1, φ(i)D(e1))}.
(3) (E6

C)ed
∼= (C∗ × Spin(10, C))/Z4, Z4 = {(1, 1), (−1, σ), (i, φ(−i)),

(−i, φ(i))}.
Proof. (1) (E6

C)ev = (E6
C)z2 = (E6

C)ωσ = (E6
C)σ ∼= (C∗×Spin(10, C))/

Z4 (Theorem 3.10 (1)).
(2) Let Spin(8, C) = (E6

C)E1,F1(1),F1(e1) ([8], Proposition 3.22 (1)). We
define φ : C∗ × U(1,CC) × Spin(8, C) → (E6

C)0 = (E6
C)z4 = (E6

C)ωD(e1) =
(E6

C)D(e1) by
φ(θ, a, β) = φ(θ)D(a)β.

Then φ is well-defined, is a homomorphism and Kerφ = Z2 × Z4. Since
(E6

C)D(e1) is connected and dimC(C ⊕ u(1,CC)⊕ so(8, C)) = 1 + 1 + 28 = 30
= dimC((e6C)0) (Theorem 3.15), φ is onto. Therefore (E6

C)0 ∼= (C∗×U(1,CC)
×Spin(8, C))/(Z2 × Z4) ∼= (C∗ × C∗ × Spin(8, C))/(Z2 × Z4).

(3) C-vector subspaces

{ξ1E1 | ξ1 ∈ C}, {F2(x2) + F3(x3) |x2, x3 ∈ CC},
{ξ2E2 + ξ3E3 + F1(x1) | ξ2, ξ3 ∈ C, x1 ∈ CC}

of JC are invariant under the action of the group (E6
C)z3

′
. In particular,

α ∈ (E6
C)z3

′
commuts with σ. Hence we have (E6

C)z3
′ ⊂ (E6

C)σ. Con-
versely, since (E6

C)z3
′
, (E6

C)σ are connected and dimC((e6C)z3
′
) = 30 + 8 × 2
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(Theorem 3.15) = 46 = 1 + 45 = dimC(C ⊕ so(10, C)) = dimC((e6C)σ), we
have (E6

C)z3
′
= (E6

C)σ. Therefore (E6
C)ed = (E6

C)σ ∼= (C∗×Spin(10, C))/Z4

(Theorem 3.10 (1)).

3.6.1. Subgroups of type R ⊕ D5(5),R ⊕ R ⊕ D4(4) and R ⊕ D5(5) of
E6(6)

Using the same notations as in 3.6, we shall determine the group structures
of

(E6(6))ev = (E6
C)z2 ∩ (E6

C)τγ1 , (E6(6))0 = (E6
C)z4 ∩ (E6

C)τγ1 ,

(E6(6))ed = (E6
C)z3

′ ∩ (E6
C)τγ1 .

Theorem 3.17. (1) (E6(6))ev
∼= (R+ × spin(5, 5)) × {1, ρ}.

(2) (E6(6))0 ∼= (R+ × R+ × spin(4, 4)) × ({1, σ′} × {1, ρ}).
(3) (E6(6))ed

∼= (R+ × spin(5, 5)) × {1, ρ}.

Proof. (1) and (3) are as same as Theorem 3.11 (1).
(2) is found in [8] Theorem 3.25 (2).

3.6.2. Subgroups of type R ⊕ D5(−27), R ⊕ R ⊕ D4(−28) and R⊕
D5(−27) of E6(−26)

Let τ1 = δ1
−1τδ1, δ1 = exp(π/2)iF̃1(1) ([8], 3.4.4) and we use the fact that

E6(−26) = (E6
C)τ1 .

Theorem 3.18. The 3-graded decomposition of e6(−26) = (e6C)τ1 ,

e6(6) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = 2iG01 + (4/3)(2E1 − E2 − E3)∼, is given by

g0 =




iG01, G23, G24, G25, G26, G27, G34, G35, (2E1 − E2 − E3)∼,
G36, G37, G45, G46, G47, G56, G57, G67, i(E2 − E3)∼,
Ã1(e2), Ã1(e3), Ã1(e4), Ã1(e5), Ã1(e6), Ã1(e7),
iF̃1(e2), iF̃1(e3), iF̃1(e4), iF̃1(e5), iF̃1(e6), iF̃1(e7)


 30

g−1 =




(Ã2(1 + ie1) + F̃2(1 + ie1)) + i(Ã3(1 + ie1) − F̃3(1 + ie1)),
i(Ã2(1 + ie1) + F̃2(1 + ie1)) + (Ã3(1 + ie1) − F̃3(1 + ie1)),
(Ã2(e2 + ie3) + F̃2(e2 + ie3)) − i(Ã3(e2 − ie3) − F̃3(e2 − ie3)),
i(Ã2(e2 + ie3) + F̃2(e2 + ie3)) − (Ã3(e2 − ie3) − F̃3(e2 − ie3)),
(Ã2(e4 + ie5) + F̃2(e4 + ie5)) − i(Ã3(e4 − ie5) − F̃3(e4 − ie5)),
i(Ã2(e4 + ie5) + F̃2(e4 + ie5)) − (Ã3(e4 − ie5) − F̃3(e4 − ie5)),
(Ã2(e6 + ie7) + F̃2(e6 + ie7)) − i(Ã3(e6 − ie7) − F̃3(e6 − ie7)),
i(Ã2(e6 + ie7) + F̃2(e6 + ie7)) − (Ã3(e6 − ie7) − F̃3(e6 − ie7))


 8

g−2 =
{
iG02 +G12, iG03 +G13, iG04 +G14 iÃ1(1 − ie1),
iG05 +G15, iG06 +G16, iG07 +G17 F̃1(1 − ie1)

}
8
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g−3 =




(Ã2(1 − ie1) + F̃2(1 − ie1)) + i(Ã3(1 − ie1) − F̃3(1 − ie1)),
i(Ã2(1 − ie1) + F̃2(1 − ie1)) + (Ã3(1 − ie1) − F̃3(1 − ie1)),
(Ã2(e2 − ie3) + F̃2(e2 − ie3)) − i(Ã3(e2 + ie3) − F̃3(e2 + ie3)),
i(Ã2(e2 − ie3) + F̃2(e2 − ie3)) − (Ã3(e2 + ie3) − F̃3(e2 + ie3)),
(Ã2(e4 − ie5) + F̃2(e4 − ie5)) − i(Ã3(e4 + ie5) − F̃3(e4 + ie5)),
i(Ã2(e4 + ie5) + F̃2(e4 − ie5)) − (Ã3(e4 + ie5) − F̃3(e4 + ie5)),
(Ã2(e6 − ie7) + F̃2(e6 − ie7)) − i(Ã3(e6 + ie7) − F̃3(e6 + ie7)),
i(Ã2(e6 − ie7) + F̃2(e6 − ie7)) − (Ã3(e6 + ie7) − F̃3(e6 + ie7))


 8

g1 = τ (λ(g−1))τ, g2 = τ (λ(g−2))τ, g3 = τ (λ(g−3))τ.

Proof. We can prove this theorem in a way similar to [8] Theorem 3.35,
using [8] Lemma 3.34.

Using the same notations as in 3.6, we shall determine the group structures
of

(E6(−26))ev = (E6
C)z2 ∩ (E6

C)τ1 , (E6(−26))0 = (E6
C)z4 ∩ (E6

C)τ1 ,

(E6(−26))ed = (E6
C)z3 ∩ (E6

C)τ1 .

Theorem 3.19. (1) (E6(−26))ev
∼= R+ × Spin(9, 1)).

(2) (E6(−26))0 ∼= (R+ × R+ × Spin(8))× ({1, σ′} × {1, ρ}).
(3) (E6(−26))ed

∼= R+ × Spin(9, 1).

Proof. (1) and (3) are found in [8] Theorem 3.37 (1).
(2) is found in [8] Theorem 3.37 (2).

339-5, Okada-matsuoka
Matsumoto 390-0312 Japan
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