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Fold-maps and the space of base point
preserving maps of spheres

By

Yoshifumi ANDO*

Abstract

Let f: N — P be a smooth map between n-dimensional oriented
manifolds which has only fold singularities. Such a map is called a
fold-map. For a connected closed oriented manifold P, we shall de-
fine a fold-cobordism class of a fold-map into P of degree m under a
certain cobordism equivalence. Let Qo14,m (P) denote the set of all fold-
cobordism classes of fold-maps into P of degree m. Let F™ denote the
space limg_, o0 F}", where F}* denotes the space of all base point preserv-
ing maps of degree m of S¥~1. In this paper we shall prove that there
exists a surjection of Qfoia,m (P) to the set of homotopy classes [P, F"],
which induces many fold-cobordism invariants.

Introduction

Let N and P be smooth (C°°) manifolds of dimension n. We shall say
that a smooth map germ of (N, z) into (P,y) has a singularity of fold type
at x if it is written as (21,...,2n_1,2n) — (21,... ,2Zn_1,22) under suitable
local coordinate systems on neighborhoods of x € N and y € P respectively. A
smooth map f: N — P is called a fold-map if it has only fold singularities. In
[E] Eliaéberg has proved a certain “homotopy principle” (a terminology used
in [G2]) for fold-maps. Let TN and f*(TP) be stably equivalent for a given
map f: N — P and let an (n — 1)-dimensional submanifold M of N be given.
As an application he has given the conditions so that there is a fold-map which
is homotopic to f and folds on M. For example, for any homotopy sphere of
dimension n, there exists a fold-map into S™ of degree 1. These results are
the motivation for the following problems. Given a connected closed oriented
manifold P, consider a fold-map f : N — P of degree 1. What properties of
a fold-map f represent the procedure of changing the differentiable structure
of P to that of N7 How is a classification of fold-maps into P together with
the singularities of f related to a classification of source manifolds N7 These
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problems have been studied in [An3]. This paper is its continuation and we
shall study this problem in a more general situation.

Let P be a connected closed oriented smooth manifold of dimension n. For
the study of this problem we shall define a fold-cobordism class of a fold-map
of degree m. Namely, let f; : N; — P (i = 0,1) be two fold-maps of degree
m, where IN; are closed oriented smooth manifolds of dimension n. We shall
say that they are fold-cobordant when there exists a fold-map F : (W,0W) —
(P x[0,1], P x 0U P x 1) of degree m such that

(i) W is oriented with OW = NyU(—Ny) and the collar of OW is identified
with N() X [0,6) @] N1 X (1 — &, 1],

(ii) F|N0 X [0,5) = fo X id[o,s) and F|N1 X (1 — &, 1] = f1 X id(1_571],
where ¢ is a sufficiently small positive number. Let Q44,m (P) denote the set
of all fold-cobordism classes of fold-maps into P of degree m.

Let F" denote the space of all base point preserving maps of degree m
of S¥~1 with compact-open topology. The suspension induces the inclusion
F" — Fi,. Let F'™ denote the space limy .o Fj". Let Gy (resp. SGy)
denote the space of all homotopy equivalences (resp. of degree 1) of S*~!
with compact-open topology. The suspension of a homotopy equivalence yields
the inclusion Gy — Gi41 (resp. SGr — SGry1). We set G = limg_o G
and SG = limy_ o SGy respectively. Similarly set O = limg_,o, O(k). By
considering the quotient space G /O(k) by the action of O(k) on G, set G/O =
limg oo Gi/O(k). Then we have the projection pgg : SG — G/O. Tt is well
known that each F™ is weakly homotopy equivalent to SG.

The main result of this paper is the following theorem.

Theorem 1. Let P be a connected closed oriented smooth manifold of
dimension n. Then there exists a surjection wm : Qfoigm(P) — [P, F™] for
n>1.

Let 7¢ denote the n-th stable homotopy group of spheres, limy_, o0 T4k (
Sk). Tt is known that [S™, F] is isomorphic to 7 (see, for example, [At1]).
Then we have the following corollary.

Corollary 2. There exists a surjection Qyoq,0(S™) — 5 induced from
wo forn > 1.

For example, the fold-map S! — S! mapping eV~ s eV—1lcosaz g c 7,
is mapped to 0 € 7§ = Z/2Z for odd integers a and to 1 € 7 = Z /27 for even
integers a # 0 (see Proposition 5.3).

Now we recall a smooth structure on P, which refers to a homotopy equiv-
alence f : N — P of degree 1, and the surgery obstruction in the surgery theory
developed by [K-M], [Br2], [Su] and [W2]. We will say that two smooth struc-
tures on P, f; : N; — P (i = 0,1), are equivalent if there is a diffeomorphism
d : No — Nj such that fy is homotopic to f; o d. Let S(P) denote the set of
all equivalence classes of smooth structures on P. Then there has been defined
a map 1, : S(P) — [P,G/O]. Let i1 s5¢ : F' — SG be the inclusion. Then
it will turn out that (ip1 s¢)« © wi coincides with w : Qg1 (P) — [P, SG]
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defined in [An3]. As for smooth structures on P we have the following theorem
(see [An3, Section 5 and Theorem 5.5]).

Theorem 3 ([An3]). Letn > 5. Let P be a connected closed oriented
smooth manifold of dimension n. If a fold-map f : N — P is a homotopy
equivalence of degree 1, then we have that (psa)« o w(f) = nu(f).

Furthermore, the surgery obstructions induce fold-cobordism invariants
through the composition with (psg)«ow ([An3, Proposition 5.1]). In particular,
if P is of dimension 4k + 2 (k > 1), then we have the Kervaire invariant
94k+2 : [P, G/O] — Z/2Z

Theorem 4. Let P be a closed oriented and simply connected smooth
manifold of dimension 4k + 2 (k > 1). Then the surgery obstruction of Ker-
vaire invariant Q410 induces a fold-cobordism invariant G410 © (PsG)s 0w :
Qtora1(P) — Z/2Z. In particular, if P = S**2 and k = 1,3,7, then this
invariant is not trivial.

The latter half of Theorem 4 is a direct consequence of the results due to
several authors that 0442 0 (psg)s for P = S*+2 is surjective for k = 1,3,7
(see [Brl, Corollary 1]).

Theorem 1 will make the following corollary important, in which we define
other fold-cobordism invariants. As for the (co)homology groups of the space
F™ namely, SG, consult [M], [M-M] and [Tsu].

Corollary 5. Letp be a prime number. For an element [f] of Qfo1a,m(P),
we have the homomorphism wp,(f)* : H*(F™;Z/pZ) — H*(P;Z/pZ). Then
for any element a of H*(F™;Z/pZ), wm(f)*(a) is a fold-cobordism invariant.

Now we shall explain the homotopy principle for fold-maps, which is nec-
essary for the proof of Theorem 1. In the 2-jet space J2(n,n) we shall consider
the subspace 2!°(n,n) consisting of all jets of either regular germs or germs
with fold singularities at the origin. In the 2-jet bundle J?(N, P) with pro-
jection 7% : J2(N,P) — N, let Q%(N, P) be its subbundle associated with
0%mn,n). A smooth map f: N — P is a fold-map if and only if the image
of j2f is contained in Q°(N, P). Let CF (N, P) denote the space consisting
of all fold-maps with C'*°-topology. Let I'(N, P) denote the space consisting of
all continuous sections of the fibre bundle 7%, |Q'°(N, P) : Q!°(N, P) — N with
compact-open topology. Then there exists a continuous map

jo : C§(N,P) —I'(N,P)

defined by jo(f) = j*f.

We shall prove the following homotopy principle in the existence level in
Section 4, where two theorems [G1, 4.1.1 Theorem] and [E, 2.2 Theorem] will
play important roles. In the following theorem the manifolds N and P may
not be closed or oriented.
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Theorem 6. Letn > 2. Let N and P be connected smooth manifolds
of dimension n and ON = (. For any continuous section s in I'(N, P), there
exists a fold-map f: N — P such that j2f and s are homotopic as sections.

In Section 1 we shall explain the well known results concerning fold singu-
larities. In Section 2 we shall prove several results concerning Thom spaces and
duality in the suspension category (see [Spl], [Sp2] and [W1]). In Section 3 we
shall review the results of [An3] and define the map w,,. In Section 4 we shall
state Propositions 4.6 and 4.7 without proofs and prove Theorem 6. In Section
5 we shall prove Theorem 1 by using Theorem 6 and give some examples. In
Sections 6 and 7 we shall prove Propositions 4.6 and 4.7 respectively. In Section
8 we shall give another invariant of fold-maps, say fold-degree in Z, which is
not a fold-cobordism invariant. In odd dimensions, we shall show that many
integers can be realized as fold-degrees.

The author would like to thank the referee for his kind and helpful com-
ments.

1. Preliminaries

Throughout the paper all manifolds are smooth of class C*°. Maps are
basically continuous, but may be smooth (of class C'°) if so stated. Given a
fibre bundle 7 : E — X and a subset C in X, we denote 7=1(C) by E|¢c. Let
7' : F — Y be another fibre bundle. A map b: E— Fis called a fibre map
over amap b: X — Y if 7/ ob = bom holds. The restriction b|(E|c) : Elc —
F (or Flycy) is denoted by b|c. In particular, for a point z € X, El, and b|,
are denoted by E, and by : By — Fy(z) respectively.

We shall review the well known results about fold singularities (see [Bo],
[L1]). Let J*(N, P) denote the k-jet space of manifolds N and P. Let % and
7r5§, be the projections mapping a jet to its source and target respectively. The
map 7k x 7% : J¥(N,P) — N x P induces a structure of fibre bundle with
structure group L*(n) x L¥(n), where L¥(n) denotes the group of all k-jets of
local diffeomorphisms of (R™,0). The fibre (7%, x 7%)~!(x,y) is denoted by
J¥ (N, P).

Let 7} : J?>(N,P) — JY(N,P) be the canonical forgetting map. Let
$¥(N, P) denote the submanifold of J!(V, P) consisting of all 1-jets z = jlf
such that the kernel of d,f is of dimension i. We denote (72)~1(Z4(N, P))
by the same symbol ¥¢(N, P) if there is no confusion. For a 2-jet z = j2f of
YN, P), there has been defined the second intrinsic derivative d2f : T,N —
Hom(Ker(d, f), Cok(d,f)). Let X% (N, P) denote the subbundle of J?(N, P)
consisting of all jets z = j2f such that dim(Ker(d,f)) = i and dim(Ker(d2 f|
Ker(d, f))) = j. In this paper we shall deal with these submanifolds only for
j <i<1. Ajet of X19(V, P) will be called a fold jet. Let Q'°(V, P) denote the
union of X(N, P) and X1°(N, P) in J2(N, P). Then 7%, x7%|Q(N, P) induces
a structure of an open subbundle of 7%, x 7%. Let Q%(n,n) = QI°(R",R") N
Jo(R" R,
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In particular, there exists a canonical diffeomorphism
Tan X Tha X T : QO(R™, R") — R™ x R" x Q%(n, n).

Here, for a jet z = j2f € QI9(R", R"), mq is defined by mq(z) = j2(I(—f(x)) o
fol(z)), where [(a) denotes the parallel translation defined by I(a)(z) = = +
a. We note that Jg,(R",R™) is canonically identified with Hom(R",R") &
Hom(S?R™, R") under the canonical basis of R", where S?R™ is the 2-fold
symmetric product of R"™.

Next we shall review the properties of the submanifolds X!'(N, P) and
$19(N, P) along the line of [Bo, Section 7]. Let D’ denote the induced bundle
(7%)*(T'N) over J?(N, P). Recall the homomorphism

d': D' — (7%)*(TP)  over J*(N,P),

which maps an element v = (2,v') € D’, with z = j2f to (z,d,f(v’)). There
is a commutative diagram

Ker(d,f) — T.N =L f<(TP), = (2,TjsP) — Cok(d,f)
! ! ) ! !
Ker(d)) — D. % (x2)*(TP).  — Cok(dl).

Here d! is identified with a section of Hom(D’, (7%)*(T'P)) over J(N, P). Let
K and Q be the kernel bundle and the cokernel bundle of d* over (N, P)
with dimK = dim Q = 1 respectively. Next we have the second intrinsic
derivative d? : K — Hom(K, Q) over %!(NV, P), whose restriction d? : K, —
Hom(K., Q) with z € $!(V, P) is nothing but the homomorphism induced
from d2 f : Ker(d, f) — Hom(Ker(d, f), Cok(d, f)) by (n%)* and (7%)*. This
map is extended to the following epimorphism by [Bo, Lemma 7.4 and p. 412],

d?: T(J*(N,P))|s1(n,p) — Hom(K,Q)  over X'(N,P),

where D’ is identified with a subbundle of T(J2(N, P)) corresponding to the
total tangent bundle of J>°(N, P). It has been proved in [Bo, Lemma 7.13]
that there exists an exact sequence,

0 — T(S'(N, P)) -S> T(JA(N, P)) s (v.p) > Hom(K, Q) — 0.

Under these notations, a 2-jet z € X'(N, P) lies in $!9(NV, P) if and only
if d?|K, is an isomorphism (otherwise, z lies in L!(N, P)). This implies
that T(X'(N, P)). N K, = {0} for any jet z € (N, P). Hence K|sio(n,p)
and Hom(K, Q)|s10(y, p) are isomorphic to the normal bundle of $'°(N, P) in
J%(N, P).

Boardman [Bo] has first done these constructions over the infinite jet space
J°°(N, P). In particular, there has been defined the total tangent bundle D
over J°(N, P), which is canonically identified with (73°)*(T'N). It does not
seem so simple to explain how to define the extended epimorphism d? and
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how to regard K as the subbundle of the tangent bundle T'(J?(N, P)) from the
comment given in [Bo, p. 412]. The following interpretation is different from
this comment. We need Riemannian metrics on N and P, which enable us
to consider the exponential maps TN — N and TP — P by the Levi-Civita
connections. For any points x € N and y € P, we have the local coordinates
(x1,...,2,) and (y1,...,Yyn) on convex neighborhoods of z and y associated
to orthonormal basis of T, N and T, P respectively (see [K-N]). We shall define
an embedding p2, : J*(N,P) — J*(N,P). Let z € J? (N, P) be represented
by a C* map germ f : (N,z) — (P,y) such that any k-th derivative of f with
k > 3 vanishes under these coordinates. Then we set p2 (2) = j2°f. It is clear
that 75° o p2, = tdy2(n,p)- We can prove that D|#20’0(J2(N,P)) is tangent to
w2 (J?(N, P)). Indeed, for o = (01,... ,0,) with non-negative integers o;, we
recall the functions X; and Z;, with 1 <i <n and 1 < j < n defined locally
on a neighborhood of J*°(N, P) by, for z = j°f,

Xi(z) = xz;,
Zjo(2) 9l (y; o f)

= — X
) o1, . on )
0x9 oxg

which constitute the local coordinates on J*°(N, P) as described in [Bo, Sec-
tion 1]. Let ® be a smooth function defined locally on u2 (J?(N, P)) and let
D; € D be the total tangent vector corresponding to d,0z; by the canonical
identification of D and (7$¢)*(T'N). Then we have by [Bo, (1.8)] that

(P oj>ef)
o2, (2)

_ 00 00

T X, 07,

Dy(®)(z) =

(2)Zj.00 (2),

where o/ = (01,...,0i-1,0i + 1,0i11,... ,0,). If z € p2 (J?(N,P)), then
Z; - (z) vanishes for |o| > 3. Hence, D;(®) is a smooth function defined lo-
cally on p2_(J?(N,P)). This implies that D; is tangent to u2 (J2(N, P)).
Since D, consists of all linear combinations of Dy,... ,D,, we have that D, C
T. (12, (J3(N, P))).

Let dV> : D[,z 2y py) — (7F)(TP)]uz, (72w, p)) be the first derivative
over p2 (J?(N,P)). Let K® and Q> be the kernel bundle and the cokernel
bundle of d%* over u? (X'(N, P)). Now we consider the intrinsic derivative
d(db>) : T(u2,(J*(N, P))|2 =1 (n,p)) — Hom(K>,Q>) of d"> (see the
definition of the intrinsic derivative in [Bo, Lemma 7.4] due to I. R. Porteous).
Then it induces the homomorphism (u2))*(d(d">)) : T(J*(N, P))|s1(n,p) —
Hom(K, Q). It is clear that the restriction (p2)*(d(d*>))|(12,)*(D) : (u2,)*(
D) — Hom(K, Q) is identified with d? : D'|s1(wv,p) — Hom(K, Q), which is
invariantly defined with respect to the choice of metrics on N and P, through
the identification of D and (75)*(TN).

A smooth map f : N — P is called a fold-map when the image of j2f is
contained in Q'°(N, P). Let CZ (N, P) and I'(N, P) denote the spaces defined
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in Introduction with the continuous map
jo : Cg° (N, P) — T'(N, P).

(

Let T''"(N, P) denote the subspace of I'(IV, P) consisting of all sections s such
that s is smooth on some neighborhood of s~1(X!°(N, P)) and that s is trans-
verse to B19(N, P). Throughout the paper S(s) denotes s~!(X19(V, P)). From
now on, for a point ¢ € S(s),let K(s). and Q(s). denote s*(K). = Ker(d.f) and
5*(Q). = Cok(d.f) respectively, where s(c) = j2f. Let d*(s) : TN — s*(TP)
and d?(s) : K(s) — Hom(K(s),Q(s)) over S(s) denote the homomorphisms
induced from d' and d? by s respectively.

A homotopy ¢y with A € [0, 1] refers to a continuous map ¢ of I = [0,1]
into a space. For example, a homotopy h) relative to a closed subset C' of N
in T'(N, P) refers to a continuous map h : I — T'(IV, P) such that hy|C' = ho|C
for any .

2. Thom spaces and duality in suspension category

In this section we shall give several results concerning S-dual spaces and
duality maps in the suspension category. They are necessary in the arguments
for defining w,,, and inducing its properties, though some of them may be known
results (see [Atl], [Br2], [Spl], [Sp2] and [W1]).

In Sections 2, 3 and 5 let k > n. Let S* be the sphere with radius
1 centred at the origin in R and let S* be oriented so that a pair of an
orthonormal basis of T,,8¢ and an inward vector at z is compatible with the
canonical orientation of R, In this section S* is identified with the wedge
product S*A---AST of £ copies of S* and is oriented by coordinates (21, ... , z¢).
We denote the set of homotopy classes of maps & : A — B by [A,B]. Let A
be a space with base point. According to [Sp2], S¢A (S'A is written as SA for
short) denotes the /-th suspension AAS¢. Let S¢(a) denote the /-th suspension
of a map a. If B is also a space with base point, then we denote the set of
S-homotopy classes of S-maps by {A, B}. An element of { A, B} represented by
amap a: S*A — SYB (£ > 0) is written as {a}. Let D be the disk centred at
the origin with radius r in R? (D{ is often written as D* for short). For spaces
Aand A, let 17 : Ax A" — A’ x A be the map defined by 17 (a,a’) = (d, a).

Let A and B be connected finite polyhedrons with base points. We assume
in this section that A and B are sufficiently highly connected so that we do
not need to consider S‘A and S*B in the following arguments. Then an m-
duality map refers to a continuous map vA2 : AN B — S™ such that the map
Ypas : Hy(A;Z) — H™ 9(B;Z) defined by sending z € H,(A;Z) to the slant
product (vAB)*([S™]*)/z is an isomorphism. Let v4'B" : A’ A B" — §™ be
another m-duality map. By applying the work due to Spanier [Spl] and [Sp2],
we obtain the isomorphisms

(1v) Dy (vAB, 048 {B,B'} — {4, A},
(20) D*P):{S™ B} —{A,5°},
(3v) DwAB):{S™, BAA} — {AAB,S™}.
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We shall here recall their definitions respectively. In this paper we call isomor-
phisms of this type defined in [Sp2, Theorem 5.9] duality isomorphisms, which
are often denoted simply by D. The notation D(vA?) is different from that
used in [Sp2]. The map D, (vA2,v4"B") in (1v) is defined by the isomorphism
{B,B'} 2 ({BNA",S™} 2){A'AB,S™} =2 {A’ A}. Namely, let ap : B — B/,
ay : A” — A. Then the first isomorphism is defined by sending {ap} to the
element represented by the map

v o (ida Nap) i AAANB— A ANB — S™,

The inverse of the latter isomorphism {A’, A} = {A’ A B, S™} is defined by
sending {a 4} to the element represented by the map

vAB o (asNidp): AANB — ANB — S™.

The duality isomorphisms in (2v) and (3v) are special cases of (1v) and will be
often used. As for (2v), let {a} € {S™, B} be an element with o : S™ — B.
Then D(vAB)({a}) is defined by the element represented by the map

vAB o (idga Na) : ANS™ — ANB — S™.

For (3v), consider the map v48 A (vAP 017): ANBABAA — S™AS™ =
S2m . It is not difficult to see that this map is a duality map. Then, for a
map ag : S™ — B A A, D(wAB)({as}) in (3v) is defined to be the element
represented by the map (vA8 A (vAB 0 17)) o (idanp A as) :

AANBAS™ = AANBABAA—AANBAAAB — S™AS™ =82

By the isomorphism D(vA8) in (3v) we obtain a map w4 : S™ — BA A
such that D(vAB)({wB4}) = {vAB}. Tt is not difficult to see that w54 is
a duality map in the sense of [Br2] and [W1]. In fact, the map p,za :
H™ 9(B;Z) —H,(A;Z) defined by sending z € H™~(B;Z) to the slant prod-
uct (wB4),([S™])\z is an isomorphism. Similarly we obtain a duality map
wB' A . 8™ — B/ A A’ such that D(vA"B)({wB'4}) = {v4B'}. Then we define
the isomorphism

(lw) D(w) : {A", A} — {B, B’}

as follows. The map D(w) in (lw) is defined by {A4’, A} = {S™,B' N A} =
{B, B’}. Namely, for a map a4 : A’ — A, the first isomorphism is defined by
sending {aa} to the element represented by (idp: A aq) o wB' A" The latter
isomorphism {B, B'} = {S™, B’ A A} is defined by sending {a} to the element
represented by (ap Aida) o wBA.

We prove in the following lemma that D(w) = Dy, (vAB,vAB")~1. By this
lemma we can apply the results in [Spl] and [Sp2] to D(w) through D. In
particular, D(w) is well defined. In this paper D, (vA8,v48) is also written as
D(vAB), and we use the notation D(w?B4) for D(vAB)~1.

Lemma 2.1. In the cases (1v), (lw) we have that D(w) = D,,(v45,
A'B"\—1
v P
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Proof. For the proof, we consider the duality map (vA/B/ AABY o (idarpnpr
A17) o (ida AN17 Nida) :
ANBAB'NA— A NB'NANB — S™AS™ = 52",
which is denoted by w. Furthermore, the canomcal identification S™ A S™ =
S52™ is also a duality gnap, which is denoted by v . Then we have the duality
isomorphism Dy, (v, u) : {S™, B’ AN A} — {A’ A B,S™} as in (1v). We use

the notation exhibited in the following diagram for the duality isomorphisms
defined above to distinguish them

(B, B}y 22 qgm praay 22O a4y

| lowie |

{B,B/} DB—()) {A//\B,Sm} <'DA—() {AI,A}

2m

We prove Dz, (%", u) o DP(w)({an}) = DP(0)({az}) and Do (v5™",u)
oD4(w)({aa}) = DA(v)({aa}). For amap a : B — B', we have that

2m

ng(vszm,u) o DB (w)({ap}) = Dom (v, u)({(ap Aidy) o wP4Y)
= D) ({w"}) o D({ap Nida})
= {07} o {D({an}) A D({ida})}
= {07} o {DA(v) " 0 DP(v)({a}) A {idp}}
=D*(v) o D4(v) ! 0 DP(v)({arB})
= D" (v)({an}).

For a map a4 : A — A we have

Do (V5" 1) 0 DA(w)({aa}) = Dam (v, w)({(idp A as) o w4}
= D" ({w*'}) o D({idp: A aa})
= {v*P"} o {D({idp'}) AD({aa})}
= {v"F} o {{ida} NDP(v) 7! 0 DA(v)({aa})}
=D"(v) o DP(v) " o D(v)({aa})
= DA(v)({aa}).

Therefore, D#(w) and DB (w) are isomorphisms, and hence we have
D(w)({aa}) = DP(w) ' o DA (w)({aa})

=D%(v)"! o D4 (v)({aa})

=Dy (047, 0" ) " ({aa}). 0

Let X be a connected closed oriented smooth manifold of dimension n.
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Let 0% be the trivial bundle X x Rf. For the tangent bundle TX of X,
we will denote TX @ 6% by a symbol 7x without specifying the number F,
which is called the stable tangent bundle of X. Choose a smooth embedding
e: X — R"™ and let vx(e) = T(R"™)|.(x)/T(e(X)) be the normal bundle
of e(X). The induced bundle vx = e*(vx(e)) is also called the normal bundle
of X, which has the canonical bundle map e,, : vx — vx(e). Then vy is a
stable vector bundle, since k > n. The usual metric of R"** induces a splitting
of the sequence

O—>TX—>9§L(+’“—>1/X—>O

by orthogonality, which yields a trivialization tx : 7x ® vx — 63F with di-
mension of 7x being equal to k. Let T'(vx(e)) be the Thom space. Let
bx : S"tF — T(vx(e)) be the Pontrjagin-Thom construction for the embed-
ding e of X. Then we have the homotopy class [ax] of ax = T(e;}) o ¢x
in m,4%(T(vx)), where [*] refers to the homotopy class. In this paper we also
call ax the Pontrjagin-Thom construction for the embedding e. In the follow-
ing we canonically identify T(vx @ 0%) and T(vx x 0%) with T(vx) A S* and
T(vx) A S¢ X0 respectively.

It has been proved in [M-S, Lemma 2] that T'(vx) is the S-dual space
of X° = X Uxx, where xx is the base point. In fact, we shall construct a
duality map vy : S*X° A T(vy) — S"F+¢ along the line of the arguments
above by using the duality map wyx : S"T*+¢ — T(vx) A S*X° constructed
in [W1, p. 228]. Take an embedding e : X — R"** with normal bundle vy.
Consider the diagonal map A: X — X x X and the vector bundle vx x 0%
over X x X. By the definition of the Whitney sum we have the bundle map
A vx ® 0% — vy x 0% covering A, which induces a map T(A) : T(vx &
0%) = T(vx) A S* — T(vx x 05%) = T(vx) A S*X°. Let € be the embedding
X — R"* x 0 c R"* Y Then the normal bundle of € is identified with
vx @D (‘)ﬁ( and the Pontrjagin-Thom construction for the embedding € yields the
map S(ax) : S"TEHE — T(vx) A S%. Let wx denote the composition map

T(A) oS ax): S"TF — T(vyx) A S'XO.

It has been proved in [W1, Chapter 3] that wx is an (n + k + £)-duality map.
We shall now apply the arguments above concerning duality maps by setting
A=S8X B =T(vx) and wB4 = wx. Then, for £ >> n, there exists a duality
map vy : S’ XOAT(vy) — S™TF+E which is defined by D(wx)({vx}) = {wx}.
This duality map induces an isomorphism

D(vx) : {S"**, T(vx)} — {X°,5°}

as in (2v). We should note that D(wx) and D(vx) are defined depending on
the embedding e, although they are uniquely determined in the sense of Lemma
2.3 below.

Remark 2.2. Let e' be another embedding with normal bundle vi.
Let ax and a) be the Pontrjagin-Thom constructions for the embeddings e
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and e! respectively. Then there exists an isotopy of embeddings e* : X — R"*#
with €® = e. Let v* be the normal bundle of e* with 1° = vy and v! = v}.
Let E: I x X — I x R"** be the embedding defined by E(\, z) = (A, e*(2)).
Let v be the normal bundle of the embedding F, which yields a bundle map
B : I xvxy — v covering idrxx. Let b : vx — u}( be the bundle map
defined by B|l x vx : vx = 1 x vx — vk = v]ixx (see, for example, [An3,
Proof of Lemma 4.4]). Hence, the isotopy e : X — R™* x 0 ¢ Rrk+¢
induces homotopies S*(a) : S"HF+ — T(vy) A S* and T(EA) :T(vy)A St —
T(vx) A S*X° by applying the arguments above for e* and vy in place of e
and vx.

We have the following lemma.

Lemma 2.3.  Let w be the composition map T(Z)\) o S¥(a) and let
D(wy)({vy}) = {wy}. Then we have the following:
) wh = (T(b) Aidgexo) o w,
) Dyrnlo8 )TN = lidxo}, where Doy vk)  {T0x),
)} = [X0.X°0,
(3) v = ok o (idsexo AT(D)),
(4) the following diagram is commutative.

{5, Ty )} 20 1x0, 50}

o \

{S7L+k,T( )} ﬁ {XO,SO}

Proof. By the definition of w¥, we first prove (1). Indeed, we have that

Hence, we have the commutative diagram

gtk —X . T(vx)ASEXO
w;{l lT(b)/\(idng())
T(A)ASXO ———— T(wk) A SEXO.

dT(VX)Aséxo

Then the assertion (2) follows from [Sp2, Theorem 5.11] or [Br2, 1.4.14 Theo-
rem| (see Lemma 2.1). Next we prove (3). By (2) we have Dy, o1 (v, v%) ({T(
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bHl}) = {deo} where Dn+g+k(vx,vx) {T(vk), T(vx)} — {X° X°}. Since
w% = (T(b™') ANidgexo) 0wk by (1), we have

{v%} = D) {wk})
=D({wx}) o DUT(b™") Aidgexo})
=D({wx}) o (DUT (")} A D({idsexo}))
= {vk o (idgexo AT(D))},

where we consider dualities (indicated by {) of the spaces and maps in the
diagram
T
Gkt k) T(wi) A A SEX0 T~ )nidgexo T(vx) A Sl x0
) ) )

Gntk+e (i St x0 AT(vx) idsexoNT(0) SEX0 A T(WL).
The assertion (4) follows from (3). In fact, we have

D(vx) o T(b)«({a}) = {v o (idgsxo A (T(b) 0 a)}
= {v¥ o (idgexo AT(b)) o (idgexo A )}
= {vk o (idsexo A )}

=D(WX)({a}). O

We shall say that {a} € {S""* T(vx)} is of degree m if . ([S"1F]) =
m([T(vx)]), where [] refers to the fundamental class of *. For an element
{8} € {X,8°) with B : S¥X° — S* and a point » € X, we shall define the
map B(z) : S¥ = SO A S* — S* by the map (B|({*x,z} A S¥)) o (1x Aidgr),
where ¢, : SY — {xx, 7} is the canonical identification. Let F' denote the union
of all F™™,m € Z. Then we have the map

cp {X% 8% — [X, F]

defined by cp(8)(x) = B(x). We shall say that {3} is of degree m if ¢p(8)(z) is
of degree m for any x € X. Let {S"** T(vx)},, and {X°, S%},, be the sets of
all respective maps of degree m. Then cr induces the map cgm : {X°, S}, —
[X, F™]. Let cxo : X° — S° be the base point preserving surjection mapping
X to the other point. Then we have the following lemma.

Lemma 2.4. (1) D(vx){ax}) = {cxo}.
(2) {a} is of degree m if and only if D(vx)({a}) is of degree m.

Proof. (1) Tt is enough for the assertion (1) to prove that D(wx)({cxo})
= {ax}. By the definition of ax, cxo and wx, we have the homotopy com-
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mutative diagram

ax /\idsg
—_—

Stk A G T(vx) A S*

H @

Stk A gt X Tlux) ASEXO
H J/idT(,/X)/\SE(CX())

SR A St s T(ux) A S

ax /\idsg

Since the identification S™+F+t = g7tk A §f is a duality map, it follows from
[Br2, 1.4.14 Theorem)] that D(wx)({cxo}) = {ax}.

(2) Let D(vx) ({a}) = {8}, or D(wx)({B}) = {a@}. Then we have the
commutative diagram

Hy(S%Z) —F— H"kE(S"HF:7)

(C"D)*T T(ax)*

Hy(S'X%2) " H"H(T(vx);Z)

.| |-

Hy(S%2Z) ——— H"H (" Z),
eu
where v is a duality map of the identification S"t* A §¢ = §7+F+L We note

that both ax and cxo are of degree 1. Therefore, if « is of degree m, then g
must be of degree m and vice versa. 1

We shall recall some results about spherical fibre spaces (see [Br2], [W1]
and [At2]). Let & be a vector bundle of dimension k with metric over a manifold
X of dimension n and let S(£) be the associated sphere bundle. A fibre map
h:8(&) — S(&) covering idx is called an automorphism if h is a homotopy
equivalence. In this paper if £ is oriented, then an automorphism of S(&) is
always assumed to be an orientation preserving one. Let End(§) denote the
group of the homotopy classes of automorphisms of S(£). An automorphism of
S(€) is extended to a self-fibre map of £ by fibrewise cone construction. This
self-fibre map of £ is also called an automorphism of £. Let &' : S(n) — S(n)
be an automorphism of another vector bundle 1 over X. Then we can define
the Whitney sum h+h' : £®n — £ B n of the fibre maps h and A’ similarly as
in the case of bundle maps and it yields an automorphism denoted by h + A’ :
S(en) — SEen).

There is an isomorphism of End(¢) to End(¢ @ 6%) (¢ > 0) which maps
h to h+idg . Set E(§) = limy—oo End(€ @ 6%). Then it follows that £(&) =

E(E @ 0). Suppose that £ @ 7 is trivial and has its trivialization ¢ : £ & n —
02F. Let a homomorphism E(t) : End(¢) — End(0%) be defined by E(t)(h) =
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[to (h+id,)ot ). Then it induces an isomorphism
£:E(€) — E(6F),

which does not depend on the choice of a trivialization ¢.

Conversely, the map End(6%) — End(¢ @ 0% ) = £(¢) defined by mapping
h: 0% — 0% to ide + h also induces £(0%) = £(¢), which coincides with £71.
Therefore, an automorphism A : S(§) — S(§) has a map 8 : X — SG(k) and
an automorphism hg : 0% — 0% defined by hg(z,v) = (z,3(z)(v)) such that
h +idge ~ ide + hg. Furthermore, if h : S(§) — S(£) is, in particular, the
associated automorphism induced from a bundle map £ — £ preserving the
metric, then we can take 8 as a map X — SO(k).

If we apply this fact to the case £ = vy, then an automorphism h :
S(vx) — S(vx) hasamap 3 : X — SG(k) and an automorphism hg : 0% — 6%
such that h + id9§ ~id,, + hg.

Lemma 2.5. Let h: S(vx) — S(vx) and hg : 0% — 0% be the auto-
morphisms given above such that h + idge ~ idy, + hg. Consider the duality
map D(vx) : {T(vx),T(vx)} — {X° X°}. Then we have D(vx)({T'(h)}) =
{T'(hs)}-

Proof. By Lemma 2.1 it is enough for the assertion to prove that D(wx )(
{T(hg)}) ={T(h)}. Since h + idgx =~ idy, + hg, we have that T'(h + idg ) ~
T(id, +hg) : T(vx) AS* — T(vx) A S*. Furthermore, we have that A o (h+
idgr ) =~ (hxidex}%)oz and Ao(id, +hg) ~ (id,, x hg)oA. This implies that the
following diagram is homotopy commutative, since wx = T(A) o (ax A idgk).

2k X T(vx)ASEXO
UIXJ/ lidT(VX)AT(hB)

Twx)ANSEXY ——— T(vx) A SEXO

T(h)Aid gk xo

By [Br2, 1.4.14 Theorem] it follows that D(wx )({T'(hg)}) = {T'(h)}. O

The inclusion SO — SG induces a map J : [X, SO] — [X, SG]. According
to [Ad], its image is denoted by J([X, SO]). The inclusion F! — SG is denoted

by iFl,SG.

Proposition 2.6.  Let ax : S"t* — T(vx) be the Pontrjagin-Thom
construction as above and b : vx — vx be a bundle map over idx. Then we
have that (ip1 gq)« © cpr (D(vx)({T'(b) 0 ax})) lies in J([X,SO]).

Proof. Let b be a bundle map in place of i in Lemma 2.5. Then there is
a bundle map bg described above with 5 : X — SO(k). Then it follows from
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Lemma 2.4 (2) that

(ir1,56)s © cp1(D(vx)({T'(b) o ax}))

(ir1 56)« 0 cp1 (D(vx)({ax}) o D(vx)({T(b)}))
(ir1,56)« o cri({exo} o {T'(bg)})
J([8])-

This shows the lemma. o

3. Map Wm - Qfold,m(P) — [P, Fm]

In this section we shall first review the results of [An2] and [An3] necessary
for the definition of the map wy, : Qfora,m(P) — [P, F™] and then define the
map w,, by using the results in Section 2. We shall define the actions of
SO(n) x SO(n) on SO(n+ 1) and on J2(n,n) as follows. Let (O’,'O) be an
element of SO(n) x SO(n) and M be an element of SO(n + 1). Then define
the actions by

(0,'0) - M = (O'+(1)) M(O+(1)),
(0'.70) 4o f = j5(O" 0 f 0 0),

where O and O’ are identified with the corresponding linear maps of R™ and
+ denotes the direct sum of matrices. Note that Q°(n,n) is invariant with
respect to the latter action. Then we have the following theorem.

Theorem 3.1 ([An2, Theorem (ii)] and [An3, Proposition 2.4]).  There
exists a topological embedding i, : SO(n+1) — Q%(n,n) such that iy, is equiv-
ariant with respect to those actions above and that the image of i, is a defor-
mation retract of Q19 (n,n).

Let N and P be oriented manifolds of dimension n. If we choose an
orthonormal basis of R™, then there are canonical inclusions of GL(n) into
L?(n) and of SO(n) into GL(n). Hence, the structure group L?(n) x L?(n) of
the fibre bundle Q'°(V, P) over N x P is reduced to SO(n) x SO(n) when we
provide N and P with Riemannian metrics. Let x and 0p refer to 6} and 65
respectively. Let GLZ_H(TN @®ON, TP ®0p) and SO,41 (TN ® Oy, TP & 0p)
be the subbundles of Hom(T'N &6y, TP @ 0p) associated with GLT(n+1) and
SO(n+1) respectively. Then we have the inclusion igp : SOp11 (TN ©0x, TP
©0p) — GL:L'_H(TN @Oy, TP @ 0p), which becomes a homotopy equivalence
of fibre bundles covering idyx p.

We define the map

i(N,P): S0, 1(TN @ 0x, TP @ 60p) — Q(N, P)

to be the map associated with 4,,. Then ¢(NV, P) is a fibre homotopy equivalence.
Let (i(N,P))~t : Q1%N, P) — SO, 1(TN @ 0x,TP @ 0p) be the homotopy
inverse of (N, P). Then we consider the fibre map

iso o (i(N,P))™': Q*(N, P) — SO, 1 (TN ® 0n,TP @ 0p)
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— GL} (TN ® 0y, TP & 6p)

giving a homotopy equivalence of fibre bundles. Then it has been shown in
[An3, Proposition 3.1] that the homotopy class of the fibre map isoo(i(N, P)) ™!
over idyx p does not depend on the choice of Riemannian metrics of NV and P.

The set of all continuous sections of GL,}, (TN & 6y,TP & 0p) over N
corresponds bijectively to that of all orientation-preserving bundle maps of
TN @0y to TP @ 0p. Thus we have the following theorem.

Theorem 3.2 ([An3, Corollary 2]).  Given a fold-map f : N — P, the
section j2f determines the homotopy class of the section isoo (i(N, P)) 1042 f
of GL} (TN @ 05, TP & 0p). It induces a bundle map T(f) : TN & 0y —
TP ®0p determined up to homotopy (this is denoted by f in [An3]).

Let N and P be embedded in R™** with the stable normal bundles vy
and vp respectively. Let 7(f) denote the bundle map 7(f) @ (f X idgw-1).
Then we have the following proposition.

Proposition 3.3 ([An3, Proposition 3.2]).  Let N and P be oriented
manifolds of dimension n embedded in R™* with the trivializations ty : TnN®
vy — 0% and tp : Tp ® vp — O respectively. Then a fold-map f: N — P
determines the homotopy class of a bundle map v(f) : vy — vp over f such
that tp o (T(f) @ v(f)) oty' is homotopic to f x idgar.

Now we are ready to define the map wy, : Qyoia,m(P) — [P, F™]. Given a
fold-map f: N — P of degree m, there is a bundle map 7(f) : 7v — 7p and
a bundle map v(f) : vy — vp determined up to homotopy by Theorem 3.2
and Proposition 3.3 respectively. Let T'(v(f)) : T(vn) — T(vp) be the Thom
map associated with v(f). Then we set wy, (f) = cpm (D(vp)({T(v(f))oan})).
Since T'(v(f)) is of degree m, D(vp)({T(v(f)) oan}) is of degree m by Lemma
2.4 (2).

Lemma 3.4. (1) wn(f)=cpm(Dwp){T(v(f))oan})) does not de-
pend on the choice of embeddings of N and P into R**.

(2)  wm(f) does not depend on the choice of a representative f of the
fold-cobordism class [f] € Qfordgm(P).

Proof. (1) Let ek : N — R"F* and e}, : P — R"* be other embed-
dings with normal bundles v} and v}, trivializations t}, : 7y @ v, — 03F and
th : 7p @ vh — 0% respectively and a bundle map v(f)! : vy — vh. Then
by Remark 2.2 there exist bundle maps by : vn — vj and bp : vp — vp such
that bp o v(f) o by’ ~ v(f)' : v}, — vh. Then by Lemma 2.3 (4) we have that
D(vh) o T(bp). = D(vp) and that

D(vp)({T(v(f)!) oan}) =D
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(2) Let f; : N; — P(i = 0,1) be fold-maps of degree m, which are
fold-cobordant. By the same arguments as in the proof of [An3, Lemma 4.3]
we have that {T'(v(fy)) o an,} = {T(v(f1)) o an, }. Hence, we have that
wm(fo) = wm(f1). u

In particular, if m = 1, then we shall see that (i1 gg)« ow; coincides with
w Qfold,l(P) — [P, SG]

defined in [An3, Section 4]. Now we first review the definition of w. Let
f : N — P be a fold-map of degree 1. By Proposition 3.3, there exists a
bundle map v(f) : vy — vp. Then the map T'(v(f)) o an gives an element of
Tntk(T(vp)). By [Br2, 1.4.19 Theorem| and [W1, Theorem 3.5], there exists
an automorphism h : S(vp) — S(vp), which is unique up to homotopy and is
extended to an automorphism h : vp — vp by the fibrewise cone construction
satisfying the following properties. If T'(h) : T(vp) — T(vp) is the Thom
map of h, then we have that T'(v(f)).([an]) = T(h)«([ap]). Furthermore,
there exists a map 3 : P — SG(k) and a fibre map hg : 0% — 0% defined
by hg(z,v) = (x,8(x)(v)) such that h + idgs is homotopic to idy, + hg as
automorphisms. Then we have defined w to be w(f) =[]

Lemma 3.5.  The map w coincides with (ip1 gG)« 0 wi.

Proof. We shall give a sketch of a proof, since most of the arguments are
similar to those found in Section 2. Since SG is weakly homotopy equivalent
to F'!', we may suppose that the map 3 appearing in the definition of w factors
through F}!, namely, 3 : P — F} C SG(k). By Lemma 2.5, we obtain that
D(vp)({T'(h)}) = {T(hs)}. Therefore, we have that

—~

irt,56)« 0 cp1 (D(vp)({T(h) 0 ap}))

(ip1,56)« cwi(f) = )

ir1,56)« © cp1(D(vp)({ap}) o D(vp)({T'(h)}))
)
)

irt,sa)x o cpi({epo} o {T(hg)})
irt,sc)«([B])
(f)- O

—_~ o~

I
€

Hence, in the rest of the paper (i1 gG)« 0wy will be written as w.

Remark 3.6. (1) The spaces F™ and SG are weakly homotopy equiv-
alent to the identity component of the infinite loop space QS (see [M-M,
Corollary 3.8]). In fact, let 7 : S* — ST be the map defined by = — ma and
let m(gry : S¥ — S* be the suspension S¥~* (1) of degree m. Let Vgi : S* —
Sk v S* be the comultiplication and let (1,1) : S* v S¥ — S* be the canoni-
cal map, which is the identity on each S*. Then we have the weak homotopy
equivalence hpo pm : FO — F™ (resp. hpi pm : F1 — F™ m # 0) defined by
using the homotopy equivalence hy, : FY — Fj™ (resp. by - Fl — F",m #0)
such that hg(j) = (1,1) o (j V m(gr)) o Vgr (resp. hi(j) = jo mgry, m # 0).
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Since FY, F'! and SG are homotopy commutative H-spaces, [P, F°], [P, F''] and
[P, SG] have structures of an abelian group. It is well known that there is an

isomorphism [S™, F°] — 73. In fact, we have the following (see [Atl, Lemma
1.3 and (i), (ii) on p. 295]).

(8™ F{) 2 m(FD) = i (S5) (k> n+2)

(2) Many authors have contributed to the study of the very difficult
structure of the algebras H,.(SG;Z/pZ) and H*(SG; Z/pZ), where p is a prime
number (consult [M-M, Chapter 6], [M, Theorem 6.1 and Conjecture 6.2] and
[Tsu]).

(3) We have seen in Corollary 5 that for any element a of H*(F™;Z/pZ),
Wi (f)*(a) of H*(P;Z/pZ) is a fold-cobordism invariant. It is natural to ask
how w, (f)*(a) is related to the topological structure of S(f) in N and f(S(f))
in P, where S(f) is the set of fold singularities of f (see Example 8.4 (2)).

4. Homotopy principle for fold-maps

If for any section s of I'(N, P) there exists a fold-map f : N — P such that
j2f is homotopic to s by a homotopy in I'(NV, P), then we shall say that the
homotopy principle (a terminology used in [G2]) for fold-maps in the existence
level holds. In this section we shall prove the following theorem in place of
Theorem 6.

Theorem 4.1. Letn > 2. Let N and P be connected manifolds of
dimension n and ON = (). Let C be a closed subset of N. Let s be a section
of T(N, P) such that there exists a fold-map g defined on a neighborhood of C
into P with j2g|C = s|C. Then there exists a fold-map f : N — P such that
j2f is homotopic to s relative to C by a homotopy hy in I'(N, P) with hg = s
and hy = j2f.

If the closure of N \ C has no compact connected component, then the
assertion of Theorem 4.1 is a direct consequence of [G1, Theorem 4.1.1]. This
theorem is a special case of [Anl, Theorem 1], though the proof given there
was sketchy. In particular, the proof of Proposition 4.7 below was not given. A
weaker assertion where h, is required to be a homotopy of N into Q! (N, P) (not
into Q°(V, P)), which we can prove without Proposition 4.7, is sufficient for the
proof of the main results in [An1]. Here Q!(N, P) denotes X°(N, P)UXY(N, P)
in JY(N, P). However, Theorem 4.1 above is very important for the proof of
Theorem 1 in Introduction. This is the reason why a proof of Theorem 4.1 is
given in detail in this paper. The following Theorem 4.2 due to Eliaéberg [E]
(see also [G2, 2.1.3 Theorem on p. 55]) will play an important role in the proof.
We should note that Theorem 4.1 is not a generalization of Theorem 4.2.

Theorem 4.2 ([E, 2.2 Theorem|).  Let N and P be connected manifolds
of dimension n and S be an (n — 1)-dimensional submanifold of N. Let C
be a closed subset of N such that each connected component of N \ C has
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non-empty intersection with S. Assume that there exists an S-monomorphism
B:TN — TP over a map fg : N — P, that is, a fibrewise linear map which
satisfies

(H-4.2-1) B is of rank n outside of S and is of rankn — 1 on S,

(H-4.2-ii)  there exist a small tubular neighborhood U(S) of S, which is
identified with S x (=1,1), and a fibre involution iy : U(S) — U(S) such that
Bod(iy)|TU(S) = B|TU(S) and

(H-4.2-iii) fp is a fold-map on a small neighborhood of C and dfp|c =
Blc.
Then there exist a fold-map f: N — P and a homotopy of S-monomorphisms
By : TN — TP such that By = B, By = df and By|c = Bl|c for any X.

We here note the following. The fibre of %(n,n) — %!(n,n) has two
connected components. Hence, if an S-monomorphism B has a fold-map f
with S(f) = S such that df and B are homotopic as S-monomorphisms, then
the homotopy class of j2f as a section in I'(V, P) is uniquely determined from
B and does not depend on the choice of f.

We shall begin by proving the following proposition, which is a direct
consequence of Gromov’s theorem ([G1, Theorem 4.1.1]). For the fold-map
g and a closed subset C' in the statement of Theorem 4.1 we take a closed
neighborhood U(C) of C such that Cli(IntU(C)) = U(C) for a while, where
g is defined on a neighborhood of U(C). Let jo be the number (possibly oo)
of compact connected components of N\Int(U(C)), from each of which we
choose a point ¢; (1 < j < jo) in its interior. Using local charts of N we have
embeddings e; : R" — N \ U(C) with e;(0) = ¢;. In Sections 4, 6 and 7 we
shall simply denote D] by D,.

Proposition 4.3. Letn > 1. Let s be a section satisfying the hypothesis
in Theorem 4.1. Assume that s~1(X19(NV, P)) is not contained in U(C). Take
points {q1,...,q;,} of N\U(C) and embeddings e; (1 < j < jo) as above. Then
there exist a homotopy sy relative to U(C) in T'(N, P) with so = s and positive
numbers r; (1 < j < jo) such that

(1) s1 has afol‘d—map fo:N\{aq1,-..,q;,} — P with j2f0|(N\U;0:16j(
IntD;,)) = s1[(N \ UjZ,e;(Int D)),

(2) sy is transverse to X°(N, P) and
(3)  s7'(SY(N,P)) transversely intersects Oej(Da,,) and Oej(D,,) for
each j.

Proof. We can take the embeddings e; : R" — N\ U(C) with €;(0) = g¢;
so that 7% o s o e;(R™) is contained in a local chart of P. By applying [G1,
Theorem 4.1.1] to the section s|(N \ {q1,...,q;,}), we see that there exists a
homotopy s relative to U(C) in I'(N \ {¢1, ... , ¢, }, P) such that sj = s|(N \
{q1,...,4qj,}) and that s} has a fold-map fo : N\{q1,... ,q;,} — P with j2fy =
sh. Take a small positive number t; for each j. By the homotopy extension
property we can extend s) [(N \ Ug(’zlej (IntDy,)) to a homotopy s in I'(N, P)
such that s{j = s and s¥ (N\U;"Zlej (IntDy,)) = s'>\|(N\U§°:16j (IntDy,)). Since
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72 fo is transverse to X!0(N, P), we can deform s{ to the homotopy s, such
that
(i) so=s, _
(i) sal(N\ UL e;j(IntDy;)) = s5|(N \ UjL e;(IntDy;)) and
(iii) s is transverse to L10(N, P).
Now recall that S(s1) = (s1)"1(Z!°(N, P)). For each j, consider the
smooth map h : S(s1) Nej(R™) — R defined by h(z) = ||e;1(;1c)|| except for
the origin. The assertion (3) follows from Sard Theorem (see [H2]) for h. [

Since K over $19(R™, P) is a line bundle, S?K is trivial and has the
canonical orientation determined by a vector vQO v = (—v) O (—v), v € K.
Therefore, the intrinsic derivative d? : K — Hom(K, Q) induces an orientation
of Q over 1°(R", P). Throughout the paper we shall always provide Q with
this orientation.

Let s be a section of T'*"(R", P). Let v(s) denote the orthogonal nor-
mal bundle of S(s) in R™. We set K(s) = (s]59(s))*K, Q(s) = (s]5(5))*Q
and 0"(P) = (mp o $)*TP. Throughout the paper we shall choose and fix a
trivialization of 8™ (P) over R™ (n > 2). Then we can provide K(s) with the
orientation induced by the exact sequence

d* (s
0 — K(s) — TR"[5(s) il 0" (P)|s(s) — Q(s) — 0.

In fact, let ¢ € S(s) and take an orthonormal basis (my, ... ,m,_;) of K(s):
in T.R™ and a vector v € Q(s). representing the orientation of Q(s). such that
(d*(s)(my),...,d*(s)(m,_1),Vv) is compatible with the orientation of 7 (P)..
Then there exists a vector m,, € K(s). such that (my,...,m,) represents
the usual orientation of R". We orient K(s). by m,,. Thus Hom(K(s), Q(s))
is oriented and is isomorphic to the normal bundle v(s) of S(s) in R™ as is
explained in Section 1. This induces the orientation of v(s). On the other hand,
we can provide any point « of R™\ S(s) with sign — or 4+ depending on whether
the sign of the determinant of d'(s), is negative or positive (we note that when
n = 1, we are considering the trivialization of 6'(P) induced from @Q(s) near
each point ¢). This orientation of v(s) coincides with the direction from the
points of R™ \ S(s) with sign — to those points with sign +. Throughout the
paper we shall orient S(s) so that T'(S(s)) @ v(s) is compatible with the usual
orientation of R".

Any point ¢ of S(s) has two oriented lines v(s). and K (s).. Here we note
the following fact concerning these orientations.

Remark 4.4. If g : (N,z) — (P, f(z)) is a fold-map and z is a fold
singularity, then d2g : T, N — Hom(K (j2g)., Q(j%9).) coincides with d2(j2g)
and is an epimorphism (see Section 1). Since K (j2g), N T, (S(j%g)) = {0}, we
may say that K (j2g) is the normal bundle of S(j2g) near x. Hence, it follows
that the orientations of v(j2g), and K (j2g), are compatible.

For an oriented 1-dimensional subspace L C R"™ we let e(L) denote the
vector of length 1 with given orientation. Now we define the map e(s) : S(s) —
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Sl x S by e(s)(c) = (e(K(s).),e(r(s).)). Let A~ denote the subspace of
Sn=1 x S"=1 consisting of all points (v, —v), v € S?"~L1. The following lemma
can be proved by the standard arguments in differential topology.

Lemma 4.5.  No matter how an orientation of 6"™(P) is chosen, the
subset consisting of all sections s of T'"(R™, P) such that e(s) : S(s) — S"~1 x
S™1 s transverse to A~ is open and dense.

For the proof of Theorem 4.1 we need the following two propositions. In
R"™ let O(p;r) be the open disk centered at p with radius r.

Proposition 4.6.  Let n > 1. Assume that s € T'"(R", P) satisfies the
hypotheses

(H-1) there exists a fold-map fo defined on R™ \ IntD, into P such that
72 fol(R™\ IntD,) = s|(R™ \ IntD,.) and

(H-ii) e(s) is transverse to A~ and e(s)~1(A™) consists of distinct points
Ply--- s Pm 0 IntD,..

Then there exists a homotopy sy relative to R™\IntDa,. in T'(R™, P) with so = s
satisfying the following.

(1) s €"(R™, P) and S(s\) = S(s) for any .

(2) Lete > 0 be any positive number such that O(p;;2¢)’s are disjoint and
contained in IntD,.. There exists a small neighborhood U(S(s)) of S(s) such
that we have a fold-map f : (R™ \ IntDa,.) UU(S(s))) \ (UjL,0(pj;€)) — P
with 5°f = s1 on (R™ \ IntDa,.) UU(S(s))) \ (Uf,O(pj;€)).

(3)  In particular, if e(s)"L(A™) is empty, then the fold-map f in (2) is
defined on (R™ \ Int Do, ) UU(S(s)).

Proposition 4.7.  Letn > 2. Given a section s in T (R", P) satisfying
(H-1) and (H-ii) with m > 0 in Proposition 4.6, there exists a homotopy sy
relative to R™ \ Int Dy, in T'(R™, P) with sg = s such that s; € T'"(R"™, P),
e(s1)"Y(A7) is empty and that S(s1) N Dy, is not empty.

The corresponding assertion for the case n = 1 fails (see Remark 8.5). The
proofs of Propositions 4.6 and 4.7 will be given in Sections 6 and 7 respectively.
Here we shall give a proof of Theorem 4.1.

Proof of Theorem 4.1.  'We may assume that N\C is not empty. From each
connected compact component of N\ Int(U(C)), we take a point g;(1 < j < jo)
in its interior. We first deform s by a homotopy in I'(IV, P) so that each
connected compact component of N \ Int(U(C)) contains points of S(s) \ C
in its interior with ¢; being excluded. Then for the section s there exists a
homotopy Sy with a fold-map fy satisfying the properties (1), (2) and (3) of
Proposition 4.3. Therefore, it is enough for Theorem 4.1 to prove the special
case of Theorem 4.1 where (1) N = R", C = R" \ IntDs, and g = fy on
a neighbourhood of R™ \ IntDs,., (2) s is transverse to Z°(R", P) and (3)
S(s) NInt Dy, contains the origin. We shall prove this special case.

It follows from Lemma 4.5 and Proposition 4.7 for s that there exists
a homotopy s) relative to R"™ \ IntDs, in I'(R"™, P) with s{, = s such that
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sh € T'"(R™, P) and e(s})"*(A~) = (. By applying Proposition 4.6 to the
section s there exists a homotopy s¥ relative to R™\ IntDs, in I'(R", P) with
sg = s} such that there exists a fold-map g : (R™ \ IntDs,.) UU(S(s)) — P
with j2g = s/ on (R™ \ IntDs,.) UU(S(s)). Therefore, we obtain a homotopy
s relative to R™ \ Int Dy, in T'(N, P) defined by

Shy for 0<A<1/2,
S\ =
shy_y for 1/2<A<1.

It is clear that sy is well defined. We shall apply Theorem 4.2 for the section
77081 and g. Since J(N, P) is canonically identified with Hom(T'N, TP), we
may regard 72 o 51 as an S(s;)-monomorphism. By Theorem 4.2 we obtain
a homotopy B, relative to R™ \ IntDs,. of S(s1)-monomorphisms and a fold-
map f : R" — P with S(f) = S(s1) such that By = 7% 0 s; and By = df.
Then this homotopy is lifted to the homotopy h) relative to R™ \ IntDs, in
['(R™, P) such that hg = s; and hy = j2f. Indeed, there exists a small tubular
neighborhood U(S(s1)) of S(s1), which is identified with S(s1) x (—=1,1). Let
(¢,t) € S(s1) x (—1,1). Then there exists a continuous homotopy hy(c,t) in
I((R™\ IntDs,) UU(S(s1)), P) such that

(1) W% 0 h)\(C, t) = (B)\)(c,t)a

(2) (&, o) (0/01))(0/01) = 2e(T.(S(s1))"),

(3) dix(c,o) vanishes on T,(S(s1)).
As for other second derivatives of hy(c,t) we can choose them arbitrarily. We
note that S(s1) is oriented in (2) and the symbol L refers to the orthogonal
complement. Since any fibre of 72 : QI°(R", P) \ ©}(R", P) — JYR"™, P) \
Y1(R", P) is contractible, we can extend hy(c,t) to a required homotopy hy €
I'(R™, P). This is what we want. O

Now we give an application of Theorem 4.1.

Theorem 4.8.  Let N and P be oriented manifolds of dimension n. Let
f: N — P be a continuous map. Then if the tangent bundles TN and f*(TP)
are stably equivalent, then there exists a fold-map homotopic to f.

Proof. The assertion for n = 1 is trivial and so let n > 1. There exists an
orientation preserving bundle map b: TN ® 6y — TP @ 0p covering f. Hence
it follows that there exists a section s € I'(IN, P) such that igooi(N, P)"tos is
homotopic to b. Then by Theorem 4.1 there exists a fold-map g : N — P such
that j2g is homotopic to s (note that 7 (g) ~ b). This is what we want. O

This theorem should be compared with [E, 3.10. Theorem], from which the
assertion of Theorem 4.8 follows in many cases. The converse of the theorem
has been also proved in [E, 3.8 and 3.9].

5. Map w,, is surjective

In this section we shall prove that wy, : Qto1a,m(P) — [P, F™] is surjective
by using Theorem 4.1.
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Proof of Theorem 1. The assertion for n = 1 follows from Proposition
5.3 below. So let n > 1. Let 3 : P — F™ be a map representing an element
[3] € [P,F™]. Take an element {8y} € {P° S°} such that cpm({Bo}) = [B].
By the duality of D(vp) there exists an element ag € m,4+,(T(vp)) such that
D(vp)({as}) = {Bo}. Since ags is of degree m by Lemma 2.4, we have that
U(vp) ~ (ag)+([S"T*]) = m[P], where U(vp) refers to the Thom class of vp.
By the Thom transversality theorem we may assume that ag is transverse to
the zero-section P C T(vp) without loss of generality. Set N = (ag)~!(P).
Let § = ag|D(vy) and g = ag|N, where D(vy) is the normal disk bundle
to the inclusion N C S™**. Then g is of degree m. Indeed, let [D(vy)] be
the fundamental class of H,y,(D(vn),0D(vn);Z). Let iy : N — D(vy) and
ip : P — D(vp) be the inclusions to the zero sections respectively. Then we
have that

(U(vn) ~ [Dn)])
(4" (U(vp)) ~ [D(N)])
(vp) ~ G([D(vn)])
(vp) ~ (ag)«([S™*"])
((ip)«([P]))-

Then we have a bundle map b : vy — vp over g induced from §. By [An3,
Proposition 3.3] there exists a bundle map b’ : 7y — 7p, which is uniquely
determined up to homotopy so that tp o (' ©b) oty is homotopic to g x idgax.

Here we choose metrics of TN and TP. Recall SO, (TN @ 0%,TP @
0%) and GLY, (TN @ 0%, TP & 6}) defined in Section 3. The inclusion
GLZJrl — GL;_,C induces a fibre map iy11 nt# : GLZH(TN@@N,TP@HP) —
GL; (TN @ 6%, TP ® 6%). Since m;(SO(n + k), SO(n + 1)) = {0} for j <n
and since the canonical inclusion SO(¢) — GL*(¢) is a homotopy equivalence,
there exists an orientation preserving bundle map

V' :TN&fy - TP&6Op over ¢

such that i,41 4k (0") >~ 0. By the fibre homotopy equivalence i(N, P) we
obtain the homotopy class of a section s of I'(N, P) such that igooi(N, P)~!(s)
is homotopic to b”. Therefore it follows from Theorem 4.1 that there exists a
fold-map f : N — P of degree m such that j2f is homotopic to s in I'(N, P). By
the definition of 7 (f) for f, we have that 7 (f) ~ 0" and 45,11 n+%(7(f)) = 7(f).
This implies that 7(f) ~ b’ and so v(f) ~ b. By the definition of w,, in Section
i[% ]it follows that wy,(f) = cpm (D(vp)({T(b) o an})) = cpm(D(vp)({ag})) =
g]. O

We shall prove the following proposition.

Proposition 5.1.  An element a € [P, SG] lies in J([P, SO)) if and only
if there exists a fold-map f : P — P homotopic to idp such that w(f) = a.
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Proof.  Since m1(SO) = 71(SG), the assertion for n = 1 follows from
Proposition 5.3. Let n > 1. Given a fold-map f : P — P homotopic to
idp, we have a bundle map v(f) : vp — vp such that w(f) = (ip1 sg)« ©
cp1 (D(wp)({T(v(f)) cap})). It follows from Proposition 2.6 that w(f) lies in
J([P, SO]) (this has been proved in [An3, Proposition 4.5] in a slightly different
way).

Next we shall prove that a € J([P, SO]) has such a fold-map f with w(f) =
a. The proof is parallel to that of Theorem 1.

Let 6 : P — SO(k) be a map such that J([5]) = a. The orientation
preserving isomorphism hg : 9? — 9’1% as in Lemma 2.5 has an orientation pre-
serving isomorphism b : vp — vp such that id,, © hg ~ b D id@}g vp @D 95% —
vp @ 0%. By [An3, Proposition 3.3] there exists an orientation preserving iso-
morphism o : 7p — 7p, which is uniquely determined up to homotopy, such
that tpo (b ®b) o t;l is homotopic to the identity of §2°. Here consider the
inclusion in41n4k : GLE (TP ®0p, TP ®0p) — GL! (TP ® 0%, TP &0}),
which is a homotopy equivalence. Then there exists an orientation preserv-
ing isomorphism 0" : TP @ 0p — TP @ 0p over the identity of P such that
int1n+k(0") = /. We obtain the homotopy class of a section s of I'(P, P)
such that iso o i(P, P)~!(s) is homotopic to b” as above. Therefore, it fol-
lows from Theorem 4.1 that there exists a fold-map f : P — P (homotopic
to idp) such that j2f is homotopic to s in I'(P, P). Similarly, we obtain that
int1n+k(T(f)) =7(f) and 7(f) ~ b, and so v(f) ~b. Since

(ir1,56)« o cpr(D(vp)({T'(0) o ap}))
= (ir1,56)« 0 cp(D(vp)({ap}) o {T(hg)})
= (ip1,5¢)« 0 cpi({cpo 0 T'(hg)})

by Lemmas 2.4 and 2.5, we have that w(f) = J([#]) = a by the definition of
w. (|

We shall give some examples of fold-maps in the dimensions 1 and 2.

Example 5.2. Let f: N — P be a fold-map. f TN &6y and TPG0p
are trivial bundles with fixed trivializations, then the bundle map 7(f) : TN &
Oy — TP @ 0p induces a map M(f) : N — SO(n+1). Let R(z) € SO(2)
be the rotation such that R(z)e; = !(cosz,sinz). The assertions (1) and (2)
below follow from [An3, Example 3.4].

(1) Let S' be parametrized by = of eV~ (0 < z < 2r) inducing the
trivialization of T'S'. Then consider the fold-map f! : S' — R! defined by
fY(x) = cos2z. Then M(f*) is homotopic to the map R? : S* — SO(2) defined
by R?(x) = R(2x).

(2) Let S* x S! be parametrized by (,y) of (eV~1% eV=1¥) (0 < z,y <
2m) inducing the trivialization of T(S! x S1). Consider the fold-map f? :
St x 81 — R? defined by f%(z,y) = ((3 + cos2y) cos 2z, (3 + cos 2y) sin 2z).
Then M (f?) is homotopic to the map IT : S* x S1 — SO(3) defined by I1(z,y) =
(1) Ry)(R2w)+(1)).
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By identifying S%\ {a point} with R, f* induces the fold-map into S? of
degree 0 (i = 1,2). Let 8: S — SO(k) represent the generator of w1 (SO(k)).
Consider the fold-map f1™ : S' — S! of degree m obtained by the connected
sum flljm(sl) : S48t — St for m # 0, where the two connecting points in
S14S should be changed from regular points of f! and ms1y to the fold points
of flﬁm(sl). It follows that v(f1™) appearing in Proposition 3.3 is homotopic
to the bundle map b : 0%, — 0%, defined by b (z,v) = (mz, B(z)v) as in the
case of Example 5.2 (1).

Proposition 5.3.  Let f' : S — S and f*™ : S — S be the fold-
maps given above. Then wo(f') and wo(f?) are the generators of m (F°) =
Z/2Z and mo(F°) =2 Z/27Z respectively. Furthermore, wy, (f1'™) is the generator
of m (F™) 2 Z/2Z (m #0).

Proof. We first recall the generator of 73(.52), which induces the generator
of 7. We identify S% with 9(D? x D?) and S is parametrized by z as in
Example 5.2 (1). If i/ : St x S* — St is the map u(z,y) = = + y (modulo
27), then it induces the map p : S' x D> U D? x S — S? by the cone-wise
construction, which is the generator. Note that (u|S* x D?)(z,v) = R(x)v.

Consider the embedding egiy(—1,1) : St x (=1,1) — R? defined by
egix(—1,1)(z,t) = (1—t)e V=Iz If we identify T (S x (—1,1)) with R? under
the trivialization of T'S! in Example 5.2 (1), then d(zt) eslx(_l’l) is identified
with R(z). When we recall the trivialization tg: of 71 ®vg1, considered before
defining duality maps in Section 2, tgi o (7(f!) & v(f!)) o t5 must be homo-
topic to the identity of 9%’% Therefore, since M (f!) is homotopic to the map
xr— R(2x), v(f!) : vs1 — vg1 must be identified with b% (0%, — 0%,

The case n = 1. Consider the embedding e : S' — R!** with normal
bundle S x D*. Let b: S x D¥ — D be the bundle map defined by b(z,v) =
B(z)v, where 8 : S' — SO(k) represents a generator of m1(SO). Then it is
known from the observation above concerning the generator of 7§ that D({T'(b)
oagi}) € {S'F, S} is a generator of 5. Let b : (1,0) x D¥ — S x D* be
the bundle map 41,0y x idpr, where (1,0) is the point of ST and iy o) is the
inclusion. Then since v(f!) ~ bo b, we have that

wo(f1) = ero(D(vst) ({T(bob) 0 agi}))
= cpo(D(vgt)({T(b) 0 a1 }) o D(vs: ) ({T(B)})).

It follows from [Sp2, Theorem 6.1] that D(vg)({T(b)}) € {(S1), S} is repre-
sented by a base point preservmg map jgr : (S1)? — S with jsl\Sl idgr.
Indeed, (D(vg1)({T(b)}))s : Hy((S1)°) — Hy(S') is the identity of Z. This
implies the assertion for f!.

Next we deal with f1™ for m # 0. Let m(giy : (S1)° — (S')° be the
map mgny Uid,_,. Let b™ : 0% — 0%, be the map defined by bv™(z,v) =
(mx,v). We have that b3 = b™ o by. Since m1(SO) = Z/2Z, we have that
D(vg)({T(bp)}) = {T(by)}. Since T(b™) is homotopic to mgiyo A idgk,
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we have that D(vg:)({T(b™)}) € {(S)°, (S1)°} is represented by a map T :
S((SH?) — S((SH?) by [Sp2, Theorem 6.1] such that

(1) T*: HY(S((SY)°); Z) — H'(S((S1)°); Z) maps 1 to m,

(2) T*: H2(S((S1)%);Z2) — H?(S((S1)°); Z) maps 1 to 1.
Since S((S1)?) is homotopy equivalent to S?V S!, we may suppose that YT|S? =
idgz and that Y|S({z} U {x}) : S{z} U {*}) — S{z} U {x}) is of degree m.
Thus, D(vg:)({T(b™)}) € {(S1)°, (S1)°} is represented by the map S*~1(Y).
Hence, we have

wm(fl’m)

I
o

Fo(D(ogt) {T(w(f1™)) 0 agi}))

Fm (D(vs1)({T (0™ 0 bg) 0 ag1}))
crm(D(vs1)({as1}) o {T'(b5)} 0 D(vst)({T(6™)}))
crm ({eqsnyo} o {T(bYy) 0 SE71(1)}),

Il
o

Since
(S5 M (e(syo) 0 T(bf) 0 S*7H(1))|S* A S({a} Uxgr) = T(B(x)) 0 mswy,

we have that wo(f™) = (hp1_pm)«([3]), where T(8(x)) is the Thom map of
B(z) : R¥ — R* and f3 is considered as an element of [S*, F'!].

The case n = 2. Consider the embedding €’ : S x ST — R2?** with normal
bundle S* x S* x D*. Let B : S' x S' x D* — D* be the bundle map defined
by B(z,y,v) = R(z)R(y)v. Then it is known that both {T'(B) o agixs1} and
D(vgixs1)({T(B) o agrixst }) are the generator of 75 (see [To, Propositions 3.1
and 5.3]). Let a = (1,0,0), i, : a — S? be the inclusion and B : a x D¥ —
S? x D* be the bundle map i/, x idpr. Then we have by Example 5.2 (2) that

wo(f?) = cpo(D(vs1x51)({T(Bo B)} o {agixsi}))
= cpo(D(vg1xs1)({T(B) 0 agixsi }) 0 D(vgixst)({T(B)})).

It follows from [Sp2, Theorem 6.1] that D(vgixs1)({T(B)}) € {(52)°, 52} is
represented by a base point preserving map jg2 : (S?)° — S? with jg2|S? =
idg2. Tndeed, D(vgi 1) ({T(B)}) : Ha((S?)?) — Hy(S?) is the identity of Z.
This implies the assertion. o

Remark 5.4. Let f : N; — P(i = 1,2) be fold-maps of degree 0.
Then the disjoint union f; U fo : Ny U No — P is also a fold-map of degree
0. We define the sum [f1] + [f2] to be [f1 U fo]. By this additive structure
on Qyea,0(P) we can define the Grothendieck group for Qyqq,0(P), which is
denoted by K(fold,0)(P). Let S™ be the unit sphere in R"*! with coordi-
nates (x1,...,Tpt1). Let pgn : S™ — R™ be the projection (x1,... ,&n11) —
(z1,...,%,). Let egn : R™ — P be any local chart of P. Then [egn» o pgn] be-
comes the null element. Furthermore, the map wg induces the homomorphism
K(fold,0)(P) — [P, FY]. For example, if P = S, then it is not difficult to
prove that Qfoa.0(S?) = K(fold,0)(S') =[S, FO) = Z/2Z.
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Remark 5.5.  For the case P = R", it has been observed in [Sa, Section
5] by using [K-M] that the set of fold-cobordism classes of fold-maps into R™
forms a non-trivial group in many dimensions.

6. Proof of Proposition 4.6

In this section any homotopy hy in I'( X, P) refers to a homotopy h) relative
to X N(R"™ \ IntDs,) in I'(X, P), where X is a submanifold in R"™.

For a Riemannian manifold X without boundary, consider the exponential
map expy : TX — X defined by the Levi-Civita connection (see [K-N]). Let E
be a subbundle of TX. Let § be some sufficiently small positive smooth function
on X. In this paper Ds(F) always denotes the associated d-disk bundle of E
with radius 0 such that expy |Ds(E), is an embedding for any = € X.

Let L; (i = 1,2) be two oriented lines of R™. If e(L;) and e(Ls) are
independent, then they uniquely determine a curve r) (L1, La) in SO(n) defined
as follows. Let 6 be the angle of e(L;) and e(L2) less than w. Then we have
the great circle of S™~! through e(L;) and e(Ls), and the rotation 7y (L1, Lo)
is the identity on the space orthogonal to e(L;) and e(Ls) and rotates this
great circle to the direction of e(L1) to e(Ls) so as to carry e(L) to the point
with rotated angle Af, which is, in particular, equal to e(Ls) when A = 1.
Thus (L1, L2)(e(L1)) = e(L2). If L1 = Ly and e(Ly) = e(Ls), then we set
ra(L1, Ly) = E, for all A\, where E,, is the unit matrix of rank n.

Lemma 6.1.  Let s € T''"(R", P) be a section satisfying (H-i) and (H-ii)
of Proposition 4.6. For any positive number € such that O(p;;2¢e) (1 <j <m)
are all disjoint each other, we set S(s)o = S(s) \ (UJL,0(pj;e)). Then there
exists a homotopy sy relative to R™*\Int Da,. in T (R™, P) with so = s satisfying

(6.1.1) S(sx) = S(s) for any A,

(6.1.2) for any point ¢ € S(s1)o the angle of e(K(s1).) and e(v(s1)c) is
less than /2,

(6.1.3) for any point ¢ € S(s1)o N D,., we have e(K(s1)c) = e((s1)c)-

Proof. Let expga , @ TR™ — R" denote the exponential map defined
near x € R™. Since v(s) is a trivial bundle, its element is written as (c, ).
There exists a small positive number § such that the map

e: Ds(v(s))|s(s)np,, — R™

defined by e(c,t) = expgra .(c,t) is an embedding, where ¢ € S(s) N Dy, and
(c;t) € Ds(v(s)e) (note that e|S(s) = idg(s)). Since for ¢ ¢ e(s)™' (A7), we
have that e(K (s).) # —e(v(s).), we can consider the rotation (v ()¢, K(s).).
Let ¢ : [0,00) — R be a decreasing smooth function such that 0 < ¢(u) < 1,
o(u) =0ifu > 3r/2,and ¢(u) = 1ifu <r. Let ¥ : [0,00) — R be a decreasing
smooth function such that 0 < 9(t) <1, ¥(0) =1, and 9(t) =0if t > J. Let
£, be the parallel translation of R™ defined by ¢,(x) = = + a.

If we represent s(z) € Q°(R™, P) by a jet j20, for a germ o, : (R

n7x) —
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(P,o(x)), then we define the homotopy s4 of I'*"(R™ \ {p1,... ,pm}, P) by

sh(e(e,t)) = 2.0 (Te(e) © Letet) © To(lelpthr (P (8)es K(8)e) 0 —e(c,r))
if ¢ € S(s) N Dy, and |t| <6,

sh(z) = s(z) if o ¢ Im(e).

If either |t| > 4, or ||c|| > 3r/2, then we have

Si\(e(ca t)) = jf(c,t)(ffe(c,t) © fe(c,t) © é—s(qt))) = Jz(c,t)(ae(c,t)) = s(e(c,t)).

Hence, s) is well defined. Furthermore, we have that

(1) 7304 (2) = 7b 0 s(a),
(2)  5IS(s) = sIS(s) and S(s4) = S(s),

(3) if ¢ € S(s)o N D;, then we have that e(K(s}).) = r1(K(S)e, v(s)e)
(e(K(s).)) = e(v(s).) and

(4) SAIR™\ {p1,... ,pm} is transverse to X1O(N, P).
The property (6.1.2) is satisfied for s} inside of Da, by the construction and out-
side of D, by Remark 4.4. Applying the homotopy extension property to s and
sh[R™\ (UJL;0(pj; ) together with the property (4), we obtain the required
homotopy sy in I'*"(R", P) such that sy = s and s)|R"™ \ (UjL10(pjie)) =

shR™\ (UFL,0(pj;€))- O

Lemma 6.2.  Let s be a section of T'"(R™, P) satisfying the properties
(6.1.2) and (6.1.3) for s (in place of s1) of Lemma 6.1. Then there exists a
homotopy sy relative to R™ \ Int Dy, in T (R™, P) with sg = s such that

(6.2.1) S(sx) = S(s) for any A,

(6.2.2) 7% 051|S(s)g is an immersion into P such that d(7% o 51|S(s)o) :
TS(s)o — TP is equal to d*(s1)|TS(s)o.

Proof. Recall d'(s)|TS(s)o : TS(s)o — TP in Section 1. Since by the
assumption (6.1.2) for s the restriction d*(s)|T'S(s)o is injective. By the Hirsch
Immersion Theorem (see [H1]) we have a homotopy by : T'S(s)g — TP of
bundle monomorphisms over iy : S(s)g — P relative to S(s)o \ IntDs, such
that by = d!(s)|T'S(s)o and that i; is an immersion with d(i1) = b;.

We extend by to a homotopy m) : TR"|s(s), — TP so that m/\|K(s)g(s),
is the null-homomorphism and m/|T'S(s)o = bx. It is clear that m/ is of rank
n — 1. Hence, it induces a map m} : S(s)o — L!(R"™, P) denoted by the
same symbol m), where X! (R", P) refers to the submanifold in J!(R", P). By
applying the covering homotopy property of the fibre bundle 7%|X!1%(R", P) :
SIOR™, P) — SHR™, P) to s[S(s)o : S(s)o — LO(R™, P) and m)y, we ob-
tain a homotopy my : S(s)o — X1°(R™, P) such that mg = s/S(s)o and
7% omy = m). Since s is transverse to $!9(R", P), there are small tubu-
lar neighborhoods U(S(s)) of S(s) and U(Z°(R™, P)) of B%(R", P) with
projections ps : U(S(s)) — S(s) and py : U(Z°(R™, P)) — (R, P),
which induces structures of fibre bundles with fibre [, ] respectively so that
s|U(S(s)) : U(S(s)) — U(S(R™, P)) becomes a bundle map over s|S(s).

By applying the covering homotopy property of the bundle map s| pgl(S (
s)o) : pg'(S(s)o) — U(Z(R", P)) over s|S(s)g to slpg'(S(s)o) and my, we
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obtain a smooth homotopy of bundle maps %} : pg'(S(s)o) — U(Z°(R™, P))
over my with h{ = s|p§1(S (s)o)- By the homotopy extension property applied
to the bundle map s|U(S(s)) and the homotopy Ry, we can extend h) to the
smooth homotopy of bundle maps hy : U(S(s)) — U(ZP(R™, P)) with hy =
s|U(S(s)).

By applying finally the homotopy extension property to s and

ha = (U(S(5)),0U(S(s))) — (U(S"(R", P)),0U(S'°(R", P)))

we obtain the extended homotopy sy : R" — Q9(R", P) of s. By the con-
struction of sy, s; satisfies the required property. O

Here we give two lemmas necessary for the proof of Proposition 4.6. Their
proofs will be elementary and so are left to the reader.

Lemma 6.3.  Let S be a manifold of dimension n—1 with empty bound-
ary. Let f; : S x (—a,a) — P, a >0 (i =1,2) be fold-maps which fold only on
S x 0 such that

(i) f1]5x 0= f2 S %0,

(ii) dic,0)f1 = dc,0) f2 and d%c,o)fl = d%c’o)fg for any c € S and

(iil) K (5% fi)(c,0) are tangent to ¢ X (—a,a) and are oriented by the canonical
direction of (—a,a).
Let n : S — R be any smooth function. Then there exists a positive function
€ : 8 — R such that the map (1—n)f1+nf2, defined by ((1—n)f1+nf2)(c,t) =
(1 —=n(c) file, t) + n(e) fale,t) for t € (—e(c),e(c)), is a fold-map which folds
only on S x 0, that d.0)((1—n)f1 +nf2) = dc0)fi, and that d%w) (L—n)f1+
an) = d%cvo)fi'

Lemma 6.4. Let E — S be an oriented smooth line bundle with metric
over an (n—1)-dimensional manifold, where S is identified with the zero-section,
and let (2, X) be a pair of a smooth manifold and its submanifold of codimension
1. Lete : S — R be a positive smooth function and D¢ (E) be the associated disk
bundle of E with radius €. Let h; : D.(E) — (Q,%) (i = 0,1) be smooth maps
such that S = hy ' (X) = hi1(X), holS = h1|S and that h; are transverse to X.
Assume that for any ¢ € S, the monomorphisms T.E/T.S — Ty, )/ Th, ()2
induced from d.(h;) send a unit vector to vectors with the same direction on
Thi()¥ Th, ()2 Then for a sufficiently small positive function € : S — R,
there exists a homotopy hy : (D:(E),S) — (Q,%) such that

(1) halS = holS, hy(2) = hg () for any A,

(2)  hy is smooth and is transverse to ¥ for any A.

For a vector bundle F over ¥ and a map ¢ : S — X, the induced bundle
map *(F) — F over ¢ is denoted by (i) in the proof below.

Proof of Proposition 4.6. By Lemmas 6.1 and 6.2 we may assume that s
satisfies the properties (6.1.2), (6.1.3) and (6.2.2) with s; being replaced by s.
Since s is smooth near S(s) and is an embedding near S(s), we can choose a Rie-
mannian metric on Q°(R™, P) so that the induced metric by s near S(s) coin-
cides with the metric on R™ near S(s). Take any Riemannian metric on P. Set
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eXpg = exPgio(rn, py for simplicity. We set E(S(s)o) = expgrn (Ds(K(8)s(s),))s
where § : ¥19(R", P) — R is a sufficiently small positive function such that
0 5|S(s)o N Dy, is constant. Furthermore, if we identify Q(s)|g(s), with the
orthogonal normal line bundle to the immersion 7% o s|S(s)y : S(s)g — P,
then expp |D~(Q(s)|s(s),) is an immersion for some positive function . In
the proof we represent points E(S(s)o) and expp(D,(Q(s)|s(s),)) as (c,t) and
(c,u), where ¢ € S(s)o, |t] < d(s(c)) and |u| < y(c) respectively. In the proof
we say that a smooth homotopy

ha + (E(S(s)o), 0E(S(s)o)) — (2°(R", P),2°(R", P))

has the property (C) if it satisfies that for any A

(C-1) AN (ZP®R™, P)) = S(s)o and hy|S(s)o = ho|S(s)e and

(C-2) h, is smooth and transverse to X°(R™, P).

For a point ¢ € S(s)o, the intrinsic derivative d2(s) : K(s). — Hom(K(s).,
Q(s).) defines the positive function b : S(s)o — R by the equation

(d2(s)(e(K (5)c)))(e(K ()c)) = 2b(c)(e(Q(s)c))-

If we choose ¢ sufficiently small compared with -, then we can define the fold-
map go : E(S(s)g) — P by

go(e,t) = (e, b(e)t*)(= expp(c, b(e)t?)).

Let ro be a small positive real number with rq < r/10. Now we need to modify
go by using Lemma 6.3 so that go is compatible with fo. Let : S(s)p — R be
a smooth function such that
() 0<n(c) <1,
(ii) n(c) =0 for x € R" \ Int Dy,
(iii) n(c) =1 for € Dayp_op,.
Then consider the map G : (R™\ IntDa,_,,) U E(S(s)g) — P defined by

{G(:ﬁ) = fo(x) if z€R"\IntDar_p,,
G(e,t) = (1 = n(c) fole, t) +mlc)gole,t) if  (c,t) € E(S(s)o).

It follows from Lemma 6.3 that G is a fold-map defined on a neighborhood of
(R™\Int D5, )JUE(S(s)g), where § is replaced by a smaller one if necessary so that
G|E(S(s)o) folds only on S(s)g, and that d'.(G) = d'(go) for any ¢ € S(s)oNDa,
(1 = 1,2). Furthermore, we note that if ||c|| > 2r — rq, then G(c,t) = fo(c,t).

Next we shall construct a homotopy hy relative to E(S(s)) N Int(Da, \
Day—yy) in T (E(S(s)) N IntDsy,., P) satisfying the property (C) restricted to
E(S(s)o) N IntDy, such that hg = s and hy = j2G on E(S(s)) N IntDay,..

By applying Lemma 6.4 to the section s, we first obtain a homotopy
hy € T*(E(S(s))o, P) with h{y = s and h} = expg, ods o expgs on F(S(s)g)
satisfying the properties (1) and (2) of Lemma 6.4. Since ds|(K(s)|s(s),) :
K(S)|S(S)0 — TQlO(Rn,P) and (S|S(S)0)K : K(S)ls(s)o —- K C TQlO(Rn,P)
are homotopic by a homotopy of monomorphisms transverse to TS10(R”, P),
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we can construct a homotopy hY in I'*"(E(S(s)o), P) satisfying the property
(C) such that h{j = h} and hY = expg o (s/S(s)o)k © expgn on E(S(s)o). By
pasting k) and hY we obtain a homotopy h} € T'""(E(S(s)o), P) satisfying the
property (C) with h} = s and hi = expg, o (s[S(s)o)Kk © expgr on E(S(s)o)-

Now recall the additive structure of J2(R™, P) defined by using the fixed
Riemannian metric on P in [An2, Section 1]. Then we have the homotopy
Jx 1 S(s)o — J2(R™, P) defined by

gale) = (1= N)s(c) + A\j2G(c) covering iy : S(s)g — P.
Since K(s). = K(j2G). and Q(s). = Q(j2G). by the construction of the
immersion ¢; and the fold-map G, it follows that for any ¢ € S(s)o we have
K(jx)e = K(s)c and Q(jxr)e = Q(s).. Hence, we have that
de(jx) = (1 = Ndi(s) + ML (5°G) = di(s) = d(5°G).
This implies that jy is a map of S(s)g into X19(R", P). Therefore, the ho-

motopy of bundle maps (jx)k : K(s)|s(s), — (K C)TQ(R", P) induces the
homotopy h3 satisfying the property (C) defined by

h3 = expg 0 (jx )k © exprx [E(S(s)o0)
such that h2 = h} = expg o (s/S(s)o)k oexpgpr and h} = expg, o (2G| S(s)o)K ©
exprn L on E(S(s)o).

By applying Lemma 6.4 to j2G|E(S(s)g) similarly as in the case of s|
E(S(s)o), we have a homotopy h3 satisfying the property (C) such that hj =
h? = expg o (j2G|S(8)0)k © expgy and h} = j2G on E(S(s)o).

Let hy be a homotopy in T''"(E(S(s)o) N IntDy,., P) satisfying the property
(C) defined by

hi,\|E(S(s)o) NIntDs, for 0<A<1/3,
hy = { h2,_|E(S(s)o) NIntDa, for 1/3 <A <2/3,
h3, _,|E(S(s)o) NIntDy, for 2/3<A<1.

By modifying hy on E(S(s)o) N (D2, \ IntDyy_2,,) via Lemma 6.4, we can
construct a homotopy H) in I'"((R" \ IntDs,.) U E(S(s)o), P) satisfying the
property (C) such that

(1) Hx(x) = s(x) for z € R" \ Int Dy,

(2) Hi(e,t) = ha(c,t) for (e, t) € E(S(s)o) NInt Dy,

(3) Holx) = s(x),

(4) H(x) = Gla)
By applying the homotopy extension property to s and Hy, we obtain a homo-
topy

syt (R™,S(s)) — (AOR", P),Z°(R", P))

such that
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(i) sp =s,
(i) sa(x) = Ha(z) for z € (R™ \ Int Do, ) U E(S(8)0),
(iif) sy is transverse to $10(R™, P) with s} (S1°(R", P)) = S(s),
(iv) if (c,t) € E(S(s)o), then s1(c,t) = j2G(c, t).
Hence, s, is a required homotopy in I'""(R", P). d

7. Proof of Proposition 4.7

For a section s € I'*"(R™, P) given in Proposition 4.7, let S(s) N D, be
decomposed into the connected components My, ..., M,. In this section any
one of M;’s will be often denoted by M, which may have non-empty boundary.
Then by Remark 4.4 the image e(s)(0M) is contained in S"~1 x S"=1\ A~.
Hence we can define the homomorphism

(e(s)| M)y : Hy—1(M,0M;Z)
— H, (8"t x 8"t 8"t x ST\ AT Z) 2 Z.

Let [M] denote the fundamental class of M. The number (e(s)|M).([M])
is called the degree of e(s)|M and denoted by deg(e(s)|M). If for a point
pEe(s)TH(AT),

(e(s)|O(p;€))s : Hn—1(O(p;€),00(p; €); Z)
— H, (8"t x 8"t §n Tl x SN AT, Z) 2 Z

is of degree +1 (resp. —1), then we shall say that the degree of e(s) at p is
equal to +1 (resp. —1).

Proposition 7.1.  Let n > 1. Let s be the section of T'"(R™, P) given
in Proposition 4.7. If deg(e(s)|M;) =0 (j = 1,2,... ,w), then there exists a
homotopy sy relative to R™ \ IntD,. in T (R™, P) such that

(1)  S(sa) coincides with S(s) for any A and

(2) e(s1)"H(A7) is empty.

Proof. We first consider the case where P is orientable and here choose
the orientation of P compatible with 6™ (P), which appeared before Remark
4.4. For an element z = j2o € LR, P), let K(z). denote the subspace
(420)*(K,) of T.(R™), which is identified with a line of R". Then we define
the map & : L19(R", P) — S"~! by k(z) = e(K(2).), which becomes a smooth
fibre bundle. It is easy to see that the composition map x o s|S(s) : S(s) —
S=1 satisfies 1 o s(c) = e(K(s).).

Let p; or py be the projection of S~ x S™~! onto the first or second
component respectively. The restriction py : S*71 x S*71\ A= — S lisa
subbundle of ps. Then consider the induced bundle

(p2 oe(s)|M)*(S"_1 % Sn—l \A_) - Sn—l X Sn—l

| |7

M
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Here, we regard e(s)|M as a section of the bundle (pyoe(s)|M)* (S~ x Sn~1).
Then the unique obstruction for the section e(s)|M to be deformed relative to
R\ IntD, to a section of the bundle (pyoe(s)|M)*(S™~ 1 x S"~1\ A7) is equal
to deg(e(s)|M). Since deg(e(s)|M) = 0, there is a homotopy ey : M — S"~1 x
S=1 relative to R™ \ IntD,. with eg = e(s)|M such that ps o ey|M = psoe(s)|
M for any X and (e;)"'(A~) = 0. Then p; o e;(c) is not equal to —e(v(s).)
for any c € M.

By the covering homotopy property of the fibre bundle x : ¥!1°(R", P) —
S7~1 applied to s|S(s) and p; o ey, we obtain a smooth homotopy &y : S(s) —
LI9(R™, P) relative to S(s) \ IntD,. such that ko = s|S(s) and ko ky = pjoey.

Next consider the case where P is non-orientable and connected. In this
case we need the double covering Tp : P — P associated to the first Stiefel-
Whitney class W1(P). If we choose an orientation of P, then we have the
map % : SO(R", P) — ™! defined similarly as x. Recall that we have fixed
the orientation of §"(P) = (7% o s)*(TP) in Section 4, which induces a lift

s|/§/(s) . S(s) — BO(R™, P) of s|S(s). Indeed, a jet j20 defines the jet j2 &
with map germ & : (R",¢) — (P,&(c)) such that the orientation of §™(P) is
compatible with that of (P,5(c)). Hence, we have the following commutative
diagram, where ?; is induced from Yp.

SOR", Py 2 P

ol

SR, P) —— P

TP

Therefore, by an analogous argument as above, we have a smooth homotopy

E'A 1 S(s) — Zwi_f\{j’/,f’) relative to S(s) \ IntD,. covering pjoey : S(s) — S"~!
such that 756 = s|S(s)and K o %’A = p1 o ex. Thus we obtain a smooth homotopy
ky : S(s) — ZO(R™, P) defined by k) = ?;o’l::’)\ such that kg = s/S(s), that
k o kx = pi1 o ey, and that p;o e1(c) is not equal to —e(v(s).) for any ¢ € S(s).

Since s is transverse to S19(R", P), there exists a bundle map s|U(S(s)) :
U(S(s)) — U(X9(R™, P)) introduced in the proof of Lemma 6.2. By applying
the homotopy extension property of this bundle map to s|U(S(s)) and ky, we
have a smooth homotopy of bundle maps

sh 1 U(S(s)) » U(S(R", P))

relative to U(S(s)) \ IntD, covering k) with s = s|U(S(s)). By the homo-
topy extension property, we extend s) to a homotopy s, relative to R™ \
IntD, in T*"(R", P) by considering s|(R™ \ IntU(S(s))) and s4|0U(S(s)) into
QYR", P) \ IntU (X°(R™, P)) such that sy(R™ \ IntU(S(s))) is contained in
QPR P) \ IntU(S°(R™, P)). By the construction, it follows that s; is the
required section. O

By Proposition 7.1 it is enough for Proposition 4.7 to show that the given
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section s is homotopic relative to R™ \ IntDs,. to a section s; in T (R", P)
such that deg(e(s1)|M;) is equal to 0 for each j.

We begin by defining several spaces in R". Let 85_1 denote the (i — 1)-

sphere of radius 2 in R? x 0,,_;, which consists of all points a = (a1, ... ,a;,0,

.,0) with ||a|]| = 2. Let D% denote the upper hemi-sphere of R* x0,,_;_1 xR,
which consists of all points a = (ay, ... ,a;,0,...,0,a,) with ||a| = 2 and a,, >
0. Let U(S4™") denote the tubular neighborhood of S5~ in R"~! x 0, which
consists of all points (z1,...,2,-1,0) such that z; = (1 +t/2)a; (1 < j <14)
with @ € S5 and ||(zig1,... ,%n_1,t)|| < 1. Let H(Dj) denote the i-handle,
which consists of all points (z1,...,2,) such that z; = (1 +¢/2)a; (1 <j <1
or j =n) with a € D}, x, > 0 and |(zi41,-.. ,Tn-1,t)|| < 1.

For the cases where n > 3 and 1 < i < n—1, we consider the union R?~! x
0UOH(D}) \ IntU(Si™1). Let H denote the submanifold of codimension 1 in
R™ obtained from this union by rounding the corners by a slight deformation.
We should note that H is connected (see Fig. 1).

For the case n = 3 and i = 2, let D%/ denote the upper hemi-sphere of
0 x R?, which consists of all points b = (0, by, b3) with ||b|| = 2 and b3 > 0. Let
89" denote the boundary of DL, Let U(SY') denote the tubular neighborhood
of 89" in R? x 0, which consists of all points (1, z2,0) with 23 + (25 —2)2 < 1
or 22 4 (x2 +2)2 < 1. Let H(DY') denote the 1-handle, which consists of all
points (21, x2, x3) such that z; = (1 +t/2)b; (j = 2,3) with b € DY 25> 0
and 22 + 12 < 1. Then consider the union R? x 0 U d(H(D}) U H(DY)) \
Int(U(S9) UU(SY")). Let H' denote the submanifold of R? obtained from this
union by rounding the corners by a slight modification. We should note that
H’ is connected (see Fig. 2).

We shall explain an outline of the proof of Proposition 4.7 for n > 3
and 1 < ¢ < n— 1. We start with the fold-map ¢ : R™ — R"™ defined by
o(x1,. . Ty 1,%y) = (T1,... ,Tp_1,22). Then S(o) coincides with R™ ' x0,
which we orient by (1, ... ,Z,_1). The usual surgery of R"~! x0 by the embed-
ded sphere S;~' and the handle H(Dj) induces a new connected and oriented
manifold H?, that is, R"~! x 0 U 0H(D}) \ IntU (S5~ ") with rounded corners.
This procedure of the surgery is realized by a homotopy oy in I'(R™, R™) with
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= 420 such that
(1) S(og) =R" ! and S(oy) = HY,
(2) e(o1) (A7) consists of a single point (0, ..., 0,1),

(3) degle(on)|S(on)) = (~1)".

Next for the given section s in Proposition 4.7 we take disjoint embeddings
er: (R™, R x0) = (R"\ (UJL,0(pj;€)), S(s)) such that mp o s 0 eo(R") is
contained in a local chart of P (1 S ¢ < |deg(e(s)|M)|). Then we can deform
s on each e;(R™) by using o so that the degrees become 0. The proof of the
case n = 3 and ¢ = 2 is similar, though the case n = 2 is very exceptional.

Let © : R — R be a smooth map such that 0 is a regular value and
p(x) = 2, outside of D}. We can orient =1 (0) by using gradu. Then we can
consider the map e(u) : (u=1(0), u=(0) \ D}) — (S™"~ !, e,) defined by

)

e(u)(c) = (gradu)(c)/||(gradp)(c)|l, c € u~(0).

We define the degree of e() by e(u). ([~ (0)]) = dege(u)[S™ '], where [~ (0)]
is the fundamental class of H"~(u=1(0), p=1(0) \ D}; Z).

Lemma 7.2. Letn > 3. Fori=1,...,n— 1, there exist functions
ph i R™ — R, X € R, which are smooth with respect to the variables x1, ... ,x,
and X such that

(1) pi(@) = 200 iF A< —1/2 0r (@1, o) > 4,

(2) ph(a) = pi(x) if A > 1/2, |

(3) if |\ = 1/2, then 0 is a regular value of i,

(4) ifn>3andl1 <i<n-—1 (resp. n =3 and i =2), then the oriented
manifold (ut)~1(0) coincides with the connected and oriented manifold H® (resp.
H") and

(5) i has a unique point (0,...,0,1) such that e(u%)(0,...,0,1) = —e,
and the degree of e(u}) is equal to (—1)* (resp. 1).

Proof. In R"™! with coordinates (z1,...,7,,)), consider the subspace
‘H, which is the union

R x 0 x (—00,0] U H(D}) x 0
U{R" ! x 0UOH (D) \ IntU (S5~ 1)} x [0, 00).

We shall round the corner of H by a slight modification, which is denoted
by the same letter H, so that H N (R™ x A) = H? x X\, for A\ > 1/2. Let vy
denote the orthogonal normal bundle of H. Then H has the Riemannian metric
and vy has the metric, which are induced from the metric on R®*!. Then we
have the embedding expga+1 |D:(vy) @ De(v3y) — R™ for a small positive
number &, which preserves the metrics. Since vy is trivial, we can choose a
trivialization t(vy) : vy — H X R preserving the metrics of the vector bundles.
Let po : H x R — R be the projection onto the second component. Then we
set

' =2pyot(vy)o expﬁ}wrl | exprn+1(De(vr)).
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This map satisfies that p/(z1,... ,2n, A) = 22, f A < =1/20r ||(z1,... ,2n)| =
4, and |z,| < e. Furthermore, if A > 1/2, then we have D.(vy|nixy) =
D:(vyi) x A and HN (R™ x \) = H® x X\. Hence, p/| expga+1(De(vyi X N)) is
regular on H? x \ with regular value 0 for A\ > 1/2.

Now we can extend g/ to the map p : R"*1 — R so that p(xq, ... ,2,,\) =
2z, for any A < —1/2 or ||(x1,... ,2,)|| > 4 and that p=(0) = (/) ~1(0). Set
pux(x) = p(z, A). Then uy is the required map. The assertions (1) to (4) have
already been proved. Since z; = (1+t/2)a; for 1 < j < i and j = n, the length
of the vector

(1, yxpn) — (a1,...a4,0,...,0,a,)
= (ta1/2,... ,ta;/2, i1, ... ,Tp_1,tan/2)

is equal to /x4 ---+22_; +t2  Hence, pi(z1,...,2,) is equal to
2(/x2,; + -+ a%_; +t* — 1) on a neighborhood of H* with z,, > 0 except
for the rounded corners. Furthermore, we have t = \/x% + - + 27 + 12 — 2.
Hence,

Opa (21, ... ,x,)/0x; is equal to

2t : i <j<iorj=
VEZ el 2 /224 ta?ta? for l<j<iorj=n,
225 i +1<j<n-—
\/$?+1+"'+$i_1+t2’ for i+ 1 SJsn 1.
If the gradient vector of y; on a point (z1,...,x,) € py'(0) is equal to
(0,...,0,—1) up to length, then we have that (zi,...,z,) = (0,...,0,1).
We should note here that (—z1, z9,... ,2,—1) can be oriented local coordinates
of both spaces ;~1(0) and S"~! near the point (0,...,0,1), since the normal
vectors at the point (0,...,0,1) are directed to —e,,.
Therefore, we calculate the gradient vector of 17 on those points of ¢t = —1

and obtain that the degree of e(u1) is equal to (—1)¢. This proves the assertion
except for the case n =3 and i = 2.

If n = 3 and 4 = 2, then H? is not connected. This is the reason why we
need to consider H’ defined before. Here we define the subspace H’ of R* to
be the union

R? x 0 x (—00,0] U (H(D3) U H(D})) x 0
U{R? x 0UA(H(D3) U H(D)) \ Int(U(So) UU(S}))} x [0, 00).

We can round the corner of H' by a slight modification to be a smooth sub-
manifold, which is denoted by the same symbol, so that H' NR3 x A = H' x A
for A > 1/2. The rest of the proof in this case is quite analogous to the proof
given above. Therefore it is left to the reader. 1

Proposition 7.3. Let n > 3. Consider the fold-map o : R* — R"
defined by o(x1,... ,Tn_1,Zn) = (T1,-.. ,Tn_1,22). Then there exists a ho-
motopy oy relative to R™\ IntDg, in T'(R™, R™) such that
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(1) oo = j%0,

(2) oy is a smooth section transverse to L0(R™, R™) and S(oy) is con-
nected,

(3) e(o1)"Y(A7) consists of a single point such that deg(e(o1)|S(a1)) is
equal to any one of 1 and —1.

Proof. Recall the identifications

Tan X Tha X T : QYR R") — R™ x R" x Q%(n, n),

J*(n,n) = Hom(R",R™) @ Hom(S*R"™, R")

in Section 1. Then
n—1

. —N—
j20 = (z,0(x), By 1+ (22,),(0,...,0,A(0,... ,0,2)),

where 0 denotes the zero n x n-matrix and A(0,...,0,2) denotes the diagonal
n x n-matrix with diagonal components (0, ... ,0,2). Let ui(x) be the function
considered in Lemma 7.2. Then we define the required homotopy o) with
oo = j*o by

ox(x) = (z,0(x), E,_1 + (uh(2)),(0,...,0,A(0,...,0,2)).

It is clear that S(o1) = py*(0). On any point ¢ € S(o1), the 2-jet mg 0 oy (c) is
represented by the germ o : (R",0) — (R",0). Hence, Q,, () and K, () are
generated and oriented by e,,. Therefore, Hom(Ko, (¢), Qo () = R and by the
definition of the intrinsic derivative we have that d.(u¢) is identified with d¢271 (©°
deoy : T.R™ — Hom(Ky, (¢), Qoy () = R. This shows that e(o)) HA7) =
e(pi)~1(—e,), which consists of a single point (0,...,0,1) by Lemma 7.2 (5).
Furthermore, we have that the degrees of e(o1) and e(u!) are equal to (—1)°.
This proves the proposition.

O

Proof of the case n > 3 of Proposition 4.7. We give a proof for the
case n > 3. Let M be any one of M;’s. For the given section s, we take
distinct points ¢, € M and disjoint embeddings e, : R" — R™ \ (UL,0(pj;€))
with e;(0) = ¢ such that mp o s 0 e,(R™) is contained in a local chart of
P, which can be identified with R™ in the proof (1 < ¢ < |deg(e(s)|M)]).
By Proposition 4.6 (2) we may suppose that s o e, coincides with j?c, where
(1, Tn1,2Tn) = (T1,... ,Tn_1,72). For each e,(R"), we can construct
the homotopy o(e)x € I'(eo(R™), P) defined by o(e¢)r(x) = axr(e; ' (z)). By
Proposition 7.3 we can take o) so that

deg(e(s)|M)

deg(e(o(ep)1)) = — .
el [dea(e(s) M)

By using o(e¢)s for each M;, we have a homotopy s} in I'(R", P) defined

by shles(R™) = o(es)s on each e,(R™) and s} [(R™\ U‘Zd:ig(e(s)lM)‘eg(R”)) =
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s|(R™\ Ulgd:elg(e(s)‘M)leg(R")) outside of all e;,(R") for all M;’s. Then it is easy
to see from the additive property of the degree that the degree of e(s}) on
each connected component M; is equal to 0. By Proposition 7.1 we obtain the
required homotopy sy. O

Next we shall prove the case n = 2 of Proposition 4.7. This case is very
exceptional and the arguments above for n > 3 are not available. We need to
use the properties of the embedding iy : SO(3) — Q19(2,2) in Theorem 3.1
described in Remark 7.4 and Proposition 7.7 below.

Remark 7.4. We interpret the following properties concerning the em-
bedding i : SO(3) — Q'9(2,2). Let X9(2,2) and % (2,2) be the subsets of
%9(2,2) consisting of all regular jets preserving and reversing the orientation
respectively. According to [An2], there exists a deformation retraction R :
01°(2,2) — Q'(2,2) such that Ry = idgio(2 2), the image of Ry coincides with
the image of iy and that Ry preserves X9 (2,2), ¥° (2,2) and £'°(2,2).

Let m : SO(3) — SO(3)/SO(2) x (1) = S? be the fibre bundle defined
by mapping M + Mesz. Let Dy, D_ and S! x 0 be the subsets consisting
of all points ‘(x1,z2,23) € S? with 23 > 0, 3 < 0 and x3 = 0 respectively.
Let ¢ : ¥19(2,2) — S! x 0 be defined by ¢(j2f) = e(Im(dof)*). Then the
embedding i has the properties ([An2, Proposition 3.4 and Section 4]):

1) i;1(2%(2,2)) = 7 '(IntDy), i3'(2%(2,2)) = 7 '(IntD_) and
iy 1(210(2,2)) = 7~ 1(S! x 0),

(ii) o is smooth near 7=1(S! x 0) and is transverse to ¥1°(2,2),

(iii) we have that qois = m on 7~1(S? x 0) and,

(iv) there exists a trivialization ¢t : 7=1(S* x 0) — S! x SO(2) such that
if t(M) = (z,U) and i2(M) = j2f, then we have that 'Ue(Im(dof)t) =
e(Ker(dof)) and z = e(Im(do f)*).

We should note that 7=1(D_) and 7=1(D, ) are pasted by the transformation
T : 7 Y0D_) — 77 1(0D,) defined by T((cosf,sind),U) = ((cosf,sin@),
R(—20)U) by [Ste, 23.4 Theorem and 27.2 Theorem], where

cos260  sin 260
R(-20) = (— sin20 cos 29> ’

In the following we use the maps GL*(2) — S! sending U — Uey/||Ues||
in dealing with degrees.

Lemma 7.5. Let D? be the disk centred at the origin with radius 1 in
R? and let v : D?> — D? be the map defined by r(x1,22) = (—x1,72). Let
h: D* — R? be the fold-map defined by h(xy1,xs) = 6(_93%_1%)(—1'1,272). Then
we have that

(1) h folds only on the circle Sll/\/§ with radius 1/v/2,
(2) h preserves the orientation outside of Sll/\/5 and reverses the orien-
tation inside of Sil/\/i and

(3) if we canonically identify T,R? with R2, then the maps T*(dh) :
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0D? — GL*(2) defined by T*(dh)(x) = d.h and T~ (dh)(z) = d,(hor) are of
degree —2 and 2 respectively.

Proof. We have that
2
_ (—a3-z}) —14+227 2z172
d(w1’12)h € ' : ( —2.’[,'1(1,'2 1 - 21‘% ’

whose determinant is equal to e~2(@i+22)(2(22 + 22) — 1). Therefore, h folds
only on Sll/\/5 and T (dh)(cos 0, sin 0) is equal to the matrix e~ R(—26). Hence,

the degree of T+ (dh) is equal to —2. The assertion for T~ (dh) is similar. [

For a positive real number A, let C(A) be the subspace of R? consisting
of all points y = (y1,y2) with |y;| < A (i = 1,2). Let J = [-A, A] and J be
a sufficiently small positive real number with § < A/4. Let « =1 or —1. We
need the fold-map o : C(A) — R? defined by o(y1,y2) = (y1,%5). Suppose
that w € I'""(C(A), R?) satisfies the properties:

(i) S(w) = Jx0, (maow) H(X9.(2,2)) = Jx (0, A] and (rqow) 1 (X2 (2,2))
=J x[-A4,0).

(i) w|(7 x [~26,28]\ C(A/2)) = 20](] x [~26,20]\ C(4/2)).

(iii) The degree of e(w)|S(w) is ¢ and (e(w)]S(w)) 1 (A™) consists of a single
point (0,0).

(iv) Let py : 7= 1(0D_ x 0) — SO(2) be the projection through the triviali-
zation t. The degree of py 0iy "o Ry omgow|J x 0:.J x 0 — SO(2) is equal to
d.

By (ii), (iii), K(w)(—a,0) and K(w)a,0) are generated and oriented by e.
Since the point (0,0) lies in (e(w)[S(w)) (A7), v(w)(o,0) and K (w)(,0) are
generated and oriented by e; and —es respectively. We can consider the degree
of mq ow|J x {£6} : (J x {£6},0J x {£6}) — (£L(2,2), ma(w(£A, +6))) by
noting m(29.(2,2)) = m (GL*(2)) = Z.

Lemma 7.6.  Let w be the section given above. Then the degree mq o
wlJ x {=6} : J x {=8} — 8°(2,2) ~ GL™(2) is equal to d and the degree of
moow| x§:Jxd— X9 (2,2) ~ GLT(2) is equal to —d — 2u.

Proof. By Remark 7.4 (iv), the degree of (¢ o mq o w)|S(w) is equal to
d + t. The degree of the map S' — S! sending (cos,sinf) to R(—26)es is
equal to —2. By the properties of i and [Ste, 23.4 Theorem] stated in Remark
7.4, it follows that deg(mq ow|J x §) =d+ (=2)(d+ ) = —d — 2¢. O

Proposition 7.7.  Let w* be the section w given above for d = 1 —
(¢ =1 or —1). Then there exists a homotopy w§ relative to C(A)\ C(A/2)
in T'(C(A),R?) such that wy = w*, Wi € T (C(A),R?) and that S(w}) is the
disjoint union of J x0 and a circle L in IntC(A/2) with (e(w})]J x0)"1H (A7) =
0 and (e(w!)|L)"H(AT) = 0.

Proof. Let Ct (resp. C'™) be the subspace consisting of all points (y1, y2)
with |y1| < A/2 and § < ya < 26 (resp. —26 < yo < —4§). We first construct a
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map v} : C(A) — Q1°(2,2) as in (i) through (iv) below. Since m3(2!0(2,2)) =
m2(S0(3)) = {0} by Theorem 3.1, we have a homotopy v§ : C(A) — Q'9(2,2)
relative to C'(A) \ C(A/2) with v§ = mq o w*. Then we obtain a required
homotopy w§ by w) = (T2 0 w", TRs 0 W", v4).
(i) v (y1,92) = mq o w'(y1,y2) outside of [—A/2, A/2] x [—26, 24].
(i) vi(y1,y2) = mq 0 520 (y1, y2) for (y1,y2) € J x [—6,4].
(iii) Let ¢ = 1. Since the degrees of g ow!|J x {—6} and g 020 |J x {—§}
in GL™(2) are equal to 0, we can find an extension v{|C~ : C~ — %% (2,2).
The degree of the map 0CT — ¥9 (2,2) is equal to 2, which is the sum of
—deg(mgow!|(ACT\[-A/2,A/2] x6))(= 2) and deg(mq 0 j20|[—A/2, A/2] x §)
(= 0). Hence, if we identify C* with D3, then we can paste the map mg o w!|
OC* and the map 7q 0 j2hor defined on D? in C* by a homotopy D3\ D? —
¥9(2,2). The circle L becomes 511/\/5' Thus we obtain a map vi|CT : CT —

Q19(2,2). Since dr reverses the orientation of T'D?, we should note that K (j2h
or) = (dr)"'(K(j%h)), which is different from r*(K(j2h)). Hence, we have
that v(j2hor) = K(j2hor), and so (e(wi)|L)" (A7) = 0.
(iv) Let ¢t = —1. Since the degrees of mg o w™!|J x § and mq o j%0|J x § in
GL*(2) are equal to 0, we can find an extension v; '|C* : C* — £9(2,2).
The degree of the map dC~ — X° (2,2) is the sum of the degree of g o
wH(OC~\[-A/2,A/2] x {—6})(= 2) and the degree of 70520 |[—A/2, A/2] x
{=6}(=0). Hence, if we identify C~ with D3, then we can paste the map
7o ow ™ HAC™ and the map g o j%(hor) defined on D? in C~ by a homotopy
D3\ D? — %9 (2,2). Thus we obtain a map v;*|C~ : C~ — Q19(2,2). O

Proof of the case n = 2 of Proposition 4.7. By Remark 7.4, ¥!0(2,2) is
homotopy equivalent to 7=1(S! x 0) = S x SO(2). Let p be any one of the
points p;’s. Since the normal bundle of S(s) is trivial as is explained in Section
4, we can take local coordinates y = (y1,y2) under which we consider C(A)
such that y(p) = (0,0) and that S(s) N C(A) is on the line yo = 0. If ¢ is
sufficiently small in Proposition 4.6, then we may deform s so that O(p;e) is
contained in C'(A/2) and that s coincides with j2c on J x [—26,26] \ O(p;e).
That is, K(s)—a,0) and K(s)(a,0) are generated and oriented by ez. Since
(e(s)|J x 0)~'(A™) consists of a single point (0,0), v(s)(,0) and K(s)(,0) are
generated and oriented by ey and —es respectively. Recall the fibre bundle
K 210(2,2) — St sending j3f to e(K(j2f)) in the proof of Proposition 7.1,
which is a trivial bundle by Remark 7.4 (iv). Since A is sufficiently small and
J is an interval, we can deform s so that the degree of po oi;l oRjomgos|J x0
is equal to 1 — ¢ without changing k o mq o s|J x 0. This implies that the de-
gree of mg o s|J x {0} : (J x {—0},0J x {=d}) — (£°(2,2), ma(s(£A, —6)))
is equal to 1 — . Now we again apply Proposition 4.6 to this deformed sec-
tion s. Thus we may assume that s satisfies the assumption of Proposition
7.7. Consequently, we obtain a homotopy s)|C(A) € I'(C(A), R?) such that
51|C(A) € T (C(A), R?) and that S(s1|C(A)) is the union of J x 0 and a circle
L contained in IntC(A/2) and that (e(s1)|J x 0)~}(A~) and (e(s1)|L) (A7)
are empty.

For any point p;j, we consider the homotopy (sx|C(4)); € T'(C(A),R?),
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which is the homotopy sx|C(A) defined above for p. Now we are ready to
construct a homotopy hy of s. We set hy = s outside of the union of all
C(A);’s for any A € [0,1] and hy = s5|C(A); on any one of C(A);’s. By
construction, h) satisfies the required properties. O

8. Fold-degree and Gauss maps

Let € be an oriented vector bundle of dimension n + 1 with metric over a
space X and S™(§) be its associated n-sphere bundle over X. The fibre S™(¢,)
over x of X is canonically identified with the space of all oriented n-subspaces
of £,. For an oriented n-space a of &, we shall write the corresponding point of
S™(&;) by [a]. Let N be connected, closed and oriented, and P be oriented in
this section. Let f : N — P be a fold-map. We shall construct two continuous
sections of S™(f*(TP @ 0p)) over N as follows. For any point x of N, the
space Ty P gives a point of S™(Ts(,) P ®R) and so we define the first section

so(f) by
so(f)(@) = (z, [Ty P]).

Next the homomorphism 7 (f) : TN @ 05 — TP @ 0p given in Theorem 3.2
defines the second section s1(7(f)) by

s1(T(f)(x) = (2, Im(T (f)|T=N)))-

By applying the obstruction theory of fibre bundles for these two sections,
it follows from [Ste, 37.5 Classification Theorem] that the difference cocycle
d(so(f),s1(7(f))) defines an element of H™ (N, m,(S™)) = Z. We shall call this
number the fold-degree of f, which is denoted by D (f).

We have another interpretation of the fold-degree in the case where P is
R™ or S™. In this case the associated homomorphism 7 (f) of a fold-map f
determines a monomorphism 7 (f)|T'N into T'(P x R). Here if P is S™, then
P x R is canonically embedded in R"*! as the tubular neighborhood of the
unit sphere. By applying the Hirsch Immersion Theorem ([H1]) to 7 (f)|T'N
we obtain an immersion of N into P x R and its Gauss map N — S, which
is denoted by G(f). If P is R™ (resp. S™), then the degree of G(f) is nothing
but DM (f) (resp. D*M(f) +deg(f)). In fact, if P = S™, then let co(f) be the
map defined by co(f)(z) = (z,[R™ x 0]). The degree of G(f) is equal to the
difference cocycle d{co(f), s1(T(f))) = d(co(f); so(f)) +d(s0(f), 51(T(f))) and
d(co(f),s0(f)) is equal to the degree of f. It is known that if n is even, then
the degree of G(f) is equal to (1/2)x (V) (see, for example, [L2, Theorem 2]).

We shall show that the fold-degree is nontrivial in odd dimensions. Let
p: SO(n+ 1) — S™ be the map sending a rotation T' of SO(n + 1) onto its
first column vector. The following lemma is well known ([Ste, 8.6 Theorem and
23.5 Corollary]).

Lemma 8.1.  The image of (p«)n : mn(SO(n+1)) — 7, (S™) = Z is the
whole integers Z if n = 1,3 or 7 and is 27 if n is odd other than 1,3 and 7.
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Proposition 8.2. Let N and P be the manifolds as above of odd di-
mension n other than 1 and f : N — P be a fold-map. Then we have the
following.

(1) Ifn is not 1,3 or 7, then any integer of DPY(f) + 2Z can be a
fold-degree of a fold-map homotopic to f.

(2) Ifnis3 orT, then any integer of Z can be a fold-degree of a fold-map
homotopic to f.

Proof. Let m be any integer (resp. even integer) for the case (2) (resp.
(1)). There exists a section s of S™(f*(T'P @ 0p)) such that the difference
cocycle d(s1(7(f)),s) = m by [Ste, 37.5]. By the assumption there is a map
m' : N — SO(n+ 1) with degree of p o m’ being m by Lemma 8.1. We here
have a bundle map b,, : TN & 0y — TN & 6y coming from m’. For the
bundle homomorphism 7 (f) : TN ® 05 — TP @ 0p, consider the composition
T(f)oby : TN ®0n — TP & 0p such that s1(7(f) o by,) is homotopic to s.
By Theorem 4.1 there is a fold-map ¢ such that 7 (g) is homotopic to 7 (f)ob,,
and that D!d(g) = DM(f) + m by

D (g) = d(so(g), 51(T (9)))
=d(so(f), s1(T(f))) + d(s1(T(f)),s)
_ Dfold(f) +m. |

Corollary 8.3.  Suppose N = P in addition to the hypothesis of Propo-
sition 8.2. Consider the identity of P. Then we have the following.

(1) Ifnis not 1,3 or 7, then any even integer can be a fold-degree of a
fold-map homotopic to the identity of P.

(2) Ifn is3 or 7, then any integer can be a fold-degree of a fold-map
homotopic to the identity of P.

Proof. By Proposition 8.2 it is enough to prove that the fold-degree of
idp is equal to 0. This follows from the fact that 7 (idp) is homotopic to the
identity of TP @ 0p, which is a consequence of the property that i,,(E,+1) is
equal to jio with o(z1,... ,2,) = (1/n)(z1,... ,x,) (see [An3, Section 2]). O

Example 8.4. A 2-jet z = j2f € Q19(1,1) is represented by the co-
ordinates (f'(0), f”(0)) € R?\ {(0,0)}. Recall the embedding i; : SO(2) —
Q19(1,1), which sends R(#) to (cos®, —sinf) € Q19(1,1) by [An3, Section 2.
We here consider fold-maps f of S* into S* or R. The map 7 (f) is identified
with the following map Ro 6 : S — SO(2). First mq(j2f) € Q1°(1,1) has
the coordinates (f'(x), f""(x)). Define the angle 0(x) by (cosf(z), —sinf(z)) =
(f' (@), f"(x))/II(f'(z), f’(2))|l- Then it follows from the definition of i1 : SO(2)
— Q19(1,1) in [An2, Section 5] and [An3, Section 2] that Ro 8 : ST — SO(2)
is homotopic to i1 7! o Ry o mq 0 j2f : S — SO(2) with

cosf(x) —sinf(x)

Rof(x) = <sin9(x) cos 6(x) ) :

(1) If f: S' — Ris defined by f(x) = cosx, then 0(x) = m/2+z. Hence,
we have that DM(f) = 1.
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(2) Let f:S'— St be a fold-map of degree 1. Let a; be the generator
of HY(FY;Z/2Z) = Z/2Z. We can prove that D™(f) or #5(f)/2 modulo
2, where f denotes the number of fold singularities, is equal to wi(f)*(a1) €
H'(SY;Z/2Z) in Corollary 5. More generally, consider a fold-map f : N — P of
degree 1. The element wy (f)*(a1) is identified with the element of Hom(H (P;
Z/2Z),7/2Z). Any element u € Hy(P;Z/2Z) has an embedding i, : S' —
P with (iy)«([S']) = u such that i, is transverse to f(S(f)) and does not
intersect with the subset in f(S(f)) consisting of double points of f|S(f). Let
S, = i, (S') and Sy be the manifold f~1(S,), which may not be connected.
Then i ' o f|Sy : Sy — S' is a fold-map of degree 1. Then we have that
wi(f)*(a1)(u) is equal to #S(iy* o f|Sn)/2 modulo 2.

We shall give an outline of the proof. Recall the notations in Section 3
and the definition of w exactly before Lemma 3.5. Let vg, cp be the normal
bundle of S, in P. We identify D(vg,cp) with a tubular neighborhood of
S, in P. Similarly we have the normal bundle vg, -y and a tubular neigh-
borhood D(vgycn) of Sy in N with natural bundle maps vs,cn — Vs, cp
and D(vsycn) — D(vs,cp) induced from f. We can construct the collapsing
maps ay : T(vn) — T(vnlsy ® Vvsyen) and ap:T'(vp) — T(vpls, ® vs,cp)
by collapsing T'(vN|N\ntD(vs cn)) 20d T(VP|P\IntD(vs, - »)) Tespectively. Let
h : vp — vp be an automorphism such that T'(h).([ap]) = T (f))«([an])
and that h ® idgy ~ idy,, @ hg. Then we have that hlg, @ idyg, ., © z‘dggu o~
idys, @ hpoi, and that

(ap)« o T(h).([ap]) = T(hls, ®idys, )« o (ap)«([ar])

(
T(h|Su @ idusucp)*( as, )a
T(V(f)‘SN D Zdl/sl\,cN)* © (aN)*([aN])
T(V(f)‘SN D idVSNCN)*([aSN])'

(ap)« o T(v(f))«([an])

Since w(f) = [8] by the definition of w, we have that
(i) o w(f) = iy ([8]) = [Boiu] = w(iy' o f|Sn) € [S", G,

where ¥ : [P, SG] — [S', SG]. Furthermore, w(i;! o f|Snx)*(a1)([S!]) is iden-
tified with #S(i; ! o f|Sx)/2 modulo 2.

Remark 8.5.  Since the C*-equivalence classes of fold-germs in Q19(1, 1)
are x — =22, it follows that the fold-degree of f must be positive. This posi-
tiveness is essentially suggested to the author by Professor O. Saeki.
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