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A note on moduli of vector bundles on rational
surfaces

By

Kōta Yoshioka

1. Introduction

Let (X,H) be a pair of a smooth rational surface X and an ample di-
visor H on X. Assume that (KX , H) < 0. Let MH(r, c1, χ) be the mod-
uli space of semi-stable sheaves E such that rk(E) = r, c1(E) = c1 and
χ(E) = χ. The relationship between moduli spaces of different invariants
is an interesting subject to be studied. If (c1, H) = 0 and χ ≤ 0, then
Maruyama [Ma2], [Ma3] studied such relations and constructed a contraction
map φ : MH(r, c1, χ)→MH(r−χ, c1, 0). Moreover he showed that the image is
the Uhlenbeck compactification of the moduli space of µ-stable vector bundles.
In particular, he gave an algebraic structure on the Uhlenbeck compactification
which was topologically constructed before. After Maruyama’s result, Li [Li]
constructed the birational contraction for general cases, by using a canonical
determinant line bundle, and gave an algebraic structure on the Uhlenbeck
compactification. Although Maruyama’s method works only for special cases,
his construction is interesting of its own. Let us briefly recall his construction.
Let E be a semi-stable sheaf such that rk(E) = r, c1(E) = c1 and χ(E) = χ.
Then Hi(X,E) = 0 for i = 0, 2. We consider the universal extension

(1.1) 0→ E → F → H1(X,E)⊗OX → 0.

Maruyama showed that F is a semi-stable sheaf such that rk(F ) = r − χ,
c1(F ) = c1 and χ(F ) = 0. Then we have a map

(1.2) φ : MH(r, c1, χ)→MH(r − χ, c1, 0).

He showed that φ is an immersion on the open subscheme consisting of µ-
stable vector bundles and the image of φ is the Uhlenbeck compactification.
For the proof, the rigidity of OX is essential. In this note, we replace OX by
other rigid and stable vector bundles E0 and show that similar results hold,
if the E0-twisted degree degE0

(E) := (c1(E∨
0 ⊗ E), H) = 0. If H is a general

polarization, then we also show that imφ is normal (Theorem 4.5).
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140 Kōta Yoshioka

We are also motivated by our study of sheaves on K3 surfaces. For K3
and abelian surfaces, an integral functor called the Fourier-Mukai functor gives
an equivalence of the derived categories of coherent sheaves, and under suitable
conditions, we get a birational correspondence of moduli spaces (cf. [Y3], [Y5],
[Y6]). For rational surfaces, we can rarely expect such an equivalence (cf.
[Br]). For example, an analogue of Mukai’s reflection [Mu1] (which is given
by (1.1)) may lose some information. Indeed we get our contraction map φ :
MH(r, c1, χ)→MH(r − χ, c1, 0).

In Section 5, we also consider the relation between different moduli spaces
in the case where degE0

E = 1. Then we find some relations on (the virtual)
Hodge numbers (or Betti numbers) of moduli spaces. If X = P2, by using
known results on Hodge numbers ([E-S], [Y1]), we calculate Hodge numbers of
some low dimensional moduli spaces. We also determine the boundary of the
ample cones in some cases.

2. Preliminaries

2.1. Twisted stability
Let X be a smooth projective surface defined over an algebraically closed

field k. For a point P ∈ X, kP denotes the skyscraper sheaf on X defined by
the structure sheaf of P . Let K(X) be the Grothendieck group of X. For
x ∈ K(X), we set

(2.1) γ(x) := (rkx, c1(x), χ(x)) ∈ Z⊕NS(X)⊕ Z.

Then γ : K(X) → Z ⊕ NS(X) ⊕ Z is a surjective homomorphism and ker γ is
generated by OX(D) − OX and kP − kQ, where D ∈ Pic0(X) and P,Q ∈ X.
For γ = (r, c1, χ) ∈ Z⊕ NS(X)⊕ Z, we set rk γ = r, c1(γ) = c1 and χ(γ) = χ.
For coherent sheaves E,F on X, we set

(2.2) χ(E,F ) :=
2∑

i=0

(−1)i dim Exti(E,F ).

It induces a bilinear form on K(X):

(2.3) K(X)×K(X) → Z

(x, y) �→ χ(x, y).

Lemma 2.1. For x, y ∈ K(X), we have

χ(x, y) = − rk(x) rk(y)χ(OX)− (c1(x), c1(y))
+ rk(y)(KX , c1(x)) + rk(x)χ(y) + rk(y)χ(y).

(2.4)

In particular, χ(x, y) = χ(y, x) + (KX , c1(y∨ ⊗ x)), where y∨ is the dual of y
in K(X) (that is, y∨ :=

∑2
i=0(−1)iExtiOX

(y,OX)).
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Proof. Let ch2(x) ∈ A2(X)⊗Q ([F]) be the second Chern character of x.
By the Riemann-Roch theorem, we get

(2.5) χ(x) = rk(x)χ(OX)− (KX , c1(x))/2 +
∫

X

ch2(x).

Hence
∫

X
ch2(x) = χ(x)−rk(x)χ(OX)+(KX , c1(x))/2. Applying the Riemann-

Roch theorem to χ(x, y), we get (2.4).

By (2.4), χ( , ) also induces a bilinear form on Z⊕NS(X)⊕ Z. We also
denote it by χ( , ): χ(γ(x), γ(y)) = χ(x, y).

Definition 2.1. LetMH(γ)µ-ss (resp. MH(γ)µ-s) be the moduli stack
of µ-semi-stable sheaves (resp. µ-stable sheaves) E such that γ(E) = γ ∈
Z⊕NS(X)⊕ Z.

Let Q(γ) := Quotγ
OX (−l)⊕N /X/k

be the quot-scheme parametrizing all quo-
tients OX(−l)⊕N → E with γ(E) = γ. Assume that N = χ(E(l)). Let
QH(γ)µ-ss be the open subscheme of Q(γ) whose points consist of quotients
OX(−l)⊕N → E such that

(1) E is a µ-semi-stable sheaf with respect to H,
(2) H0(X,O⊕N

X ) → H0(X,E(l)) is an isomorphism and Hi(X,E(l)) = 0
for i > 0.
The general linear group GL(N) acts naturally on QH(γ)µ-ss. For a sufficiently
large l,MH(γ)µ-ss is described as a quotient stack:

(2.6) MH(γ)µ-ss = [QH(γ)µ-ss/GL(N)].

For G ∈ K(X) ⊗ Q with rkG > 0, we define the G-twisted rank, degree,
and Euler characteristic of x ∈ K(X)⊗Q by

rkG(x) := rk(G∨ ⊗ x),
degG(x) := (c1(G∨ ⊗ x), H),
χG(x) := χ(G∨ ⊗ x).

(2.7)

For t ∈ Q>0, we get

(2.8)
degG(x)
rkG(x)

=
degtG(x)
rktG(x)

,
χG(x)
rkG(x)

=
χtG(x)
rktG(x)

.

We shall define the G-twisted stability as follows.

Definition 2.2 ([Y6]). Let E be a torsion free sheaf on X. E is G-
twisted semi-stable (resp. stable) with respect to H, if

(2.9)
χG(F (nH))

rkG(F )
≤ χG(E(nH))

rkG(E)
, n� 0

for 0 � F � E (resp. the inequality is strict).



�

�

�

�

�

�

�

�
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By the Riemann-Roch theorem, we see that

χG(E(nH))
rkG(E)

− χG(F (nH))
rkG(F )

= n

(
deg(E)
rk(E)

− deg(F )
rk(F )

)
+
(
χ(E)
rk(E)

− χ(F )
rk(F )

)
+
(
c1(E)
rk(E)

− c1(F )
rk(F )

,
c1(G)
rkG

)
.

(2.10)

Hence the twisted stability depends only on α := c1(G)/ rkG ∈ NS(X) ⊗ Q

and it is nothing but the twisted stability due to Matsuki-Wentworth [M-W].
By (2.10), the following relations hold:
(2.11)

µ-stable⇒ G-twisted stable⇒ G-twisted semi-stable⇒ µ-semi-stable.

As the usual stability, we have the notion of the Harder-Narasimhan filtration
and the Jordan-Hölder filtration. For a G-twisted semi-stable sheaf E, let

(2.12) F : 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E

be the Jordan-Hölder filtration of E with respect to the G-twisted stability.
We define the Jordan-Hölder grading by

(2.13) gr(E) :=
s⊕

i=1

Fi/Fi−1.

As the usual stability, gr(E) does not depend on the choice of F. The S-
equivalence ∼ is the equivalence relation such that E ∼ E′ if and only if
gr(E) ∼= gr(E′).

Definition 2.3. For γ ∈ Z ⊕ NS(X) ⊕ Z, let MG
H(γ)ss be the moduli

stack of G-twisted semi-stable sheaves E with γ(E) = γ andMG
H(γ)s the open

substack consisting of G-twisted stable sheaves. For the usual stability, i.e.,
G = OX , we denoteMOX

H (γ)ss by MH(γ)ss.

Let QG
H(γ)ss be the open subscheme of QH(γ)µ-ss in (2.6) such that the

quotient sheaf E is G-twisted semi-stable. Then

(2.14) MG
H(γ)ss = [QG

H(γ)ss/GL(N)].

Theorem 2.2 ([M-W]).
(1) There is a coarse moduli scheme M

G

H(γ) of S-equivalence classes of
G-twisted semi-stable sheaves E with γ(E) = γ.

(2) M
G

H(γ) is a projective scheme over k.

For a µ-semi-stable sheaf E, let

(2.15) F : 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fs = E
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be the Jordan-Hölder filtration of E with respect to the µ-stability. We set
Ei := Fi/Fi−1. We define a Jordan-Hölder grading with respect to the µ-
stability by:

(2.16) grµ
F(E) :=

s⊕
i=1

Ei.

Unfortunately grµ
F(E) depends on the choice of the filtration F. In order to get

an invariant of E itself, we set

(2.17) σF(E) :=
s⊕

i=1

E∨∨
i ⊕

s⊕
i=1

gr(E∨∨
i /Ei),

where E∨∨
i := HomOX

(HomOX
(Ei,OX),OX) is the double dual of Ei and

gr(E∨∨
i /Ei) is the Jordan-Hölder grading of the semi-stable sheaf E∨∨

i /Ei.

Remark 1. Every 0-dimensional coherent sheaf E is semi-stable in the
sense of Simpson [S] and every 0-dimensional stable sheaf is the skyscraper
sheaf kx, x ∈ X.

Lemma 2.3. σF(E) does not depend on the choice of F. Hence we may
denote σF(E) by σ(E).

Proof. We shall prove our claim by induction on rkE. We may assume
that E is properly µ-semi-stable. It is easy to see that

(2.18) σF(E) = σeF(E∨∨)⊕ gr(E∨∨/E),

where F̃ is the Jordan-Hölder filtration of E∨∨ induced by the filtration F.
Hence we may assume that E is locally free. Let

(2.19) Fi : 0 ⊂ F i
1 ⊂ F i

2 ⊂ · · · ⊂ F i
si

= E, i = 1, 2

be two Jordan-Hölder filtrations of E. By the induction hypothesis, we may
assume that F 1

1 �= F 2
1 . Since F 1

1 and F 2
1 are µ-stable, we see that F 1

1 + F 2
1 =

F 1
1 ⊕ F 2

1 . We take the Jordan-Hölder filtrations of E

(2.20) Fi : 0 ⊂ F i
1 ⊂ F i

2 ⊂ · · · ⊂ F i
t = E, i = 3, 4

such that

F 3
1 = F 1

1 , F
4
1 = F 2

1 ,

F 3
2 = F 4

2 = F 1
1 + F 2

1 ,

F 3
j = F 4

j , j ≥ 3.

(2.21)

Obviously σF3(E) = σF4(E). Let F
i
, 1 ≤ i ≤ 4 be the induced filtration of Fi

on E/F i
1. By the induction hypothesis, we get

σ
F

1(E/F 1
1 ) = σ

F
3(E/F 1

1 ),

σ
F

2(E/F 2
1 ) = σ

F
4(E/F 2

1 ).
(2.22)
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Hence we see that

σF1(E) = F 1
1 ⊕ σF

1(E/F 1
1 )

= F 1
1 ⊕ σF

3(E/F 1
1 )

= σF3(E)
= σF4(E) = σF2(E).

(2.23)

3. Construction of the contraction map

From now on, we assume that (X,H) is a pair of a rational surface X
defined over k and an ample divisor H on X. Then γ : K(X)→ Z ⊕NS(X)⊕Z

is an isomorphism. Throughout this note, we assume that

(3.1) (KX , H) < 0.

By this assumption and the Serre duality, we get the following lemma.

Lemma 3.1. Let E and F be torsion free sheaves such that degE/ rkE
= degF/ rkF . Assume that E and F are µ-semi-stable with respect to H. Then
Ext2(E,F ) = 0.

Definition 3.1. A coherent sheaf E on a rational surface X is excep-
tional, if

(3.2)


Hom(E,E) = k,

Ext1(E,E) = 0,
Ext2(E,E) = 0.

Example 3.1. OX is an exceptional sheaf. Let E be a stable torsion
free sheaf with respect to H. If E is rigid, that is, there is no infinitesimal
deformation, then by Lemma 3.1, we see that E is an exceptional vector bundle.
For more details on exceptional vector bundles, see [D1], [D-L].

Let E0 be an exceptional vector bundle which is stable with respect to H.
Let e0 ∈ K(X) be the class of E0 in K(X). We set γ0 := γ(E0) and ω := γ(kP ),
P ∈ X. We define homomorphisms Le0 , Re0 : K(X)→ K(X) by

Le0(x) := x− χ(x, e0)e0, x ∈ K(X),
Re0(x) := x− χ(e0, x)e0, x ∈ K(X).

(3.3)

It is easy to see the following equality.

Lemma 3.2. χ(x,Re0(y)) = χ(Le0(x), y) for all x, y ∈ K(X).

3.1. Existence of a µ-stable vector bundle
In this subsection, we shall give a sufficient condition forMH(rγ0−aω)µ-s

to be non-empty.
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Lemma 3.3. Assume that MH(rγ0 − aω)µ-ss �= ∅. Then MH(rγ0 −
aω)µ-ss is smooth and dimMH(rγ0 − aω)µ-ss = 2ra rkE0 − r2.

Proof. For E ∈MH(rγ0 − aω)µ-ss, Lemma 3.1 implies that

(3.4) Ext2(E,E) = 0.

Hence MH(rγ0 − aω)µ-ss is smooth and

dimMH(rγ0 − aω)µ-ss = dim Ext1(E,E)− dim Hom(E,E)

= −χ(E,E) = 2ra rkE0 − r2.
(3.5)

Lemma 3.4. IfME0
H (rγ0−aω)s �= ∅, then r = 1 and a = 0, or a rkE0−

r ≥ 0.

Proof. Let E be an element of ME0
H (rγ0 − aω)s. Since E is simple and

Ext2(E,E) = 0, we get

1 ≥ dim Hom(E,E)− dim Ext1(E,E)

= χ(E,E) = r2 − 2ra rkE0.
(3.6)

Hence a ≥ (1/(2 rkE0))(r − 1/r) ≥ 0. Assume that χ(E0, E) = r − a rkE0 >
0. Then there is a non-zero homomorphism E0 → E. Since c1(E)/ rkE =
c1(E0)/ rkE0, the E0-twisted stability of E implies that

(3.7)
1

rkE0
=
χ(E0, E0)

rkE0
≤ χ(E0, E)

r rkE0
=
r − a rkE0

r rkE0

and the inequality is strict, unless r = 1. Therefore a = 0 and r = 1.

Lemma 3.5. Let E be a µ-semi-stable sheaf of degE0
(E) = 0. Then the

canonical evaluation homomorphism ev : Hom(E0, E) ⊗k E0 → E is injective
and coker(ev) is µ-semi-stable.

Proof. We set G := ker(ev). Then G is locally free and degE0
(G) = 0.

Assume that G �= 0. Let G0 be a µ-stable locally free subsheaf of G such that
degE0

G0 = 0. Then we have a non-zero homomorphism φ : G0 → E0. Since
G0 is locally free and degE0

(G0) = 0 means deg(G0)/ rkG0 = deg(E0)/ rkE0,
φ must be an isomorphism. Hence Hom(E0, G0) �= 0. On the other hand, ev
induces an isomorphism

(3.8) Hom(E0,Hom(E0, E)⊗k E0)→ Hom(E0, E).

Hence Hom(E0, G) = 0, which is a contradiction. Therefore G = 0. We
next show that I := coker(ev) is µ-semi-stable. Assume that I has a torsion
submodule T . Then J := ker(E → I/T ) is a submodule of E containing
im(ev). By the µ-semi-stability of E, 0 ≥ degE0

(J) = degE0
(T ). Hence T is of

dimension 0. Since im(ev) is locally free, J = im(ev). Thus I is torsion free.
Then it is easy to see that coker(ev) is µ-semi-stable.
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Corollary 3.6. If MH(rγ0 − aω)µ-ss �= ∅, then a ≥ 0.

Proof. If a < 0, then dim Hom(E0, E) > r for all E ∈MH(rγ0−aω)µ-ss.
By Lemma 3.5, we get a contradiction.

Proposition 3.7. MH(rγ0− aω)µ-s �= ∅, if r− a rkE0 ≤ 0. Moreover,
there is a µ-stable locally free sheaf E with γ(E) = rγ0 − aω.

Proof. Let W be a closed substack ofMH(rγ0− aω)µ-ss such that E be-
longs toW if and only if there is a quotient E → G such that (c1(G)/ rkG,H) =
(c1(E0)/ rkE0, H) but c1(G)/ rkG �= c1(E0)/ rkE0. Let f : E⊕r

0 →⊕a
i=1 kxi

,
xi ∈ X be a surjective homomorphism. Then E := ker f is µ-semi-stable and
does not belong to W . Hence MH(rγ0 − aω)µ-ss \ W is a non-empty open
substack of MH(rγ0 − aω)µ-ss. For pairs of integers (r1, a1) and (r2, a2) such
that r1, r2 > 0, a1, a2 ≥ 0 and (r1 + r2, a1 + a2) = (r, a), let N(r1, a1; r2, a2)
be the substack of MH(rγ0 − aω)µ-ss consisting of E which fits in an exact
sequence:

(3.9) 0→ E1 → E → E2 → 0,

where E1 is a µ-stable sheaf with γ(E1) = r1γ0−a1ω and E2 is a µ-semi-stable
sheaf with γ(E2) = r2γ0 − a2ω. By Lemma 3.1, we get Ext2(E2, E1) = 0. By
[D-L, Section 1] or [Y4, Lemma 5.2], we see that

codimMH(rγ0−aω)µ-ss N(r1, a1; r2, a2) ≥ −χ(E1, E2)
= (a1r2 + a2r1) rkE0 − r1r2.

(3.10)

By Lemma 3.4, (a1 + a2) rkE0 − (r1 + r2) ≥ 0. Hence if a1 = 0 or a2 = 0,
then we get (a1r2 + a2r1) rkE0− r1r2 ≥ 0. If a1, a2 > 0, then by using Lemma
3.4 again, we see that (a1r2 + a2r1) rkE0 − r1r2 ≥ a2r1 rkE0 > 0. Therefore
N(r1, a1; r2, a2) is a proper substack of MH(rγ0 − aω)µ-ss \W , which implies
that MH(rγ0 − aω)µ-s �= ∅. By [Y1, Theorem 0.4], the locus of non-locally
free sheaves is of codimension r rkE0 − 1 > 0 (use (4.7) in Section 4.1). Hence
MH(rγ0 − aω)µ-s contains a locally free sheaf.

3.2. Universal extension and the contraction map
We define a coherent sheaf E on X ×X by the following exact sequence

(3.11) 0→ E → p∗1(E
∨
0 )⊗ p∗2(E0)

ev→ O∆ → 0.

Then E is p2-flat and Ex := E|{x}×X is an E0-twisted stable sheaf with γ(Ex) =
rk(E0)γ(E0) − ω. In particular χ(E0, Ex) = 0. Let E be a coherent sheaf on
X. By (3.11), we have an exact sequence:

(3.12)

0 −−−−→ p2∗(E ⊗ p∗1(E)) −−−−→ Hom(E0, E)⊗k E0
ev−−−−→ E

−−−−→ R1p2∗(E ⊗ p∗1(E)) −−−−→ Ext1(E0, E)⊗k E0 −−−−→ 0

−−−−→ R2p2∗(E ⊗ p∗1(E)) −−−−→ Ext2(E0, E)⊗k E0 −−−−→ 0.
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Lemma 3.8. For a µ-semi-stable sheaf E of degE0
(E) = 0, we have

(3.13) p2∗(E ⊗ p∗1(E)) = R2p2∗(E ⊗ p∗1(E)) = 0.

Proof. For E ∈ MH(γ)µ-ss, Lemma 3.5 implies that ev : Hom(E0, E)⊗k

E0 → E is injective. Hence p2∗(E ⊗ p∗1(E)) = 0. By Lemma 3.1, we get
Ext2(E0, E) = 0. Therefore R2p2∗(E ⊗ p∗1(E)) ∼= Ext2(E0, E)⊗k E0 = 0.

The following is our main theorem of this section.

Theorem 3.9. Let e ∈ K(X) be a class such that rk e > 0 and degE0
(e)

= 0. Then,
(1) we have a morphism φγ(e) : MH(γ(e))→M

E0

H (γ(ê)) sending E to the
S-equivalence class of R1p2∗(E ⊗ p∗1(E)), where ê := Re0(e).

(2) The restriction of φγ(e) to MH(γ(e))µ-s,loc is an immersion, where
MH(γ(e))µ-s,loc is the open subscheme consisting of µ-stable vector bundles.

(3) φγ(e)(E) = φγ(e)(E′) if and only if σ(E) = σ(E′).

In order to prove this theorem, we prepare some lemmas.

Lemma 3.10.

(3.14) Rp2∗(E ⊗ p∗1(E0)) = 0.

Proof. We note that degE0
(E0) = 0. Since ev is isomorphic and

(3.15) Ext1(E0, E0) = 0,

by using (3.12), we get that R1p2∗(E ⊗ p∗1(E0)) = 0. This and Lemma 3.8
imply our claim.

Lemma 3.11. For a µ-semi-stable sheaf E of degE0
(E) = 0, we have

(3.16) Hom(E0, R
1p2∗(E ⊗ p∗1(E))) = 0.

Proof. By the Leray spectral sequence and the projection formula, we get

(3.17) Hom(E0, R
1p2∗(E ⊗ p∗1(E))) = H1(X ×X, E ⊗ p∗1(E)⊗ p∗2(E∨

0 )).

Since Rp1∗(E ⊗ p∗2(E∨
0 )) = 0,

(3.18) Rp1∗(E ⊗ p∗1(E)⊗ p∗2(E∨
0 )) = Rp1∗(E ⊗ p∗2(E∨

0 ))
L⊗ E = 0,

which implies our claim.

For simplicity, we set Ê := R1p2∗(E ⊗ p∗1(E)).

Proposition 3.12. For a µ-semi-stable sheaf E of degE0
(E) = 0, Ê is

an E0-twisted semi-stable sheaf with χ(E0, Ê) = 0.
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Proof. By (3.12) and Lemma 3.5, Ê fits in an exact sequence

(3.19) 0→ Hom(E0, E)⊗k E0
ev→ E → Ê → Ext1(E0, E)⊗k E0 → 0.

By using Lemma 3.5 again, we see that Ê is µ-semi-stable. It is easy to see that
χ(E0, Ê) = 0. Assume that Ê is not semi-stable and let G be a destabilizing
subsheaf. Then degE0

(G) = 0 and χ(E0, G)/ rkG > 0. By Lemma 3.1, we get
Ext2(E0, G) = 0. Hence Hom(E0, G) �= 0, which contradicts Lemma 3.11.

Remark 2. If E is an E0-twisted semi-stable sheaf such that χ(E0, E)
≤ 0, then Ê fits in an exact sequence

(3.20) 0→ E → Ê → Ext1(E0, E)⊗k E0 → 0.

By Lemma 3.11, (3.20) is the universal extension.

Lemma 3.13. Let E be a µ-stable vector bundle of degE0
(E) = 0. Then

Ê is an E0-twisted stable vector bundle.

Proof. We may assume that E �= E0. Then Ê fits in the universal exten-
sion

(3.21) 0→ E → Ê → E⊕h
0 → 0,

where h = dim Ext1(E0, E). Hence Ê is locally free. Assume that Ê is not
E0-twisted stable. By Proposition 3.12, there is an E0-twisted stable subsheaf
G1 of Ê such that degE0

(G1) = χ(E0, G1) = 0 and G2 := Ê/G1 is an E0-
twisted semi-stable sheaf with degE0

(G2) = χ(E0, G2) = 0. If E is contained
in G1, then we get a homomorphism E⊕h

0 → G2. Since χ(E0, G2)/ rkG2 = 0 <
χ(E0, E

⊕h
0 )/h rkE0, we get a contradiction. Hence E is not contained in G1.

Since E is µ-stable, we get E ∩G1 = 0. Hence G1 → E⊕h
0 is injective. Let G′

be a µ-stable locally free subsheaf of G1. Then we see that G′ ∼= E0, which
implies that G1 is not E0-twisted stable. Therefore Ê is E0-twisted stable.

Proof of Theorem 3.9. Let {Fs}s∈S be a flat family of µ-semi-stable
sheaves of degE0

(Fs) = 0. Then Lemma 3.8 and Proposition 3.12 imply that
{F̂s}s∈S is also a flat family of E0-twisted semi-stable sheaves (cf. [Mu2, The-
orem 1.6]). Hence we get a morphism φγ(e) : MH(γ(e)) → MH(γ(ê)). Let E
be a µ-stable vector bundle of degE0

(E) = 0 and ϕ : E → T a quotient such
that T is of dimension 0. Then for F := kerϕ, we get an exact sequence

(3.22) 0→ p2∗(E ⊗ p∗1(T ))→ F̂ → Ê → 0.

Let

(3.23) 0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tn = T
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be a filtration such that Ti/Ti−1
∼= kxi

, xi ∈ X (i.e, the Jordan-Hölder filtration
with respect to Simpson’s stability). Then G := p2∗(E ⊗ p∗1(T )) has a filtration

(3.24) 0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn = G

such that Gi/Gi−1
∼= Exi

. Since Ê is an E0-twisted stable sheaf with

(3.25) degE0
(Ê) = χ(E0, Ê0) = 0,

F̂ is S-equivalent to Ê ⊕⊕n
i=1 Exi

.
For a µ-semi-stable sheaf E of degE0

(E) = 0, let grµ
F(E) =

⊕n
i=1Ei

be the Jordan-Hölder grading of E with respect to the µ-stability. We set
gr(E∨∨

i /Ei) =
⊕

j kxi,j
. Then σ(E) =

⊕n
i=1(E

∨∨
i ⊕ ⊕jkxi,j

) and gr(Ê) =⊕n
i=1(Ê

∨∨
i ⊕ ⊕jExi,j

). Since Ê∨∨
i are locally free, the set of pinch points of

gr(Ê) is {xi,j}i,j . By Proposition 3.14 and Remark 3 below, E∨∨
i is uniquely

determined by Ê∨∨
i . Hence σ(E) is determined by gr(Ê). Hence the claim

(3) holds. The second claim follows from Remark 3 (the proof is left to the
reader).

Proposition 3.14. Let F be an E0-twisted stable sheaf such that

(3.26) degE0
(F ) = χ(E0, F ) = 0.

Then
(1) F = Ex, x ∈ X, or
(2) F fits in an exact sequence

(3.27) 0→ E → F → E⊕n
0 → 0,

where E is a µ-stable locally free sheaf.

Proof. Assume that F is a µ-stable non-locally free sheaf. Since

(3.28) χ(E0, F
∨∨) = χ(E0, F

∨∨/F ) > 0

and Ext2(E0, F
∨∨) = 0, we see that F∨∨ ∼= E0. Since χ(E0, F ) = 0, we see

that rkE0 = 1 and F ∼= Ex, x ∈ X. If F is a µ-stable locally free sheaf, then F
satisfies (2) with n = 0. Assume that F is not µ-stable and there is an exact
sequence

(3.29) 0→ G1 → F → G2 → 0,

where G1 is a µ-stable sheaf of degE0
(G1) = 0 and G2 is a µ-semi-stable sheaf

of degE0
(G2) = 0. Then we get an exact sequence

(3.30) 0→ Ĝ1 → F̂ → Ĝ2 → 0.

Since F is E0-twisted stable and χ(E0, F ) = 0, we get Hom(E0, F ) = 0, and
hence we also get Ext1(E0, F ) = 0. By using (3.12) and Lemma 3.8, we see
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that F̂ = F . In particular F̂ is E0-twisted stable. By the stability of F , we get
χ(E0, G1) < 0. In particular we get Ext1(E0, G1) �= 0. Combining this with
(3.12), we get Ĝ1 �= 0. Therefore Ĝ1

∼= F̂ and Ĝ2 = 0. By using (3.12) and
Lemma 3.8 again, we see that Hom(E0, G2) ⊗k E0 → G2 is an isomorphism.
We note that Ĝ1 fits in an exact sequence

(3.31) 0→ p2∗(E ⊗ p∗1(G∨∨
1 /G1))→ Ĝ1 → Ĝ∨∨

1 → 0.

By the stability of F , (i) G∨∨
1 /G1 = 0, or (ii) G∨∨

1 /G1 = kx, x ∈ X and
Ĝ∨∨

1 = 0. Therefore G1 is locally free, or F = Ex.

Remark 3. If F fits in the exact sequence (3.27), then

(3.32) E = ker(F → Hom(F,E0)∨ ⊗k E0).

Thus E is uniquely determined by F .

Example 3.2. Assume that (X,H) = (P2,OP2(1)) and E0 = ΩX(1).
Then we have a contraction

(3.33) MH(2,−H,−n)→
∐

0≤k≤n

MH(2,−H,−k)µ-s,loc × Sn−kX

sending E to σ(E) = (E∨∨, gr(E∨∨/E)).

Remark 4. For a µ-semi-stable sheaf E of degE0
(E) = 0, H(E) :=

Ext1p1
(p∗2(E), E) is an E∨

0 -twisted semi-stable sheaf such that degE∨
0
(H(E)) = 0

and χ(E∨
0 ,H(E)) = 0. Indeed, it is easy to see that H(E) is a µ-semi-stable

sheaf such that degE∨
0
H(E) = 0 and χ(E∨

0 ,H(E)) = 0. Since

(3.34) Hom(E∨
0 ,H(E)) = Ext1(p∗2(E), E ⊗ p∗1(E0)) = 0,

H(E) is E∨
0 -twisted semi-stable. Hence we have a morphism

(3.35) ψγ(e) : M
E0

H (γ(e))→M
E∨

0
H (γ(ê∨)).

It is easy to see that ψγ(ê) is an isomorphism and we get a commutative diagram.

M
E0

H (γ(ê))

M
E0

H (γ(e))

M
E∨

0
H (γ(ê∨))

M
E∨

0
H (γ(e∨))

ψγ(ê)

φγ(e) ψγ(e) φγ(e∨)

�

�
���

�
���

�
���
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4. The image of the contraction

4.1. Brill-Noether locus
We set γ̂ := mγ0 − cω, where m = c rkE0. Assume that H is general

with respect to γ̂, that is, for every µ-semi-stable sheaf F with γ(F ) = γ̂ and
a subsheaf F ′ of F ,

(4.1)
deg(F ′)
rkF ′ =

deg(F )
rkF

if and only if
c1(F ′)
rk(F ′)

=
c1(F )
rkF

(cf. [M-W], [Y2], [Y4]). Hence we get ME0
H (γ̂)ss =MH(γ̂)ss (cf. (2.10)). We

define the Brill-Noether locus by

(4.2) MH(γ̂, n) := {F ∈MH(γ̂)µ-ss| dim Hom(F,E0) ≥ n}
and the open substack MH(γ̂, n)0 := MH(γ̂, n) \ MH(γ̂, n + 1). By using a
determinantal ideal, we see that MH(γ̂, n) has a substack structure. Indeed,
let QH(γ̂)µ-ss be the standard open covering of MH(γ̂)µ-ss in (2.6). We may
assume that

(4.3) Hi(X,E0(l)) = 0, i > 0.

Let OQH(bγ)µ-ss×X(−l)⊕N → Q be the universal quotient and K the universal
subsheaf. We set

V : = HompQH (bγ)µ-ss (OQH(bγ)µ-ss×X(−l)⊕N ,OQH(bγ)µ-ss ⊗k E0),

W : = HompQH (bγ)µ-ss (K,OQH(bγ)µ-ss ⊗k E0).
(4.4)

Since Ext2(Qq, E0) = Hom(E0,Qq(KX))∨ = 0, q ∈ QH(γ̂)µ-ss, (4.3) implies
that Exti(Kq, E0) = 0 for all i > 0 and q ∈ QH(γ̂)µ-ss. Hence V and W are
locally free sheaves on QH(γ̂)µ-ss and we have an exact sequence

(4.5) 0→ Hom(Qq, E0)→ Vq →Wq → Ext1(Qq, E0)→ 0, q ∈ QH(γ̂)µ-ss.

Therefore we shall define the stack structure onMH(γ̂, n) as the zero locus of
∧sV → ∧sW , where s = dimV − n+ 1 = dimW − n+ 1.

Let MH(γ̂, nγ0) be the moduli stack of isomorphism classes of F → E⊕n
0

such that F ∈ MH(γ̂)µ-ss and Hom(E⊕n
0 , E0) → Hom(F,E0) is injective.

We have a natural projection MH(γ̂, nγ0) → MH(γ̂, n). Let MH(γ̂, nγ0)0
be the open substack of MH(γ̂, nγ0) consisting of F with an isomorphism
Hom(E⊕n

0 , E0) → Hom(F,E0). By [ACGH, Chapter II Section 2, 3],
MH(γ̂, nγ0)0 is isomorphic toMH(γ̂, n)0.

We shall show that MH(γ̂, n) is Cohen-Macaulay and normal. By [F,
Theorem 14.3] (or [ACGH, Chapter II Proposition (4.1)]), ifMH(γ̂, n) has an
expected codimension, that is, codimMH(bγ)µ-ssMH(γ̂, n) = n2, thenMH(γ̂, n)
is Cohen-Macaulay. We shall estimate the dimension of the substackMH(γ̂;n,
p, a) ofMH(γ̂)µ-ss consisting of F ∈MH(γ̂)µ-ss such that dimF∨∨/F = p and
F∨∨ fits in an exact sequence

(4.6) 0→ E → F∨∨ → G→ 0,
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where E is a µ-semi-stable sheaf with γ(E) = rγ0 − bω, G∨∨ ∼= E⊕n
0 and

γ(G) = nγ0 − aω.

Lemma 4.1. codimMH(bγ)µ-ssMH(γ̂;n, p, a) ≥ n2+(r rkE0−1)(a+p).

Proof. For a locally free sheaf L, let Quotaω
L/X/k be the quot-scheme

parametrizing all quotients L → A with γ(A) = aω. Then [Y1, Theorem
0.4] implies that

(4.7) dim Quotaω
L/X/k = (rkL+ 1)a.

Let N be the substack of MH((r + n)γ0 − (a+ b)ω)µ-ss consisting of F which
fits in an exact sequence

(4.8) 0→ E → L→ G→ 0

where E is a µ-semi-stable sheaf with γ(E) = rγ0 − bω, G∨∨ ∼= E⊕n
0 and

γ(G) = nγ0 − aω. By [Y4, Lemma 5.2], we see that

dimN ≤ dimMH(rγ0 − bω)µ-ss + dim([Quotaω
E⊕n

0 /X/k
/Aut(E⊕n

0 )])− χ(G,E)

= (2rb rkE0 − r2) + ((n rkE0 + 1)a− n2) + ((ra+ nb) rkE0 − rn))

= (r + n)((a+ b) rkE0 − (r + n)) + n(r + n) + a+ br rkE0 − n2.

(4.9)

Hence by using (4.7) and the assumption (a+ b+ p) rkE0 = r+ n, we see that

dimMH(γ̂;n, p, a) = dimN + ((r + n) rkE0 + 1)p

≤ n(r + n) + a+ p+ br rkE0 − n2.
(4.10)

Therefore we get

codimMH(bγ)µ-ssMH(γ̂;n, p, a) ≥ (r + n)(2(a+ b+ p) rkE0 − (r + n))

− (n(r + n) + a+ p+ br rkE0 − n2)

= (r + n)2 − n(r + n)− (a+ p+ br rkE0 − n2)

= n2 + (r rkE0 − 1)(a+ p).

(4.11)

Corollary 4.2. If r := m− n ≥ 1, then MH(γ̂;n) is Cohen-Macaulay.

Assume that r rkE0 ≥ 2. Then codimMH(bγ;n)MH(γ̂;n + 1) ≥ 2n + 1.
Thus, by Serre’s criterion, it is enough for the normality of MH(γ̂;n) to show
that MH(γ̂;n)0 ∼= MH(γ̂, nγ0)0 is regular in codimension 1. For an ele-
ment F → E⊕n

0 of MH(γ̂, nγ0)0, the obstruction for smoothness belongs to
Ext2(F, F → E⊕n

0 ).
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Lemma 4.3. If F → E⊕n
0 is surjective or F is locally free, then

(4.12) Ext2(F, F → E⊕n
0 ) = 0.

Proof. We have an exact sequence

(4.13) Ext2(F,E)→ Ext2(F, F → E⊕n
0 )→ Ext2(F,G→ E⊕n

0 ),

where E := ker(F → E⊕n
0 ) and G := im(F → E⊕n

0 ). By Lemma 3.1, we
get Ext2(F,E) = 0. Since Ext2(F,G → E⊕n

0 ) = Ext1(F,E⊕n
0 /G), we get our

claim.

If a + p ≥ 2, then codimMH(bγ)µ-ssMH(γ̂;n, p, a) ≥ 2. If a + p ≤ 1, then
a = 0 or p = 0. Assume that F ∈ MH(γ̂, n)0 belongs to MH(γ̂;n, p, a). If
p = 1 and a = 0, then F∨∨ fits in an exact sequence (4.6). For a general
quotient map f : F∨∨ → kx, x ∈ X, ker f ∩E �= E. This means that F → E⊕n

0

is surjective. If p = 0, then F is locally free. Therefore by using Lemma 4.3,
we see that MH(γ̂, n) is regular in codimension 1.

Proposition 4.4. Assume that r rkE0 ≥ 2. Then MH(γ̂;n), n :=
m− r is normal and a general member F fits in an exact sequence

(4.14) 0→ E → F → E⊕n
0 → 0,

where E ∈MH(γ̂ − nγ0)µ-s,loc and Hom(E,E0) = 0.

The following is a partial answer to [Ma3, Question 6.5].

Theorem 4.5. Assume that r rkE0 ≥ 2. For n := m− r, we set

(4.15) MH(γ̂;n) := {F ∈MH(γ̂)| dim Hom(F,E0) ≥ n}.
Then MH(γ̂;n) is normal, MH(γ̂;n) = φγ(MH(γ)) and we have an identifica-
tion

(4.16) MH(γ̂;n) =
∐

ri,ai,ni,l

∏
i

SniMH(riγ0 − aiω)µ-s,loc × SlX,

where ri, ai, ni, l satisfy that ai rkE0 ≥ ri, (ri, ai) �= (rj , aj) for i �= j, l +∑
i niai = a and

∑
i niri ≤ r = m− n. Therefore φγ(MH(γ)) is normal.

Proof. By Proposition 4.4, we get that MH(γ̂;n) is normal. Moreover
φγ(MH(γ)µ-s,loc) is a dense subset ofMH(γ̂;n). HenceMH(γ̂;n) = φγ(MH(γ)).
Let F be a poly-stable sheaf with γ(F ) = γ̂, i.e., F is a direct sum of E0-twisted
stable sheaves. By Proposition 3.14, there are µ-stable locally free sheaves Ei,
1 ≤ i ≤ k with γ(Ei) = riγ0 − aiω and points xj ∈ X, 1 ≤ j ≤ l such
that F =

⊕k
i=1 Êi ⊕

⊕l
j=1 Exj

. Since dim Hom(Êi, E0) = ai rkE0 − ri and
dim Hom(Exj

, E0) = rkE0, we see that

dim Hom(F,E0) =
∑

i

(ai rkE0 − ri) + l rkE0

= a rkE0 −
∑

i

ri = m−
∑

i

ri.
(4.17)
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Hence F belongs to MH(γ̂;n) if and only if
∑

i ri ≤ m− n = r. Then the last
claim follows from this.

5. The case where degE0
(E) = 1

5.1. Twisted coherent systems and correspondences
In this section, we shall treat the case where the E0-twisted degree is 1,

where E0 is the exceptional bundle in Section 3. This case was highly motivated
by Ellingsrud and Strømme’s paper [E-S]. In this section, we assume that

(5.1) (rkE0)(−KX , H) > 1.

Let e be a class in K(X) such that rk e > 0 and dege0
(e) = 1. We set γ := γ(e)

and γ0 := γ(e0) = γ(E0). Then every µ-stable sheaf E with γ(E) = γ is
µ-stable. Thus the G-twisted stability does not depend on the the choice of G.

Lemma 5.1. Assume that there is a stable sheaf E with γ(E) = γ.
Then −χ(γ, γ0) ≥ 0.

Proof. For a stable sheaf E with γ(E) = γ, Hom(E,E0) = 0. Since
degE0

(E(KX)) = degE0
(E) + rkE rkE0(KX , H) < 0, we get Ext2(E,E0) =

Hom(E0, E(KX))∨ = 0. Hence −χ(E,E0) ≥ 0.

Proposition 5.2. MH(γ) is projective and there is a universal family
on MH(γ)×X.

Proof. Since dege0
(e) = rk e0(c1(e), H) − rk e(c1(e0), H) = 1, rk e and

(c1(e), H) are relatively prime. Hence by [Ma1], there is a universal family.

In order to construct a correspondence, we consider E0-twisted coherent
systems. Let Syst(E⊕n

0 , γ) be the moduli space of E0-twisted coherent systems:

(5.2) Syst(E⊕n
0 , γ) := {(E, V )| E ∈MH(γ), V ⊂ Hom(E0, E), dimV = n}.

Syst(E⊕n
0 , γ) is a projective scheme over MH(γ) (cf. [Le]).

We set

(5.3) MH(γ)i := {E ∈MH(γ)| dim Hom(E0, E) = i}.
If i ≥ n, then Syst(E⊕n

0 , γ) ×MH(γ) MH(γ)i → MH(γ)i is a Gr(i, n)-bundle,
where Gr(i, n) is the Grassmann variety of n-dimensional subspaces of an i-
dimensional vector space.

Lemma 5.3 ([Y3, Lemma 2.1]). For E ∈MH(γ) and V ⊂ Hom(E0, E),
the following (1) or (2) occurs :

(1) ev : V ⊗k E0 → E is injective and coker(ev) is stable.
(2) ev : V ⊗k E0 → E is surjective in codimension 1 and ker(ev) is stable.

Lemma 5.4. Keep notation as above. If ev : V ⊗kE0 → E is surjective
in codimension 1, then
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(1) D(E) := Ext1OX
(V ⊗k E0 → E,OX) is a stable sheaf of degE∨

0
D(E) =

1.
(2) Ext1(E0, E) = 0.

In particular χ(γ0, γ) ≥ n.

Proof. We have an exact sequence

Ext1OX
(im(ev)→ E,OX)→ Ext1OX

(V ⊗k E0 → E,OX)

→ HomOX
(ker(ev),OX)→ Ext2OX

(im(ev)→ E,OX).
(5.4)

By Lemma 5.3, ker(ev) is stable and coker(ev) is 0-dimensional. Then

(5.5) Ext1OX
(im(ev)→ E,OX) ∼= Ext1OX

(coker(ev),OX) = 0

and Ext2OX
(im(ev)→ E,OX) ∼= Ext2OX

(coker(ev),OX) is 0-dimensional. Hence
D(X) is stable.

We next show that Ext1(E0, E) = 0. Since ker(ev) is stable, we get

(5.6) Ext2(E0, ker(ev)) = Hom(ker(ev), E0(KX))∨ = 0.

Combining the fact Ext1(E0, E0) = 0 with this, we see that Ext1(E0, im(ev)) =
0. Since Ext1(E0, coker(ev)) = 0, we get Ext1(E0, E) = 0.

Proposition 5.5. Syst(E⊕n
0 , γ) is smooth and

(5.7) dim Syst(E⊕n
0 , γ) = dimMH(γ)− n(n− χ(γ0, γ)).

Proof. Let (E, V ) ∈ Syst(E⊕n
0 , γ) be an E0-twisted coherent system.

Since V ⊂ Hom(E0, E), we have a homomorphism

(5.8) Hom(V ⊗kE0, V ⊗kE0)→ Hom(V ⊗kE0, E)→ Ext1(V ⊗kE0 → E,E).

Then the cokernel is the Zariski tangent space of Syst(E⊕n
0 , γ) at (E, V ) and the

obstruction space for the smoothness is Ext2(V ⊗kE0 → E,E). If rk(γ−nγ0) ≥
0, then Ext2(V ⊗k E0→E,E) ∼= Ext2(coker(ev), E) = 0. If rk(γ − nγ0) < 0,
then by using Lemma 5.4 and an exact sequence

(5.9) Ext1(V ⊗k E0, E)→ Ext2(V ⊗k E0 → E,E)→ Ext2(E,E),

we see that Ext2(V ⊗k E0 → E,E) = 0. Hence Syst(E⊕n
0 , γ) is smooth. Then

we see that

dim Syst(E⊕n
0 , γ) = dim Ext1(V ⊗k E0 → E,E)− dimPGL(V )

= −χ(E,E) + nχ(E0, E)− (n2 − 1)
= dimMH(γ)− n(n− χ(γ0, γ)).

(5.10)
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Proposition 5.6. We set m := −χ(γ, γ0).
(1) If rk γ ≥ n rk γ0, then Syst(E⊕n

0 , γ) is a Gr(m + n, n)-bundle over
MH(γ − nγ0).

(2) If rk γ < n rk γ0, then Syst(E⊕n
0 , γ) ∼= Syst((E∨

0 )⊕n, nγ∨0 − γ∨), where
γ∨0 = γ(E∨

0 ) and γ∨ = γ(e∨). In particular Syst(E⊕n
0 , γ) is a Gr(m + n, n)-

bundle over MH(nγ∨0 − γ∨).

Proof. We first assume that rk γ ≥ n rk γ0. For (E, V ) ∈ Syst(E⊕n
0 , γ),

Lemma 5.3 implies that ev : V ⊗k E0 → E is injective and coker(ev) is stable.
Thus we have a morphism πn : Syst(E⊕n

0 , γ) → MH(γ − nγ0). Conversely for
G ∈ MH(γ − nγ0) and an n-dimensional subspace U of Ext1(G,E0), we have
an extension

(5.11) 0→ U∨ ⊗k E0 → E → G→ 0

whose extension class corresponds to the inclusion U ↪→ Ext1(G,E0). Then E
is stable. Since

dim Ext1(G,E0) = −χ(G,E0)
= −χ(γ − nγ0, γ0) = m+ n

(5.12)

and there is a universal family, we see that πn is a (Zariski locally trivial)
Gr(m+ n, n)-bundle. Therefore we get our claim.

We next treat the second case. For (E, V ) ∈ Syst(E⊕n
0 , γ), D(E) :=

Ext1OX
(V ⊗k E0 → E,OX) fits in an exact sequence

(5.13) 0→ E∨ → (V ⊗k E0)∨ → D(E)→ Ext1OX
(E,OX)→ 0.

Hence (V ⊗k E0)∨ → D(E) defines a point of Syst((E∨
0 )⊕n, nγ∨0 − γ∨). Thus

we get a morphism

(5.14) ψ : Syst(E⊕n
0 , γ)→ Syst((E∨

0 )⊕n, nγ∨0 − γ∨).

Conversely for (F,U) ∈ Syst((E∨
0 )⊕n, nγ∨0 − γ∨), we get a homomorphism

(5.15) U∨ ⊗k E0 → Ext1OX
(U ⊗k E

∨
0 → F,OX).

It gives the inverse of ψ (for more details, see [K-Y, Proposition 5.128]).

Lemma 5.7.
(1) If rk(γ − χ(γ0, γ)γ0) ≥ 0, then MH(γ)i = ∅ for rk(γ − iγ0) < 0.
(2) If rk(γ − χ(γ0, γ)γ0) < 0, then MH(γ)χ(γ0,γ) = MH(γ).

Proof. If dim(E0, E) = i with rk(γ − iγ0) < 0, then Lemma 5.4 implies
that χ(γ0, γ) ≥ i. Hence rk(γ−χ(γ0, γ)γ0) < 0. By Lemma 5.4, Ext1(E0, E) =
0 for all E ∈MH(γ). Hence MH(γ)χ(γ0,γ) = MH(γ).

By using Proposition 5.6, we get the following theorem.
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Theorem 5.8. We set s := −(KX , c1(e∨0 ⊗ e)) and ζ := γ(Le0(e)) =
γ − χ(γ, γ0)γ0. Assume that n := −χ(γ, γ0) > 0. Then MH(γ) ∼= Syst(E⊕n

0 , ζ)
and we get a morphism λγ0,γ : MH(γ)→MH(ζ) by sending E to the universal
extension

(5.16) 0→ E0 ⊗k Ext1(E,E0)∨ → λγ0,γ(E)→ E → 0.

Hence we have a stratification

(5.17) MH(γ) =
∐
i≥s

λ−1
γ0,γ(MH(ζ)i)

such that λ−1
γ0,γ(MH(ζ)i)→MH(ζ)i is a Gr(i, n)-bundle. In particular,

(5.18) MH(γ)0 →MH(ζ)n

is an isomorphism for n ≥ s.
Corollary 5.9. If 0 > χ(e0, e) = −k ≥ −s, then

(5.19) MH(γ(e))→MH(γ(Le0(e)))

is birationally Gr(s, k)-bundle. In particular, if χ(e0, e) = −s, then MH(γ(e))
→MH(γ(Le0(e))) is a birational map.

Example 5.1. Assume that (X,H) = (P1 × P1,OP1×P1(1, n)), n > 0.
We set L := OP1×P1(−1, n + 1). Then (L,H) = 1, s = (L,−KX) = 2n and
χ(L) = 0. Hence MH(1 + r, L, r) ∼= Gr(2n, r).

5.2. Virtual Hodge polynomial
From now on, we assume that k = C. For a variety Y over C, the co-

homology group with compact support H∗
c (Y,Q) has a natural mixed Hodge

structure. Let ep,q(Y ) :=
∑

k(−1)khp,q(Hk
c (Y )) be the virtual Hodge number

and e(Y ) :=
∑

p,q e
p,q(Y )xpyq the virtual Hodge polynimial of Y . The virtual

Hodge polynomial satisfies the following properties (cf. [D-K]):
(1) If Y is a smooth projective variety, then e(Y ) is the usual Hodge poly-

nomial of Y :
e(Y ) =

∑
p,q

(−1)p+qhp,q(Y )xpyq.

(2) For a closed subset Z ⊂ Y , e(Y ) = e(Z) + e(Y \ Z).
(3) For a Zariski locally trivial fiber space Y → Z with a fiber F , e(Y ) =

e(X)e(F ).
We set a := −χ(γ, γ0). Assume that rk(γ − χ(γ0, γ)γ0) ≥ 0. We shall

consider the vitrual Hodge polynomial of MH(γ + kγ0)i for some k, i. We set
t := xy. Then

e(MH(γ + kγ0)j) = e(Gr(a+ j − k, j))e(MH(γ + (k − j)γ0)0)

=
[a+ j − k]!
[a− k]![j]! e(MH(γ + (k − j)γ0)0),

(5.20)
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where

(5.21) [n] :=
tn − 1
t− 1

, [n]! := [n][n− 1] · · · [1].

By summing up all e(MH(γ + kγ0)k), we get∑
k

[a− k]!e(MH(γ + kγ0))yk

=

∑
j

1
[j]!

yj

(∑
l

[a− l]!e(MH(γ + lγ0)0)yl

)
.

(5.22)

Since

(5.23)

∑
j

1
[j]!

yj

−1

=
∑

j

(−1)jtj(j−1)/2

[j]!
yj ,

we get that

Lemma 5.10. If rk(γ − χ(γ0, γ)γ0) ≥ 0, then

(5.24) e(MH(γ + lγ0)0) =
∑
j≥0

(−1)jtj(j−1)/2 [a+ j − l]!
[a− l]![j]! e(MH(γ + (l − j)γ0)).

In particular

e(MH(γ + kγ0)i)

=
∑
j≥0

(−1)jtj(j−1)/2 [a− k + i+ j]!
[a− k]![i]![j]! e(MH(γ + (k − i− j)γ0)).

(5.25)

Since MH(γ + lγ0)0 = ∅ for a− s < l ≤ a, we also get the following relations :

(5.26)
∑
j≥0

(−1)jtj(j−1)/2 [a+ j − l]!
[a− l]![j]! e(MH(γ + (l − j)γ0)) = 0

for a− s < l ≤ a.

5.3. Examples on P2

From now on, we assume that X is P2. Then s = −(KX ,OX(1)) = 3.
Hence we get the following relations:∑

j≥0

(−1)jtj(j−1)/2e(MH(γ + (a− j)γ0)) = 0,

∑
j≥0

(−1)jtj(j−1)/2[j + 1]e(MH(γ + (a− 1− j)γ0)) = 0,

∑
j≥0

(−1)jtj(j−1)/2 [j + 2][j + 1]
[2]!

e(MH(γ + (a− 2− j)γ0)) = 0.

(5.27)

By a simple calculation, we get
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Proposition 5.11.

e(MH(γ + (a− 2)γ0))

=
∑
j≥0

(−1)jt(j+1)j/2 [j + 3][j + 2]
[2]!

e(MH(γ + (a− 3− j)γ0)),

e(MH(γ + (a− 1)γ0))

=
∑
j≥0

(−1)jt(j+1)j/2[j + 3][j + 1]e(MH(γ + (a− 3− j)γ0)),

e(MH(γ + aγ0))

=
∑
j≥0

(−1)jt(j+1)j/2 [j + 2][j + 1]
[2]!

e(MH(γ + (a− 3− j)γ0)).

(5.28)

Assume that E0 := OX . We set γ := γ(OX(1)). Then

MH(γ − aω − γ0) = {Ol(1− a)| l is a line on P2}
∼= P2.

(5.29)

Hence MH(γ − aω)1, a ≥ 2 is a Pa-bundle over P2. By the morphism

(5.30) MH(γ − aω)→MH(γ − aω + aγ0),

the fibers of MH(γ − aω)1 → P2 are contracted.

Example 5.2. If a = 2, then MH(γ − 2ω + 2γ0) ∼= MH(γ2 − γ0) ∼= P2.
That is, E ∈MH(γ − 2ω + 2γ0) fits in a universal extension

(5.31) 0→ O⊕3
X → E → Ol(−1)→ 0.

Moreover we see that MH(γ − 2ω + iγ0), i = 0, 1 are P2-bundle over MH(γ −
2ω + 2γ0) ∼= P2.

Example 5.3. If a = 3, then MH(γ − 3ω)→MH(γ − 3ω + 3γ0) is the
blow-up along MH(γ − 3ω + 3γ0)4 ∼= MH(γ − 3ω − γ0). This was obtained by
Drezet [D3, IV].

By [E-S] and [Y1], we know e(MH(r,H, χ)) for r = 1, 2. By using Propo-
sition 5.11, we get the following:

e(MH(1, H, 0)) = 1 + 2t+ 5t2 + 6t3 + 5t4 + 2t5 + t6,

e(MH(2, H, 1)) = 1 + 2t+ 6t2 + 9t3 + 12t4 + 9t5 + 6t6 + 2t7 + t8,

e(MH(3, H, 2)) = 1 + 2t+ 5t2 + 8t3 + 10t4 + 8t5 + 5t6 + 2t7 + t8,

e(MH(4, H, 3)) = 1 + t+ 3t2 + 3t3 + 3t4 + t5 + t6.

(5.32)
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e(MH(1, H,−1)) = 1 + 2t+ 6t2 + 10t3 + 13t4 + 10t5 + 6t6 + 2t7 + t8,

e(MH(2, H, 0)) = 1 + 2t+ 6t2 + 13t3 + 24t4 + 35t5 + 41t6

+ 35t7 + 24t8 + 13t9 + 6t10 + 2t11 + t12,

e(MH(3, H, 1)) = 1 + 2t+ 6t2 + 12t3 + 24t4 + 38t5 + 54t6 + 59t7

+ 54t8 + 38t9 + 24t10 + 12t11 + 6t12 + 2t13 + t14,

e(MH(4, H, 2)) = 1 + 2t+ 5t2 + 10t3 + 18t4 + 28t5 + 38t6 + 42t7

+ 38t8 + 28t9 + 18t10 + 10t11 + 5t12 + 2t13 + t14,

e(MH(5, H, 3)) = 1 + t+ 3t2 + 5t3 + 8t4 + 10t5 + 12t6

+ 10t7 + 8t8 + 5t9 + 3t10 + t11 + t12.

(5.33)

If E0 := ΩX(1), then degE0
(OX) = 1. We set γ = γ(OX). Then

• MH(γ − aω)→MH(γ − aω + 2aγ0) is a closed immersion for a ≥ 2.
• If a = 2, then MH(γ − 2ω + γ0) → MH(γ − 2ω + 4γ0) is the blow-up

along MH(γ − 2ω).
Here we remark that Drezet showed that MH(γ − 2ω + 4γ0) = MH(9,
−4H,−1) ∼= Gr(6, 2) (see [D1, Appendice]). Since e(MH(1, 0,−1)) = 1 +
2t + 3t3 + 2t3 + t4 and e(MH(3,−H,−1)) = e(MH(3, H, 2)), Proposition 5.11
implies that

e(MH(3,−H,−1)) = 1 + 2t+ 5t2 + 8t3 + 10t4 + 8t5 + 5t6 + 2t7 + t8,

e(MH(5,−2H,−1)) = 1 + 2t+ 5t2 + 8t3 + 13t4 + 14t5

+ 13t6 + 8t7 + 5t8 + 2t9 + t10,

e(MH(7,−3H,−1)) = 1 + 2t+ 4t2 + 6t3 + 9t4 + 10t5

+ 9t6 + 6t7 + 4t8 + 2t9 + t10,

e(MH(9,−4H,−1)) = 1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8

(= e(Gr(6, 2))).

(5.34)

5.3.1. Line bundles on MH(γ)
Let pMH(γ(e)) : MH(γ(e))×X →MH(γ(e)) and q : MH(γ(e))×X → X be

the projections, and let E be a universal family on MH(γ(e)) ×X. We define
a homomorphism θe : e⊥ → Pic(MH(γ(e))) by

(5.35) θe(x) := det pMH(γ(e))!(E∨ ⊗ q∗(x)),

where e⊥ := {x ∈ K(X)| χ(e, x) = 0} and E∨ is the dual of E in K(MH(γ(e))×
X). The following is a special case of Drezet’s results.

Theorem 5.12 ([D2]). Assume that dimMH(γ(e)) = 1 − χ(e, e) > 0.
Then θe is surjective and

(1) θe is an isomorphism, if χ(e, e) < 0,
(2) ker θe = Ze0, if χ(e, e0) = 0.
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We set ẽ := Le0(e). By a simple calculation, we see that the following
diagram is commutative:

(5.36)

e⊥
Re0←−−−− ẽ⊥/e0

θe

� �θẽ

Pic(MH(γ(e))) ←−−−−−−−
λ∗

γ(e0),γ(e)

Pic(MH(γ(ẽ)))

We set αe := −(rk e)OH +χ(e,OH)CP . Then it gives a map to the Uhlenbeck
compactification [Li]. βe := Re0(αẽ) gives the map λγ(e0),γ(e) : MH(γ(e)) →
MH(γ(ẽ)).

• If E0 = OX , rk e > 0 and χ(e, e0) < 0, then the nef. cone of MH(γ(e))
is generated by αe and βe.

This is a generalization of [S].
For γ := (3, H, 5 − a), we set γ0 := (1, 0, 1), γ1 := γ(ΩX(1)) = (2,−H, 0),

δ := γ+aγ0 and η := γ∨ +(2a−3)γ1. NH(γ) denotes the Uhlenbeck compact-
ification of MH(γ)µ-s,loc. Then we get the following diagram:

MH(δ)

MH(γ)

NH(γ)

MH(γ∨)

MH(η)

· · · · ·
λγ0,γ λγ1,γ∨

� �

�
���

�
���

�
���

�
���

MH(γ∨) contains P2a−3-bundle over MH(1, 0, 2− a) and λγ0,γ∨ contracts
the fibers. λγ0,γ |MH(γ)i

is a Gr(a − 2 + i, a − 2)-bundle over MH(δ)a−2+i
∼=

MH(γ− iγ0)0. Then it is easy to see that MH(3, H, 5−a) �∼= MH(3,−H, 2−a).
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