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On phantom maps into suspension spaces

By

Kouyemon Iriye

Abstract

We show that there is an essential phantom map f : K(Z, n) → ΣY
for a suitable n if Hi(Y ; Q) �= 0 for some i > 0. The localized version
of this problem is also considered. The ingredient of the proof is the
computation of the Morava K-theories of the Eilenberg-MacLane spaces
by Ravenel and Wilson.

1. Introduction

Throughout this paper we assume that a space has the homotopy type of
a CW-complex with finite skeletons (or its localization) and has the base point,
and that a map and a homotopy preserve the base points.

A map f : X → Y is said to be a phantom map provided that, for any
finite CW-complex W and any map j : W → X, the composite

W
j→ X

f→ Y

is null homotopic. By Ph(X, Y ) we denote the subset of the pointed set [X, Y ]
consisting of homotopy classes of phantom maps. We write Ph(−, Y ) ≡ 0 if
Ph(X, Y ) = ∗ for any domain X, otherwise we write Ph(−, Y ) �≡ 0. Similarly
we define Ph(X,−) ≡ 0 and Ph(X,−) �≡ 0.

In his survey paper [7] on phantom maps Roitberg asked

Question. Is Ph(−, ΣK(Z, n)) �≡ 0 when n ≥ 2?

That is, he asked if the Eckmann-Hilton dual of the result that Ph(ΩSn,−)
≡ 0 for n ≥ 2 is false. In [1] we proved that Ph(ΩX,−) ≡ 0 for a rationally
elliptic finite complex X. In this paper we will consider the dual problem.

The following theorem characterizes a space Y such that Ph(−, Y ) ≡ 0.

Theorem 1.1 (Theorem 1′ of [5]). The following statements are equiv-
alent.

(i) Ph(−, Y ) ≡ 0.
(ii) Ph(K(Z, n), Y ) = ∗ for every n.
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662 Kouyemon Iriye

(iii) There exists a rational homotopy equivalence from a product of
K(Z, m)’s to the base point component of ΩY .

By this theorem it is not difficult to see that Ph(−, Y ) ≡ 0 if
(i) πn(Y ) is finite for each n > 2, or
(ii) Y has only finitely many nonzero homotopy groups.
On the other hand, by Zabrodsky [9], Ph(−, ΩnY ) �≡ 0 if Y is a simply

connected finite complex with πi(ΩnY ) ⊗ Q �= 0 for some i > 2.

Theorem 1.2. Ph(−, ΣY ) �≡ 0 for a space Y with Hi(Y ; Q) �= 0 for
some i > 0.

As a corollary we have the affirmative answer to the question of Roitberg.

Corollary 1.3. Ph(−, ΣK(Z, n)) �≡ 0 for every positive integer n.

Moreover, we have

Theorem 1.4. Ph(−, ΣK(Z(p), n)) �≡ 0 for every prime p and every
positive integer n.

Needless to say, Theorem 1.4 implies Corollary 1.3 since there is a natural
epimorphism

Ph(X, ΣY ) →
∏

p

Ph(X, ΣY(p))

for any spaces X and Y , see Section 6 of [4].

Corollary 1.5. For a space Y and a prime p we have Ph(−, ΣY(p)) �≡ 0
if any of the following three conditions hold :

(i) Y is a finite complex with Hi(Y ; Q) �= 0 for some i > 0.
(ii) There is an odd dimensional element α ∈ π2n+1(Y ) whose Hurewicz

image ρ(α) ∈ H2n+1(Y ; Z) is of order infinite.
(iii) There are an even dimensional element α ∈ π2n(Y ), n > 0, and a

cohomology class v ∈ H2n(Y ; Z) with non-zero Kronecker product 〈v, ρ(α)〉 ∈ Z.
Moreover, v2 is of order infinite.

An example of a space which does not satisfy any of the above conditions
is the homotopy fiber F of the map u2

2n : K(Z, 2n) → K(Z, 4n), where u2n ∈
H2n(K(Z, 2n); Z) is a generator. If we could show that Ph(−, ΣF(p)) �≡ 0, then
the answer of the following question would be yes.

Question 1.6. Is Ph(−, ΣY(p)) �≡ 0 for a prime p and a space Y with
Hi(Y ; Q) �= 0 for some i > 0?

Another problem arises from Theorem 1.2.

Question 1.7. Let n be a positive integer. Is Ph(−, ΩnΣY ) �≡ 0 for a
space Y with πi(ΩnΣY ) ⊗ Q �= 0 for some i > 2?
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2. Proofs

We begin with a proof of Theorem 1.4, for which we need the localized
version of Theorem 1.1.

Theorem 2.1 (Theorem 1′ of [5]). Let Y be a nilpotent space and p be
a prime. Then Ph(−, Y(p)) ≡ 0 if and only if there exists a rational homotopy
equivalence from a product of K(Z(p), m)’s to the base point component of ΩY(p).

From now on except in the proof of Theorem 1.2 we will assume that all
spaces and groups are localized at a prime p, but the notation will not be
burdened with this assumption. Thus, for example, Z stands for Z(p).

If Ph(−, ΣK(Z, n)) ≡ 0, then by the theorem above we have a rational
homotopy equivalence

∏

β

K(Z, mβ) → ΩΣK(Z, n).

On the other hand we have the homotopy equivalence

ΩΣK(Z, n) 
 K(Z, n) × ΩΣ(K(Z, n) ∧ K(Z, n))

by Stasheff [8]. Thus we have a rational homotopy equivalence
∏

mβ>n

K(Z, mβ) → ΩΣ(K(Z, n) ∧ K(Z, n)).

We will show no such a rational homotopy equivalence exists. In fact, we have

Theorem 2.2. Let m, n and � be positive integers. Then every map

f : K(Z, m) → ΩΣ(K(Z, n) ∧ K(Z, �))

induces the trivial map on rational homotopy groups.

Proof. For n = � = 1 this is well-known. According to Zabrodsky [9] f is
a phantom map since ΩΣ(K(Z, n) ∧ K(Z, �)) = ΩS3, and every phantom map
induces the trivial map on homotopy groups.

To prove the theorem for n > 1 we first recall some consequences of the
computation of the Morava K-theories of Eilenberg-MacLane spaces by Ravenel
and Wilson [6] and the appendix of [2].

Theorem 2.3 (Corollaries 12.2 and 13.1 of [6]). Let p be a prime and
k be a positive integer, then

lim−→
j

K(q)∗K(Z/(pj), k) ∼= K(q)∗K(Z, k + 1)

and
pj
∗ : K(q)∗K(Z, k + 1) → K(q)∗K(Z, k + 1)

is epimorphic.
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The short exact sequence of the groups 0 → Z
pj

→ Z → Z/(pj) → 0 induces
the fiber sequence

K(Z/(pj), k) δ→ K(Z, k + 1)
pj

→ K(Z, k + 1) red→ K(Z/(pj), k + 1).

Since pj
∗ : K(q)∗K(Z, k+1) → K(q)∗K(Z, k+1) is epimorphic, red∗ : K(q)∗K(Z,

k + 1) → K(q)∗K(Z/(pj), k + 1) is the trivial map, which we are now using to
prove Theorem 2.2.

If f : K(Z, m) → ΩΣ(K(Z, n) ∧ K(Z, �)) induces a non-trivial map on
rational homotopy groups, then there is a map

g ∈ Hm(ΩΣ(K(Z, n) ∧ K(Z, �)); Z) ∼= [ΩΣ(K(Z, n) ∧ K(Z, �)), K(Z, m)]

such that

gf = pj ∈ Hm(K(Z, m); Z) ∼= [K(Z, m), K(Z, m)] ∼= Z

with some non-negative integer j. Since (gf)∗ = pj
∗ : K(q)∗K(Z, m) →

K(q)∗K(Z, m) is epimorphic,

g∗ : K(q)∗(ΩΣ(K(Z, n) ∧ K(Z, �))) → K(q)∗K(Z, m)

must be epimorphic. But as we will show below g∗ is the trivial map which
contradicts the fact that g∗ is epimorphic since K(q)∗K(Z, m) is non-trivial for
q ≥ m − 1 by Theorem 12.1 of [6].

Since the Morava K-theory possesses Künneth isomorphisms, we have the
following isomorphism

lim−→K(q)∗(ΩΣ(K(Z/(pj), n − 1) ∧ K(Z, �)))
∼= K(q)∗(ΩΣ(K(Z, n) ∧ K(Z, �))).

Thus to prove that g∗ is trivial, it is sufficient to prove that

h = g ◦ ΩΣ(δ ∧ 1) : ΩΣ(K(Z/(pj), n − 1) ∧ K(Z, �)) → K(Z, m)

induces the trivial map on the Morava K-theories for each positive integer j.

Proposition 2.4. For sufficiently large t

ΩΣ(1 ∧ red)∗ : Hm(ΩΣ(K(Z/(pj), n − 1) ∧ K(Z/(pt), �)); Z)

→ Hm(ΩΣ(K(Z/(pj), n − 1) ∧ K(Z, �)); Z)

is epimorphic.

Assume for the moment that this proposition is true. By this proposition
there is a map

h′ : ΩΣ(K(Z/(pj), n − 1) ∧ K(Z/(pt), �)) → K(Z, m)
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for sufficiently large t such that h = h′ ◦ ΩΣ(1 ∧ red). Since red : K(Z, �) →
K(Z/(pt), �) induces the trivial map on the Morava K-theories, ΩΣ(1 ∧ red)
induces also the trivial map on the Morava K-theories by the Künneth iso-
morphisms. Thus h induces the trivial map on the Morava K-theories and we
complete the proof of Theorem 2.2.

Proof of Proposition 2.4. We first recall the mod p cohomology (resp. ho-
mology) Bockstein spectral sequence {Er(X)} (resp. {Er(X)}) of a space X.
{Er(X)} (resp. {Er(X)}) is a spectral sequence of differential algebras (resp.
coalgebras) such that E1(X) = H∗(X; Z/(p)) (resp. E1(X) = H∗(X; Z/(p)))
and Er+1(X) (resp. Er+1(X)) is the homology of Er(X) (resp. Er(X)) with
respect to the Bockstein operation βr for r ≥ 1. The mod p cohomology Bock-
stein spectral sequence {Er(X)} and the mod p homology Bockstein spectral
sequence {Er(X)} are dual each other. H∗(X; Z) (resp. H∗(X; Z)) is a direct
sum of cyclic groups with one generator of order pr for each basis element of
Im(βr) ⊂ Er(X) (resp. Im(βr) ⊂ Er(X)) and one generator of infinite order
for each basis element of E∞(X) (resp. E∞(X)).

Lemma 2.5. Let f : X → Y be a map and n a positive integer. Con-
sider the following four conditions.

In: f∗ : H∗(X; Z) → H∗(Y ; Z) has a left inverse for ∗ ≤ n.
IIn: f∗ : H∗(X; Z/(p)) → H∗(Y ; Z/(p)) induces monomorphisms of the

Bockstein spectral sequences f∗ : Er(X) → Er(Y ) up to degree n for all r.
IIIn: f∗ : H∗(Y ; Z) → H∗(X; Z) has a right inverse for ∗ ≤ n.
IVn: f∗ : H∗(Y ; Z/(p)) → H∗(X; Z/(p)) induces epimorphisms of the Bock-

stein spectral sequences f∗ : Er(Y ) → Er(X) up to degree n for all r.
Then the conditions In, IIn and IVn are equivalent, and In implies IIIn and
IIIn+1 implies In.

Proof. It is easy to see that In implies IIn. The converse is also proved
easily as follows. Let k ≤ n and consider the following commutative diagram.

Er
k+1(X)

f∗−−−−→ Er
k+1(Y )

�βr

�βr

Er
k(X)

f∗−−−−→ Er
k(Y )

Let βr(x1), . . . , βr(xs) be a basis of Im(βr) ⊂ Er
k(X), then

f∗(βr(x1)) = βr(f∗(x1)), . . . , f∗(βr(xs)) = βr(f∗(xs))

are linearly independent in Im(βr) ⊂ Er
k(Y ) since f∗ : Er

k(X) → Er
k(Y ) is

monomorphic by the assumption. Thus f∗ maps a direct summand of all cyclic
groups of order pr in H∗(X; Z) monomorphically into H∗(Y ; Z) as a direct
summand. This is also true for a direct summand of cyclic groups of infinite
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order since Er
k(X) ∼= E∞

k (X) and Er
k(Y ) ∼= E∞

k (Y ) for sufficiently large r.
These two facts imply In.

By duality IIn is equivalent to IVn.
By the universal coefficient theorem it is easy to see that In implies IIIn

and IIIn+1 implies In.

By Lemma 2.5 to prove Proposition 2.4 it is sufficient to prove that if t > j,
then

ΩΣ(1 ∧ red)∗ : H∗(ΩΣ(K(Z/(pj), n − 1) ∧ K(Z, �)); Z/(p))

→ H∗(ΩΣ(K(Z/(pj), n − 1) ∧ K(Z/(pt), �)); Z/(p))

induces monomorphisms of the Bockstein spectral sequences

ΩΣ(1 ∧ red)∗ : Er(ΩΣ(K(Z/(pj), n − 1) ∧ K(Z, �)))

→ Er(ΩΣ(K(Z/(pj), n − 1) ∧ K(Z/(pt), �)))

up to degree 2pt+1−j for all r. For any space X we have

Er(ΩΣX) ∼= T (Ẽr(X)),

where T (A) denotes the tensor algebra generated by a module A and {Ẽr(X)}
denotes the Bockstein spectral sequence associated with H̃∗(X; Z). Thus it is
sufficient to prove that if t > j, then

(1 ∧ red)∗ : H∗(K(Z/(pj), n − 1) ∧ K(Z, �); Z/(p))

→ H∗(K(Z/(pj), n − 1) ∧ K(Z/(pt), �); Z/(p))

induces monomorphisms of the Bockstein spectral sequences

(1 ∧ red)∗ : Er(K(Z/(pj), n − 1) ∧ K(Z, �))

→ Er(K(Z/(pj), n − 1) ∧ K(Z/(pt), �))

up to degree 2pt+1−j for all r. By duality we show that if t > j, then

(2.6) (1 ∧ red)∗ : Er(K(Z/(pj), n − 1) ∧ K(Z/(pt), �))

→ Er(K(Z/(pj), n − 1) ∧ K(Z, �))

are epimorphic up to degree 2pt+1−j for all r. Since (2.6) is epimorphic for
r ≤ t by Theorem 10.4 of [3], it is sufficient to show that

Ẽt+1(K(Z/(pj), n − 1) ∧ K(Z, �))
∼= Ẽt+1(K(Z/(pj), n − 1)) ⊗ Ẽt+1(K(Z, �)) = 0

up to degree 2pt+1−j . For n = 2 clearly Ẽt+1(K(Z/(pj), 1)) = 0 since t > j.
For n > 3 Ẽt+1(K(Z/(pj), n − 1)) = 0 up to degree 2pt+1−j by Theorem 10.4
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of [3]. Thus we complete the proof of Proposition 2.4 and, therefore, the proof
of Theorem 1.4.

Proof of Corollary 1.5. If the condition (i) holds, then Ph(−, ΣY ) �≡ 0 by
a localized version of the theorem of Zabrodsky [9].

We suppose that the condition (ii) holds, then there is a map g : Y →
K(Z, 2n + 1) such that the composite

S2n+1 α→ Y
g→ K(Z, 2n + 1)

is a rational equivalence. Therefore the composite

ΩS2n+2 → ΩΣY → ΩΣK(Z, 2n + 1)

is also a rational equivalence. If Ph(−, ΣY ) ≡ 0, then there is a map

K(Z, 4n + 2) → ΩΣY → ΩΣK(Z, 2n + 1)

which induces an essential map on rational homotopy groups by Theorem 2.1.
But this contradicts Theorem 2.2 since ΩΣK(Z, 2n + 1) 
 K(Z, 2n + 1) ×
ΩΣ(K(Z, 2n + 1) ∧ K(Z, 2n + 1)), and so the proof follows.

We assume that the condition (iii) holds. Let g : Y → K(Z, 2n) represent
the class v. Then it is easy to see that the map

ΩΣY
ΩΣg→ ΩΣK(Z, 2n)

induces a non-trivial map on π4n(−) ⊗ Q. Now we complete the proof by the
similar argument as above.

Proof of Theorem 1.2. In this proof spaces and groups are not localized
at any prime. By Corollary 1.5 it suffices to prove the theorem for a space
Y such that there are an even dimensional element α ∈ π2n(Y ), n > 0, and a
cohomology class v ∈ H2n(Y ; Z) with non-zero Kronecker product 〈v, ρ(α)〉 ∈ Z

and v2 = 0.
Let

F2n
i→ K(Z, 2n)

u2
2n→ K(Z, 4n)

be the fibration, where u2n ∈ H2n(K(Z, 2n); Z) is a generator. Then there is a
map f : Y → F2n such that Σf : ΣY → ΣF2n induces an epimorphism on the
rational homotopy groups. By Theorem 2 of [5] Σf induces an epimorphism

Ph(X, ΣY ) → Ph(X, ΣF2n)

for any space X. Therefore it suffices to prove the theorem for the space F2n.
i∗(u2n) is a generator of H2n(F2n; Z) ∼= Z and i∗(u2n)2 = 0 by the definition of
F2n. Let v2n ∈ H2n(ΩΣF2n; Z) ∼= Z be a generator. Then it is easy to see that
vp
2n = 0 in H2pn(ΩΣF2n; Z/(p)) for any prime p. If Ph(−, ΣF2n) ≡ 0, then by

Theorem 1 there is a rational equivalence

K(Z, 2n) h→ ΩΣF2n.
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Let g : ΩΣF2n → K(Z, 2n) represent the cohomology class v2n. Then hg = a �=
0 and, therefore, there is a prime p which is coprime to a. We have

apup
2n = (au2n)p = ((gh)∗(u2n))p = h∗(v2n)p = h∗(vp

2n) = 0

in H∗(K(Z, 2n); Z/(p)). Since ap is a unit in Z/(p), this contradicts the fact
that up

2n �= 0. We complete the proof of Theorem 1.2.

Remark. For F = F2 we have the Atiyah-Hirzebruch-Serre spectral
sequence

E2 ∼= H∗(K(Z, 2); K(q)∗K(Z, 3)) =⇒ K(q)∗F

associated with the fibration

K(Z, 3) → F
i→ K(Z, 2).

Since K(q)∗K(Z, 3) is concentrated in even dimensions by Theorem 12.1 of
[6], the above spectral sequence has no nontrivial differentials for dimensional
reasons and hence collapses. This implies that i∗ : K(q)∗F → K(q)∗K(Z, 2) is
epimorphic. It is easy to show that for any nontrivial map g : ΩΣF → K(Z, 2)

g∗ : K(q)∗(ΩΣF ) → K(q)∗K(Z, 2)

is also epimorphic. Thus the argument in the proof of Theorem 1.4 does not
apply to this case.
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