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G-complexes with a compatible CW structure
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Matija Cencelj, Neža Mramor Kosta and Aleš Vavpetič∗

Abstract

If G is a toral group, i.e. an extension of a torus by a finite group,
and X is a G-CW complex we prove that there exists a G-homotopy
equivalent CW complex Y with the property that the action map ρ : G×
Y → Y is a cellular map.

1. Formulation of the result

Let G be a compact Lie group. A G-cell of dimension n is a space of the
form G/H × Dn, where H is a closed subgroup of G and Dn is an n-cell. A
G-CW complex X (or an equivariant CW complex in the terminology of [9]) is
constructed by iterated attaching of G-cells. It is the union of G-spaces X(n)

such that X(0) is a disjoint union of G-cells of dimension 0, i.e. orbits G/H,
and X(n+1) is obtained from X(n) by attaching G-cells of dimension n+1 along
equivariant attaching maps G/H × ∂Dn+1 → X(n). The space X(n), which is
called the n-skeleton of X, is thus the union of all G-cells of dimension at most
n (the topological dimension of the space X(n) is in general greater than n).
For basic facts about G-complexes see the original papers of Matumoto [6] and
Illman [4] or the exposition in [9].

For discrete groups G it is well known that every G-CW complex is also
a CW complex with a cellular action of G (this follows for example from [9,
Propositon 1.16, p. 102]). For non-discrete groups, Illman [5] gave an example
showing that a G-CW complex X does not always admit a CW decomposition,
compatible with the given G-CW decomposition, and proved that there always
exists a homotopy equivalent CW complex Y which is finite if X is a finite
G-complex.

In this paper we consider the following problem: given a G-CW complex
X, does there exist a G-space Y , G-homotopy equivalent to X, with a CW
decomposition such that the action ρ : G×Y → Y is a cellular map with respect
to some decomposition of G. The existence of such a Y is interesting from the
point of view of equivariant homology and cohomology. For example, Greenlees
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and May showed that for some groups G the generalized Tate cohomology
defined in [3] can be calculated from the CW decomposition of Y . Also, the
Borel equivariant cohomology H∗

G(X) = H∗(EG×GX) of a G-CW complex X
can be computed using the cellular cohomology of the CW complex Y which
is G-homotopy equivalent to EG×G X.

For a general compact Lie group G it is not known if every G-CW complex
is G-homotopy equivalent to a CW complex Y with the required properties.
Greenlees and May [3, Lemma 14.1] gave a construction of Y for any SO(2)-CW
complex X. For non-abelian groups, the construction of Y is more difficult,
since the fixed point sets (G/H)K of actions of subgroups K < G on the orbits
G/H can be nontrivial. In [7] the original proof for G = SO(2) was general-
ized to the two non-abelian 1-dimensional compact Lie groups, the orthogonal
group O(2) and the continuous quaternionic group NSU(2)T . In [1] a sufficient
condition for the existence of Y in the non-commutative case was identified and
it was shown that the group SU(2) satisfies this condition. Here we consider
general toral groups, i.e. groups G which are extensions

T G F

of a torus T over a finite group F . The two groups in [7] are both toral groups,
but there the construction of Y rests on a property of these two groups which is
satisfied only for a few particular groups G. It is not satisfied for any group G
containing a copy of S7, the symmetric group on 7 letters [1], and in particular
for a general toral group, since a toral group may well contain a copy of S7.
We prove

Theorem 1.1. For any toral group G and any G-CW complex X, there
exists a G-homotopy equivalent CW complex Y with a cellular action of G.

The construction of the complex Y is similar to the construction of Green-
lees and May for G = SO(2), generalized to the non-abelian case G = SU(2)
in [1]. It requires the existence of a CW decomposition of every orbit G/H
such that first, the action ρ : G×G/H → G/H is cellular with respect to some
given decomposition of G, and second, the fixed point set (G/H)K of the nat-
ural action of K on G/H is a subcomplex for every K < G. More precisely,
since the orbit type of a cell is determined only up to the conjugacy type of
the group H, it suffices to show that there exists a family of subgroups K,
containing at least one representative from every conjugacy class of subgroups
of G, and a CW decomposition of every G/H, H ∈ K, such that the action
G×G/H → G/H is a cellular map and every fixed point set (G/H)K , K ∈ K,
is a subcomplex of G/H. In the terminology of [1], such a family K is a good
representative family of subgroups. In Section 2 we consider the case where G
is a torus. In this case the situation is simpler, since conjugation in an abelian
group is trivial. This implies first, that the only good representative family
K is the family of all subgroups of G, and second, that the fixed point sets
(G/H)K = {gH | g−1Kg ⊂ H} are either the whole space G/H (if K < H) or
empty, and therefore automatically subcomplexes of G/H. Therefore it suffices
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to give an explicit description of decompositions of orbits G/H, H < G, such
that the natural action of G with the standard decomposition is cellular. In
Section 3 we find a good representative family K of subgroups in a general
toral group G and extend the decompositions of tori from Section 2 to decom-
positions of G and of G/H, H ∈ K with the required properties. The proof
of the theorem now follows from [1, Proposition 1]. Nevertheless, to complete
the arguments in the context of this paper, we give a proof of Theorem 1.1 in
Section 4.

2. Decompositions of tori

In this section, G is a compact connected abelian group, i.e. a torus T =
(SO(2))s. We can view T as R

s/Zs, where R
s is identified with the tangent

space of T at the identity, or equivalently, as the cube Is ⊂ Rs, (where I =
[0, 1]), with identified parallel sides. Let {a1, . . . , as} be the standard basis of
Rs and π : Rs → T s the projection. The standard (product) CW decomposition
of T has one 0-cell e = π(0) = e0 (the unit of T ), s closed 1-cells e1i = π(L1

i ),
where L1

i is the 1-dimensional subspace of Rs spanned by ai, and
(
s
j

)
closed

j-cells ejJ = π(LjJ) for every j ≤ s, where J = {i1, . . . , ij} ⊂ {1, . . . , s} and LjJ
is the j-dimensional linear subspace spanned by {ai, i ∈ J}. Clearly, every cell
of this decomposition is a closed subgroup of T , and a j-cell ejJ is the product
ejJ = e1i1 · · · e1ij . Let T denote the torus T with this standard decomposition.

e11

e12e13

e21,3
e21,2

e22,3

Figure 1. The standard decomposition T3

We call a CW decomposition of T linear if every j-cell, j = 0, . . . , s, lies on
π(L), where L is a j-dimensional linear subspace of Rs. Clearly, the standard
decomposition T is linear.

Theorem 2.1. For any closed subgroup H ≤ T , there exists a linear
CW decomposition of T , inducing a CW decomposition on the quotient T/H,
such that the actions ρ : T×T → T and ρ : T×T/H → T/H are cellular maps.
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Proof. Since the quotient map q : T → T/H is a homomorphism of
groups, every orbit T/H (H ≤ T closed) is a compact connected abelian group,
i.e. a torus.

A closed subgroup H < T is a product H = H0 ×D, where H0
∼= T r is a

torus of dimension r ≤ s, and D ∼= Z/n1 × · · · × Z/nk is a discrete torus. We
first consider the case where H = H0

∼= T r. The tangent space of H at the
identity is a subspace L ⊂ R

s spanned by vectors bi = α1ia1 + · · ·+αsias, αji ∈
Z, i = 1, . . . , r. If we imagine the torus as Is with identified parallel sides,
then H = π(L) consists of finitely many parallel r-dimensional planes inside
the cube Is. We cut the cube Is along all possible (s − 1)-planes which are
spanned by one of these planes and any s− r− 1 basis vectors ai1 , . . . , ais−r−1 .
Since there are finitely many such hyperplanes this gives a subdivision of Is

into convex polyhedra, and since the cuts along parallel sides coincide, this
subdivision determines a CW decomposition T̃ of T which is linear and has
H as a subcomplex. For every k ≥ 0, the (k + r)-skeleton of T̃ consists of all
(k+ r)-planes in Is, parallel to some (k+ r)-subspace of Rs spanned by L and
by k vectors {ai1 , . . . , aik}.

Figure 2 shows the decomposition T̃ 2 with respect to the subgroup H3,1 <
T 2 generated by the vector b = 3a1+a2 ∈ R

2 (in this case r = 1, so s−r−1 = 0).

�

�

�

�

�

�

�

�

| |

1 2

1
3

2
3

1

3

b

Figure 2. The decomposition T̃ 2 with respect to H3,1

The quotient map T → T/H is covered by the projection Rs → M in
the direction of L onto any linear subspace M of Rs spanned by a subset
ai1 , . . . , ais−r

of basis vectors such that M ⊕L = Rs. This projection maps the
subdivision of Is into polyhedra to a subdivision of the unit cube Is−r in M
which determines a linear CW decomposition of T/H.

For example, let H1,1,1 be the subgroup of T 3 generated by the vector
b = a1 + a2 + a3 ∈ R3 (in this case s − r − 1 = 1). Figure 3 shows the
decomposition T̃ 3 with respect to H1,1,1. If M is the complementary subspace
to L in R3 spanned by a1 and a2, then the projection R3 →M in the direction
of L maps the cube I3 onto the hexagon shown in Figure 4. We can imagine
T 2 as the shaded square I2 with identified parallel sides. Thus, the induced
decomposition T̃ 2 has two 2-simplices and projection T̃ 3 → T̃ 3/H1,1,1 = T̃ 2
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(0, 0, 0)

(1, 0, 0)

(1, 1, 0)

(1, 1, 1)

(0, 1, 1)

(0, 0, 1)

(0, 0, 0)

(0, 1, 1)

(0, 0, 0)

(0, 0, 1)

(0, 1, 1)
(1, 1, 1)

(0, 0, 0)

(0, 0, 1)

(1, 0, 1)

(1, 1, 1)

(0, 0, 0)
(1, 0, 0)

(1, 1, 1)

(0, 0, 0)

(1, 1, 1)

(0, 0, 0)

(0, 1, 0)

(1, 1, 1)

(1, 1, 0)

Figure 3. The decomposition of T̃ 3 with respect to H1,1,1

(0, 0, 1) (1, 0, 1)

(0, 0, 0)

(1, 1, 1)
(0, 1, 1)

(0, 1, 0)

(1, 0, 0)

(1, 1, 0)

Figure 4. The induced decomposition of the quotient T̃ 3/H1,1,1
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maps three 3-simplices onto any one of these two 2-simplices.
Let us prove that the actions of T on T and on T/H with these decomposi-

tions is cellular. In T = Rs/Zs, the product of two points π(x), π(y), x, y ∈ Rs,
equals π(z) where z = x+ y. For any (k + r)-cell τk+r of T̃ and any cell ejJ of
T, multiplication in T maps the product ejJ×τk+r into the plane in Is spanned
by τk+r and {ai, i ∈ J}, and this is contained in the (k + r + j)-skeleton of T̃ .
Passing to the quotient, this implies that the product of a j-cell of T and a
k-cell of T/H is in the (j + k)-skeleton of T/H, so the action

ρ : T × T/H → T/H

is a cellular map.
If H = H0 ×D, where H0

∼= T r is a torus and D = Z/n1 ×· · ·×Z/nk, is a
discrete torus, the proof of the proposition follows directly from the following
simple lemma, applied to the torus T with the decomposition T̃ and to the
torus T ′ = T s−r with the induced decomposition.

Lemma 2.1. Let T ′ = T/H be a torus with a given linear CW decom-
position, such that the action of T is cellular. For every closed discrete subgroup
D < T ′ there exists a CW decomposition of T ′/D such that the induced action
of T on T ′/D is cellular.

Proof. The projection T ′ → T ′/D can be decomposed into

T ′ → T ′/D1 = T1 → · · · → Tk−1/Dk−1 = T ′/D,

where every groupDi is isomorphic to a cyclic group Z/ni. Let β be a generator
of D1 and b = (b1, . . . , bs−r) a generator of π−1D1 in Rs−r, where r = dimH.
Every component bi is of the form pi/qi, where qi divides the order n1 of D1.
Let h : Rr−s → Rr−s be the linear isomorphism given by

h : (x1, . . . , xr−s) �→ (q1x1, . . . , qr−sxr−s).

The map h−1 induces a subdivision of the unit cube Is−r into ν copies I1, . . . , Iν ,
where ν is a multiple of n1. If the original decomposition of Is−r into convex
polyhedra arising from the given CW decomposition of T ′ is repeated in each
one of these copies, a linear subdivision of Is−r is obtained which induces a
D1-invariant CW decomposition of T ′. Figure 5 illustrates this decomposition
of T ′ in the case where T ′ = T 3/H1,1,1

∼= T 2 from Figure 4, and the discrete
subgroup D < T ′ is generated by b = (1/3, 1/6) ∈ R2.

The induced CW decomposition of T ′/D1 obtained in this way is linear
and clearly has the property that the action of T is cellular.

In the same way we construct a map hi : Ti−1 → Ti−1/Di−1 = Ti for each
i = 1, . . . , k. The CW decomposition of T ′/D induced by h = hk ◦ · · · ◦ h1 has
the required property.
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T ′/D1

Figure 5. The decompositions of T ′ and of T ′/D in the case where D is the
cyclic group Z/6 generated by b = (1/3, 1/6) ∈ R

2

3. Toral groups

In this section G is a toral group, i.e. an extension

T G F,
p

of a torus T over a finite group F . Our aim is to construct suitable CW
decompositions of G and of every orbit G/H where H is a member of a good
representative family K of subgroups of G. In order to do this, we first prove

Proposition 3.1. For every toral group G, where T → G → F , there
exists a finite subgroup F ′ ⊂ G such that p : F ′ → F is surjective.

Proof. Let p1, . . . , pr be all primes that divide |F | and let

A =
(

Z

[
1
p1
, . . . ,

1
pr

]
/Z

)s
.

The group A is a subgroup of T s. Since H2(F,A) ∼= H2(F, T s) (Lemma 3.1)
there exists a subgroup B of G which is an extension of A by F . We can write
A as the union

A = ∪∞
n=1An, An = {x ∈ A | (p1 · · · pr)nx = 0} ⊂ A.

Let [φ] ∈ H2(F,A) be an element representing the extension B. Because φ : F×
F → A is a map from a finite set, there exists an n such that Imφ ⊂ An. So
[φ] ∈ H2(F,An) which means that there exists a finite subgroup F ′ of B which
is an extension of F by An.

Lemma 3.1. H2(F,A) ∼= H2(F, T s).

Proof. An exact sequence of groups A → T s → T s/A induces a long
exact sequence

· · · → Hn−1(F, T s/A) → Hn(F,A) → Hn(F, T s) → Hn(F, T s/A) → · · ·
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Let [φ] ∈ Hn(F, T s/A). By [2, Corollary 4.2.3], |F | · [φ] = 0. There
exists a cochain ψ ∈ Cn−1(F, T s/A) such that |F | · φ = δ(ψ). Therefore φ =
(1/|F |)δ(ψ) = δ((1/|F |)ψ), hence [φ] = 0 and Hn(F, T s/A) = 0.

Next, we generalize the standard decomposition T to a suitable CW de-
composition G of G with the property that multiplication G×G → G is a cel-
lular map. The basic property of G is that every product (f ′1e11f1) · · · (f ′je1jfj),
where fi, f ′i ∈ F ′ and e1i is a 1-cell of T, i = 1, . . . , j, is in the j-skeleton G(j).
As a result, the restriction G|T is a subdivision of T, since every j-cell ejJ ∈ T
is contained in the j-skeleton of G. In addition to the (subdivided) cells of T,
the j-skeleton (G|T )(j) contains products of the form

σj = (u1f
−1
1 e11f1) · · · (ujf−1

j e1jfj) = u(f−1
1 e11f1) · · · (f−1

j e1jfj)

where ui ∈ F ′∩T , fi ∈ F ′, i = 1, . . . , j, and u = u1 · · ·uj . Geometrically σj can
be described as the projection π(Lju) of the affine space Lju = ũ+Lj where Lj

is the tangent space of the subgroup (f−1
1 e11f1) · · · (f−1

j e1jfj), and ũ ∈ π−1(u).
If we imagine T as the cube Is with identified parallel sides, then every σj

consists of finitely many parallel j-dimensional planes.
The required CW decomposition G|T is constructed by cutting the cube

Is along the finitely many planes π(Ls−1) corresponding to all possible σs−1.
Since the cuts on parallel sides coincide, this decomposition of Is into convex
polyhedra determines a CW decomposition of T , such that every σj is con-
tained in a union of j-faces, and thus in the j-skeleton. This decomposition is
not linear, since Ls−1 is in general an affine and not a linear subspace of Rs.
Nevertheless, multiplication is a cellular map, since the sum a + b of elements
a ∈ Lj1u1

and b ∈ Lj2u2
is in Lju1u2

, where j ≤ j1 + j2.
The decomposition of T obtained in this way is extended to other com-

ponents of G in the following way. For every f ∈ F ′ the map u �→ fu is a
homeomorphism from T to the component fT which induces a CW decom-
position G|fT = f(G|T ) on fT . The j-skeleton (G|fT )(j) is the union of all
products fσj . If f1 ∈ F ′ ∩ fT then f1 = fu, u ∈ F ′ ∩ T and f1σ

j = fuσj =
f(σ′)j is also in the j-skeleton (G|fT )(j), so the decompositions of fT ob-
tained from multiplication by two different elements f, f ′ ∈ fT coincide. Every
product (f ′1e

1
1f1) · · · (f ′je1jfj) is contained in G(j), since it can be rewritten as

f(g−1
1 e1g1) · · · (g−1

j ejgj), f, gi ∈ F ′, i = 1, . . . , j, and multiplication is clearly
cellular.

Example 1. Let G = NSU(2)T be the infinite quaternionic group,
which is an extension

T 1 G Z/2.
p

We can represent G as the subgroup of SU(2) generated by rotations

T =
{
rϕ =

[
α 0
0 ᾱ

]
, α ∈ S1 ⊂ C

}
< SU(2),
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and the element

u =
[

0 i
i 0

]
.

Since u is of order 4 in SU(2), it generates a copy of Z/4, so we let F ′ =
〈u〉 ∼= Z/4, and F ′′ = F ′ ∩ T = ±I (where I denotes the identity matrix in
SU(2)). We give T < G the common subdivision of the standard decomposition
T = {e0 = I, e1 = T}, and of −T, i.e. {e01 = I, e02 = −I, e11 = S1

+, e
1
2 = S1

−},
and the second component uT the decomposition induced by multiplication by
u, i.e. {e03 = u, e04 = −u, e13 = uS1

+, e
1
4 = uS1

−}.
Let K′ be any family of closed subgroups, containing precisely one repre-

sentative of every conjugacy class in G, and define

K = {f−1Kf,K ∈ K′, f ∈ F ′}.
The following theorem is an extension of Theorem 2.1 to toral groups.

Theorem 3.1. Let G be a toral group and H ∈ K. There exists a CW
decomposition of the orbit space G/H such that the action ρ : G×G/H → G/H
is cellular and for every K ∈ K the fixed point set (G/H)K of the natural action
of K on G/H is a subcomplex of G/H.

In the proof of the theorem we will need three additional propositions.

Proposition 3.2. For any two closed subgroups H,A ≤ G such that
H ≤ A, and for any given u ∈ T , there exists a CW decomposition of T/(H∩T )
such that (uA∩T )/(H ∩ T ) is a subcomplex and the action of T on T/(H ∩T )
with the decomposition G|T is cellular.

Proof. Again we imagine the unit component T of G as the cube Is with
identified parallel sides. Then uA ∩ T is the union of finitely many parallel
planes {(u + cq) + LA | q = 1, . . . , Q}, where LA is the tangent space of A at
the identity. Since H < A, the tangent space LH of H is a linear subspace of
LA. Let {bi, i = 1, . . . , r′} be a basis of LA such that the first r vectors form
a basis of LH . We cut the cube Is along all (s − 1)-planes (u + cq) + Ls−1

ui
,

where Ls−1
ui

= ui + Ls−1, ui ∈ F ′ ∩ T , and Ls−1 is spanned by any collection
of linearly independent vectors containing b1, . . . , br, and any s− r− 1 vectors
from the union {bi, i = r + 1, . . . , r′} ∪ {f−1aif, i = 1, . . . , s, f ∈ F ′}, where ai
are standard basis vectors. This gives an (H ∩ T )-invariant decomposition of
T which induces a decomposition of T/(H ∩ T ) such that (uA∩ T )/(H ∩ T ) is
a CW subcomplex, and such that the action of T with the decomposition G|T
is cellular.

Let us fix a subgroup H ∈ K. For any K ∈ K, let AK denote the intersec-
tion

AK = q−1((G/H)K) ∩ T = {u ∈ T | u−1Ku < H},
where q : G → G/H is the quotient map. Notice that, since conjugation by
elements of T preserves components, the set AK is nonempty only for those
subgroups K of G, for which p(K) < p(H).
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Proposition 3.3. If K is a subgroup of H, then the set AK is a sub-
group of T .

Proof. Since conjugation ϕu : G → G, ϕu(g) = u−1gu by an element
u ∈ T preserves components of G, it follows that for every u ∈ T and g ∈ G
there exists a v ∈ T such that u−1gu = gv. Let u, u′ ∈ AK , and k ∈ K. Then
there exist v, v′ ∈ T such that u−1ku = kv ∈ H and (u′)−1ku′ = kv′ ∈ H.
Then

(uu′)−1k(uu′) = (u′)−1(kv)u′ = (u′)−1ku′v = kv′v = (kv′)k−1(kv).

Since this is a product of three elements from H, it is in H, so uu′ ∈ AK .
The fact that AK is a subgroup follows either from Theorem 3.5 of [8] or from
the following simple argument: if u−1ku = kv ∈ H, also v ∈ H, so

k = ukvu−1 = uku−1v ∈ H,

and therefore uku−1 = kv−1 ∈ H. Thus u−1 ∈ AK if u ∈ AK .

Proposition 3.4. For a given H, the family {AK | K < H} contains
at most finitely many different sets.

Proof. Let K,K ′ < H be such that p(K) = p(K ′), i.e. K and K ′ have
elements in the same components of G. For every k ∈ K there exists a k′ ∈ K ′

such that k′ = kv for some v ∈ T . Then v = k−1k′ ∈ H ∩ T . For every u ∈ T ,

u−1k′u = u−1kvu = u−1kuv

so u−1k′u ∈ H precisely when u−1ku ∈ H which means that u ∈ AK precisely
when u ∈ AK′ . The set AK thus depends only on the projection p(K) < F .
Since F is finite, there are only finitely many possibilities for AK .

Proof of Theorem 3.1. Let K ∈ K be such that AK �= ∅. Pick any element
y ∈ AK and let K̄ = y−1Ky < H. Then

AK = {u | u−1Ku = u−1yK̄y−1u < H} = {yv | v−1K̄v < H} = yAK̄ .

By Proposition 3.3, AK̄ is a group for every K. By Proposition 3.2 there exists
a CW decomposition of T/(H ∩T ) such that AK/(H ∩T ) is a subcomplex of T
and the action of G|T is cellular. By Proposition 3 the family {AK̄ | K̄ < H}
is finite. For every K ∈ K, the number of groups K ′ ∈ K which are conjugate
to K equals F ′, so also the family {AK | K ∈ K} is finite and there exists a
common CW subdivision of T/(H ∩T ) such that AK/(H ∩T ) is a subcomplex
for every K ∈ K, and the action of G|T on T/(H ∩ T ) is cellular.

This decomposition is extended to other components of G in the same way
as the standard decomposition of T : for every f ∈ F ′, the homeomorphism
hf : T → fT , hf (t) = ft, determines a CW decomposition of hf (T ). We
let every component of G have the CW decomposition which is the common
subdivision of the finitely many decompositions obtained in this way. This
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gives an F ′-invariant CW decomposition of G such that the restriction to T is
a subdivision of the decomposition defined above. By construction, the induced
decomposition of G/H is F ′ invariant.

For a given K < H, the intersection of the fixed point set with the com-
ponent fT of G is

q−1((G/H)K) ∩ fT = {fu | u ∈ T, u−1f−1Kfu < H} = fAf−1Kf .

Since the representative family K is closed under conjugation by elements of
F ′, this implies that (G/H)K is a subcomplex for every K. The proof that the
action of G on G/H is cellular is similar to the argument used in the proof of
Proposition 2.1.

4. Proof of Theorem 1.1

Now that CW decompositions of the homogeneous spaces G/H, H ∈ K,
are given, the CW complex Y and the G-homotopy equivalence h : X → Y is
constructed inductively by a similar process as in [3] and [1].

The 0-skeleton X(0) is a disjoint union of orbits G/Hi, where Hi ∈ K.
Let Y0 be X(0) with the CW decomposition of Theorem 3.1 on every 0-cell
G/Hi. Then the action ρ : G × Y0 → Y0 is cellular. For every K ∈ K the
fixed point set (X(0))K is a disjoint union of fixed point sets (G/Hi)K and is
a subcomplex. We define the G-homotopy equivalence on the 0-skeleton by
h0 = id : X(0) → Y0.

By induction we assume that there exists a CW complex Yn−1 with a
cellular action of G such that for every K ∈ K the fixed point set (Yn−1)K is a
subcomplex of Yn−1 and a G-homotopy equivalence

hn−1 : X(n−1) → Yn−1.

For any G-cell en ∈ X(n), the attaching G-map G/H × Sn−1 → X(n−1) is
determined by its restriction

ϕ : Sn−1 → (X(n−1))H .

Let ψ be a non-equivariant cellular approximation of the composition

hn−1 ◦ ϕ : Sn−1 → (Yn−1)H .

Since the action of G on Yn−1 is cellular, the G-extension

ψ̃ : G/H × Sn−1 → Yn−1

of ψ is also cellular, and the space

Yn =
∐

en
i ∈X(n)

(G/Hi ×Dn) ∪‘
ψ̃i
Yn−1

is a CW complex with a cellular action of G. For every K ∈ K, the fixed
point set (Yn)K is the disjoint union of subcomplexes (G/Hi)K glued to the
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subcomplex (Yn−1)K along the cellular map ψ̃ and is a subcomplex. The G-
homotopy hn : Yn → Xn is obtained by extending the map hn−1 over the
G-cells one by one. In the direct limit we obtain the desired CW complex Y
and G-homotopy equivalence h.

Remark. The class of toral groups contains all normalizers of maximal
tori NT of compact Lie groups (including both 1-dimensional groups treated in
[7]), and it might be possible to use our Theorem 1.1 to prove a similar theorem
for general compact Lie groups. Nevertheless, as the example of SU(2) in [1]
shows, the step from NT to G in a general compact Lie group is nontrivial. It
seems more likely that there exists a compact Lie group for which the statement
of Theorem 1.1 does not hold.
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