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Entropies, convexity, and functional inequalities

On Φ-entropies and Φ-Sobolev inequalities

By

Djalil Chafäı

Abstract

Our aim is to provide a short and self contained synthesis which
generalise and unify various related and unrelated works involving what
we call Φ-Sobolev functional inequalities. Such inequalities related to
Φ-entropies can be seen in particular as an inclusive interpolation be-
tween Poincaré and Gross logarithmic Sobolev inequalities. In addition
to the known material, extensions are provided and improvements are
given for some aspects. Stability by tensor products, convolution, and
bounded perturbations are addressed. We show that under simple con-
vexity assumptions on Φ, such inequalities hold in a lot of situations, in-
cluding hyper-contractive diffusions, uniformly strictly log-concave mea-
sures, Wiener measure (paths space of Brownian Motion on Riemannian
Manifolds) and generic Poisson space (includes paths space of some pure
jumps Lévy processes and related infinitely divisible laws). Proofs are
simple and relies essentially on convexity. We end up by a short parallel
inspired by the analogy with Boltzmann-Shannon entropy appearing in
Kinetic Gases and Information Theories.

1. Introduction

Let Φ : I → R be a smooth convex function defined on a closed interval
I of R not necessarily bounded. Let µ be a positive measure on a Borel space
(Ω,F). The Φ-entropy functional EntΦ

µ is defined on the set of µ-integrable
functions f : (Ω,F) → (I, B(I)) by the following formula:

EntΦ
µ (f) :=

∫
Ω

Φ(f) dµ − Φ
(∫

Ω

f dµ

)
.

Obviously, such a formula makes sense only when
∫
Ω
f dµ ∈ I, which is always

the case when µ is a probability measure. Unless otherwise stated, the Φ-
entropy in the sequel will be always considered for probability measures. One
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326 Djalil Chafäı

has then that

(1.1) EntΦ
µ (f) = Eµ(Φ(f)) − Φ(Eµf).

In addition, depending on I, the integrability condition on f can be relaxed
and Jensen inequality implies that the Φ-entropy functional takes its values in
R+ ∪ {+∞}. Moreover, it is convex with respect to its functional argument at
fixed mean. As we will see, the global convexity requires more assumptions on
Φ. If f is µ-a.s. constant, EntΦ

µ (f) vanishes, and the converse is true when Φ
is strictly convex. Sometimes, we will drop the µ subscript in EntΦ

µ . For any
random variable X : (Ω′,F ′) → (Ω,F), we will denote

EntΦ(f(X)) := EntΦ
L(X)(f) .

The classical variance and entropy can be recovered since we have

(1.2) Entx�→x2

µ = Varµ and Entx�→x log x
µ = Entµ.

Notice that the Φ-entropy functional f �→ EntΦ
µ (f) is neither homogeneous

nor translation invariant in general. Nevertheless, since it is non-negative and
vanishes when its argument f is a constant function, it can be a good candidate
as a left hand side of a Sobolev like functional inequality where the right hand
side is a Dirichlet form.

Actually, the term “Φ-entropy” is quite arbitrarily chosen, since we can
speak about “Φ-variance” too, but this term is perhaps more adapted to the
quantity

(1.3) VarΦ
µ (f) := Eµ(Φ(f − Eµf)) ,

which is translation invariant and gives the classical variance Varµ when Φ(x) =
x2, but the entropy Entµ cannot be recovered. One can remember the famous
quotation from John Von Neumann about entropy, which can be found for ex-
ample in [ABC+00, Chap. 10]. Notice that similar Φ-entropies appears with
that name in a slightly different forms in a lot of papers related to Information
Theory and Convex Analysis fields, see for example [BR82b], [BR82a], [BR82c],
[TV93] and [BTT86] and references therein. The Φ-entropy is related to the
so called (h, Φ)-entropies, see for example [MMPS97] and references therein.
The Φ-entropy is also known as J-divergence (J stands for Jensen). See also
[Csi63, Csi72] for the similar notion of φ-divergence.

Let (Xt)t�0 be a Markov process on a Polish space Ω equipped with its
Borel σ-field, say for example (Rd, B(Rd)). We define the classical associated
Markov semi-group (Pt)t�0 acting on Cb(Ω, R) by:

(1.4) Pt(f) (x) := Eµ(f(Xt) |X0 = x) .

Let us assume that there exists an invariant measure µ, i.e. a positive Borel
measure µ on Ω stable by (Pt)t�0. When µ is a probability, we get that
L(X0) = µ implies L(Xt) = µ for all t ∈ R+. We denote by L := ∂t=0+ Pt the
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infinitesimal generator of (Pt)t�0 with domain D(L) ∈ L2(µ), and by Γ the
associated “carré du champ” operator defined by:

(1.5) Γ(g, h) :=
1
2

(L(gh) − g Lh − hLg).

By convention, Γg := Γ(g, g). For Markov processes, Γg is always non-negative.
The invariance of a probability measure µ is equivalent to

∀f ∈ D(L), Eµ(Lf) = 0.

We say that a positive measure µ is symmetric if and only if L is symmetric
in L2(µ), i.e. 〈f , L g〉L2(µ) = 〈g , L f〉L2(µ) for all f and g in D(L). Measure µ
is invariant if it is symmetric but the converse is false in general. Symmetric
measures lead to an integration by parts formula

(1.6) −〈g , Lh〉L2(µ) = 〈Γ(g, h)〉L2(µ) = 〈Γ(h, g)〉L2(µ).

The reader may find an introduction to the analysis of Markov semi-groups in
[Bak94] and [Bak02] for example, where the delicate problem of the existence
of an algebra of functions A stable by semi-group and generator is addressed.
By invariance of µ and Jensen inequality for Φ:

EntΦ
µ (Ptf) = Eµ(Φ(Ptf)) − Φ(Eµf)

� Eµ(PtΦ(f)) − Φ(Eµf)

= EntΦ
µ(f).

On the other hand, if the semi-group is L2-ergodic, EntΦ
µ (Ptf) converges to 0

when t tends to +∞, and we get that:

0 = EntΦ
µ (P∞f) � EntΦ

µ (Ptf) � EntΦ
µ (P0f) = EntΦ

µ(f).

Actually, one can show that any Φ-entropy related to the invariant measure of
a Markov process is non-increasing along the associated Markovian semi-group:

Proposition 1.1 (DeBruijn like property for Markov semi-groups).
Let (Xt)t�0 be a Markov process on a Polish space Ω equipped with its Borel
σ-field. Let (Pt)t�0 be the associated Markov semi-group with infinitesimal
generator L and “carré du champ” Γ. Assume that µ is an invariant probability
measure. Then, for any suitable function f : Ω → I and any t > 0:

(1.7) ∂t EntΦ
µ (Ptf) = Eµ(Φ′(Ptf) LPtf) � 0.

When µ is symmetric, one has the following formulation

(1.8) ∂t EntΦ
µ (Ptf) = −Eµ(Γ(Φ′(Ptf), Ptf)).

Moreover, when (Xt)t�0 is a diffusion process, one has :

(1.9) ∂tEntΦ
µ (Ptf) = −Eµ(Φ′′(Ptf) ΓPtf).
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Proof. Equality in (1.7) follows immediately from definition of EntΦ
µ and

L. The symmetric case (1.8) comes by integration by parts (1.6). Let us show
that the right hand side of (1.7) is � 0. Jensen inequality for convex function Φ
and probability measure Pt yields Φ(Pt(g)) � Pt(Φ(g)) for any t > 0, and hence
Φ′(g) L g � LΦ(g). Thus, by invariance of µ, we get that Eµ(Φ′(g) L g) � 0,
which gives the result when g = Ptf . Finally, the diffusion case (1.9) comes
from the fact that we have then the so called “chain rule formula”

(1.10) Γ(α(g), h) = α′(g) Γ(g, h).

Recall that the operator L is a diffusion operator if and only if for any f1, . . . , fk

in D(L) and any smooth function α : Rk → R such that α(f1, . . . , fk) ∈ D(L):

(1.11)

L(α(f1, . . . , fk)) =
k∑

i=1

(∂i α)(f1, . . . , fk) Lfi+
∑

1�i,j�k

(∂2
ij α)(f1, . . . , fk) Γ(fi, fj).

We have to mention that the diffusion property makes really sense only in
continuous space settings and implies roughly that L is a second order linear
partial differential operator without constant part, cf. [Bak02, Bak94]. Finally,
one can observe that the convexity of Φ is needed only in order to give the sign
in (1.7): the Φ-entropy EntΦ

µ is non-increasing along the Markov semi-group
when Φ is convex.

Finally, notice that the term −Φ(Eµf) in the definition of EntΦ
µ (f) plays

no role in the non-increasing property along the semi-group since by invari-
ance of µ, one has −Φ(EµPt(f)) = −Φ(Eµf). Therefore, one can investigate
the non-increasing property along the semi-group for generic (h, Φ)-entropies
defined by h(Eµ(Φ(f))).

Property (1.7) tells us that any Φ-entropy related to the invariant measure
on a Markov process is non-increasing along the Markovian semi-group. Actu-
ally, an exponential decrease a Φ-entropy along the semi-group is equivalent to
a functional inequality for µ:

Corollary 1.1 (Exponential decrease of EntΦ along a semi-group).
There is an equivalence between:

(1.12) ∃ c ∈ R∗
+, ∀ f : Ω → I, EntΦ

µ (f) � −cEµ(Φ′(f) L f),

and

(1.13) ∃ c ∈ R∗
+, ∀ t � 0, ∀f : Ω → I, EntΦ

µ (Ptf) � e−t/c EntΦ
µ(f).

Proof. Obvious from the DeBruijn like property stated in Proposition 1.1
by taking the derivative in t.

Provided that I = R, one can adapt Corollary 1.1 to the “Φ-variance”
given by (1.3). For Markov processes, the functional JΦ

µ defined by:

(1.14) JΦ
µ (f) := −

∫
Ω

Φ′(f) L f dµ(x)
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can be seen as a generalisation of Fisher information, which corresponds to the
cases Φ(x) = x log x or Φ(x) = x2 (both are equivalent for diffusions due to the
chain rule (1.10)). More generally, when I = R+, one can define the Kullback-
Leibler Φ-entropy (or relative Φ-entropy) and the Φ-Fisher functionals for any
couple of positive measures µ and ν by:

(1.15) EntΦ(ν |µ) =


∫

Ω

Φ̂
(

dν

dµ

)
dµ if ν 
 µ

+∞ if not,

where Φ̂(u) := Φ(u) − Φ(1) u, and

(1.16) JΦ(ν |µ) =

−
∫

Ω

Φ′
(

dν

dµ

)
L
(

dν

dµ

)
dµ if ν 
 µ

+∞ if not.

Observe that Φ̂ inherits the convexity property from Φ and that (Φ̂(0), Φ̂(1)) =
(Φ(0), 0) and that (Φ̂)′′ = Φ′′: one can always “correct” a convex function by
an affine additive part in such a way that the new function vanishes at a fixed
point. If ν is a probability measure with dν := f dµ, one has

EntΦ(ν |µ) = EntΦ
µ (f) and JΦ(ν |µ) = JΦ

µ(f).

It would be interesting to study the role played by such functionals in Large
Deviation Principles, since the “normal” entropy appears as a rate function, cf.
[DS89]. The Kullback-Leibler relative entropy, which corresponds to Φ(x) =
x log x appears for example in Sanov Theorem as a particular convex conjugate
functional on probability measures spaces. One can hope a sort of Φ-Sanov
like Theorem involving the Φ-relative entropy, and the extremal case of the
variance is interesting.

Definition 1.1 (Φ-Sobolev inequalities). In accordance with Corollary
1.1, a probability measure µ associated to a Markov process with generator L
satisfies to a Φ-Sobolev inequality of constant c ∈ R+ on the class A ⊂ {f :
Ω → I} if and only if

(1.17) ∀ f ∈ A, EntΦ
µ (f) � cEµ

(EΦ(f)
)
,

where f �→ EΦ(f) is a non-negative “energy” functional vanishing when f is
constant. The precise choice of such functional will depend on the structure on
the involved space Ω and measure µ. When EΦ(f) = −Φ′(f) Lf , the “tradi-
tional” logarithmic Sobolev and Poincaré inequalities correspond respectively
to Φ(x) = x log x and to Φ(x) = x2. In abstract settings, a Φ-Sobolev inequality
for µ takes the form when I = R+

(1.18) ∀ ν 
 µ, EntΦ(ν |µ) � cJΦ(ν |µ).

Beware that (1.17) gives (1.18) but the converse seems to be true only when
Φ(x) = x log x (nevertheless, it is always true for densities f with respect
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to µ). Here again, one can prefer the name “Φ-Poincaré” inequalities, but
it seems to be an illogical choice since log-Sobolev inequalities are not called
“log-Poincaré”! “Our” Φ-Sobolev inequalities are close in form to the “Orlicz-
Poincaré” inequalities mentioned in [GZ03, p. 125–126]. The interested reader
may find an extensive study of similar but quite different inequalities involving
Φ(x) = |x|p with p � 1 in [BZ02] and [BCR04].

Notice that the two classical Φ-entropies in (1.2) share the same special
property: 1/Φ′′ is affine, i.e. both convex and concave in the same time. Hence,
if one try to generalise these two cases, one can assume that 1/Φ′′ is convex. As
we will see, it turns out that it is not a good choice in view of deriving coercive
inequalities like Poincaré or log-Sobolev inequalities, for which the concavity of
1/Φ′′ is needed. Such a condition can be found for example in the unrelated
works [LO00], [Hu00] and [BR82a]. Nevertheless, convexity may gives inverse
forms of such inequalities. Here are some possible additional assumptions on
Φ:

(H1) (u, v) �→ Φ′′(u) v2 is non-negative and convex on I × I;
(H2) (u, v) �→ Φ(u + v)−Φ(u)−Φ′(u) v is non negative and convex on I(2);
(H2’) Φ′′ is convex, non-negative and non-increasing on I;

where I(2) := {(u, v) ∈ R2, (u, u + v) ∈ I × I}. For convenience, we denote by
Ψ the real valued function defined on I(2) by

(1.19) Ψ(u, v) := Φ(u + v) − Φ(u) − Φ′(u) v.

Notice that (H1) is equivalent to the convexity of Φ and Φ′′ and −1/Φ′′, see
Remark 11 page 355. On the other hand, (H2’) implies (H2), and (H2’) is
equivalent to state that Φ, Φ′′ and −Φ′ are convex. Basic examples for both
(H1) and (H2) and (H2’) are given by

• Φ(x) = x log x on I = R+;
• Φ(x) = xp with 1 < p < 2 on I = R+;
• Φ(x) = x2 on I = R.

In such examples, the associated Φ-entropy EntΦ
µ is homogeneous. Hypothe-

sis (H1) is suitable in continuous settings, whereas hypothesis (H2) and (H2’)

are useful in discontinuous ones. The bivariate convexity of (u, v) �→ Φ′′(u) v2

under (H1) and of Ψ under (H2) is the key property to derive Φ-Sobolev in-
equalities like in (1.17). Such functional inequalities may be investigated in
many situations involving Markov processes:

Time – Space Continuous space Discontinuous space

Continuous time Diffusions processes Poisson space and Lévy processes

Discrete time Discrete Markov chains and martingales

Of course, Lévy processes are martingales, but it is not the case for all diffusions.
The discrete time case is not really addressed in this work, but one can consider
Random Walks or Bernoulli processes, and some answers can be found for
example in [GP03] and references therein. For each case, one may be interested
in inequalities on the whole paths space or more simply in the law at fixed
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time (infinite for invariant measure by ergodicity). There is a lack of chain
rule formula (1.10) for Γ operator in discrete space settings. However, i.i.d.
increments can then help to recover a Brownian Motion like behaviour. In some
cases, inequalities at fixed time can be tensorised to give multi-time inequalities
which appears as inequalities for marginals of the paths space measure. A
limiting procedure can be then used to recover inequalities on paths space (it
is the so called cylindrical method). Roughly, we use here two types of proofs
in order to extract Φ-Sobolev inequalities from “Markovianity”. The first kind
makes use of the semi-group and the second kind, more powerful, is based on a
martingale representation and gives directly results on paths spaces. Finally, it
is probably possible to establish Φ-Sobolev inequalities under (H1) on some loop
spaces, as what is done in [GM98b] and [GM98a] for the logarithmic Sobolev
inequality.

The DeBruijn like property stated in proposition 1.1 can be seen as a sort
of special case of Gâteau directional derivative of Φ-entropy like functionals,
see for example [BR82a], where the Φ-entropy is called J-Divergence. Actually,
one can state the following Proposition:

Proposition 1.2. Assume that µ is a probability measure and that Φ
fulfils (H1). Let L1,Φ(µ) be the set of measurable functions f : (Ω,F) → I
such that f ∈ L1(µ) and Φ(f) ∈ L1(µ). Then L1,Φ(µ) is convex, the Φ-entropy
functional f ∈ L1,Φ(µ) �→ EntΦ

µ (f) is convex, and for any f ∈ L1,Φ(µ), one
has the following duality formula:

(1.20) EntΦ
µ (f) = sup

h∈L1,Φ(µ)

{
Eµ((Φ′(h) − Φ′(Eµh)) (f − h)) + EntΦ

µ (h)
}
.

Proof. For any couple f, g in L1,Φ(µ) and any t ∈ [0, 1], one has

ht := tf + (1 − t)g ∈ L1(µ),

and Φ(ht) ∈ L1(µ) by convexity of Φ. Thus ht ∈ L1,Φ(µ) and L1,Φ(µ) is convex.
Consider now the real function α : [0, 1] → R+ defined by α(t) := EntΦ

µ (ht)
and let us show that it is convex. Assume first that f and g are bounded. An
easy computation gives

α′(t) = Eµ(Φ′(ht)(f − g)) − Φ′(Eµ(ht))(Eµ(f − g)),

and

α′′(t) = Eµ

(
Φ′′(ht)(f − g)2

)− Φ′′(Eµ(ht))(Eµ(f − g))2,

which is non-negative by virtue of Jensen inequality for the bivariate func-
tion (u, v) �→ Φ′′(u) v2. Alternatively, one can use the concavity of 1/Φ′′ and
Cauchy-Schwarz inequality. Therefore, α is continuous on [0, 1] and convex on
(0, 1). In other words, for any s, t, λ ∈ [0, 1],

α(λs + (1 − λ)t) � λα(s) + (1 − λ)α(t).
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At this stage, the dominated convergence Theorem allows us to drop the bound-
edness assumption on f and g. In particular, α(λ) � λα(1) + (1 − λ)α(0) can
be written

EntΦ
µ (λf + (1 − λ)g) � λEntΦ

µ (f) + (1 − λ)EntΦ
µ(g),

and the convexity of f ∈ L1,Φ(µ) �→ EntΦ
µ (f) is established. Notice that

the convexity of Φ implies that the expression of α′ is valid for any f and
g in L1,Φ(µ). Since every convex function is the envelope of its tangents, cf.
[RW98, HUL01], one gets the following variational formula:

EntΦ
µ (f) = α(1) = sup

t∈[0,1]

{α(t) + α′(t)(1 − t)},

which can be rewritten as (1.20) since for any fixed f in L1,Φ(µ),

L1,Φ(µ) =
{
tf + (1 − t)g, where g ∈ L1,Φ(µ) and t ∈ [0, 1]

}
.

Notice that the value of the sup in (1.20) is achieved for h = f .

The convexity of Φ-entropy like functionals is well known, see for example
[BR82c], [BR82a, Thm. 2] and [LO00, Lem. 4]. One can show that this con-
vexity is in some sense equivalent to (H1) via well chosen f and h functions in
(1.20). Formally, the Fréchet derivatives of this functional are given by(

DEntΦ
µ

)
(f)(h) = Eµ([Φ′(f) − Φ′(Eµf)] h),

and (
D2EntΦ

µ

)
(f)(h, h) = Eµ

(
Φ′′(f) h2

)− Φ′′(Eµf) (Eµh)2.

We recover the well known formulas for variance and entropy by considering
the appropriate Φ:

(1.21) Varµ(f) = sup
h

{2 Covµ(f, h) − Varµ(h)},

and

(1.22) Entµ(f) = sup
h

{Eµ(f log h) − Eµ(f) log Eµ(h)}.

The duality formula (1.20) for Φ-entropies can be found in Convex Analysis and
Information Theory literature, at least for discrete probability measures, see for
example [BTT86]. It is quite straightforward via the convexity of Φ-entropies
under (H1). We have to mention that Pascal Massart & al gave recently an el-
ementary proof of this variational formula, cf. [BBLM04, Mas03]. See [BR82a]
and [MMPS97] for further developments and a Bayesian and Riemannian Ge-
ometry point of view.
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Remark 1 (Bi-convexity of relative Φ-entropy). Assume that I = R+

and let (Ω,F) be a measurable space equipped by a positive Borel measure µ.
Let α and β be two probability measures on (Ω,F), absolutely continuous with
respect to µ, with densities p and q respectively. Then, the relative Φ-entropy
EntΦ(β |α) defined in (1.15) is given by

EntΦ
µ (q; p) :=

∫
Ω

Φ̂
(

q

p

)
p dµ.

An easy computation shows that the convexity of Φ induces the bi-convexity
of the bivariate function (u, v) ∈ R2

+ �→ Φ̂(v/u) u. Thus (p, q) �→ EntΦ
µ (q; p) is

also bivariate convex. Notice that at fixed f , the Φ-entropy itself µ �→ EntΦ
µ (f)

is concave!

Remark 2 (Convexity and nullity for constants). One can be surprised
by the condition (H1) requested for the convexity of the Φ-entropy functional
f �→ EntΦ

µ (f). Actually, it is due to the presence of the −Φ(Eµf) term in
the definition of EntΦ

µ . If one removes this term, the resulting functional
f �→ Eµ(Φ(f)) is always convex since Φ is convex and (H1) is not needed.
Nevertheless, in that case, the functional does not vanishes when its argument
f is constant, and thus it becomes useless as the left hand side of a Sobolev
like functional inequality.

2. Phi-Sobolev for diffusions and log-concave measures

Proposition 1.1 translates the fact that the derivative in time of the Φ-
entropy along a Markovian semi-group can be expressed in terms of the deriva-
tives in space Γ, i.e. Fisher information. As we will see, for diffusions, a com-
mutation formula between the semi-group and the derivatives in space yields
finally local Φ-Sobolev inequalities. We learnt the following Theorem for hy-
percontractive diffusions from [Hu00, Sect. 3], where it is stated in a slightly
different manner, see also [Bak02].

Theorem 2.1 (Φ-Sobolev inequality for diffusions). Let (M, g) be a
connected complete Riemannian manifold and let (Xt)t�0 be a diffusion process
on M with symmetric invariant positive measure µ absolutely continuous with
respect to the Riemannian volume measure. If a CD(ρ,∞) criterion is satisfied
with ρ � 0 (cf. (2.5), Section 2.1, page 335), then under (H1), one has :

(1) For any smooth function f : M → I and any t ∈ R+:

(2.1) EntΦ
Pt

(f) � 1 − e−2ρt

2ρ
Pt(Φ′′(f) Γf),

where (Pt)t�0 and Γ are as in (1.4) and (1.5) and where the constant is t/2
when ρ = 0.

(2) If ρ > 0 and µ is a probability measure and (Xt)t�0 is L2-ergodic then,
for any smooth function f : M → I:

(2.2) EntΦ
µ (f) � 1

2ρ
Eµ(Φ′′(f) Γf).
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Proof. The second part may be deduced from the first one via ergodicity
by letting t tends to +∞. Let us give a direct proof. Let L be the infinitesimal
generator of the diffusion semi-group. By the ergodic property and Fubini
Theorem, it follows that

EntΦ
µ (f) : = Eµ(Φ(f)) − Φ(Eµf)

= Eµ(Φ(P0f)) − Eµ(Φ(P∞f))

= −
∫ ∞

0

dt Eµ(∂t Φ(Ptf))

= −
∫ ∞

0

dt Eµ(Φ′(Ptf) LPtf)

= +
∫ ∞

0

dt Eµ(Φ′′(Ptf) ΓPtf),

where the last equality is obtained by integration by parts (1.6) which is a
consequence of the symmetry of µ for L. Now, by the diffusion property,
the CD(ρ,∞) criterion is equivalent to the following commutation formula (cf.
Section 2.1 page 335):

(2.3)
√

ΓPtf � e−ρt Pt

√
Γf.

Therefore,

Φ′′(Ptf) ΓPtf � exp(−2ρt) Φ′′(Ptf)
(
Pt

√
Γf
)2

,

and then by Jensen inequality with the bivariate function Φ′′(u) v2 which is
convex under (H1):

Φ′′(Pt(f)) Pt

(√
Γf
)2

� Pt(Φ′′(f) Γf) .

Alternatively, one can use the concavity of 1/Φ′′ and the Cauchy-Schwarz in-
equality. The desired results follows immediately from the invariance of µ:
Eµ(Ptf) = Eµ(f). The proof of the first part (2.1) is quite similar. One just
has to replace µ by Ps, and Pt by Pt−s. The integration by parts and the
chain rule leading to the expression in Φ′′ must be replaced by the following,
relying on the diffusion property of L:

∂s Ps(Φ(Pt−s(f))) : = Ps(LΦ(Pt−s(f)) − Φ′(Pt−s(f)) LPt−s(f))
= Ps(Φ′′(Pt−s(f)) ΓPt−s(f)) ,

where 0 < s � t. Notice that the diffusion property is used directly here, which
was not the case for the non local inequality, for which it was used via the
strong commutation property given by the CD(ρ,∞) criterion. As we will see,
there is a lack of the diffusion property in discontinuous space settings, and one
has to replace (u, v) �→ Φ′′(u) v2 by Ψ which is convex under (H2).
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See [Hu00] for Gross like hypercontractivity, F.K.G. inequalities and re-
lated aspects of Φ-entropies for diffusion semi-groups. We have to mention that
the diffusion property leads to a more general result which contains F.K.G. and
Φ-Sobolev inequalities as sub-cases, as explained in [Hu00, Thm. 4.2]. Namely,
it states that if Φ1, Φ2 : I ⊂ R → R are two smooth functions such that a par-
ticular 5 × 5 matrix involving the derivatives of Φ1 and Φ2 is positive definite,
then for any smooth f and g:

EntΦ1, Φ2
µ (f, g) � Eµ(Φ′′

1(f) Φ2(g) Γf)

+ Eµ(Φ1(f) Φ′′
2(g) Γg)

+ 2 Eµ(Φ′
1(f) Φ′

2(g) Γ(f, g)),

where the quantity

EntΦ1, Φ2
µ (f, g) := Eµ(Φ1(f) Φ2(g)) − Φ1(Eµ(f)) Φ2(Eµ(g))

is a sort of (Φ1, Φ2)-covariance. One has in particular

Entx�→x, x�→x
µ = Covµ and Entx�→1, x�→Φ(x)

µ = EntΦ
µ .

Remark 3 (Non-negativity of functions). It is possible in some cases to
reduce the analysis to non-negative functions. Namely, since Pt(|f |) � |Pt(f)|,
one can write:

Eµ(fLf) = lim
t→0+

1
2t

Eµ

(
fPt(f) − f2

)
� lim

t→0+

1
2t

Eµ

(|f |Pt(|f |) − |f |2)
= Eµ(|f |L|f |) ,

which gives Eµ(Γ|f |) � Eµ(Γf). More generally, one can show by the same
way that Eµ(Φ′′(|f |) Γ|f |) � Eµ(Φ′′(|f |) Γf). Moreover, one can assume that
f � ε > 0 by Fatou Lemma.

2.1. Geometry and log-concavity
As we have seen in Theorem 2.1, a natural framework for Φ-Sobolev in-

equalities related to diffusions is Riemannian manifolds. Let L be a Markov
generator with symmetric positive measure dµ = exp(U) dvg on a complete
connected Riemannian manifold (M, g) equipped with its volume measure vg.
Function U : M → R is taken smooth. A basic example is given by the Laplace-
Beltrami operator L = ∆g + ∇U with vector field ∇U . Back to the generic
case of a Markov generator L on (M, g), let us define the iterated functional
quadratic forms Γf := Γ(f, f) as is (1.5) and Γ2f := Γ2(f, f) by

(2.4) Γ2(f, g) :=
1
2

(Γ(f, g) − Γ(f,Lg) − Γ(g,Lf)).

Then, for any (ρ, n) ∈ R × N, the CD(ρ, n) (or Bakry-Emery Γ2) criterion can
be expressed as:

(2.5) Γ2 � ρΓ +
1
n

(L)2,
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where (L)2f := (Lf)2. For diffusions generators L, CD(ρ,∞) is equivalent to
the strong commutation formula (2.3) between

√
Γ and Pt, which is a direct

consequence a Bochner formula*1:

Γ2(f, f) = (Ricg −∇2U)(∇f,∇f) + ‖Hessf‖2
2,

see for example [Bak97, Bak94], [Led00] and [ABC+00, Chap. 5]. Notice that
with n = ∞, (2.5) appears as the infinitesimal form of (2.3), via the fact that:

Ptf = f + tLf +
1
2

t2 LLf + o(t2),

cf. [ABC+00, Sect. 5.4]. In absence of the diffusion property, the Markov semi-
group verifies the following weaker commutation formula under CD(ρ,∞):

(2.6) ΓPtf � e−2ρt PtΓf.

This commutation formula leads to a Φ-Sobolev inequality when (u, v) �→
Φ′′(u) v is convex on I × R+, which is the case if and only if Φ′′′ = 0, i.e.
Φ(u) = au2 + bu + c with (a, b, c) ∈ R+ × R2 (i.e. Poincaré inequality).

Let us consider the “simple” example where (M, g) is the standard flat
Euclidean space (Rd, Id) and where L = ∆−∇W ·∇. The symmetric invariant
measure µ is then given by dµ(x) = exp(−W (x)) dx and can be obviously
normalised as a probability measure if and only if exp(−W ) ∈ L1(Rd, R, dx).
One has Γf = |∇f |2 and Ricg ≡ 0 and Γ2f =

∥∥∇2f
∥∥2

2
+ ∇f · ∇2W∇f . Now,

if there exists a real number ρ � 0 such that

∀x ∈ Rd, ∇2W (x) � ρId

as quadratic forms on Rd, then L satisfies CD(ρ,∞). Moreover, if ρ > 0, mea-
sure µ is uniformly strictly log-concave and can be normalised as a probability
measure. Obviously, measure µ can be finite without being uniformly strictly
log-concave.

Corollary 2.1 (Φ-Sobolev for unif. strictly log-concave densities). Let
µ be a probability measure on Rd absolutely continuous with respect to Lebesgue
measure dx with smooth density. Assume that µ is uniformly strictly log-
concave, i.e. that there exists ρ > 0 such that dµ(x) = exp(−H(x)) dx where
H : Rd → R is smooth and 〈Hess(H)(x) y; y〉 � ρ ‖y‖2

2 for any x and y in Rd.
Then under (H1) and for any smooth function f : Rd → I:

(2.7) EntΦ
µ (f) � 1

2 ρ
Eµ

(
Φ′′(f) |∇f |2

)
.

In particular, when µ = N (m, Σ) is a Gaussian measure of mean vector m ∈ Rd

and positive definite covariance matrix Σ ∈ Sym+∗
d (R), one has

ρ−1 = max(σ(Σ))

*1Actually Bochner-Lichnerowicz-Weitzenboch.
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where σ(Σ) is the spectrum of Σ. Moreover, the following Brascamp-Lieb type
inequality holds:

(2.8) EntΦ
N (m,Σ)(f) � 1

2
EN (m,Σ)(Φ′′(f) 〈Σ∇f ;∇f〉),

and inequality (2.8) remains valid when Σ is singular.

Notice that (2.7) is obtained by the comparison Hess(H) � ρ Id to the
standard quadratic form 〈· ; ·〉 = ‖·‖2

2 corresponding to the diagonal covariance
matrix Id. Such a comparison is essentially unidimensional and imposes a
geometric information loss. Recall that the Brascamp-Lieb inequality for the
strictly log-concave probability measure µ on Rd reads

∀f : Rd → R smooth, Varµ(f) � Eµ

(〈
(Hess(H))−1∇f ;∇f

〉)
,

where dµ(x) = exp(−H(x)) dx. When µ = N (m, Σ) with non singular Σ, one
has Hess(H) = Σ−1. Unfortunately, to our knowledge, and except for Gaussian
measures, Brascamp-Lieb forms of Φ-Sobolev inequalities are available only for
Poincaré inequalities, i.e. when Φ(u) = u2, cf. [BL00] for a counter example in
the logarithmic Sobolev case. However, if µ satisfies to a Φ-Sobolev inequality
on Rd with constant c and right hand side Eµ

(
Φ′′(f) |∇f |2

)
, one can ask about

some “optimal” deterministic symmetric d × d matrices S such that

EntΦ
µ (f) � cEµ(Φ′′(f) 〈S∇f ;∇f〉).

Back to the case where L = ∆ − ∇W · ∇ on Rd, an interesting “degen-
erated” case is given by W (x) = ‖x‖r

r with r ∈ {0} ∪ (1, 2) ∪ (2, +∞) since
∇2W (x) is then singular at x = 0. One has then only CD(0,∞), inducing a
local version only:

(2.9) EntΦ
Pt

(f) � tPt

(
Φ′′(f) |∇f |2

)
,

which is the Brownian Motion or (heat semi-group) behaviour corresponding
to the case r = 0 and dµ(x) = dx. One can expect a better inequality in term
of t-dependence of the obtained constant, but the semi-group method seems to
fail since it relies on a commutation formula (2.3) which is poor when r �∈ {0, 2}.
A perturbative approach (cf. Proposition 3.2 page 345) may be used for the
inequalities related to µ when r > 2, which corresponds to t = +∞, but the
constant is not sharp in general (cf. [ABC+00, Chap. 6]).

When ∇2W is constant, (Xt)t�0 is a Brownian Motion or an Ornstein-
Uhlenbeck process, and the commutation formula (2.3) is exact, i.e. an equality.
One can try to investigate the commutation between f �→ Φ′′(f) Γf and Pt,
with a cost related to a sort of convex conjugate Φ∗ of Φ. The idea is to relate
Φ with a criterion involving Γ and Γ2 (and thus W when L = ∆ −∇W · ∇).
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2.2. Interpolation between Poincaré and logarithmic Sobolev
For simplicity and notational convenience, we restrict ourselves here to Rd.

Assume that Φ : I → R is convex and smooth and that the probability measure
µ on Rd satisfies to a Φ-Sobolev inequality of the form:

∃c > 0, ∀f ∈ C∞
b (Rd, I), EntΦ

µ (f) � cEµ

(
Φ′′(f) |∇f |2

)
.

Now, for any g ∈ C∞
b (Rd, I), let us consider a ∈

◦
I such that Φ′′(a) > 0 and

fε := a + ε g with ε > 0. Then, fε ∈ C∞
b (Rd, I) for ε sufficiently small and by

Taylor formula for Φ and the Φ-Sobolev inequality above for fε, one gets when
ε goes to 0+:

Varµ(g) � 2 cEµ

(
|∇g|2

)
.

Therefore, Poincaré inequality can be seen in a sense as the weakest Φ-Sobolev
inequality since it is implied by any Φ-Sobolev inequality, at least on C∞

b (Rd, I).
Moreover, let us assume that R+ ⊂ I and let us take now fε = a+ε gp/2 where
g is positive and p ∈ (1, 2], then we get by the same way:

Eµ(gp) − Eµ

(
gp/2

)2

� 2 c p2 Eµ

(
|∇g|2 gp−2

)
.

Now, since p ∈ (1, 2], Jensen inequality yields Eµ

(
gp/2

)2 � Eµ(g)p, and there-
fore:

Eµ(gp) − Eµ(g)p � 2 c
p

(p − 1)
Eµ

(
p(p − 1) gp−2 |∇g|2

)
,

which is a Φ-Sobolev inequality with Φ(x) = xp on I = R+. However, the
constant does not give the sharp one obtained in Corollary 2.1 when µ is log-
concave, and there is no way to recover a logarithmic Sobolev inequality by
letting p tends to 1+ like in (2.13) since 2 c p/(p − 1)2 blows up near p = 1.
This fact in not surprising since one can start from a Poincaré inequality in the
latter, which is known to be strictly weaker than logarithmic Sobolev inequal-
ity (the simplest counter-example is given by the exponential probability law
on the real line, see also [ABC+00, Chap. 6]). Recall that the Φ-Sobolev in-
equality obtained in Corollary 2.1 for log-concave probability measures include
the optimal Poincaré and logarithmic Sobolev inequalities by considering the
appropriate Φ, namely:

(2.10) ∀f ∈ W1,∞(Rd, R∗
+), Entµ(f) � 1

2ρ
Eµ

(
|∇f |2

f

)
,

and

(2.11) ∀f ∈ W1,∞(Rd, R), Varµ(f) � 1
ρ

Eµ

(
|∇f |2

)
,

and more generally, for any p ∈ (1, 2]:

(2.12) ∀f ∈ W1,∞(Rd, R∗
+), Entx�→xp

µ (f) � 1
2ρ

Eµ

(
p(p − 1) fp−2 |∇f |2

)
.



�

�

�

�

�

�

�

�

Entropies, convexity, and functional inequalities 339

Recall that Entµ = Entx�→x log x
µ and that Varµ := Entx�→x2

µ . The W1,∞-
regularity is not optimal, but we are not interested here in such aspects. Notice
that fp−2 |∇f |2 = 4p−2

∣∣∇fp/2
∣∣2. The particular constant in p appearing in

(2.12) allows to derive the logarithmic Sobolev inequality by using the fact that
for a positive f :

(2.13) lim
p→1+

Eµ(fp) − Eµ(f)p

p − 1
= ∂p=1 {Eµ(fp) − Eµ(f)p} = Entµ(f).

Therefore, the logarithmic Sobolev inequality appears as a sort of limiting case
of a family of Φ-Sobolev inequalities associated to Φ(x) = xp with p close to
1+, and the constant is sharp when µ is log-concave. In another direction, by
an appropriate change of function, one can reformulate the p-inequality (2.12)
as follows:

∀f ∈ W1,∞(Rd, R∗
+), Eµ

(
f2
)− Eµ

(
f2/p

)p

� 2(p − 1)
pρ

Eµ

(
|∇f |2

)
,

which gives by denoting q = 2/p, i.e. q ∈ [1, 2):

∀f ∈ W1,∞(Rd, R∗
+), Eµ

(
f2
)− Eµ(fq)2/q � (2 − q)

ρ
Eµ

(
|∇f |2

)
.

By removing the positivity condition on f as explained in Remark 3, we get
finally that for any q ∈ [1, 2):

(2.14) ∀f ∈ W1,∞(Rd, R), Eµ

(
f2
)− Eµ(|f |q)2/q � (2 − q)

ρ
Eµ

(
|∇f |2

)
,

which is exactly the inequality studied in [Bec89] for the Gaussian measure and
in [LO00], [Wan02], [Bar01], [BR03] and [BCR04] for further developments re-
lated to this particular case. Notice that in (2.14), the energy term Eµ

(
|∇f |2

)
does not depend on q, and one can adopt the following more convenient formu-
lation:

(2.15) ∀ f ∈ W1,∞(Rd, R), sup
q∈[1,2)

Eµ

(
f2
)− Eµ(|f |q)2/q

(2 − q)
� 1

ρ
Eµ

(
|∇f |2

)
.

Generalisations of this type of statement where (2 − q) and 1/ρ are replaced
by a more general functions are addressed in [LO00] and [Wan02]. Actually,
inequality (2.14) appears as a sort of infinite dimensional “dual” version of a
Sobolev inequality. Namely, let (M, g) be a smooth compact connected Rie-
mannian manifold with dimension d � 3 and Ricci curvature ρ > 0, and let
µ be the normalised Riemannian volume probability measure. The Sobolev
inequality states that for any real valued smooth function f on M :

(2.16) Eµ(|f |q)2/q − Eµ

(
f2
)

� q + 2
2q

q − 2
ρ

Eµ

(
|∇f |2

)
,
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where q := 2d/(d − 2) and |∇f |2 denotes the length of the gradient of f on
M, see for example [Led00]. Such an inequality is stronger than logarithmic
Sobolev inequality which is stronger than Poincaré inequality. When M is the
standard d-dimensional sphere Sd(r) ⊂ Rd+1 of radius r =

√
d, one has

ρ =
d − 1
r2

=
q + 2

2q
.

It is then well known that one can recover the optimal logarithmic Sobolev
inequality for the standard Gaussian measure on Rk when µ = N (0, Id) by
taking the projection σk : Rd+1 → Rk where k � d and by letting d tends
to +∞ (i.e. q tends to 2). This fact is sometimes referred as the “Poincaré
observation”, see for example [Joh03] for a generalisation to the case where µ
is a Boltzmann-Gibbs product measure.

Remark 4 (From Φ-Poincaré to Φ-Sobolev). It is shown in [Wan02]
that for any p ∈ [1, 2] and any f ∈ L2(Ω, µ, R) where µ is a probability measure
on Ω that:

Eµ

(
f2
)− Eµ(|f |p)2/p � Varµ(f) + (1 − p) Varx�→xp

µ (f)2/p .

It appears as an extended version of a Rothaus-Deuschel-Stroock-Bakry in-
equality to the case p ∈ [1, 2], cf. [ABC+00, Lemmas 4.3.7 and 4.3.8]. In
presence of Poincaré inequality, it can be used perhaps to deduce a Φ-Sobolev
inequality for Φ(x) = xp from an hypothetic Φ-Poincaré inequality involving
the Φ-variance (1.3).

Remark 5 (Sets convexity). For any α ∈ {1, 2, 2′}, let E(α, I) be the
set of smooth convex functions from I to R such that (Hα) holds. It is easy
to see that these three sets are convex vector cones, i.e. stable by linear com-
binations with non-negative scalar coefficients. For example, for any λ :=
(λ1, λ2, λ3, λ4) ∈ (R+)2 × R2 and any p ∈ (1, 2], the function Φp, λ : R+ → R

defined by

Φp, λ(x) := λ1 xp + λ2 x log x + λ3 x + λ4

is in E(1, R+) ∩ E(2, R+) ∩ E(2′, R+). It is clear that functions Φ2, λ are
extremal points of the convex cone E(1, R+). One can observe that for any
probability measure µ and any interval I of R, the functional valued functional
Φ ∈ E(α, I) �→ EntΦ

µ is the restriction of a linear functional over the cone
E(α, I), which is not sensitive to λ3 and λ4. The same linearity property holds
for the associated Φ-Sobolev inequalities which are moreover invariant by any
dilatation in λ. Thus, we understand that in view of Φ-Sobolev inequalities, λ3

and λ4 plays no role and that Φ2, e1 and Φ?, e2 which corresponds respectively
to classical variance and entropy are “extremal” cases under (H1). It could be
nice to try to use a sort of Choquet integral representation by mean of extremal
points, cf. [FLP01].
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3. Perturbation, tensorisation, convolution, concentration

We explore here the stability of Φ-Sobolev inequalities by tensorisation,
convolution, and perturbation. We give also some concentration of measure
consequences.

3.1. Tensorisation
A sub-additivity property for Φ-entropies under (H1) can be found in

[LO00, Cor. 3]. However, we provide in the sequel a short and simple proof rely-
ing on the convexity of the Φ-entropy functional established in Proposition 1.2.
Duality and sub-additivity formulas are well known for variance and entropy,
cf. [Led97] and [ABC+00, Chap. 1]. The tensorisation property for Φ-entropies
can be seen as an extension of the sub-additivity of Kullback-Leibler relative
entropy. Beware that it is different from the also well known sub-additivity of
Shannon like entropies, cf. Section 6 page 356 for an explanation.

Recall that for two probability measures ν and µ on a probability space
(Ω,F) with ν 
 µ , the Kullback-Leibler relative entropy Ent(ν |µ) is defined
by:

Ent(ν |µ) :=
∫

Ω

dν

dµ
log

dν

dµ
dµ = Eµ

(
dν

dµ
log

dν

dµ

)
= Eν

(
log

dν

dµ

)
.

Let (Ω1×· · ·×Ωn,F1 ⊗· · ·⊗Fn, µ1⊗· · ·⊗µn) be a product probability space.
Then, for any probability measure ν 
 µ1 ⊗ · · · ⊗ µn:

(3.1) Ent(ν |µ1 ⊗ · · · ⊗ µn) � Eµ(Ent(ν |µ1)) + · · · + Eµ(Ent(ν |µn)) ,

where

Ent(ν |µi) := Entµi
(f) =

∫
Ωi

f log f dµi −
∫

Ωi

f dµi log
∫

Ωi

f dµi,

and f := dν/µ1⊗· · ·⊗µn. Moreover, equality holds if and only if ν = ν1⊗· · ·⊗
νn. In other words, for any real valued integrable function f on the product
space:

(3.2) Entµ1⊗···⊗µn
(f) � Eµ(Entµ1(f)) + · · · + Eµ(Entµn

(f)) .

This property of relative entropy remains true for Φ-entropies when Φ fulfils
(H1):

Proposition 3.1 (Tensorisation of Φ-entropies). Suppose that Φ satis-
fies (H1). Let (Ω1×· · ·×Ωn,F1⊗· · ·⊗Fn, µ1⊗· · ·⊗µn) be a product probability
space. Then, for any measurable function f : (Ω,F) → (I, B(I)) one has :

(3.3) EntΦ
µ1⊗···⊗µn

(f) � Eµ

(
EntΦ

µ1
(f)
)

+ · · · + Eµ

(
EntΦ

µn
(f)
)

.

Proof. As for variance and entropy, (3.3) is a consequence of the convex-
ity of the Φ-entropy functional, and can be obtained by using the variational
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(duality) formula for Φ-entropies (1.20). Namely, for any h and i ∈ {0, . . . , n},
let hi := Eµ1⊗···⊗µi

(h), with h0 = h. Thanks to the variational formula (1.20),
one has:

EntΦ
µ (f) � Eµ((Φ′(h0) − Φ′(hn))(f − h)) − EntΦ

µ(h).

Since we can write

Φ′(h0) − Φ′(hn) =
n∑

i=1

(Φ′(hi−1) − Φ′(hi)),

the desired result follows by the variational formula (1.20) again and the fact
that

EntΦ
µ (h) � Eµ

(
EntΦ

µi
(hi−1)

)
,

which is due to Jensen inequality for the convex function Φ.

The tensorisation property for Φ-entropies can be used to tensorise Φ-
Sobolev inequalities as what is done for logarithmic Sobolev and Poincaré in-
equalities, which can then be viewed as particular cases. In essence, Φ-Sobolev
inequalities under (H1) are then infinite dimensional since they hold on the
product space with the maximum of the one dimensional constants.

3.2. Convolution
For any x ∈ Rd, we denote by τx the translation of vector x in Rd acting

on any function f : Rd → R by (τx · f)(y) := f(x + y). One can state then the
following immediate Corollary of Proposition 3.1.

Corollary 3.1 (Stability of Φ-Sobolev inequalities by convolution).
Suppose that Φ satisfies (H1). For any i ∈ {1, . . . , n}, let µi be a probability
measure on Rd satisfying to a Φ-Sobolev inequality of the form

∃ci > 0, ∀f : Rd → I smooth, EntΦ
µi

(f) � ci Eµi

(EΦ(f)
)
,

where f �→ EΦ(f) is a non-negative functional depending on Φ and its deriva-
tives such that E ◦ τx = τx ◦ E for any x ∈ Rd. Then, one has for any smooth
function f : Rd → I
(3.4) EntΦ

µ1∗···∗µn
(f) � (c1 + · · · + cn) Eµ1∗···∗µn

(EΦ(f)
)
.

The commutation property E ◦ τx = τx ◦ E is satisfied for example when
one has EΦ(f) = Φ′′(f) |∇f |2, and one can then check the optimality of the
obtained constant c1 + · · · + cn when µi are Gaussian measures. The Poisson
measures with suitable energy EΦ give another example for which constant is
optimal, cf. Section 5. We believe that Corollary 3.1 remains essentially the
same if one replaces the Euclidean space Rd by an infinite dimensional Banach
space or by a topological Abelian group (and maybe any Lie group). It can
be useful for processes with independent increments, in discrete or continuous
time, and for infinitely divisible laws. However, we will use different methods
in the sequel, since i.i.d. increments and/or infinite divisibility can be used by
other ways to provide the same result.
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Remark 6 (Invariance by action of the translation group). Notice that
hypothesis E ◦τx = τx ◦E for any x ∈ Rd ensures that any associated Φ-Sobolev
inequality is “invariant by translations in base space”. Namely, if one has

∃ c > 0, ∀f ∈ A, EntΦ
µ (f) � cEµ

(EΦ(f)
)
,

then for any x ∈ Rd,

∀f ∈ τ−x · A, EntΦ
τx·µ(f) � cEτx·µ

(EΦ(f)
)
,

where the action of τx on measure µ is given by τx ·µ := µ∗δx. Thus, if the class
of functions A is invariant by translations, i.e. τx · A = A for any x ∈ Rd, then
any element of the orbit {µ ∗ δx, x ∈ Rd} satisfies to the Φ-Sobolev inequality
satisfied by µ, with same constant c and class A. Here again, we believe that
things remain essentially the same if one replaces Rd by an infinite dimensional
Banach space or by a topological Abelian group. Notice that when Φ(x) is of
the form x log x or xp with p ∈ (1, 2], the associated Φ-Sobolev inequality on
Rd with E(f) = Φ′′(f) |∇f |2 is homogeneous, and thus is additionally stable
by dilatations.

Actually, translations are particular examples of Lipschitz functions and
one can expect a sort of stability by Lipschitz transforms when the energy
functional E satisfies some stability. The following remark gives an answer.

Remark 7 (Invariance by action of Lipschitz functions). Let Θ : Rd →
Rd′

be a measurable map, acting on a function f : Rd′ → R by (Θ · f)(y) :=
f(Θ(y)) for any y ∈ Rd. Assume that the probability measure µ on Rd satisfies
to the following Φ-Sobolev inequality:

∃ c > 0, ∀ g ∈ A, EntΦ
µ (g) � cEµ

(EΦ(g)
)
,

where EΦ is a non-negative functional. Assume that there exists a constant
α > 0 such that for any g ∈ A, (EΦ ◦ Θ)(g) � α (Θ ◦ EΦ)(g). Let us denote by
A · Θ the set of functions f : Rd′ → I such that Θ · f ∈ A. Then, one has

∀ f ∈ A · Θ, EntΦ
Θ·µ(f) � c αEΘ·µ

(EΦ(f)
)
,

where Θ ·µ := µ ◦Θ−1 is the image measure of µ by Θ, i.e. the law of Θ under
µ. An important example is given by EΦ(g) = Φ′′(g) |∇g|2 and by any smooth
map Θ such that ‖Jac(Θ)‖2 � √

α. In particular, when d = d′, such Φ-Sobolev
inequalities are stable up to constants by the action of the non-Abelian group of
diffeomorphisms with “bounded Jacobian”. Actually, in many cases including
EΦ(g) = Φ′′(g) |∇g|2, only a weak smoothness of Θ is needed, and for example
one can assume only that Θ is Lipschitz when d′ = 1.

As an immediate consequence of Corollary 3.1 and Remarks 6 and 7, one
can deduce the following result.
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Corollary 3.2. For any i ∈ {1, . . . , n}, let µi be a probability measure
on Rdi satisfying to a Φ-Sobolev inequality of the form:

∃, ci > 0, ∀f : Rdi → I smooth, EntΦ
µi

(f) � ci Eµi

(
Φ′′(f) |∇f |2

)
,

where Φ satisfies (H1). Let d be in N∗. For each i = 1, . . . , n, let Θi : Rdi → Rd

be a smooth (resp. Lipschitz when d = 1) map with ‖Jac(Θi)‖2 � √
αi (resp.

‖f‖Lip � √
αi when d′ = 1). Let µ be the probability measure on Rd defined by

(3.5) µ := (Θ1 · µ1) ∗ · · · ∗ (Θn · µn).

Then, for any smooth function f : Rd → I

(3.6) EntΦ
µ (f) � (c1α1 + · · · + cnαn) Eµ

(
Φ′′(f) |∇f |2

)
.

Probability measures like in (3.5) appear for example in Statistics as fixed
points of some kernel estimators. A very special Gaussian case of (3.5) was
studied in [BK02] when Φ(x) = x log x and (n, d1, d) = (1, 2, 1). In view of
some applications to Statistics and Statistical Mechanics, the natural next step
is to explore the stability of Φ-Sobolev inequalities by general mixtures of the
form

Eµ(f) :=
∫

T

Eµt
(f) dν(t);

and conditioning of the form µ = L((X1, . . . , Xn) |F (X1, . . . , Xn) = m) for
example. But such aspects are far more delicate and intricate and will be
hopefully the aim of forthcoming papers.

3.3. Perturbation
One can derive a perturbation property for the Φ-Sobolev inequality via

the following straightforward variational formula for Φ-entropies:

(3.7) EntΦ
µ (f) = inf

a∈
◦
I⊂R

Eµ(Φ(f) − Φ(a) − Φ′(a) (f − a)︸ ︷︷ ︸
�0

).

This formula is nothing else but the consequence of Taylor formula for the
convex function Φ, and no more assumption on Φ are required here. It can be
found in [ABC+00, Lem. 3.4.2]. One can easily recover the well known formulas
for variance and entropy by considering the appropriate Φ:

Varµ(f) = inf
a∈R

Eµ

(
(f − a)2

)
and

Entµ

(
f2
)

= inf
a∈R

∗
+

Eµ

(
f2 log(f2/a) − a + f2

)
.

Such a variational formula (3.7) allows a perturbation of Φ-Sobolev inequali-
ties via the method used by Holley and Stroock for Poincaré and logarithmic
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Sobolev inequalities, cf. [HS87]. Namely, let µ be a probability measure on
(Ω,F) and B : (Ω,F) → (R, B(R)) be a bounded measurable function. If we
define the probability measure νB on (Ω,F) by:

(3.8) dνB := (Zµ,B)−1 exp(B) dµ,

where Zµ,B := Eµ(exp(B)), then one can write:

EntΦ
νB

(f) = inf
a∈

◦
I

∫
Ω

(Φ(f) − Φ(a) − Φ′(a) (f − a)) dνB

� exp (− inf(B) + sup(B)) inf
a∈

◦
I

∫
Ω

(Φ(f) − Φ(a) − Φ′(a) (f − a)) dµ

= exp(osc(B)) EntΦ
µ (f) .

One can express the result as follows:

Proposition 3.2 (Perturbation). Let (Ω,F , µ) be a probability space
such that

∃ c ∈ R∗
+, ∀f ∈ A, EntΦ

µ (f) � c Eµ(E(f)),

where A is a class of real valued measurable functions on (Ω,F) taking their
values in I and where E : A → L1(Ω,F , µ, R+) is a functional. Then, for any
bounded measurable function B : (Ω,F) → R, one has :

∀f ∈ A, EntΦ
νB

(f) � c e2 osc(B) EνB
(E(f)),

where νB is like in (3.8).

3.4. Concentration of measure
It is well known that a logarithmic Sobolev inequality for µ on Rd of the

form

∃c > 0, ∀f : Rd → R smooth, Entx�→x log x
µ

(
f2
)

� cEµ

(
|∇f |2

)
gives, when applied to f = exp(λF ) where F : Rd → R is 1-Lipschitz, a
Gaussian like exponential upper bound for the Laplace transform of Lµ(F ):
Eµ(exp(λF )) � exp(c t2). Such a bound can be then used via classical Cheby-
chev-Markov-Chernov-Cramér approach to give a concentration inequality for
F around its mean:

µ(|F − Eµ(F )| � t) � 2 exp(−t2/c).

The t2 comes from the fact that the Young-Fenchel-Legendre convex conjugate
of x �→ p−1 xp is x �→ q−1 xq where q := p/(p − 1) is the Hölder conjugate of
p, and thus q = 2 when p = 2. This method is known as Herbst argument
and gives precise and non-asymptotic bounds which strengthen large devia-
tions results. The concentration bound obtained from logarithmic Sobolev in
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discrete settings are only Poissonian, i.e. exp(−c min(t2, t log t)), due to the
lack of chain rule. At the opposite side of the set of possible Φ functions, the
Poincaré inequality gives by the same method an exponential like concentra-
tion, i.e. exp(−c t). See for example [Led99, Led01] and [ABC+00, Chap. 7]
for a general approach to concentration of measure via functional inequalities.
It is tempting to study the concentration of measure consequences of generic
Φ-Sobolev inequalities, and one can expect intermediate exponential speeds be-
tween t2 and t. Let us recall what can be found in [LO00] and [Bar01]. Let µ
be a probability measure on Rd, and a ∈ [0, 1] and r = 2/(2−a) (i.e. r ∈ [1, 2]).
Assume that there exists a constant C > 0 such that for any q ∈ [1, 2) and any
smooth function f : Rd → R:

Eµ

(
f2
)− Eµ(|f |q)2/q � C (2 − q)a Eµ

(
|∇f |2

)
.

We have seen already that such an inequality can be deduced by a change of
function from a Φ-Sobolev inequalities with Φ(x) = x2/q. Then, the following
concentration of measure holds for any t > 0 and µ-integrable 1-Lipschitz
function F : Rd → R:

µ
(
F − Eµ(F ) >

√
C t
)

� exp (−K tr),

where K > 0 is a universal constant. See [Wan02, Bar01, LO00, BCR04] and
references therein for further developments. One can find a quite recent account
in [Lug04]. Some aspects of concentration of measure consequences in discrete
space settings are addressed in [Wu00] and [Led99] and references therein.

Theorem 2.1 (page 333) gives Φ-Sobolev inequalities for hypercontractive
diffusions and uniformly strictly log-concave probability measures, i.e. what is
under Bakry-Emery Γ2 criterion (2.5). It is quite natural to ask for a general
criterion to establish such inequalities beyond this scope. One can find some
answers in [LO00] and [Wan02] for Φ(x) = xp. Namely, let a ∈ [0, 1] and
r = 2/(2 − a) (i.e. r ∈ [1, 2]), and consider the probability measure νr on Rd

defined by:

dνr(x) := Z−1
r exp (−‖x‖r

r) dx.

Then there exists an universal constant C > 0 such that for any q ∈ [1, 2) and
any smooth function f : Rd → R:

Eνr

(
f2
)− Eνr

(|f |q)2/q � C (2 − q)a Eνr

(
|∇f |2

)
,

which is exactly after the suitable change of functions the Φ-Sobolev inequalities
for Φ(x) = x2/q. One can try to investigate Φ-Sobolev inequalities on the real
line via Hardy type inequalities, like what is known for Poincaré and logarithmic
Sobolev inequalities, cf. for example [ABC+00, Chap. 6]. As we will show in
the sequel, Φ-Sobolev inequalities can be established on paths space of some
diffusions (under (H1)) and some Lévy processes under (H2), extending by
this way what is already known in the literature for Poincaré and logarithmic
Sobolev inequalities.
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4. Phi-Sobolev for Brownian Motion and Wiener space

Consider the standard Brownian Motion (Bt)t�0 on Rd starting from B0 =
0. Since L(Bt) = N (0, t Id) is uniformly strictly log-concave with constant 1/t,
it satisfies a Φ-Sobolev inequality (2.2) of constant t/2 under (H1) for Φ:

∀t > 0, ∀f, EntΦ(f(Bt)) � t

2
E(Φ′′(f(Bt)) |∇f |2(Bt)).

Let 0 < t1 < · · · < tn be n successive times, and let F : Rn → R be a smooth
function. Then, one can write:

EntΦ(F (Bt1 , Bt2 , . . . , Btn
)) = EntΦ(F (Q1, Q1 + Q2, . . . , Q1 + · · · + Qn))

= EntΦ(G(Q1, . . . , Qn))

= EntΦ
L(Q1,...,Qn)(G) ,

where Qi := Bti
− Bti−1 and t0 := 0 and

G(x1, . . . , xn) := F (x1, x1 + x2, . . . , x1 + · · · + xn).

But now, since Brownian Motion has i.i.d. increments, one gets

L(Q1, . . . , Qn) = N (0, (t1 − t0) Id) ⊗ · · · ⊗ N (0, (tn − tn−1) Id).

Therefore, the tensorisation property (3.3) yields the following result.

Theorem 4.1 (Multi-times Φ-Sobolev for Brownian Motion). Let
(Bt)t�0 be a standard Brownian Motion on Rd. Assume that Φ fulfils (H1).
Then for any sequence of times t0 := 0 < t1 < · · · < tn and any smooth
function F : Rn → I:

(4.1) EntΦ(F (Bt1 , . . . , Btn
)) � 1

2
EL(Bt1 ,...,Btn )

(
Φ′′(F )D2

t1,...,tn
F
)
,

where

(4.2) D2
t1,...,tn

F :=
n∑

i=1

(ti − ti−1)

 n∑
j=i

∂jF

2

.

Moreover, the inequality remains true when t0 := 0 � t1 � · · · � tn.

One can ask if (4.1) is a consequence of (2.8). If we define the n×n square
matrices T and Q by T := diag(

√
t1 − t0, . . . ,

√
tn − tn−1) and Qi,j := δj�i,

then Σ := (TQ)
TQ is the covariance matrix of the centred Gaussian vector
(Bt1 , . . . , Btn

). In fact, Σi,j := ti ∧ tj , and the 〈Σv; v〉 quadratic form in the
right hand side of (2.8) reads

〈Σv; v〉 = (TQv)
TQv

=
n∑

i=1

(ti − ti−1)

 n∑
j=i

vj

2

,(4.3)
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which is exactly the quadratic form appearing in the right hand side (4.2)
of (4.1). Therefore, for Gaussian measures, the Φ-Sobolev inequality (4.1)
obtained by applying the tensorisation formula (3.3) to the unidimensional
case (2.7) (i.e. with d = 1) is exactly the Brascamp-Lieb type Φ-Sobolev
inequality (2.8). The direct use of (2.7) for the multivariate Gaussian measure
L(Bt1 , . . . , Btn

) gives the quadratic form (max σ(Σ))
∑n

i=1 v2
i where σ(Σ) is

the spectrum of Σ = TQ. Thus, inequality (2.7) for Gaussian measures is a
direct consequence of (4.1). Notice that det(Σ) = (t1 − t0) · · · (tn − tn−1) and
that Tr(Σ) = t1 + · · · + tn.

As we will see, inequality (4.1) appears as a particular case of a more gen-
eral one on paths space (i.e. for the Wiener measure). The same procedure
may be used for any random walk (resp. Lévy process), provided that the law
of the increment (resp. the infinitely divisible law at time t = 1) satisfies to
a Φ-Sobolev inequality under (H1) for Φ (we need a tensorisation property).
Infinitely divisible laws are particular cases of laws of sums of i.i.d. random
variables. As we will see, one can use for such laws the semi-group approach di-
rectly via the associated Lévy process, to establish Φ-Sobolev inequalities with
linear constant in time when Φ satisfies (H2), just like for Brownian Motion.

One can derive the Φ-Sobolev inequality for the Wiener measure on Rd

by a cylindrical method, starting from the multi-times Φ-Sobolev inequality
(4.1) (established by tensorisation) by letting the number n of times considered
tends to +∞. However, Φ-Sobolev inequalities involving a Malliavin derivative
can be easily derived on paths space via a martingale representation approach
and Itô formula as what was done for the log-Sobolev inequality in [CHL97].
Actually, one can state the following Theorem.

Theorem 4.2 (Φ-Sobolev for the Wiener measure). Let W0(Rd) be
the paths space of continuous functions from [0, 1] to Rd starting from 0 at
t = 0, measured by the standard Wiener measure. Assume that Φ fulfils (H1).
Then for any random variable F ∈ L2(W0(Rd), I):

(4.4) EntΦ(F ) � 1
2

E
(

Φ′′(F ) |DF |2
H

)
,

where D : L2(µ) → L2(µ, H) is the Malliavin gradient operator on W0(Rd) and
H is the Cameron-Martin Hilbert space.

Proof. For every functional F : W0(Rd) → I, consider the martingale
Mt := E(F | Ft) where 0 � t � 1 and Ft = σ(Bs, 0 � s � t) is the natural
filtration. Then, one has

dMt = 〈E((DF )·t | Ft) , dBt〉,

where (DF )·t denotes the directional derivative of F . Now, Itô formula yields:

E(Φ(Mt)) − E(Φ(M0)) =
1
2

E
(∫ 1

0

Φ′′(Mt) |E((DF )·t | Ft)|2 dt

)
,
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which is nothing else but

EntΦ
L((Bt)0�t�1)(F ) =

1
2

E
(∫ 1

0

Φ′′(E(F | Ft)) |E((DF )·t | Ft)|2 dt

)
.

Now, by Jensen inequality for the bivariate convex function (u, v) �→ Φ(u)′′ v2,
we get as in the semi-group proof of Theorem 2.1:

Φ′′(E(F | Ft)) |E((DF )·t | Ft)|2 � E
(

Φ′′(F ) |(DF )·t|2 | Ft

)
,

which gives the desired result. Here again, one can use alternatively the con-
cavity of 1/Φ′′ and Cauchy-Schwarz inequality.

Notice that the proof is a replica at paths space level of the semi-group
proof for diffusions in Theorem 2.1, where Pt is “replaced” by E(F | Ft) and
the diffusion property by Itô formula. This analogy is not formal indeed, since
the diffusion semi-group gives the solution of Stroock-Varadhan martingale
problem associated to the related elliptic diffusion operator, see for example
[KS91, Chap. 5, Sect. 4]. Such a proof can be extended to paths spaces on
manifolds as what was already done for the logarithmic Sobolev inequality in
[CHL97, Wan96] (see also [Hsu02, Sect. 8.3] and references therein), as stated
in the following Theorem.

Theorem 4.3 (Φ-Sobolev for Brownian Motion on a Manifold). Let
(M, g) be a smooth complete and connected Riemannian manifold equipped with
the Levi-Civita connection. Let x ∈ M and Wx(M) be the space of continuous
paths γ : [0, 1] → M with γ(0) = x. Assume that the Ricci curvature of M is
uniformly bounded by the real number K. Assume that Φ fulfils (H1), then for
any smooth non-negative random variable F on Wx(M):

(4.5) EntΦ(F ) � 1
2

eK E
(

Φ′′(F ) |DF |2
H

)
.

When M is the standard d-dimensional Euclidean space Rd, one has K = 0
and we recover Theorem 4.2. We believe that Φ-Sobolev inequalities under
(H1) still hold on the paths space of diffusions on manifolds with Driver to-
tal antisymmetry condition, as what was done in [CHL97] for the logarithmic
Sobolev inequality. We have to mention that this beautiful martingale method
for Wiener measure over Riemannian manifold appeared for the first time in
[Fan94] for the Poincaré inequality. We will use roughly the same method under
(H2) on Poisson space in Section 5.1 page 353.

5. Phi-Sobolev for pure jumps Lévy processes and Poisson space

It is tempting to try to establish Φ-Sobolev inequalities on Poisson space.
In particular, Lévy processes have i.i.d. increments like Brownian Motion. Such
processes are not diffusions, and the lack of the chain rule (1.10) forbids the
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direct use of the Bakry-Emery semi-group proof. More precisely, for all Markov
processes, Γ � 0, and the CD(ρ,∞) criterion is equivalent to Γ2 � ρΓ. But
the equivalent form in term of strong commutation (2.3) between the semi-
group and Γ is available only for diffusions. Nevertheless, for Lévy processes,
one has Γ2 � 0 and indeed Γ2 � Γ

√
Γ, which gives Brownian Motion like

commutation formulas and then permits to derive respectively Poincaré and
log-Sobolev inequalities, see [AL00] for the simple Poisson point process and
[CM02] for more general Lévy processes. More general approaches are presented
in [Wu00] (generic Poisson space) and [Pri00] (normal martingales), but here
again only for Poincaré and log-Sobolev inequalities.

Let us start with the simplest pure jumps Lévy process (Xt)t�0 which is
the simple Poisson point process with intensity λ > 0, for which

(5.1) (Lf)(x) := λ (f(x + 1) − f(x)) =: λ (D1f)(x),

where (Dyf)(x) := f(x + y) − f(x). If g := Pt−s(f), one has:

∂s Ps(Φ(g)) := Ps(LΦ(g) − Φ′(g) Lg) = λPs(Ψ(g, D1g)),

where Ψ is defined by (1.19). But now, under (H2), Ψ is bivariate convex on
I(2). It was already observed for the simple cases Φ(x) = x2 and Φ(x) = x log x
in the pretty paper [Wu00]. Hence, by the bivariate Jensen inequality and the
commutativity property between D1 and Pt−s (due to the i.i.d. nature of the
increments), one gets the following result.

Theorem 5.1 (Local Φ-Sobolev for the simple Poisson point proc.).
Let (Xt)t�0 be the simple Poisson point process on Rd with intensity λ > 0.
Assume that Φ fulfils (H2), then for any t > 0 and any smooth f : Rd → I:

(5.2) EntΦ
Pt

(f) � λ tPt(Ψ(f, D1f)),

where Pt(f) (x) := E(f(Xt) |X0 = x) is the associated semi-group as in (1.4).

In particular, by taking t = 1, we get:

Corollary 5.1 (Φ-Sobolev for the simple Poisson measure). Let Pλ be
the Poisson measure Pλ of mean λ > 0, then, under (H2):

(5.3) EntΦ
Pλ

(f) � λEPλ
(Ψ(f, D1f)).

Such a result remains true for pure jumps Lévy processes (i.e. without
Brownian part) by replacing D1 by the appropriate jump integral. The Brown-
ian part may be added at final stage via tensorisation when possible. Namely,
we can state the following.

Theorem 5.2 (Local Φ-Sobolev for a pure jumps Lévy process). Let
(Xt)t�0 be a pure jump Lévy process with infinitesimal generator of the form:

(5.4) (Lf)(x) := λ

∫
Rd

[
Dyf(x) − θ

y

1 + |y|2 · ∇f

]
dν(y),
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where (λ, θ) ∈ R∗
+ × Rd and where ν is a Lévy measure on Rd. Assume that Φ

fulfils (H2). Then for any t > 0 and any smooth f : Rd → I:

(5.5) EntΦ
Pt

(f) � λ tPt

(∫
Rd

Ψ(f, Dyf) dν(y)
)

,

where Pt(f) (x) := E(f(Xt) |X0 = x) is the associated semi-group as in (1.4).

Taking t = 1 in (5.5) gives the same functional inequality for the infinitely
divisible law L(X1), exactly like in Corollary 5.1 for the simple Poisson measure.
Theorem 5.1 for the simple Poisson point process can be recovered by taking
(θ, ν) = (0, δ1) in Theorem 5.2.

One can state the following multi-times version of Theorem 5.2 via the so
called Lu-Yau-Stroock-Zegarliński Markov decomposition method.

Theorem 5.3 (Multi-times Φ-Sobolev for pure jumps Lévy proc.). Let
(Xt)t�0 be a pure jumps Lévy process on Rd as in Theorem 5.2. Assume that Φ
fulfils (H2). Then for any increasing sequence of times t0 := 0 < t1 < · · · < tn
and any smooth F : Rn → I:

(5.6) EntΦ(F (Xt1 , . . . , Xtn
)) � λE

(DΦ(F (Xt1 , . . . , Xtn
))
)
,

where

DΦ(F ) :=
∫

Rd

n∑
i=1

(ti − ti−1) Ψ(F, Di,...,n
y F ) dν(y),

where for any x ∈ Rn

Di,...,n
y F (x) := F ◦ τi(y)(x) − F (x),

and where for any i ∈ {1, . . . , n} and x, y ∈ Rd

F ◦ τi(y)(x) := F (x1, . . . , xi−1, xi + y, . . . , xn + y).

Proof. By induction on n, we can restrict the problem to the case n = 2.
Let s and t be two distinct times with s < t. We assume that for any u > 0, a
Φ-Sobolev inequality holds for L(Xu) (i.e. for Pu) with constant λu. We would
like to obtain a similar inequality for L(Xs, Xt). Let F : R2 → I be a smooth
bivariate functional. We start with the following conditional decomposition of
the Φ-entropy (which replaces in some ways the tensorisation property):

EntΦ(F (Xs, Xt)) =E[E(Φ(F ) |Xs) − Φ(E(F |Xs))]
+ E(Φ(E(F |Xs))) − Φ(E(E(F |Xs))),

where we abridged F (Xs, Xt) in F in the right hand side. In other words,

(5.7) EntΦ(X) = E(EntΦ(X |Y )) + EntΦ(E(X |Y )),
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where EntΦ(X |Y ) is the conditional Φ-entropy defined by

EntΦ(X |Y ) := E(Φ(X) |Y ) − Φ(E(X |Y )).

Now, if Gx(y) := F (x, x + y), we have for any x:

EntΦ(Gx(Xt−s)) � λ (t − s) E
(∫

Rd

Ψ(Gx(Xt−s), DzGx(Xt−s)) dν(z)
)

.

Therefore, since Xt = Xs + Xt − Xs and L(Xs, Xt − Xs) = L(Xs) ⊗ L(Xt−s),
the first term of the EntΦ decomposition can be bounded above as

E[E(Φ(F ) |Xs) − Φ(E(F |Xs))] � λ (t − s) E
(∫

Rd

Ψ(F, D2
zF ) dν(z)

)
,

where the 2 exponent in D2
z means that the z translation is done on the second

variable of F in the definition of Dz. On the other hand, if we define Ht−s by

Ht−s(x) := E(F (x, x + Xt−s)),

we have:

EntΦ(Ht−s(Xs)) � λ sE
(∫

Rd

Ψ(Ht−s(Xs), DzHt−s(Xs)) dν(z)
)

.

Now, by the commutation formula DzHt−s(x) := E(Dz(x �→ F (x, x + Xt−s)))
and the bivariate Jensen inequality, the last term of the EntΦ decomposition
can be bounded above as follows:

E(Φ(E(F |Xs))) − Φ(E(E(F |Xs))) � λ sE
(∫

Rd

Ψ(F, D1,2
z F ) dν(z)

)
,

where this time the translation is done in both variables.

In some sense, the Markovian decomposition used in the proof of Theo-
rem 5.3 replaces the tensorisation property (3.3) when (H2) holds instead of
(H1). It was introduced in Statistical Mechanics for Poincaré and logarith-
mic Sobolev inequalities for finite volume Boltzmann-Gibbs measures related
to spins systems, cf. for example [GZ03] and [Roy99].

As for Brownian Motion, one can use a cylindrical method letting n tends
to +∞ in (5.6) in order to obtain a Φ-Sobolev inequality on paths space, as
expressed in the following Theorem.

Theorem 5.4 (Φ-Sobolev on paths space of pure jumps Lévy proc.).
Let (Xt)t�0 be a pure jump Lévy process as in Theorem 5.2. Assume that Φ
fulfils (H2). Then, for any suitable function F of (Xt)t�0 taking its values in I
and any T > 0:

(5.8) EntΦ
L((Xt)0�t�T )(F ) � λE

(∫ T

0

∫
Rd

Ψ(F, Dt
yF ) dν(y) dt

)
,

where

Dt
yF ((xs)0�s�T ) := F ((xs + y I[t,T ](s))0�s�T ) − F ((xs)0�s�T ).
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Obviously, Theorem 5.4 is stronger than Theorem 5.2 since the latter can
be recovered by simply considering in (5.8) functions F of the form

F ((x)0�s�T ) = G(xt1 , . . . , xtn
)

where T is chosen bigger than tn. Inequality (5.6) is similar to the one obtained
for Brownian Motion (4.1) via tensorisation. Actually, one can use Lu-Yau-
Stroock-Zegarliński Markovian method for Brownian Motion. Generic Lévy
processes – and thus Brownian Motion – are particular examples of normal
martingales and we believe that the approach used in [Pri00] for logarithmic
Sobolev inequalities remains valid for Φ-Sobolev inequalities, but one has to
precise the condition on Φ.

As explained below, Φ-Sobolev inequalities under (H2) can be established
on paths space for generic Poisson space via a Clark-Ocône-Haussmann formula.

5.1. Phi-Sobolev inequalities on Poisson space
Let us explain finally how one can recover the Φ-Sobolev inequality on Pois-

son space via a Clark-Ocône-Haussmann formula like what is done in [Wu00] for
the logarithmic Sobolev and Poincaré inequalities (see also [Pri00]). Following
closely [Wu00], let (E,B, ν) be a measured space where ν is a σ-finite measure
and (W,F ,P) the associated Poisson space with compensation measure ν. Let
also (Ω, C,P) be the Poisson space associated to

([0, 1] × E,B([0, 1]) ⊗ B, dt ⊗ dν(z)),

with compensation measure dµ(t, z) := dt ⊗ dν(z). One can then define the
difference operators Dz : L0(W,P) → L(E × W, ν ⊗ P) and

Dt,z : L0([0, 1] × E, µ) → L0([0, 1] × E × Ω, µ ⊗ P)

by:

DzF (ω) := F (ω + δz) − F (ω) and Dt,zF̂ (ω) := D̂zF (ω),

where F̂ (ω) := F (ω([0, 1], dz)). For any t ∈ [0, 1], we define

Ct := σ(ω(A); A ∈ B([0, t]) ⊗ B).

Let now G ∈ L2(Ω,P) and let g(t, z, ω) be a predictable dt ⊗ dν(z) ⊗ P(dω)
version of EP(Dt,z G | Ct). One has then the following Clark-Ocône type pre-
dictable representation formula:

(5.9) G = EP(G) +
∫ 1

0

∫
E

g(t, z, ·) dω̃(t, z),

where ω̃ = ω − µ is the compensated Poisson point process and where the
integral is taken in the sense of Itô. Let us assume for convenience that G >
inf(I) and let us define the right continuous martingale (Mt)t∈[0,1] by Mt :=
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EP(G | Ct). Now, since Mt− = Mt dt ⊗ P-a.s., Itô formula for jumps processes
(cf. [IW89]) gives:

EntΦ
P(G) = EP(Φ(M1) − Φ(M0))

= EP

(∫ 1

0

∫
E

Ψ(Mt, g(t, z)) dt dν(z)
)

.

Now, it remains to use the bivariate convexity of Ψ which comes from (H2) in
order to get via Jensen inequality and (5.9) that:

Ψ(Mt, g(t, z)) = Ψ(EP(G | Ct),EP(Dt,z G | Ct)) � EP(Ψ(G, Dt,z G) | Ct),

which gives finally:

(5.10) EntΦ
P(G) � EP

(∫ 1

0

∫
E

Ψ(G, Dt,z G) dt dν(z)
)

.

The time interval [0, 1] can be easily replaced by [0, T ]. One can recover Theo-
rems 5.1, 5.3, 5.4 and 5.3 as Corollaries, in exactly the same way used in [Wu00]
for Poincaré and logarithmic Sobolev inequalities. Additionally, one can derive
by the same method F.K.G. inequalities, as what is done in [Wu00] for Poisson
space and in [Hu00] for diffusions. As we have seen, the method used here for
Poisson space is a replica of the method used to establish Theorem 4.2 concern-
ing Wiener measure. The major difference is the lack of chain rule in discrete
space settings which leads to replace (H1) by (H2).

5.2. Some remarks about discrete Dirichlet forms
We collect here few remarks about (H2), (H2’), and comparisons with

standard Dirichlet forms in discrete space settings.

Remark 8 (Comparison with classical Dirichlet forms). Assume that
(H2’) holds. Since Φ′ is concave, Φ′′ is non-increasing and therefore, when
v � 0

Ψ(u, v) =
1
2

∫ u+v

u

(u + v − w) Φ′′(w) dw � Φ′′(u) v2.

The case v � 0 is very similar, and we get finally that under (H2’):

(5.11) Ψ(u, v) � Φ′′(u) v2 on I(2).

On the other hand, if we assume only (H2), one can write:

Ψ(u, v) =
1
2

∫ u+v

u

(u + v − w) Φ′′(w) dw � v (Φ′(u + v) − Φ′(u)),

which gives that under (H2):

(5.12) Ψ(u, v) � v (Φ′(u + v) − Φ′(u)) on I(2).

Thus, under (H2) (resp. (H2’)), we recover for example the well known (Df)2/f
(resp. Df D log f) Dirichlet forms when Φ(x) = x log x, as in [Wu00]. When
Φ(x) = x2, both of them give 2 (Df)2.
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Remark 9 (“L-1” and “L-2” forms of log-Sobolev inequalities). In con-
tinuous settings, the equivalence between L1 and L2 forms of the logarithmic
Sobolev inequality, given respectively by

(5.13) ∀f, Entµ

(
f2
)

� cEµ(Γf)

and

(5.14) ∀f > 0, Entµ(f) � 1
4

cEµ

(
Γf

f

)
is a consequence of the chain rule (1.10) for Γ, which is itself a consequence
of the diffusion property (1.11) for the associated infinitesimal generator. In
discrete settings, the lack of chain rule destroys this equivalence, and actually,
the simple Poisson measure satisfies the L1 form but not the L2 form, cf. for
example [ABC+00, Chap. 1]. The fact that the semi-group of the simple
Poisson point process is not hypercontractive was noticed by Surgailis eighteen
years ago in [Sur84]. The concentration of measure consequences of the L1

form are only Poisson-like in discrete settings, which is completely logical, cf.
[Led99].

Remark 10 (Poissonian L1 logarithmic Sobolev inequality). Notice
that the Γ operator (cf. (1.5)) associated to the pure jumps Lévy process
with generator L given by (5.1) is:

(5.15) (Γf)(x) :=
λ

2

∫
Rd

|Dyf(x)|2 dν(y).

When Φ(x) = x log x, the Dirichlet forms comparison (5.12) yields

EntPt
(f) � λtPt

(∫
Rd

f−1(Dyf)2 dν(y)
)

= λtPt

(
f−1

∫
Rd

(Dyf)2 dν(y)
)

= 2tPt

(
Γf

f

)
,

which is the L1 form (5.13) for measure Pt and with constant 2t.

Remark 11 (Discussion on (H2) and (H2’)). Let ζ1(u, v) = Φ′′(u) v2

and ζ2(u, v) = (Φ′(u + v) − Φ′(u)) v, for (u, v) ∈ I(2). Such functions are
non negative since Φ is convex. One has Ψ � ζ1 when Φ′ is concave, and since

∇2ζ1(u, v) =
(

Φ′′′′(u) v2 2 Φ′′′(u) v
2 Φ′′′(u) v 2 Φ′′(u)

)
,

(H1) is equivalent to Φ′′′′ Φ′′ � 2 Φ′′′2 which is nothing else than the concavity of
1/Φ′′ when Φ′′ is convex. One can check that Φ(x) = x log x and Φ(x) = x2 are
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in some sense extremal solutions of this O.D.I., up to affine additions. Similarly,
one has Ψ � ζ2 when Φ is convex, and since ∇2ζ2(u, v) is equal to(

(Φ′′′(u + v) − Φ′′′(u)) v Φ′′(u + v) − Φ′′(u) + Φ′′′(u + v) v
Φ′′(u + v) − Φ′′(u) + Φ′′′(u + v) v 2 Φ′′(u + v) + Φ′′′(u + v) v

)
,

ζ2 is convex in u but not necessarily in v. Finally, let us show why (H2’)

implies (H2). Assume that (H2’) holds. The function Ψ is non negative since
Φ is convex, and it is convex in each variable u and v when Φ and Φ′′ are both
convex. Moreover, it is bivariate convex when Φ(x) = x log x or Φ(x) = x2, as
observed in the pretty paper [Wu00]. Actually, this bi-convexity holds in much
more cases since

∇2 Ψ(u, v) :=
(

Φ′′(u + v) − Φ′′(u) − Φ′′′(u) v Φ′′(u + v) − Φ′′(u)
Φ′′(u + v) − Φ′′(u) Φ′′(u + v)

)
,

for which Tr∇2 Ψ(u, v) � 0 when Φ and Φ′′ are convex, and

Det∇2 Ψ(u, v) = Φ′′(u) (Φ′′(u + v) − Φ′′(u)) − Φ′′(u + v) Φ′′′(u) v,

which is non negative since Φ and Φ′′ are convex and Φ′ is concave. Alterna-
tively, one can use Gershgorin-Hadamard Theorem (cf. [HJ90, Sect. 6.1]) to
see directly that ∇2 Ψ is non negative under (H2’).

6. Links with Boltzmann-Shannon entropy

We assume here that I = R+. Let f be a probability density function on
Rd with respect to the Lebesgue measure. When Φ is convex, one can define
the Shannon Φ-entropy of f by:

(6.1) HΦ(f) := −EntΦ(f dx | dx) := −EntΦ
dx(f) := −

∫
Rd

Φ̂(f)(x) dx,

where Φ̂(u) := Φ(u) − Φ(1) u. For any random vector X in Rd with density
f with respect to the Lebesgue measure, we denote HΦ(X) := HΦ(f). This
functional is invariant by translations and hence does not depend on the mean
of f . We recover Shannon entropy (or negentropy) H when Φ(x) = x log x, cf.
[ABC+00, Chap. 10]. Actually, S := −H is also known as Shannon Information
in Information Theory or Boltzmann entropy in Kinetic Gases Theory, see for
example [Lie75] and [Vil03]. Similarly, one can define the Shannon Φ-entropy
of a discrete probability measure p1δx1 + · · · + pnδxn

by

(6.2) HΦ(p1δx1 + · · · + pnδxn
) := −

n∑
i=1

Φ̂(pi).

Since x ∈ Rn �→ Φ̂(x1) + · · · + Φ̂(xn) is convex, HΦ is a concave functional on
the simplex

{(p1, . . . , pn) ∈ R+ × · · · × R+, p1 + · · · + pn = 1}.
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At fixed n, it achieves its minimum 0 for Dirac measures, which are the extremal
points of the simplex above, and its maximum −n Φ̂(1/n) for the uniform prob-
ability measure by convexity. Notice that the continuous version is not always
non-negative.

The important sub-additivity of Shannon entropy H states that for any
random vector (X1, . . . , Xn) with an absolute continuous law with respect to
the Lebesgue measure:

(6.3) H((X1, . . . , Xn)) � H(X1) + · · · + H(Xn),

with equality if and only if X1, . . . , Xn are independent. Such a property relies
on the non-negativity of Kullback-Leibler relative entropy and on the basic
additivity of the logarithm: log(ab) = log a + log b:

0 � Ent(L((X1, X2)) | L(X1) ⊗ L(X2)) = H((X1, X2)) − H(X1) − H(X2).

Notice that this sub-additivity is different from the one related to Kullback-
Leibler relative entropy (3.2) since Shannon entropy is opposite in sign and
based on the Lebesgue measure which is not a probability measure. This fact
was explained in [ABC+00, Chap. 10]. Actually, such a sub-additivity property
is not related to the Lebesgue measure, as noticed in [Cha03], and one can show
that for any positive measure µ = ⊗n

i=1µi on a product space and any non-
negative real valued integrable function f :

(6.4) Entµ(f) � Entµ1

(∫
f dµ\1

)
+ · · · + Entµn

(∫
f dµ\n

)
,

where µ\i := µ1×· · ·×µi−1×µi+1×· · ·×µn, with equality if and only if f is a
tensor product function. Beware that (3.2) and (6.4) are opposite. We ignore
if the sub-additivity property (6.3) of Shannon entropy can be generalised to
any convex Φ. Actually, the functional f �→ HΦ(f) is concave and formally,
the Fréchet derivatives are given by:

(DHΦ)(f)(h) = −
∫

Rd

Φ′(f) h dx and (D2HΦ)(f)(h, h) = −
∫

Rd

Φ′′(f) h2 dx.

Therefore, Shannon like Φ-entropy HΦ achieves its maximum under the linear
constraint E(W (X)) =

∫
RdW (x)f(x) dx = c for probability densities functions

of the form:

fW := (Φ̂)′−1(−λ − β W ),

where (λ, β) ∈ R2 is chosen in such a way that the constraint is fulfilled and
that fW is a probability density function with respect to the Lebesgue mea-
sure. Notice that (Φ̂)′−1 is the derivative of the Young conjugate of Φ̂. The
Gaussian maximum of Shannon entropy H at fixed covariance appears as a
particular case, for which Φ(x) = x log x, W (x) = |x|2, (Φ̂)′−1(y) = exp(y − 1),
β = d/(2c) and λ = Zc,d is the Gaussian normalising constant. More generally,
we recovered as a particular case the famous “principle of maximum entropy”
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which states that Boltzmann-Shannon entropy is maximised under linear con-
straint by Boltzmann-Gibbs measures. It is tempting and quite natural to ask
if HΦ shares more common properties with Shannon entropy H. As we have
seen, the convex conjugate functional will play a role. This question is partly
answered in [TV93], [BTT86], [BR82a] and [BR82c] and references therein. En-
tropy like measure of information are still actively explored, and one can find
recent results in [Dra04] and in Flemming Topsøe papers for example.

Final words. One may retain that the classical relative entropy
Ent(ν |µ) where µ and ν are positive Borel measures possesses a lot of prop-
erties coming from the very particular base function Φ(x) = Θ(x) := x log x:

• Θ is strictly convex, and thus Entµ(f) = 0 iff f is constant µ-a.s.;
• Θ(0) = Θ(1) = 0 and thus H(X) vanishes when X is constant;
• 1/Θ′′ is affine and hence concave and thus f �→ Entµ(f) is convex;
• Θ(ab) = b Θ(a) + a Θ(b) and thus f �→ Entµ(f) is 1-homogeneous;
• The Young conjugate Θ∗(u) = eu−1 is monotone and Θ∗′

= Θ∗.
Recall that Θ∗(u) :=

∫ u

0
Θ′−1(x) dx. Some of these properties are well imitated

by x �→ |x|p with p ∈ (1, 2], which is exactly the family of simple power convex
functions between x �→ Θ(x) and x �→ x2 and the latter is for some aspects the
“simplest” one. Some results involving Entµ rely only on few properties of Θ
whereas other ones rely on all of them, and this fact obviously puts some limits
on the possible generalisations.
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Math. 1801, Springer, Berlin, 2003, 1–134.

[HJ90] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge Univer-
sity Press, Cambridge, 1990, corrected reprint of the 1985 original.

[HS87] R. A. Holley and D. W. Stroock, Logarithmic Sobolev inequalities
and stochastic Ising models, J. Statist. Phys. 46-5-6 (1987), 1159–
1194.

[Hsu02] E. P. Hsu, Stochastic analysis on manifolds, Graduate Studies in
Mathematics, vol. 38, American Mathematical Society, Providence,
RI, 2002.

[Hu00] Y.-Z. Hu, A unified approach to several inequalities for Gaus-
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entropy differential metric, Appl. Math. 42-2 (1997), 81–98.

[Pri00] N. Privault, On logarithmic Sobolev inequalities for normal martin-
gales, Ann. Fac. Sci. Toulouse Math. (6) 9-3 (2000), 509–518.

[Roy99] G. Royer, Une initiation aux inégalités de Sobolev logarithmiques,
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