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On the construction problem for
uni-instantaneous bilateral birth-death

processes

By

Qing-Ping Liu

Abstract

Let E = {· · · ,−2,−1, 0, 1, 2, · · · }. Given a uni-instantaneous bilat-
eral birth-death pre-generator matrix Q = (qij) defined on E × E, we
investigate the existence conditions for the corresponding birth-death
Q-processes, and furthermore, construct all the processes when the exis-
tence conditions are satisfied. In addition, the uniqueness of the honest
Q-processes are investigated as well.

1. Introduction

In this paper, we consider the construction problem for uni-instantaneous
bilateral birth-death processes, which is one specific kind of denumerable conti-
nuous-time homogeneous Markov processes. A denumerable continuous-time
homogeneous Markov process, which, throughout this paper, will be simply
called a (Markov) process, is a time-homogeneous Markov process with a
continuous-time parameter and a countable state space. The time interval
is usually taken as [0,∞) and the countable state space is denoted by E.

A matrix Q = (qij ; i, j ∈ E), where qij are real numbers, is called a pre-
generator if ∀ i, j ∈ E, i �= j, −∞ ≤ qii ≤ 0 ≤ qij < ∞, and

∑
j �=i

qij ≤ −qii.

Furthermore, if there exists a Markov process such that its transition function
P (t) = (pij(t); i, j ∈ E), t ≥ 0 satisfies

(1.1) Q = P ′(0) = lim
t↓0

P (t) − I

t

(where I is the unit matrix and the derivative P ′(0) is taken in componentwise),
then Q is called a generator, or more precisely, the (infinitesimal) generator of
the corresponding Markov process, while the process itself is called a Q-process
to emphasize the relation (1.1) between P (t) and Q. Following Reuter [22],
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the transition function P (t) (and the resolvent—the Laplace transform ψ(λ)
of P (t), as well), will be also called a Markov process (Q-process). When P (t)
satisfies P (t)1 = 1, ∀ t ≥ 0 (or equivalently, ψ(λ) satisfies λψ(λ)1 = 1, ∀λ ≥
0), the process is called an honest process. Here and elsewhere, the bold 1
represents the column vector whose components are 1, while the bold 0 will
represent the zero matrix or sometimes the zero column (row) vector.

For a pre-generator Q = (qij ; i, j ∈ E), denote qi ≡ −qii ≤ ∞. We
call a state i ∈ E stable if qi < ∞ and, instantaneous if qi = ∞. If all the
states are stable (instantaneous), then Q is said to be totally stable (totally
instantaneous). A stable state i is called conservative (non-conservative) if

∑
j �=i

qij = qi (correspondingly,
∑
j �=i

qij < qi).

A totally stable pre-generator Q is said to be conservative if all its states are
conservative. A non-totally stable pre-generator is said to be almost conserva-
tive if all its stable states are conservative.

For a non-totally stable pre-generator Q = (qij), if
∑
j �=i

qij < ∞, for each

instantaneous state i, then Q is called a summable pre-generator.
It is obvious that a generator must be a pre-generator, but the converse is

not always true. Therefore the following three basic and important questions
arise.

• Existence For a given pre-generator Q, under what conditions does
it become a generator, i.e. there exists a Markov process P (t) satisfying (1.1)?

• Uniqueness If the corresponding Markov process exists, is it unique?
• Construction How do we construct all the processes when they exist?

These questions are of particular significance since in most cases we only know
the infinitesimal behavior—the pre-generator.

In the totally stable case, when Q is a birth-death pre-generator:

Q =




−(a0 + b0) b0 0 0 · · ·
a1 −(a1 + b1) b1 0 · · ·
0 a2 −(a2 + b2) b2 · · ·
· · · · · · · · · · · · · · ·




or a bilateral birth-death pre-generator:

Q =




· · · · · · · · · · · · · · · · · · · · ·
· · · a−1 −(a−1 + b−1) b−1 0 0 · · ·
· · · 0 a0 −(a1 + b0) b0 0 · · ·
· · · 0 0 a1 −(a1 + b1) b1 · · ·
· · · · · · · · · · · · · · · · · · · · ·




the above three questions were perfectly solved by Feller [13], [15], Reuter [22],
Hou [16], Wang and Yang [30], [31], [32], [39], [40]. In deed, the existence
and uniqueness are nothing but the special cases of some more general results.
Feller [13] showed that any totally stable pre-generator must be a generator
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and constructed a Q-process F (t) = (fij(t)), t ≥ 0 for a given Q. He further
showed F (t) enjoys the minimal property in the sense that for any Q-process
P (t) = (pij(t)), pij(t) ≥ fij(t), i, j ∈ E, t ≥ 0. The process F (t) satisfies both
the Kolmogorov backward equation system

d fij(t)
dt

=
∑
k∈E

qik fkj(t), ∀ i, j ∈ E

and the Kolmogorov forward equation system

d fij(t)
dt

=
∑
k∈E

fik(t) qkj, ∀ i, j ∈ E.

This process F (t) and its resolvent, denoted by φ(λ) = (φij(λ)), are known as
the Feller minimal process.

For the uniqueness, Reuter [22] gave, for a conservative totally stable gen-
erator Q, the uniqueness criterion, which states that the Q-process is unique if
and only if the equation (λI −Q)u = 0 has no bounded nontrivial solution for
some, and therefore for all, λ > 0. While for a general non-conservative Q, Hou
[16] showed that the Feller minimal process φ(λ) is the unique Q-process if and
only if the following two conditions hold simultaneously: (1) For some (and
therefore for all) λ > 0, there exists a number cλ > 0 such that λφ(λ)1 > cλ1;
(2) The equation v(λI −Q) = 0, 0 ≤ v ∈ l has no nontrivial solution for some,
and therefore for all, λ > 0. Where l stands for the space of all absolutely
summable vectors on E.

Concerning the construction of processes, in the birth and death case,
Feller [15] obtained all the processes which satisfy simultaneously both the
Kolmogorov backward and forward equation systems, Wang [30] derived all
the honest processes, Wang and Yang [31], [32] and Yang [40] constructed all
the birth and death processes; in the bilateral birth and death case, all the
processes were constructed by Yang [39].

In the non-totally stable case, when Q is a uni-instantaneous birth-death
pre-generator:

Q =




−∞ q01 q02 q03 · · ·
a1 −(a1 + b1) b1 0 · · ·
0 a2 −(a2 + b2) b2 · · ·
· · · · · · · · · · · · · · ·




Tang [29], using Chen’s resolvent decomposition theorem [1] (see also [2]), got
the following results for the existence.

z is regular z is exit z is entrance or natural
Process exists iff
αφ(λ) ∈ l

Process exists iff α1 =
∞ and αφ(λ) ∈ l

Process does not exist

Where z is the boundary point of QN (QN is the pre-generator by eliminating
in Q the first row and the first column); φN (λ) is the minimal QN -process;
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α = (q01, q02, q03, · · · ). Tang constructed all the processes when the existence
conditions are satisfied. He also investigated the uniqueness for the honest
processes.

In the double-infinite birth-death case, i.e. both infinitely many instan-
taneous and stable states exist, where the pre-generator Q has the following
form

Q =




· · · · · · · · · · · · · · · · · · · · · · · ·
· · · q−2,−3 −∞ q−2,−1 q−2,0 q−2,1 q−2,2 · · ·
· · · q−1,−3 q−1,−2 −∞ q−1,0 q−1,1 q−1,2 · · ·
· · · 0 0 a0 −(a0 + b0) b0 0 · · ·
· · · 0 0 0 a1 −(a1 + b1) b1 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·




Liu [19] showed by an approximating method that when the pre-generator is
summable, it must be a generator.

In this paper, we study the construction problem for the uni-instantaneous
bilateral birth-death processes, where the pre-generator is

Q =




· · · · · · · · · · · · · · · · · · · · ·
· · · a−1 −(a−1 + b−1) b−1 0 0 · · ·
· · · q0,−2 q0,−1 −∞ q01 q02 · · ·
· · · 0 0 a1 −(a1 + b1) b1 · · ·
· · · · · · · · · · · · · · · · · · · · ·


 .

We have the following conclusions for the existence.

������
z2

z1 Regular Exit Entrance or Natural

Regular

Process exists iff
αφ(λ) ∈ lN
(Theorem 3.4)

Process exists iff
αφ(λ) ∈ lN
(Theorem 3.6)

Process exists iff
αφ(λ) ∈ lN (Theorem
3.3)

Exit

Process exists iff
αφ(λ) ∈ lN
(Theorem 3.6)

Process exists iff
α1 = ∞ and
αφ(λ) ∈ lN
(Theorem 3.5)

Process exists iff α1 =
∞ and αφ(λ) ∈ lN
(Theorem 3.3)

Entrance
or Natural

Process exists iff
αφ(λ) ∈ lN
(Theorem 3.3)

Process exists iff
α1 = ∞ and
αφ(λ) ∈ lN
(Theorem 3.3)

Process does not exist
(Theorem 3.1)

Where z1, z2 are two boundary points of QN (see Definition 2.2 below), QN
is the generator in (2.2) below, φ(λ) is the minimal QN process, and α =
(· · · , q0,−2, q0,−1, q01, q02, · · · ).

When the existence conditions are satisfied, all the corresponding Q-
processes are constructed in Section 3. In addition, the uniqueness for the
honest Q-processes is considered there as well.
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We note that the conclusions for the uni-instantaneous bilateral case can
not be directly derived from the known results for the unilateral cases. In
fact, no matter the bilateral pre-generator Q is decomposed into two uni-
instantaneous unilateral ones Q1 and Q2, where

Q1 =




· · · · · · · · · · · · · · ·
· · · a−2 −(a−2 + b−2) b−2 0
· · · 0 a−1 −(a−1 + b−1) b−1

· · · q0,−3 q0,−2 q0,−1 −∞


 and

Q2 =




−∞ q01 q02 q03 · · ·
a1 −(a1 + b1) b1 0 · · ·
0 a2 −(a2 + b2) b2 · · ·
· · · · · · · · · · · · · · ·




or is decomposed into two unilateral ones with one being totally stable and
one uni-instantaneous, it is difficult to combine two unilateral processes, both
having infinitely many states, into a bilateral process, since we do not know how
the process from the states in one part transits to the states in the other part.
Moreover, it seems no hope to construct all the bilateral processes by combining
two unilateral ones, as well. For example, as the existence is concerned, if one
applies Tang’s results for the former decomposition, then when one of the two
boundary points, say z1, is entrance or natural, the other one z2 is regular,
it is seen that the Q1-process does not exist, while when α2φ2(λ)1 < ∞, the
Q2-process exists (α2 = (q01, q02, q03, · · · ), φ2(λ) is the minimal Q2N -process,
where Q2N is the pre-generator by eliminating in Q2 the first row and the first
column). Therefore one may possibly conclude incorrectly that the Q-process
does not exist! However, from the last table above, we see that the Q-process
does exist when αφ(λ)1 <∞. So we shall not divide the bilateral pre-generator
into two unilateral ones. Instead, we shall adopt the method that starts from
the totally stable QN -processes (where QN is the totally stable part of Q), then
extend them into the uni-instantaneous Q-processes.

In our argument, Chen’s resolvent decomposition theorem plays a key role.
To state Chen’s theorem, let QE = (qij ; i, j ∈ E) be a pre-generator defined on
E ×E. Let b ∈ E be a single state and N = E \ {b}. Let QN = (qij ; i, j ∈ N)
denote the restriction of QE on N × N . Denote α = (qbj ; j ∈ N) and β =
(qib; i ∈ N). lN represents the set of all absolutely summable column vectors
on N .

Theorem 1.1 (Chen’s resolvent decomposition theorem [1], [2]). Sup-
pose R(λ) = (rij(λ); i, j ∈ E), λ > 0 is a QE-process defined on E × E where

E = N ∪ {b} and the generator Q = (qij ; i, j ∈ E) =
( −qb α

β QN

)
, where

qb = −qbb. Then R(λ) can be uniquely decomposed into

(1.2) R(λ) =
(

0 0
0 ψ(λ)

)
+ r(λ)

(
1

ξ(λ)

) (
1 , η(λ)

)
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where ψ(λ) is a QN -process, η(λ) and ξ(λ) satisfy the following conditions
(1.3)–(1.7):

η(λ) ∈ Hψ ≡ {η(λ); 0 ≤ η(λ) ∈ lN ,(1.3)
η(µ1) − η(µ2) = (µ2 − µ1)η(µ1)ψ(µ2), ∀ µ1, µ2 > 0}

ξ(λ) ∈ Kψ ≡ {ξ(λ); 0 ≤ ξ(λ) ≤ 1,(1.4)
ξ(µ1) − ξ(µ2) = (µ2 − µ1)ψ(µ1)ξ(µ2), ∀ µ1, µ2 > 0}

ξ(λ) ≤ 1− λψ(λ)1(1.5)
lim
λ→∞

λη(λ) = α and lim
λ→∞

λξ(λ) = β(1.6)

lim
λ→∞

λ〈η(λ),1− ξ〉 <∞(1.7)

where ξ = lim
λ→0

ξ(λ) and c is a finite constant such that

(1.8) c ≥ lim
λ→∞

λ〈η(λ),1− ξ〉 and c+ lim
λ→∞

λ〈η(λ), ξ〉 = qb.

So, if qb = ∞, it follows that

(1.9) lim
λ→∞

λ〈η(λ), ξ〉 = ∞ or equivalently lim
λ→∞

λ〈η(λ),1〉 = ∞.

r(λ) is determined by

(1.10) r(λ) =
1

c+ λ+ λ〈η(λ), ξ〉 .

If R(λ) is honest, then

(1.11) ξ(λ) = 1− λψ(λ)1, r(λ) =
1

λ+ λ〈η(λ),1〉 and c ≡ λ〈η(λ),1− ξ〉

In particular, λ〈η(λ),1− ξ〉 is independent of λ.
Conversely, If we have a QN -process ψ(λ), λ > 0 and a pair of vectors

η(λ) and ξ(λ) which satisfy (1.3)–(1.7) and lim
λ→∞

λ〈η(λ), ξ〉 <∞, when qb <∞
or lim

λ→∞
λ〈η(λ), ξ〉 = ∞, when qb = ∞, then choose a constant c satisfying

(1.8), define r(λ) as (1.10), and finally define R(λ) as (1.2). The R(λ) thus
constructed then must be a QE-process. Furthermore, if ξ(λ), r(λ) and c are
chosen as (1.11), then R(λ) is an honest process.

Note. (1) Here and elsewhere, 〈· , ·〉 stands for the product of a row and
a column vector, in order to emphasize that the result is scalar. More precisely,
for a row vector x = (xi) and a column vector y = (yi), 〈x , y〉 ≡ x y ≡

∑
i

xi yi.

(2) The row vector η(λ) and the column vector ξ(λ) in the above theorem
are actually vector families parameterized by λ > 0. However, for simplicity, we
do not write ’λ > 0’ wherever the vector families appear, unless it is required.
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We call the process ψ(λ) in (1.2) the projection (or, the restriction) of R(λ)
on N × N , denoting as ψ(λ) = bR(λ), and call R(λ) an expansion process of
ψ(λ). Note that the expansion process is usually not unique. We shall denote
Gψ(λ) = {R(λ);R(λ) is an expansion process of ψ(λ)}, i.e. Gψ(λ) is the set of
all those expansion processes of ψ(λ).

The above theorem, especially the converse part, is particularly useful. It
allows one to investigate existence/uniqueness conditions and construct pro-
cesses for complicated cases via simple known results. Note that the recent
works of Chen [1]–[3], Tang [29], Liu [19], [20] and Fei [11], [12] are all based
on this theorem.

In the next section, we shall concentrate on preparing some lemmas, which
will be used in the proofs of the main results. While the main results are given
and proved in Section 3.

2. Some lemmas

Hereafter, let the state space E = {· · · ,−2,−1, 0, 1, 2, · · · }. Denote N1 =
{· · · ,−n, · · · ,−2,−1}, N2 = {1, 2, · · · , n, · · · } and N = N1 ∪N2.

Let QE = (qij ; i, j ∈ E) be a uni-instantaneous bilateral birth-death pre-
generator, {0} is the instantaneous state, i.e.

(2.1) qij =




−∞ if j = i = 0
q0j if j �= 0, i = 0
ai if j = i− 1, i ∈ N
bi if j = i+ 1, i ∈ N

−(ai + bi) if j = i, i ∈ N
0 if j �= i− 1, i+ 1, i ∈ N

where 0 ≤ q0j < ∞, 0 < ai < ∞, 0 < bi < ∞ are all real numbers. Obviously,
QE is an almost conservative pre-generator. Let QN , QN1 and QN2 be the
restriction of QE on N ×N , N1 ×N1 and N2 ×N2, respectively. QN , QN1 and
QN2 are all totally stable generators.

We call a QE-process R(λ) = (rij(λ); i, j ∈ E) an almost B-type process
if

λrij(λ) =
∑
k∈E

qikrkj(λ) + δij , ∀ i ∈ N, j ∈ E.

Then we have the following

Lemma 2.1. If QE is a generator, then all the QE-processes must be
almost B-type.

Proof. Since all the stable states of QE are conservative, the conclusion
easily follows from Theorem 2.7.3 of [42].

Let φa(λ) be the Feller minimal QNa
-process, a = 1, 2 and φ(λ) the Feller

minimal QN -process. Then by a simple argumentation, we can easily get

φ(λ) =
(
φ1(λ) 0

0 φ2(λ)

)
.
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Since QN1 = (qij ; i, j ∈ N1) and QN2 = (qij ; i, j ∈ N2) are two totally stable
ordinary birth-death generators, we can define their standard measures, natural
scales and boundary points as usual.

Definition 2.2. (1) The standard measure of QN1 is defined as:

µ−1 = 1, µ−2 =
a−1

b−2
, · · · , µ−n =

a−1a−2 · · · a−n+1

b−2b−3 · · · b−n , · · ·

The natural scale of QN1 is defined as: z−1 =
1
b−1

, z−2 =
1
b−1

+
1
a−1

, · · · ,

z−n =
1
b−1

+
1
a−1

+ · · · + b−2b−3 · · · b−n+1

a−1a−2a−3 · · · a−n+1
, · · ·

And the boundary point of QN1 is defined as: z1 = lim
n→∞ z−n.

(2) Similarly, we can define the standard measure of QN2 :

µ1 = 1, µ2 =
b1
a2
, · · · , µn =

b1b2 · · · bn−1

a2a3 · · · an , · · ·

The natural scale of QN2 :

z1 =
1
a1
, z2 =

1
a1

+
1
b1
, · · · , zn =

1
a1

+
1
b1

+ · · · + a2a3 · · · an−1

b1b2b3 · · · bn−1
, · · ·

And the boundary point of QN2 : z
2 = lim

n→∞ zn.

We say z1 and z2 are the two boundary points of

(2.2) QN =
(
QN1 0
0 QN2

)

Definition 2.3. The boundary point za, a ∈ {1, 2}, is said to be
(1) regular, if za <∞ and

∑
n∈Na

µn <∞;

(2) exit, if za is not regular and
∑
n∈Na

(za − zn)µn <∞;

(3) entrance, if za is not regular and
∑
n∈Na

µn <∞;

(4) natural, for all other cases.

Now let u1(λ) = (· · · , u−n(λ), · · · , u−2(λ), u−1(λ)) be the solution of the
following equation

{
(λI −QN1)u = 0
u−1(λ) = 1.
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Then actually, we have

(2.3)




u−1(λ) = 1
u−2(λ) = 1 + b−1(z−2 − z−1) + λ(z−2 − z−1)u−1(λ)µ−1

· · ·
u−n(λ) = 1 + b−1(z−2 − z−1) + λ

n−1∑
j=1

(z−n − z−j)u−j(λ)µ−j

· · ·

Similarly, let u2(λ) = (u1(λ), u2(λ), · · · , un(λ), · · · ) be the solution of the fol-
lowing equation {

(λI −QN2)u = 0
u1(λ) = 1.

We have precisely

(2.4)




u1(λ) = 1
u2(λ) = 1 + a1(z2 − z1) + λ(z2 − z1)u1(λ)µ1

· · ·
un(λ) = 1 + a1(z2 − z1) + λ

n−1∑
j=1

(zn − zj)uj(λ)µj

· · ·

Let u(z1, λ) = lim
n→∞ u−n(λ), u(z2, λ) = lim

n→∞un(λ). Set Xa(λ) =
ua(λ)
u(za, λ)

,

a = 1, 2. Then Xa(λ) is the maximal solution of the following equation

(2.5)
{

(λI −QNa
)u = 0

0 ≤ u ≤ 1

and satisfies

(2.6) Xa(µ) = Aφa(λ, µ)Xa(λ), ∀ λ, µ > 0

where Aφa(λ, µ) = I + (λ−µ)φa(µ). Moreover, if for some λ, Xa(λ) = 0, then
Xa(λ) ≡ 0.

Now, define two column vectors on N by

X̄1(λ) =
(
X1(λ)

0

)
, X̄2(λ) =

(
0

X2(λ)

)
.

We have the following

Lemma 2.4. Suppose u(λ) is a solution of the following equation

(2.7)
{

(λI −QN )u = 0
0 ≤ u ∈ mN ,
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where mN is the space of all bounded column vectors on N . Then u(λ) can be
expressed as a linear combination of X̄1(λ) and X̄2(λ):

(2.8) u(λ) = t1(λ)X̄1(λ) + t2(λ)X̄2(λ),

where ta(λ), a = 1, 2 are two non-negative scalar functions of λ.
Moreover, when u(λ) further satisfies

(2.9) u(µ) = Aφ(λ, µ)u(λ), ∀ λ, µ > 0

where Aφ(λ, µ) = I + (λ− µ)φ(µ), then ta(λ), a = 1, 2 in the above expression
(2.8) can be selected to be independent of λ. More precisely, we have

(2.10) ta(λ) =
{

0, if X̄a(λ) = 0
ta, if X̄a(λ) �= 0.

Proof. Let u(λ) =
(
uN1(λ)
uN2(λ)

)
is a solution of the equation (2.7), where

uNa
(λ) is the restriction of u(λ) on Na, a = 1, 2. Since

(2.11) λI −QN =
(
λI −QN1 0

0 λI −QN2

)
,

uNa
(λ) (a ∈ {1, 2}) must be a solution of

{
(λI −QNa

)u = 0
0 ≤ u ∈ mNa

,

thus there exists some ta(λ) ≥ 0 such that

(2.12) uNa
(λ) = ta(λ)Xa(λ).

Hence u(λ) =
(
uN1(λ)

0

)
+

(
0

uN2(λ)

)
= t1(λ)X̄1(λ) + t2(λ)X̄2(λ), and we

get (2.8).
If further, u(λ) satisfies (2.9), since (2.9) is equivalent to

uNa
(µ) = Aφa(λ, µ)uNa

(λ), ∀ λ, µ > 0

for each a ∈ {1, 2}, so together with (2.6) and (2.12), we get

uNa
(µ) = ta(λ)Xa(µ).

Since uNa
(µ) = ta(µ)Xa(µ), we get ta(λ) = ta(µ) when Xa(µ) �= 0, i.e. ta(λ)

is independent of λ. When Xa(λ) = 0, it is obvious that we can set ta(λ) = 0.
The proof is complete.

Let

η1(λ) = ( · · · , η−n(λ), · · · , η−2(λ), η−1(λ) ),

η2(λ) = ( η1(λ), η2(λ), · · · , ηn(λ), · · · )
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be two row vectors on N1 and N2, respectively. Their components are defined
as the following

η−n(λ) =




u−n(λ)µ−n
u(z1, λ)

, if z1 is regular

b−1u−n(λ)µ−n
u+(z1, λ))

, if z1 is entrance

0, if z1 is exit or natural

ηn(λ) =




un(λ)µn
u(z2, λ)

, if z2 is regular

a1un(λ)µn
u+(z2, λ)

, if z2 is entrance

0, if z2 is exit or natural

where

u+(z1, λ) = lim
n→∞u+

−n(λ) u+
−n(λ) =

u−n−1(λ) − u−n(λ)
z−n−1 − z−n

(2.13)

u+(z2, λ) = lim
n→∞u+

n (λ) u+
n (λ) =

un+1(λ) − un(λ)
zn+1 − zn

.(2.14)

Each ηa(λ) (a = 1, 2) satisfies the equation

(2.15)
{
v(λI −QNa

) = 0
0 ≤ v ∈ lNa

and has the property

(2.16) ηa(µ) = ηa(λ)Aφa(λ, µ), ∀ λ, µ > 0 .

Moreover, if for some λ, ηa(λ) = 0, then ηa(λ) ≡ 0.
Now define two row vectors on N by

η̄1(λ) = (η1(λ) , 0), η̄2(λ) = (0 , η2(λ)).

Then we have

Lemma 2.5. Each solution v(λ) of the following equation
{
v(λI −QN ) = 0
0 ≤ v ∈ lN

can be expressed as a linear combination of η̄1(λ) and η̄2(λ):

(2.17) v(λ) = d1(λ)η̄1(λ) + d2(λ)η̄2(λ),

where da(λ) ≥ 0, a = 1, 2 are two scalar functions of λ.
Moreover, when v(λ) further satisfies

v(µ) = v(λ)Aφ(λ, µ), ∀ λ, µ > 0
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then da(λ), a = 1, 2 in the above expression (2.17) can be selected to be inde-
pendent of λ. More precisely, we have

da(λ) =
{

0, if η̄a(λ) = 0
da, if η̄a(λ) �= 0.

Proof. Using equation (2.11) and noticing that each ηa(λ) (a = 1, 2)
satisfies equation (2.15), the lemma can be proved in a similar way to Lemma
2.4.

Remark 2.6. (1) Combining (2.3) with (2.13) and (2.4) with (2.14), it
is easy to get (c.f. [42])

u+
−n(λ) = b−1 + λ

n∑
j=1

u−j(λ)µ−j, u+
n (λ) = a1 + λ

n∑
j=1

uj(λ)µj ,

thus the four sequences {u+
−n(λ)}, {u+

n (λ)}, {u−n(λ)} and {un(λ)} are all
increasing in n and therefore their limits: u+(z1, λ), u+(z2, λ), u(z1, λ) and
u(z2, λ) exist as n goes to ∞.
(2) u(za, λ) <∞ (a = 1, 2) iff za is regular or exit;

u+(za, λ) <∞ (a = 1, 2) iff za is regular or entrance. So
X̄a(λ) �= 0, iff za is regular or exit;
η̄a(λ) �= 0, iff za is regular or entrance.

Denote

M+
λ (QN ) ≡ {u;0 ≤ u ≤ 1, (λI −QN )u = 0}(2.18)

L+
λ (QN ) ≡ {v; 0 ≤ v ∈ lE , v(λI −QN ) = 0}(2.19)

where lE denotes the space of all absolutely summable vectors on E. M+
λ (QN )

and L+
λ (QN ) are sometimes simply written as M+

λ and L+
λ , respectively. It is

well-known that both the dimensions of M+
λ and L+

λ are independent of λ (see
Reuter [22], and also Yang [42]). We shall therefore use m+(QN ) (or m+) and
n+(QN ) (or n+) to denote the dimensions of M+

λ and L+
λ , respectively. When

m+ = 0, we say QN is null exit ; When m+ = 1, we say QN is single exit and
when m+ is finite, we say QN is finite exit. Similarly, when n+ = 0, 1, we say
QN is null entrance and single entrance, respectively, while when n+ is finite,
we say QN is finite entrance.

Recall the definition of Hψ and Kψ in (1.3) and (1.4). We have

Lemma 2.7. X̄a(λ) ∈ M+
λ (QN ) ∩ Kφ and η̄a(λ) ∈ L+

λ (QN ) ∩ Hφ, for
a = 1, 2.

Proof. Since Xa(λ) satisfies (2.5) and (2.6), ηa(λ) satisfies (2.15) and
(2.16), i.e. Xa(λ) ∈ M+

λ (QNa
)∩Kφa and ηa(λ) ∈ L+

λ (QNa
)∩Hφa , it immedi-

ately follows that X̄a(λ) ∈ M+
λ (QN ) ∩ Kφ and η̄a(λ) ∈ L+

λ (QN ) ∩Hφ.
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Let X̄1 = (X̄1
n; n ∈ N), X̄2 = (X̄2

n; n ∈ N), Y 1 = (Y 1
n ; n ∈ N) and

Y 2 = (Y 2
n ; n ∈ N) be four column vectors having the following components

X̄1
n =




b−1(zn − z−1) + 1
b−1(z1 − z−1) + 1

, n ∈ N1

0, n ∈ N2

X̄2
n =




0, n ∈ N1

a1(zn − z1) + 1
a1(z1 − z1) + 1

, n ∈ N2

Y 1
n =




b−1(z1 − zn)
b−1(z1 − z−1) + 1

, n ∈ N1

0, n ∈ N2

Y 2
n =




0, n ∈ N1

a1(z2 − zn)
a1(z1 − z1) + 1

, n ∈ N2.

Obviously, we have

(2.20) X̄1 + X̄2 + Y 1 + Y 2 = 1.

Next, set Y 1(λ) = φ·−1(λ)b−1, Y 2(λ) = φ·1(λ)a1, that is

Y 1(λ) =




...
φ−n,−1(λ)b−1

...
φ−1,−1(λ)b−1

φ1,−1(λ)b−1

...
φn,−1(λ)b−1

...




, Y 2(λ) =




...
φ−n,1(λ)a1

...
φ−1,1(λ)a1

φ1,1(λ)a1

...
φn,1(λ)a1

...




.

Denote βa = (qi0; i ∈ Na), a = 1, 2, β = (qi0; i ∈ N) =




0
b−1

a1

0


 =

(
β1

β2

)
.

Then we have

(2.21) Y 1(λ) + Y 2(λ) = φ(λ)β.

Lemma 2.8. (1) For each a ∈ {1, 2},

X̄a(λ) ↓ 0 λX̄a(λ) → 0 (λ ↑ ∞)
λφ(λ)X̄a = X̄a − X̄a(λ).

While when za is regular or exit, or equivalently, X̄a(λ) �= 0, we have

lim
λ→0

X̄a(λ) = X̄a;

and when za is entrance or natural, or equivalently, X̄a(λ) = 0, we have

λφ(λ)X̄a = X̄a.
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(2) As λ ↑ ∞,

λY 1
n (λ) →

{
0, if n ∈ N\{−1}
b−1, if n = −1

λY 2
n (λ) →

{
a1, if n = 1
0, if n ∈ N\{1}

and for each a = 1, 2, Y a(λ) ↓ 0. Moreover, we have

lim
λ→0

Y a(λ) = Y a and λφ(λ)Y a = Y a − Y a(λ).

(3) The following equality holds:

(2.22) λφ(λ)1 = 1− φ(λ)β − X̄1(λ) − X̄2(λ).

Proof. (1) Since the restriction of X̄a(λ) on Na is Xa(λ) and on N\Na
is 0, and the same assertions hold for Xa(λ) by Lemma 6.5.1 and Lemma 6.5.2
of [42], so the conclusions easily follow.
(2) Similar to (1).
(3) Since by Theorem 2.10.5 of [42], λφa(λ)1 = 1 − φa(λ)βa −Xa(λ) for each
a ∈ {1, 2}, (2.22) follows immediately.

Lemma 2.9. Suppose a, b ∈ {1, 2}, a �= b, then

(2.23) λη̄a(λ)X̄b = 0.

If za is regular, then

(2.24) lim
λ→∞

λη̄a(λ)X̄a = ∞.

Proof. (2.23) is trivial and (2.24) follows from Lemma 6.5.5 of [42].

Note that a QN -process ψ(λ) is called a B-type process if it satisfies the
Kolmogorov backward equation

(λI −QN )ψ(λ) = I.

We have the following

Lemma 2.10. If R(λ) is a uni-instantaneous bilateral birth-death QE-
process and ψ(λ) is its projection on N × N , where N = E\{0}, then ψ(λ)
must be a B-type QN -process and have the following form

(2.25) ψij(λ) = φij(λ) + X̄1
i (λ)F 1

j (λ) + X̄2
i (λ)F 2

j (λ)

or in matrix form

(2.26) ψ(λ) = φ(λ) + X̄1(λ)F 1(λ) + X̄2(λ)F 2(λ)

where F a(λ) = (F aj (λ); j ∈ N) ≥ 0, a = 1, 2 are two row vectors defined on N
satisfying

(2.27) λF a(λ)1 ≤ 1.
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Proof. By Lemma 2.1, every QE-process R(λ) must be an almost B-type
process, then by Lemma 3.4 of Chen [3], the projection process ψ(λ) of R(λ)
on N ×N is a B-type process. Finally, by Chapter 8 of [42], we know ψ(λ) has
the stated form of (2.25) or (2.26) and F a(λ) satisfies (2.27).

Lemma 2.11. Suppose ψ(λ) is a B-type QN -process, η(λ) ∈ Hψ. De-
note Γ = lim

λ→0
φ(λ). Then we have

(1) sup
λ>0

λη(λ)Γβ <∞, i.e. sup
λ>0

λη(λ)(Y 1 + Y 2) <∞.

Consequently, for any non-negative row vector αN such that αNφ(λ) ∈ lN , we
have

(2.28) αN (Y 1 + Y 2) ≤ lim inf
λ→∞

λαNφ(λ)(Y 1 + Y 2) <∞.

(2) If X is a bounded non-negative column vector satisfying λφ(λ)X = X, ∀ λ >
0, then lim

λ→∞
λη(λ)X <∞.

Proof. (1) Let Ȳ 1(λ) = ψ·−1(λ)b−1 and Ȳ 2(λ) = ψ·1(λ)a1. Denote Ȳ a =
lim
λ→0

Ȳ a(λ), a = 1, 2. Then by doing the same work as in the proof of Lemma

2.11.4 of [42], we can get lim
λ→∞

λη(λ)Ȳ a < ∞, a = 1, 2. Since λη(λ)Ȳ a is

increasing in λ and Ȳ a(λ) ≥ Y a(λ) implies Ȳ a ≥ Y a, we get sup
λ>0

λη(λ)Y a ≤
sup
λ>0

λη(λ)Ȳ a = lim
λ→∞

λη(λ)Ȳ a <∞, which yields

sup
λ>0

λη(λ)Γβ = sup
λ>0

λη(λ)(Y 1 + Y 2) <∞.

In particular, when αNφ(λ) ∈ lN , from that φ(λ) is a B-type QN -process and
αNφ(λ) ∈ Hφ, we immediately get (2.28).

(2) For λ ≥ µ,

µ〈η(µ), X〉 = µ〈η(λ) + (λ− µ)η(λ)ψ(µ), X〉 = µ〈η(λ), X + (λ− µ)ψ(µ)X〉
= µ〈η(λ), X〉 + (λ− µ)〈η(λ), µψ(µ)X〉
≥ µ〈η(λ), X〉 + (λ− µ)〈η(λ), µφ(µ)X〉
= µ〈η(λ), X〉 + (λ− µ)〈η(λ), X〉 = λ〈η(λ), X〉,

so λ〈η(λ), X〉 is decreasing in λ and therefore
lim
λ→∞

λ〈η(λ), X〉 ≤ µ〈η(µ), X〉 <∞.

Lemma 2.12. Suppose ψ(λ) is a B-type QN -process of the form (2.26).
η(λ) ∈ Hψ satisfying lim

λ→∞
λη(λ) = α ≡ (qi0; i ∈ N). If F a(λ) �= 0 (a ∈ {1, 2}),

then
lim sup
λ→∞

λη(λ)X̄a <∞.

Proof. When X̄a(λ) = 0, the conclusion easily follows from Lemma 2.8
and Lemma 2.11 (2). Next, assume X̄a(λ) �= 0 and F a(λ) �= 0. By (2.26), we
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have ψ(µ) − φ(µ) ≥ X̄a(µ)F a(µ). If λ ≥ µ, then

(λ− µ)η(λ)X̄a(µ)[1 − µF a(µ)X̄a] = (λ− µ)η(λ)[X̄a(µ) − µX̄a(µ)F a(µ)X̄a]
≥ (λ− µ)η(λ)[X̄a(µ) − µ(ψ(µ) − φ(µ))X̄a] = (λ− µ)η(λ)[X̄a − µψ(µ)X̄a]
= (λ− µ)η(λ)X̄a − µ(λ− µ)η(λ)ψ(µ)X̄a

= (λ− µ)η(λ)X̄a − µ[η(µ) − η(λ)]X̄a = λη(λ)X̄a − µη(µ)X̄a,

if there exists some µ0 > 0 such that µ0F
a(µ0)X̄a = 1, then from the above

inequality we have

λη(λ)X̄a ≤ µ0η(µ0)X̄a <∞, ∀λ ≥ µ0

and so

lim sup
λ→∞

λη(λ)X̄a = lim
λ→∞

λη(λ)X̄a <∞.

Otherwise, for all µ > 0, µF a(µ)X̄a < 1. In this case, set h(µ) =
F a(µ)

1 − µF a(µ)X̄a
,

then h(µ) �= 0 and for any λ ≥ µ,

(λ− µ)η(λ)X̄a(µ)F a(µ) ≥ [λη(λ)X̄a − µη(µ)X̄a]h(µ),
η(µ) = η(λ)[I + (λ− µ)ψ(µ)]

= η(λ)[I + (λ− µ)φ(µ) + (λ− µ)(ψ(µ) − φ(µ))]
≥ η(λ)[I + (λ− µ)φ(µ)] + (λ− µ)η(λ)X̄a(µ)F a(µ)
≥ η(λ)[I + (λ− µ)φ(µ)] + λη(λ)X̄ah(µ) − µη(µ)X̄ah(µ),

so we have η(λ)[I + (λ− µ)φ(µ)] + λη(λ)X̄ah(µ) ≤ η(µ) + µη(µ)X̄ah(µ), thus
for any λ ≥ µ,

λη(λ)X̄ah(µ) ≤ η(λ)[I + (λ− µ)φ(µ)] + λη(λ)X̄ah(µ)
≤ η(µ) + µη(µ)X̄ah(µ),

which follows that

lim sup
λ→∞

λη(λ)X̄ah(µ) ≤ η(µ) + µη(µ)X̄ah(µ) <∞.

Since h(µ) �= 0, the above inequality implies that lim sup
λ→∞

λη(λ)X̄a <∞, which

completes the proof.

Lemma 2.13. Suppose ψ(λ) = φ(λ) + X̄1(λ)F 1(λ) + X̄2(λ)F 2(λ) is a
QN -process. If both F 1(λ) �= 0 and F 2(λ) �= 0, then there exist no expansion
QE-processes of ψ(λ), i.e. Gψ(λ) = ∅.

Proof. If Gψ(λ) �= ∅, then by Chen’s resolvent decomposition theorem,
there must exist some η(λ) ∈ Hψ and some ξ(λ) ∈ Kψ such that (1.5)–(1.9)



On the construction problem for uni-instantaneous bilateral birth-death processes 203

hold. However, by (2.20), Lemma 2.11 and Lemma 2.12,

lim
λ→∞

λη(λ)1 = lim
λ→∞

λη(λ)(X̄1 + X̄2 + Y 1 + Y 2)

≤ lim sup
λ→∞

λη(λ)(X̄1 + X̄2) + sup
λ>0

λη(λ)Γβ <∞,

which contradicts to (1.9). This completes the proof.

Lemma 2.14. Suppose ψ(λ) = φ(λ) + X̄a(λ)F a(λ), a ∈ {1, 2} is a B-
type QN -process with X̄a(λ) �= 0. Then F a(λ) has the following properties
(1) F a(λ) ≥ 0 and λF a(λ)1 ≤ 1.
(2) F a(λ) satisfies the following equation

(2.29) F a(λ)Aφ(λ, µ) = [1 + (µ− λ)〈F a(λ), X̄a(µ)〉]F a(µ) λ, µ > 0

or equivalently, F a(λ) = [1 + (µ − λ)〈F a(λ), X̄a(µ)〉]F a(µ)Aφ(µ, λ), in which
mλµ ≡ [1 + (µ − λ)〈F a(λ), X̄a(µ)〉] ≥ 1 ∧ µ

λ
> 0 and F a(µ)Aφ(µ, λ) =

m−1
λµF

a(λ) ≥ 0.
(3) Moreover, if F a(λ) �= 0, then it can be expressed as

(2.30) F a(λ) =
aη(λ)

c1 + λ〈aη(λ), X̄a〉

for some

(2.31) aη(λ) = αaφ(λ) + aη̄(λ) �= 0

and some constant

(2.32) c1 ≥ sup
λ>0

λ〈aη(λ),1− X̄a〉,

where aη̄(λ) ∈ L+
λ ∩ Hφ can be further expressed as

(2.33) aη̄(λ) = daη̄
a(λ) + dbη̄

b(λ)

for some constants da, db ≥ 0 (db = 0 when lim
λ→∞

λη̄b(λ)X̄b = ∞ or η̄b(λ) = 0),

αa is a non-negative row vector such that

(2.34) αaφ(λ) ∈ lN and αaX̄b <∞.

In fact, aη(λ) and c1 can be taken as

(2.35) aη(λ) = F a(µ0)Aφ(µ0, λ), c1 = 1 − µ0〈aη(µ0), X̄a〉

for any fixed µ0 > 0.
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Proof. All the conclusions except (2.33) and αaX̄b < ∞ in (2.34) come
from Theorem 3.2.1 of [42], we only give the proof for (2.33) and αaX̄b <∞.

By Lemma 2.5, aη̄(λ) allows an expression as
aη̄(λ) = daη̄

a(λ) + dbη̄
b(λ),

for some constants da, db ≥ 0 (db = 0 when η̄b(λ) = 0), hence

λ〈aη(λ),1− X̄a〉 = λ〈aη(λ), Y 1 + Y 2 + X̄b〉
= λ〈aη(λ), Y 1 + Y 2〉 + λαaφ(λ)X̄b + λ(daη̄a(λ) + dbη̄

b(λ))X̄b

= λ〈aη(λ), Y 1 + Y 2〉 + λαaφ(λ)X̄b + dbλη̄
b(λ)X̄b.

While by Lemma 2.11, sup
λ>0

λ〈aη(λ), Y 1 + Y 2〉 < ∞, so the above equality and

(2.32) imply

αaX̄b ≤ lim inf
λ→∞

λαaφ(λ)X̄b <∞
and db = 0 when lim

λ→∞
λη̄b(λ)X̄b = ∞.

According to Lemma 2.13 and Lemma 2.14, in the following, we shall al-
ways assume
(A) ψ(λ) = φ(λ) + X̄a(λ)F a(λ), a ∈ {1, 2}, where F a(λ) possesses the proper-
ties (1)–(3) in Lemma 2.14.

Lemma 2.15. Assume the assumption (A) with X̄a(λ) �= 0 and F a(λ)
�= 0. Then there exists an η(λ) ∈ Hψ such that

(2.36) lim
λ→∞

λη(λ) = α ≡ (qi0; i ∈ N)

if and only if αX̄a <∞ and αφ(λ) ∈ lN .
When αX̄a < ∞ and αφ(λ) ∈ lN are satisfied, take a row vector aη(λ) ∈

Hφ such that (2.30)–(2.34) hold, then take a constant A ≥ 0, set α′ = α+Aαa,
take a row vector η̄′(λ) ∈ L+

λ ∩ Hφ such that η̄′(λ) = d′aη̄
a(λ) + d′bη̄

b(λ) for
some constants d′a, d

′
b ≥ 0 and such that

η̄′(λ) ≥ A · aη̄(λ)(2.37)
lim
λ→∞

λ(d′a −Ada)η̄a(λ)X̄a <∞,(2.38)

furthermore, take a constant c2 satisfying

(2.39) αX̄a + lim
λ→∞

λ(d′a −Ada)η̄a(λ)X̄a ≤ Ac1 + c2

(αX̄a + lim
λ→∞

λ(d′a −Ada)η̄a(λ)X̄a = Ac1 + c2 when αa1 + lim
λ→∞

λdaη̄
a(λ)X̄a <

∞), let η′(λ) = α′φ(λ) + η̄′(λ) and finally let

(2.40) η(λ) = η′(λ) − λ〈η′(λ), X̄a〉 − c2
c1 + λ〈aη(λ), X̄a〉

aη(λ).

Then this η(λ) belongs to Hψ and satisfies (2.36). Moreover, any vector be-
longing to Hψ and satisfying (2.36) can be obtained in the above way.
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Remark 2.16. When the boundary point za is regular, by Lemma 2.9,
lim
λ→∞

λη̄a(λ)X̄a = ∞, so (2.38) is equivalent to d′a = Ada, and (2.39) has a

simpler form αX̄a ≤ Ac1 + c2, where the equality αX̄a = Ac1 + c2 holds when
αa1 <∞ and da = 0.

Proof of Lemma 2.15. (I) Necessity. Suppose that there exists an η(λ) ∈
Hψ satisfying (2.36). By Lemma 2.12, we have lim

λ→∞
λη(λ)X̄a < ∞, so by

Fatou’s lemma, we immediately get

αX̄a ≤ lim
λ→∞

λη(λ)X̄a <∞.

Furthermore, η(λ) ∈ Hψ implies, for any λ ≥ µ > 0,

(λ− µ)η(λ)φ(µ)1 ≤ (λ− µ)η(λ)ψ(µ)1 + η(λ)1 = η(µ)1,

so we have
λ− µ

λ
λη(λ)φ(µ)1 ≤ η(µ)1,

hence Fatou’s lemma and (2.36) yield αφ(µ)1 ≤ η(µ)1 <∞, i.e. αφ(µ) ∈ lN .
Next we show η(λ) possesses the form of (2.40). Let aη(λ) and c1 be taken,

for some fixed µ0 > 0, as (2.35), which satisfy (2.30)–(2.34). Since

η(µ0) = η(λ)[I + (λ− µ0)ψ(µ0)]
= η(λ)[I + (λ− µ0)φ(µ0)] + (λ− µ0)η(λ)[ψ(µ0) − φ(µ0)]
= η(λ)Aφ(λ, µ0) + (λ− µ0)η(λ)X̄a(µ0)F a(µ0),

where Aφ(λ, µ0) = I + (λ − µ0)φ(µ0). Multiplying Aφ(µ0, λ) in the two sides
of the above equality and using the property Aφ(λ, µ0)Aφ(µ0, λ) = I, we get

η(µ0)Aφ(µ0, λ) = η(λ) + (λ− µ0)η(λ)X̄a(µ0)F a(µ0)Aφ(µ0, λ),

thus

η(λ) = η(µ0)Aφ(µ0, λ) − (λ− µ0)η(λ)X̄a(µ0)F a(µ0)Aφ(µ0, λ),

that is

(2.41) η(λ) = η′(λ) − (λ− µ0)η(λ)X̄a(µ0) · aη(λ),

where η′(λ) = η(µ0)Aφ(µ0, λ) ∈ Hφ. Denote dλ = (λ − µ0)η(λ)X̄a(µ0), and
multiplying by (λ− µ0)X̄a(µ0) in (2.41), we then have

dλ =
(λ− µ0)η′(λ)X̄a(µ0)

1 + (λ− µ0)〈aη(λ), X̄a(µ0)〉
=

λη′(λ)X̄a − µ0η
′(µ0)X̄a

1 − µ0〈aη(µ0), X̄a〉 + λ〈aη(λ), X̄a〉 =
λη′(λ)X̄a − c2

c1 + λ〈aη(λ), X̄a〉 ,
(2.42)
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where c2 ≡ µ0η
′(µ0)X̄a ≤ µη′(µ0)1 < ∞ (note the denominator 1 + (λ −

µ0)〈aη(λ), X̄a(µ0)〉 = mµ0λ > 0). Combining (2.42) with (2.41) we get (2.40).
Next, we turn to show that A, α′, η̄′(λ), and η′(λ) satisfy the conditions

stated in the Lemma. First, we show dλ ↑ and has a finite limit as λ ↑ ∞.
Since for any λ, µ > 0,

(λ− µ)η(λ)X̄a(µ)[1 − (µ− µ0)F a(µ)X̄a(µ0)]
= (λ− µ)η(λ)[X̄a(µ) − (µ− µ0)X̄a(µ)F a(µ)X̄a(µ0)]
= (λ− µ)η(λ)[X̄a(µ) + (µ− µ0)φ(µ)X̄a(µ0) − (µ− µ0)ψ(µ)X̄a(µ0)]
= (λ− µ)η(λ)X̄a(µ0) − (µ− µ0)(λ− µ)η(λ)ψ(µ)X̄a(µ0)
= (λ− µ)η(λ)X̄a(µ0) − (µ− µ0)[η(µ) − η(λ)]X̄a(µ0)
= (λ− µ0)η(λ)X̄a(µ0) − (µ− µ0)η(µ)X̄a(µ0)
= dλ − dµ

and (µ − µ0)F a(µ)X̄a(µ0) < µF a(µ)X̄a(µ0) ≤ 1, it is easy to conclude from
the above equality that dλ ↑ as λ ↑. On the other hand, by multiplying
Aφ(λ, µ) in both sides of (2.41) and noticing that η′(λ)Aφ(λ, µ) = η′(µ) and
aη(λ)Aφ(λ, µ) = aη(µ), we have

η′(µ) = η(λ)Aφ(λ, µ) + dλ · aη(µ).

Since lim inf
λ→∞

η(λ)Aφ(λ, µ) ≥ αφ(µ), so by letting λ go to ∞ in the right hand

of the above equation, we get for any µ > 0

(2.43) η′(µ) ≥ αφ(µ) +A · aη(µ),

in particular,

(2.44) η′(µ) ≥ A · aη(µ),

where A = lim
λ→∞

dλ. Since aη(µ) �= 0 and dλ ≥ 0 for λ ≥ µ0, we thus get

0 ≤ A <∞.
Now suppose the Riesz decomposition of η′(λ) ∈ Hφ is

(2.45) η′(λ) = α′φ(λ) + η̄′(λ)

where α′ is a non-negative row vector such that α′φ(λ) ∈ lN and, η̄′(λ) ∈
L+
λ ∩ Hφ, according to Lemma 2.5, possesses further an expression as η̄′(λ) =

d′aη̄
a(λ) + d′bη̄

b(λ) for some constants d′a, d
′
b ≥ 0.

Recall that aη(λ) has the similar expression of (2.31) and (2.33) for some
constants da, db ≥ 0 (db = 0 when lim

λ→∞
λη̄b(λ)X̄b = ∞ or η̄b(λ) = 0) and αa

satisfying αaφ(λ) ∈ lN and αaX̄b <∞.
Since by Lemma 2.11.3 of [42], aη(λ) and η′(λ) satisfy

aη(λ) ↓ 0, λ · aη(λ) → αa, λ ↑ ∞(2.46)
η′(λ) ↓ 0, λη′(λ) → α′, λ ↑ ∞(2.47)
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so by multiplying λ in (2.41), then letting λ → ∞ and using the properties
(2.46) and (2.47), we obtain

(2.48) α = α′ −Aαa

hence α′ = α + Aαa. While (2.37) easily follows from (2.43), (2.31), (2.33),
(2.45) and the expression of η̄′(λ).

To verify (2.38) and (2.39), first, noticing that as λ ↑ ∞, dλ ↑ A, so we
have

A− dλ = A− λη′(λ)X̄a − c2
c1 + λ〈aη(λ), X̄a〉 ↓ 0,

that is

Ac1 + c2 − λ[η′(λ) −A · aη(λ)]X̄a

c1 + λ〈aη(λ), X̄a〉 ↓ 0.

Furthermore, substituting (2.31), (2.45) and (2.48) into the above equation, we
have

Ac1 + c2 − λαφ(λ)X̄a − λ[η̄′(λ) −A · aη̄(λ)]X̄a

c1 + λ〈aη(λ), X̄a〉 ↓ 0.

Therefore, from the above two equations, we conclude that

λ[η′(λ) −A · aη(λ)]X̄a ≤ Ac1 + c2,

λαφ(λ)X̄a + λ[η̄′(λ) −A · aη̄(λ)]X̄a ≤ Ac1 + c2,
(2.49)

and when lim
λ→∞

λ〈aη(λ), X̄a〉 <∞,

λ[η′(λ) −A · aη(λ)]X̄a → Ac1 + c2,

λαφ(λ)X̄a + λ[η̄′(λ) −A · aη̄(λ)]X̄a → Ac1 + c2.
(2.50)

Since

lim
λ→∞

λαφ(λ)X̄a = αX̄a − lim
λ→∞

αX̄a(λ) = αX̄a (∵ Lemma 2.8 (1))

λ[η̄′(λ) − A · aη̄(λ)]X̄a = λ[(d′a −Ada)η̄a(λ) + (d′b −Adb)η̄b(λ)]X̄a

= λ(d′a −Ada)η̄a(λ)X̄a

(2.51)

and

λ〈aη(λ), X̄a〉 = λαaφ(λ)X̄a + λ(daη̄a(λ) + dbη̄
b(λ))X̄a

= λαaφ(λ)X̄a + λdaη̄
a(λ)X̄a,

by taking limit in (2.49) and (2.50), we get

αX̄a + lim
λ→∞

λ(d′a −Ada)η̄a(λ)X̄a ≤ Ac1 + c2
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which holds the equality when

(2.52) lim
λ→∞

λαaφ(λ)X̄a + lim
λ→∞

λdaη̄
a(λ)X̄a <∞.

Since

(2.53) lim
λ→∞

λαaφ(λ)X̄a <∞

implies αaX̄a <∞ and furthermore, from (2.32) we have αa(1− X̄a) <∞, so
(2.53) further implies αa1 < ∞, which in turn, implies (2.53) itself, therefore
(2.52) is equivalent to αa1 + lim

λ→∞
λdaη̄

a(λ)X̄a < ∞, which, together with the

above argument, shows (2.38) and (2.39). The necessity is proved.
(II) Sufficiency. Suppose αX̄a < ∞ and αφ(λ) ∈ lN . We show the η(λ)
constructed as (2.40) satisfies (2.36) and η(λ) ∈ Hψ.

Denote dλ =
λη′(λ)X̄a − c2

c1 + λ〈aη(λ), X̄a〉 , then (2.40) can be simply rewritten as

(2.54) η(λ) = η′(λ) − dλ · aη(λ).

Since

A− dλ =
Ac1 + c2 − λ[η′(λ) −A · aη(λ)]X̄a

c1 + λ〈aη(λ), X̄a〉
=
Ac1 + c2 − λαφ(λ)X̄a − λ[η̄′(λ) −A · aη̄(λ)]X̄a

c1 + λ〈aη(λ), X̄a〉 ,

from η′(λ), aη(λ) ∈ Hφ and (2.31), (2.34), (2.37) and the equality α′ = α+Aαa,
η̄′(λ) = d′aη̄

a(λ) + d′bη̄
b(λ), we conclude that

(2.55) η′(λ) ≥ A · aη(λ),

and furthermore, by Lemma 2.11.3 and Lemma 2.11.4 of [42], as λ ↑ ∞, we
have

λη̄′(λ)X̄a ↑ λη′(λ)X̄a ↑ λη′(λ) → α′(2.56)
λ · aη̄(λ)X̄a ↑ λ · aη(λ)X̄a ↑ λ · aη(λ) → αa(2.57)

λ[η′(λ) −A · aη(λ)]X̄a ↑ λ[η̄(λ) −A · aη̄(λ)]X̄a ↑(2.58)
λαφ(λ)X̄a ↑ αX̄a.(2.59)

So from (2.39), (2.51), (2.58) and (2.59), we get 0 ≤ A− dλ → 0, i.e.

(2.60) dλ ≤ A and dλ → A as λ ↑ ∞.

Furthermore, from (2.54), (2.56), (2.57), (2.60), it follows

lim
λ→∞

λη(λ) = α′ −Aαa = α
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which shows (2.36).
To show η(λ) ∈ Hψ, we need to verify the following two assertions:

η(µ) − η(λ) =(λ− µ)η(λ)ψ(µ), λ, µ > 0(2.61)
0 ≤ η(λ) ∈ lN .(2.62)

Since η(λ) can be also written as η(λ) = η′(λ) − (λη′(λ)X̄a − c2)F a(λ), and
η′(λ) ∈ Hφ, i.e. η′(µ) − η′(λ) = (λ− µ)η′(λ)φ(µ), ∀ λ, µ > 0, we have

η(µ) − η(λ)
= η′(µ) − η′(λ) − (µη′(µ)X̄a − c2)F a(µ) + (λη′(λ)X̄a − c2)F a(λ)
= (λ− µ)η′(λ)φ(µ) − (λ− µ)(λη′(λ)X̄a − c2)F a(λ)φ(µ)+

+ (λ− µ)(λη′(λ)X̄a − c2)F a(λ)φ(µ) − (µη′(µ)X̄a − c2)F a(µ)+
+ (λη′(λ)X̄a − c2)F a(λ)

= (λ− µ)[η′(λ) − (λη′(λ)X̄a − c2)F a(λ)]φ(µ)+
+ (λη′(λ)X̄a − c2)F a(λ)[I + (λ− µ)φ(µ)] − (µη′(µ)X̄a − c2)F a(µ)

= (λ− µ)η(λ)φ(µ) + (λη′(λ)X̄a − c2)F a(λ)Aφ(λ, µ)−
− (µη′(µ)X̄a − c2)F a(µ)

= (λ− µ)η(λ)φ(µ) + (λη′(λ)X̄a − c2)[1 + (µ− λ)F a(λ)X̄a(µ)]F a(µ)−
− (µη′(µ)X̄a − c2)F a(µ) (∵ (2.29))

= (λ− µ)η(λ)φ(µ) + (λη′(λ)X̄a − c2)F a(µ)−
− (λη′(λ)X̄a − c2)(µ− λ)F a(λ)X̄a(µ)F a(µ) − (µη′(µ)X̄a − c2)F a(µ)

= (λ− µ)η(λ)φ(µ) + (λη′(λ)X̄a − µη′(µ)X̄a)F a(µ)−
− (λη′(λ)X̄a − c2)(µ− λ)F a(λ)X̄a(µ)F a(µ)

= (λ− µ)η(λ)φ(µ) + (λ− µ)η′(λ)X̄a(µ)F a(µ)−
− (λη′(λ)X̄a − c2)(µ− λ)F a(λ)X̄a(µ)F a(µ)

= (λ− µ)η(λ)φ(µ) + (λ− µ)[η′(λ) − (λη′(λ)X̄a − c2)]X̄a(µ)F a(µ)
= (λ− µ)η(λ)φ(µ) + (λ− µ)η(λ)X̄a(µ)F a(µ)
= (λ− µ)η(λ)[φ(µ) + X̄a(µ)F a(µ)]
= (λ− µ)η(λ)ψ(µ),

which shows (2.61).
Finally, by (2.55), we have

η(λ) = η′(λ) − dλ · aη(λ) ≥ η′(λ) −A · aη(λ) ≥ 0.

On the other hand, η′(λ), aη(λ) ∈ Hφ implies η′(λ) ∈ lN and aη(λ) ∈ lN , thus

η(λ) = η′(λ) − dλ · aη(λ) ≤ max{|dλ|, 1}(η′(λ) + aη(λ)) ∈ lN .

This leads to the conclusion (2.62). The proof is complete.
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Lemma 2.17. Assume assumption (A), αX̄a < ∞ and αφ(λ) ∈ lN .
Let η(λ) be taken as in Lemma 2.15. If α1 <∞, then as λ→ ∞, we have
(1) For any b ∈ {1, 2}, λη(λ)X̄b → ∞ if and only if λ[η̄′(λ)−A·aη̄(λ)]X̄b → ∞ ;
(2) λη(λ)1 → ∞ if and only if λ[η̄′(λ) −A · aη̄(λ)]1 → ∞.

Proof. Since

A− dλ =
Ac1 + c2 − λ[η′(λ) −A · aη(λ)]X̄a

c1 + λ〈aη(λ), X̄a〉
≤ Ac1 + c2
c1 + λ〈aη(λ), X̄a〉 ,

0 ≤ (A− dλ) · aη(λ) ≤ Ac1 + c2
c1 + λ〈aη(λ), X̄a〉

aη(λ) = (Ac1 + c2)F a(λ),

we have

(2.63) 0 ≤ λ(A− dλ) · aη(λ)1 ≤ (Ac1 + c2)λF a(λ)1 ≤ Ac1 + c2 <∞.

On the other hand, by (2.31) and (2.45), we have

η(λ) = η′(λ) − dλ · aη(λ) = α′φ(λ) + η̄′(λ) − dλ[αaφ(λ) + aη̄(λ)]
= αφ(λ) + (A− dλ)αaφ(λ)+

+ (A− dλ) · aη̄(λ) + [η̄′(λ) −A · aη̄(λ)]
= αφ(λ) + (A− dλ) · aη(λ) + [η̄′(λ) −A · aη̄(λ)].

(2.64)

Thus the assertions of the lemma easily follow from (2.63), (2.64) and the
assumptions.

Lemma 2.18. Assume assumption (A) with X̄a(λ) �= 0 and F a(λ) �=
0. η(λ) ∈ Hψ satisfying lim

λ→∞
λη(λ) = α and lim

λ→∞
λη(λ)1 = ∞, then if and only

if X̄b(λ) �= 0 (b �= a, b ∈ {1, 2}), there exists a column vector ξ(λ) satisfying
the following conditions (2.65)–(2.69):

0 ≤ ξ(λ) ≤ 1(2.65)
ξ(λ) + λψ(λ)1 ≤ 1(2.66)

ξ(λ) − ξ(µ) = (µ− λ)ψ(λ)ξ(µ)(2.67)
lim
λ→∞

λξ(λ) = β(2.68)

lim
λ→∞

λη(λ)(1− ξ) <∞(2.69)

where ξ = lim
λ→0

ξ(λ).

When X̄b(λ) �= 0, ξ(λ) can be expressed as

(2.70) ξ(λ) = φ(λ)β +X(λ) − λX̄a(λ)F a(λ)ξ,
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where X(λ) ∈ M+
λ ∩ Kφ has the following expression

(2.71) X(λ) = taX̄
a(λ) + X̄b(λ)

for some non-negative constant ta satisfying

lim
λ→∞

1
c1
λ〈aη(λ),1− X̄a〉 ≤ ta ≤ 1 and(2.72)

ξ = Y 1 + Y 2 + taX̄
a + X̄b.(2.73)

In particular, the equality in (2.66) holds iff ta = 1.

Proof. (I) Necessity. The resolvent equation of ψ(λ) implies that F a(λ)
satisfies the following equation F a(λ) = F a(µ) + (µ − λ)F a(µ)ψ(λ), so by
Lemma 3.1.3 of [18],

(2.74) (µ− λ)F a(λ)ξ(µ) = µF a(µ)ξ − λF a(λ)ξ

where ξ = lim
λ→0

ξ(λ). Furthermore, by (2.67) and noticing that X̄a(λ) =

Aφ(µ, λ)X̄a(µ), we have

ξ(λ) = Aφ(µ, λ)ξ(µ) + (µ− λ)X̄a(λ)F a(λ)ξ(µ)
= Aφ(µ, λ)ξ(µ) + X̄a(λ)[µF a(µ)ξ − λF a(λ)ξ]
= Aφ(µ, λ)[ξ(µ) + µX̄a(µ)F a(µ)ξ] − λX̄a(λ)F a(λ)ξ,

hence

(2.75) ξ(λ) + λX̄a(λ)F a(λ)ξ = Aφ(µ, λ)[ξ(µ) + µX̄a(µ)F a(µ)ξ]

that is

(2.76) T (λ) ≡ ξ(λ) + λX̄a(λ)F a(λ)ξ ∈ Kφ.

By (2.68) and Lemma 2.8, we get

(2.77) lim
λ→∞

λT (λ) = β

thus the Riesz decomposition of T (λ) must have the following form

(2.78) T (λ) = φ(λ)β +X(λ)

where X(λ) ∈ M+
λ ∩Kφ and therefore there exist some non-negative constants
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ta and tb such that

(2.79) X(λ) = taX̄
a(λ) + tbX̄

b(λ)

where tb = 0 when X̄b(λ) = 0. So ξ(λ) is expressed as

ξ(λ) = T (λ) − λX̄a(λ)F a(λ)ξ
= φ(λ)β +X(λ) − λX̄a(λ)F a(λ)ξ

= φ(λ)β + taX̄
a(λ) + tbX̄

b(λ) − λX̄a(λ)F a(λ)ξ.

(2.80)

Now, by (2.67), we have ξ = ξ(λ) + λψ(λ)ξ, which yields lim
λ→0

λψ(λ)ξ = 0, or

equivalently

lim
λ→0

λφ(λ)ξ = 0 and lim
λ→0

λX̄a(λ)F a(λ)ξ = 0

so together with (2.21) and Lemma 2.8, by letting λ→ 0 in (2.80), we get

ξ =
{
Y a + Y b + taX̄

a + tbX̄
b, when X̄b(λ) �= 0

Y a + Y b + taX̄
a, when X̄b(λ) = 0

(2.81)

hence 1 − ξ =
{

(1 − ta)X̄a + (1 − tb)X̄b, when X̄b(λ) �= 0
(1 − ta)X̄a + X̄b, when X̄b(λ) = 0.

Since λη(λ)1 = λη(λ)(Y a + Y b + X̄a + X̄b), by Lemma 2.11 and Lemma 2.12,
we see that lim

λ→∞
λη(λ)1 = ∞ implies lim

λ→∞
λη(λ)X̄b = ∞, therefore from

λη(λ)(1− ξ) =
{

(1 − ta)λη(λ)X̄a + (1 − tb)λη(λ)X̄b, when X̄b(λ) �= 0
(1 − ta)λη(λ)X̄a + λη(λ)X̄b, when X̄b(λ) = 0

we see that when X̄b(λ) = 0, (2.69) can not be satisfied. So when there exists
a ξ(λ) satisfying (2.65)–(2.69), the condition X̄b(λ) �= 0 is necessarily required.
When X̄b(λ) �= 0 is satisfied, from the above argument and the above equation,
it follows that tb = 1. Substituting this into (2.79)–(2.81), we immediately get
(2.71), (2.70) and (2.73).
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Next, by (2.66), (2.80), (2.20) and (2.22), we have

0 ≤ 1− ξ(λ) − λψ(λ)1

= 1− φ(λ)β − taX̄
a(λ) − X̄b(λ) − λψ(λ)1+

+ X̄a(λ)
λ · aη(λ)(Y 1 + Y 2 + taX̄

a + X̄b)
c1 + λ〈aη(λ), X̄a〉

= 1− φ(λ)β − taX̄
a(λ) − X̄b(λ) − λψ(λ)1+

+ X̄a(λ)
λ · aη(λ)[(Y 1 + Y 2 + X̄a + X̄b) − (1 − ta)X̄a]

c1 + λ〈aη(λ), X̄a〉
= 1− φ(λ)β − taX̄

a(λ) − X̄b(λ) − λψ(λ)1+

+ X̄a(λ)
λ · aη(λ)1

c1 + λ〈aη(λ), X̄a〉 − X̄a(λ)
λ · aη(λ)(1 − ta)X̄a

c1 + λ〈aη(λ), X̄a〉
= 1− φ(λ)β − taX̄

a(λ) − X̄b(λ) − λφ(λ)1−

− X̄a(λ)
λ · aη(λ)(1 − ta)X̄a

c1 + λ〈aη(λ), X̄a〉
= X̄a(λ) + X̄b(λ) − taX̄

a(λ) − X̄b(λ)−

− X̄a(λ)
λ · aη(λ)(1 − ta)X̄a

c1 + λ〈aη(λ), X̄a〉
= (1 − ta)X̄a(λ) − X̄a(λ)

λ · aη(λ)(1 − ta)X̄a

c1 + λ〈aη(λ), X̄a〉
= X̄a(λ)

(1 − ta)c1
c1 + λ〈aη(λ), X̄a〉 ,

(2.82)

so (1 − ta)c1 ≥ 0, i.e.

(2.83) ta ≤ 1.

Apparently, (2.66) holds the equality iff ta = 1.
On the other hand, by(2.68) and Fatou’s Lemma, we have

lim inf
µ→∞ Aφ(µ, λ)ξ(µ) ≥ φ(λ)β

and by (2.74) we know µF a(µ)ξ is increasing in µ and thus has a limit B ≤ 1
as µ ↑ ∞, so by letting µ→ ∞ in (2.75), we get T (λ) ≥ φ(λ)β +BX̄a(λ). i.e.

φ(λ)β + taX̄
a(λ) + X̄b(λ) ≥ φ(λ)β +BX̄a(λ)
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therefore (ta −B)X̄a(λ) + X̄b(λ) ≥ 0, which implies ta ≥ B. Since

0 ≤ B − λF a(λ)ξ = B − λ · aη(λ)(Y 1 + Y 2 + taX̄
a + X̄b)

c1 + λ〈aη(λ), X̄a〉

=
Bc1 + λ · aη(λ)[(B − ta)X̄a − Y 1 − Y 2 − X̄b]

c1 + λ〈aη(λ), X̄a〉

=
Bc1 + (ta − B)c1 − λ · aη(λ)(Y 1 + Y 2 + X̄b)

c1 + λ〈aη(λ), X̄a〉 +B − ta

≤ tac1 − λ · aη(λ)(Y 1 + Y 2 + X̄b)
c1 + λ〈aη(λ), X̄a〉 ,

we have

ta ≥ 1
c1
λ · aη(λ)(Y 1 + Y 2 + X̄b) =

1
c1
λ〈aη(λ),1− X̄a〉

for all λ ≥ 0. Combining this with (2.83), we get (2.72).
(II) Sufficiency. If X̄b(λ) �= 0 and ξ(λ) is taken as in (2.70)–(2.73), we

show ξ(λ) satisfies (2.65)–(2.69).
First, by (2.72) and (2.82), we immediately get (2.66). And, by (2.70),

(2.71), (2.73), Lemma 2.8 (1) and Lemma 2.14 (1), we can also easily get
(2.68). Next, from (2.73) we have

(2.84) λη(λ)(1− ξ) = (1 − ta)λη(λ)X̄a,

hence (2.69) is guaranteed by Lemma 2.12. Moreover, by (2.82)

ξ(λ) = 1− λψ(λ)1− X̄a(λ)
(1 − ta)c1

c1 + λ〈aη(λ), X̄a〉

so by (2.72), we get (1 − ta)c1 ≤ c1 − λ〈aη(λ),1− X̄a〉, hence

ξ(λ) ≥ 1 − λψ(λ)1− X̄a(λ)
c1 − λ〈aη(λ),1− X̄a〉
c1 + λ〈aη(λ), X̄a〉

= 1 − λψ(λ)1− X̄a(λ) + X̄a(λ)
λ · aη(λ)1

c1 + λ〈aη(λ), X̄a〉
= 1 − λψ(λ)1− X̄a(λ) + λX̄a(λ)F a(λ)1

= 1 − λφ(λ)1− X̄a(λ) = φ(λ)β + X̄b(λ) (∵ Lemma 2.8 (3))
≥ 0,

which, together with (2.66), implies (2.65).
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Next, by (2.70) and Lemma 2.8, we have

ξ(λ) = φ(λ)β +X(λ) − λ(ψ(λ) − φ(λ))ξ

= Y 1(λ) + Y 2(λ) +X(λ) + λφ(λ)ξ − λψ(λ)ξ

= Y 1(λ) + Y 2(λ) + taX̄
a(λ) + X̄b(λ) + λφ(λ)(Y 1+

+ Y 2 + taX̄
a + X̄b) − λψ(λ)(Y 1 + Y 2 + taX̄

a + X̄b)

= Y 1 + Y 2 + taX̄
a + X̄b − λψ(λ)(Y 1 + Y 2 + taX̄

a + X̄b)
= ξ − λψ(λ)ξ,

(2.85)

therefore by the resolvent equation of ψ(λ), we have

ξ(λ) − ξ(µ) = λψ(µ)ξ − λψ(λ)ξ = (µ− λ)ψ(λ)ξ − µ[ψ(λ) − ψ(µ)]ξ
= (µ− λ)ψ(λ)ξ − µ(µ− λ)ψ(λ)ψ(µ)ξ
= (µ− λ)ψ(λ)(ξ − µψ(µ)ξ) = (µ− λ)ψ(λ)ξ(µ),

which shows (2.67).
Finally, we show

ξ ≡ lim
λ→0

ξ(λ) = Y 1 + Y 2 + taX̄
a + X̄b.

By letting µ ↓ 0 in (2.67), we obtain

(2.86) ξ(λ) = ξ − λψ(λ)ξ,

hence lim
λ→0

λψ(λ)ξ = 0, and thus

(2.87) lim
λ→0

λφ(λ)ξ = 0.

Denote ξ′ = Y 1 + Y 2 + taX̄
a + X̄b. By Lemma 2.8,

(2.88) λφ(λ)ξ′ = ξ′ − Y 1(λ) − Y 2(λ) −X(λ),

letting λ ↓ 0, we get lim
λ→0

λφ(λ)ξ′ = 0. Let X0 = ξ−ξ′. Then by (2.87) we have

(2.89) lim
λ→0

λφ(λ)X0 = 0.

Noticing that the ξ in (2.85) is actually Y 1 + Y 2 + taX̄
a + X̄b, which is de-

noted here by ξ′, we then get from (2.85) and (2.86) that λψ(λ)X0 = X0.
Furthermore,

ξ(λ) = ξ′ − λψ(λ)ξ′ = ξ′ −X0 − λψ(λ)(ξ′ −X0)

= ξ′ −X0 − λφ(λ)(ξ′ −X0) − λX̄a(λ)F a(λ)(ξ′ −X0)

= ξ′ −X0 − λφ(λ)ξ′ + λφ(λ)X0 − λX̄a(λ)F a(λ)ξ

= Y 1(λ) + Y 2(λ) +X(λ) −X0 + λφ(λ)X0 − λX̄a(λ)F a(λ)ξ (∵ (2.88))

= φ(λ)β +X(λ) −X0 + λφ(λ)X0 − λX̄a(λ)F a(λ)ξ,
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so by (2.70) we have X0 − λφ(λ)X0 = 0, therefore by (2.89)

X0 = lim
λ→0

λφ(λ)X0 = 0

as is required. The proof is complete.

Remark 2.19. We shall denote F a(λ) = F a(λ; c1, αa, da, db) to em-
phasize that the F a(λ) in Lemma 2.14 (3) satisfying (2.30)–(2.34) is actually
decided by c1, αa, da and db. Similarly, the η(λ) as (2.40) in Lemma 2.15 will
be denoted by η(λ) = η(λ; c1, c2, A, α, αa, da, db, d′a, d′b) and the ξ(λ) in Lemma
2.18 satisfying (2.70)–(2.73) will be denoted by ξ(λ) = ξ(λ; β, ta, F a(λ)).

3. Existence and construction theorems

Suppose Q is a uni-instantaneous bilateral birth and death pre-generator
defined as (2.1), with {0} being the instantaneous state. Since Q is written as

Q =


 QN1 β1 0

α1 −∞ α2

0 β2 QN2


 ,

where αa = (qi0; i ∈ Na), βa = (q0j ; j ∈ Na), a = 1, 2, to apply Chen’s
resolvent decomposition theorem 1.1 in our case, the decomposition (1.2) should
be modified into the following form

R(λ) =


 ψ11(λ) 0 ψ12(λ)

0 0 0
ψ21(λ) 0 ψ22(λ)


 +(3.1)

+ r(λ)


 ξN1(λ)

1
ξN2(λ)


 (

ηN1(λ), 1, ηN2(λ)
)

where ψab(λ) is the restriction of the QN -process ψ(λ) on Na×Nb, a, b ∈ {1, 2},
ξNa

(λ) and ηNa
(λ) are the restrictions of ξ(λ) and η(λ) on Na (a = 1, 2),

respectively, with ξ(λ) and η(λ) satisfying (1.3)–(1.11). α, β in (1.6) are defined

here by α = (qi0; i ∈ N) = (α1, α2) and β = (q0j ; j ∈ N) =
(
β1

β2

)
.

Now we have the following

Theorem 3.1. If both z1 and z2 are entrance or natural, or equiva-
lently, QN is null exit, then QE-process does not exist.

Proof. Suppose both z1 and z2 are entrance or natural, then QN is null
exit, i.e. X̄a(λ) = 0, a = 1, 2, therefore ψ(λ) = φ(λ), the Feller minimal QN -
process, is the unique B-type QN -process. If there exists a QE-process R(λ),
then by Chen’s theorem, there exist a row vector η(λ) ∈ Hφ and a column
vector ξ(λ) ∈ Kφ such that (1.5)–(1.9) hold. Since M+

λ = {0}, by taking Riesz
decomposition for ξ(λ), we have

ξ(λ) = φ(λ)β = Y 1(λ) + Y 2(λ).
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Thus ξ = lim
λ→0

ξ(λ) = Y 1 + Y 2. By Lemma 2.11,

lim
λ→∞

λ〈η(λ), ξ〉 = lim
λ→∞

λη(λ)(Y 1 + Y 2) <∞

which is in contradiction to (1.9).

Theorem 3.2. If QN is uni-exit, then all the QE-processes, if exist, are
necessarily expansions of the Feller minimal QN -process φ(λ).

Proof. Suppose QE-processes exist. Let X̄a(λ) be the non-zero exit so-
lution of QN , thus X̄b(λ) = 0, b �= a, a, b ∈ {1, 2}. Let R(λ) be a QE-process
and ψ(λ) its projection on N × N . Then by Lemma 2.10, ψ(λ) has the form
ψ(λ) = φ(λ) + X̄a(λ)F a(λ). If F a(λ) �= 0, for any η(λ) ∈ Hψ satisfying
(1.6)–(1.9), by Lemma 2.8, Lemma 2.11 and Lemma 2.12, we have

lim
λ→∞

λη(λ)1 = lim
λ→∞

λη(λ)(Xa +Xb + Y 1 + Y 2) <∞,

which is in contradiction to (1.9). So it must hold F a(λ) = 0 and thus ψ(λ) =
φ(λ).

Theorem 3.3. If one of the boundary points, say za, is regular or exit,
and the other one zb is entrance or natural (b �= a, a, b ∈ {1, 2}), or equivalently,
QN is uni-exit, then
(1) when za is regular, QE-process exists if and only if αφ(λ) ∈ lN ;
(2) when za is exit, QE-process exists if and only if α1 = ∞ and αφ(λ) ∈ lN .

When the existence conditions are satisfied, each QE-process R(λ) is an
expansion of the Feller minimal QN -process φ(λ) and can be obtained in the
following way: Take

(3.2) η(λ) = αφ(λ) + daη̄
a(λ) + dbη̄

b(λ)

with da ≥ 0, db ≥ 0 (da > 0 if α1 < ∞, da = 0 if za is exit, db = 0 if zb is
natural), and

(3.3) ξ(λ) = 1− λφ(λ)1

select a constant c such that

(3.4) c ≥ λη(λ)X̄b ≡ σb = constant

finally, define r(λ) as (1.10) and R(λ) as (3.1).
R(λ) is honest iff c = σb. Moreover, the honest process is unique when

one of the boundary points is exit and the other one is natural, otherwise, there
exist infinitely many honest processes.

Proof. (1) Suppose the boundary point za is regular, and zb is entrance
or natural ( b �= a, a, b ∈ {1, 2} ), then QN is uni-exit and thus, by Theorem 3.2,
if the QE-process exists, then for any QE-process R(λ), its projection ψ(λ) on
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N×N is just the Feller minimal QN -process φ(λ). And furthermore, by Chen’s
resolvent decomposition theorem, there exist uniquely a row vector η(λ) ∈ Hφ

and a column vector ξ(λ) ∈ Kφ such that (1.5)–(1.9) hold. Since every vector
η(λ) ∈ Hφ allows a Riesz decomposition

(3.5) η(λ) = αφ(λ) + η̄(λ)

where η̄(λ) ∈ L+
λ ∩ Hφ. So αφ(λ) ≤ η(λ) ∈ lN implies αφ(λ) ∈ lN . The

necessity is proved.
Conversely, if αφ(λ) ∈ lN , then take a row vector η(λ) as (3.2), a column

vector ξ(λ) as (3.3) and a constant c as (3.4), finally, define r(λ) as (1.10) and
R(λ) as (3.1). Now we show that the R(λ) thus constructed is a QE-process.

By Chen’s theorem, we only need to show η(λ) ∈ Hφ, ξ(λ) ∈ Kφ, (1.5)–
(1.9).

First, from Lemma 2.7, Lemma 2.8, and noticing that

ξ(λ) = 1− λφ(λ)1 = φ(λ)β + X̄a(λ),

it easily follows that η(λ) ∈ Hφ, ξ(λ) ∈ Kφ, and (1.5)–(1.6) hold. Next, when
α1 = ∞, we have lim inf

λ→∞
λη(λ)1 ≥ α1 = ∞, and when α1 < ∞, by Lemma

2.9, we have

lim inf
λ→∞

λη(λ)1 ≥ lim inf
λ→∞

λη(λ)X̄a

≥ lim inf
λ→∞

daλη̄
a(λ)X̄a = ∞,

therefore (1.9) holds. Finally, by (2.20), (2.21) and Lemma 2.8 (2),

ξ = lim
λ→0

ξ(λ) = lim
λ→0

(φ(λ)β + X̄a(λ))

= lim
λ→0

(Y 1(λ) + Y 2(λ) + X̄a(λ)) = Y 1 + Y 2 + X̄a = 1− X̄b,

and by Lemma 2.8 (1), for any λ, µ > 0,

λη(λ)X̄b = λη(µ)[I + (µ− λ)φ(λ)]X̄b = λη(µ)X̄b + λη(µ)(µ− λ)φ(λ)X̄b

= λη(µ)X̄b + (µ− λ)η(µ)X̄b = µη(µ)X̄b,

we get

λ〈η(λ),1− ξ〉 = λη(λ)X̄b ≡ σb = constant,

which shows that (3.4) implies (1.7)–(1.8). The proof of the sufficiency is
completed.

Now we show every QE-process R(λ) can be obtained in the above way.
By Chen’s theorem, we only need to show each vector in Hφ and Kφ must have
the form of (3.2) and (3.3) respectively. By Lemma 2.11.3 of [42] and (1.6), we
have

η(λ) = αφ(λ) + η̄(λ)
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where η̄(λ) ∈ L+
λ ∩ Hφ. By Lemma 2.5, η̄(λ) can be further expressed as

η̄(λ) = daη̄
a(λ) + dbη̄

b(λ)

with da ≥ 0, db ≥ 0 and db = 0 when zb is natural (∵ η̄b(λ) = 0). While when
α1 <∞, (1.9) forces da > 0. Thus (3.2) is shown. Similarly, by Lemma 2.11.3
of [42] and (1.6), we have

ξ(λ) = φ(λ)β + ξ̄(λ)

where ξ̄(λ) ∈ M+
λ ∩ Kφ. By Lemma 2.4, ξ̄(λ) can be further expressed as

ξ̄(λ) = taX̄
a(λ) (∵ X̄b(λ) = 0).

So

ξ(λ) = φ(λ)β + taX̄
a(λ), ξ = lim

λ→0
ξ(λ) = Γβ + taX̄

a.

By Lemma 2.11, lim
λ→∞

λη(λ)(Γβ + X̄b) <∞, so (1.9) implies

lim
λ→∞

λη(λ)X̄a = ∞.

On the other hand,

1− ξ = Γβ + X̄a + X̄b − ξ = (1 − ta)X̄a + X̄b,

so the above two equalities and (1.8) forces ta = 1 and thus

ξ(λ) = φ(λ)β + X̄a(λ) = 1− λφ(λ)1,

as is desired.
Finally, by Chen’s theorem, it is obvious that the process R(λ) constructed

as above is honest iff c ≡ λ〈η(λ),1 − ξ〉 = σb. Since the choices of η(λ) are
infinite, there exist infinitely many honest processes as well.
(2) Suppose za is exit, and zb is entrance or natural ( b �= a, a, b ∈ {1, 2} ). So
QN is uni-exit and thus X̄b(λ) = 0, η̄a(λ) = 0. We only show the necessary
condition α1 = ∞ and argue the uniqueness for the honest processes. The
proof for the other conclusions are similar to the proof of (1).

Suppose that the QE-process exists, then for any QE-process R(λ), its
projection ψ(λ) on N ×N is the Feller minimal QN -process φ(λ). By Chen’s
theorem, there exist uniquely a row vector η(λ) ∈ Hφ and a column vector
ξ(λ) ∈ Kφ such that (1.5)–(1.9) hold. By Lemma 2.11.3 of [42] and Lemma
2.5, we have η(λ) = αφ(λ)+dη̄b(λ) where d ≥ 0. So if α1 <∞, then by Lemma
2.9,

lim sup
λ→∞

λη(λ)X̄a = lim sup
λ→∞

(λαφ(λ)X̄a + λdbη̄
b(λ)X̄a)

= lim sup
λ→∞

λαφ(λ)X̄a ≤ α1 <∞.
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In addition, by Lemma 2.11, we have

sup
λ>0

λη(λ)(Y a + Y b) <∞, lim
λ→∞

λη(λ)X̄b <∞.

So we get

lim
λ→∞

λη(λ)1 = lim
λ→∞

λη(λ)(Y a + Y b + X̄a + X̄b) <∞,

which is in contradiction to (1.9). The necessity is shown.
Finally, when the existence conditions are satisfied, we see that when za

is exit and zb is natural, η(λ) = αφ(λ) is uniquely determined, thus the honest
process is unique. While in other cases, the choices of η(λ) are infinite, therefore
we have infinitely many honest processes. The proof is complete.

Theorem 3.4. If both z1 and z2 are regular, then the QE-process exists
if and only if αφ(λ) ∈ lN .

When αφ(λ) ∈ lN , each QE-processes R(λ) is either an expansion of the
minimal QN -process φ(λ) or an expansion of a non-minimal QN -process ψ(λ).

(1) The expansion QE-processes of the minimal QN -process φ(λ) can be
obtained in the following way: Take ψ(λ) = φ(λ),

η(λ) = αφ(λ) + d1η̄
1(λ) + d2η̄

2(λ)(3.6)

ξ(λ) = φ(λ)β + t1X̄
1(λ) + t2X̄

2(λ)(3.7)

where da ≥ 0, 0 ≤ ta ≤ 1, a ∈ {1, 2} (d1 + d2 > 0 when α1 < ∞; ta = 1 when
da > 0 or αX̄a = ∞), then take a constant c such that (1.8) holds, and finally,
define r(λ) as (1.10) and R(λ) as (3.1).

R(λ) is honest iff t1 = t2 = 1 and c = 0. Moreover, there exist infinitely
many honest expansion QE-processes of φ(λ).

(2) The expansion QE-processes of the non-minimal QN -processes can be
obtained in the following way (This case forces αX̄1 ∧ αX̄2 <∞):

When αX̄a <∞ (a = 1 or 2), first take a non-minimal QN -process

(3.8) ψ(λ) = φ(λ) + X̄a(λ)F a(λ)

where F a(λ) = F a(λ; c1, αa, da, 0) is taken as in Lemma 2.14; then pick up a
constant A ≥ 0, take a row vector

(3.9) η(λ) = η(λ; c1, c2, A, α, αa, da, 0, d′a, d
′
b)

as in Lemma 2.15, where d′a = Ada, d′b ≥ 0 (d′b > 0 if α1 <∞), c2 satisfies

(3.10) Ac1 + c2 ≥ αX̄a (Ac1 + c2 = αX̄a if αa1 <∞ and da = 0);

then take a column vector

(3.11) ξ(λ) = ξ(λ; β, ta, F a(λ))

as in Lemma 2.18, furthermore, select a constant c satisfying (1.8) and finally,
define r(λ) as (1.10) and R(λ) as (3.1).

R(λ) is honest iff ta = 1 and c = 0. Moreover, there exist infinitely many
honest expansion QE-processes of the non-minimal QN -processes.
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Proof. Suppose both the two boundary points z1 and z2 are regular. Then
by Remark 2.6(2), X̄a(λ) �= 0, η̄a(λ) �= 0, for a = 1, 2. If QE-process exists,
by Lemma 2.10, each QE-process R(λ) is an expansion of a B-type QN -process
ψ(λ), which takes the following form

ψ(λ) = φ(λ) + X̄1(λ)F 1(λ) + X̄2(λ)F 2(λ)

where F a(λ) ≥ 0, a = 1, 2 are two row vectors defined on N satisfying λF a(λ)1
≤ 1. Furthermore, by Lemma 2.13, there necessarily exists at least one a ∈
{1, 2} such that F a(λ) = 0.

(1) When F 1(λ) = F 2(λ) = 0, the QE-process R(λ) is an expansion of the
minimal QN -process ψ(λ) = φ(λ). By Chen’s decomposition theorem, there
exist uniquely a row vector η(λ) ∈ Hφ, a column vector ξ(λ) ∈ Kφ and a
constant c such that (1.5)-(1.9) hold. It is easy to show αφ(λ) ∈ lN by using
the same argument as in Theorem 3.3. Moreover, by Lemma 2.11.3 of [42] and
(1.6), we have

η(λ) = αφ(λ) + η̄(λ), ξ(λ) = φ(λ)β + ξ̄(λ)

where η̄(λ) ∈ L+
λ ∩Hφ and ξ̄(λ) ∈ M+

λ ∩Kφ. By Lemma 2.5 and Lemma 2.4,
η̄(λ), ξ̄(λ) can be further expressed as

η̄(λ) = d1η̄
1(λ) + d2η̄

2(λ), ξ̄(λ) = t1X̄
1(λ) + t2X̄

2(λ)

with da ≥ 0, ta ≥ 0. So

η(λ) = αφ(λ) + d1η̄
1(λ) + d2η̄

2(λ)(3.12)

ξ(λ) = φ(λ)β + t1X̄
1(λ) + t2X̄

2(λ),

therefore

ξ = lim
λ→0

ξ(λ) = Γβ + t1X̄
1 + t2X̄

2 = Y 1 + Y 2 + t1X̄
1 + t2X̄

2

1 − ξ = Y 1 + Y 2 + X̄1 + X̄2 − ξ = (1 − t1)X̄1 + (1 − t2)X̄2

and

1− ξ(λ) = 1− φ(λ)β − t1X̄
1(λ) − t2X̄

2(λ)

= λφ(λ)1 + X̄1(λ) + X̄2(λ) − t1X̄
1(λ) − t2X̄

2(λ) (∵ (2.22))

= λφ(λ)1 + (1 − t1)X̄1(λ) + (1 − t2)X̄2(λ).

By (1.5) and noticing ψ(λ) = φ(λ), we have

0 ≤ 1− λφ(λ)1− ξ(λ)

= (1 − t1)X̄1(λ) + (1 − t2)X̄2(λ),

which implies t1 ≤ 1 and t2 ≤ 1. It is easy to see t1 = t2 = 1 iff (1.5) holds the
equality.
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Furthermore, we have

λη(λ)1 = λη(λ)(Y 1 + Y 2 + X̄1 + X̄2)

= λη(λ)(Y 1 + Y 2) + λαφ(λ)(X̄1 + X̄2)+

+ (d1λη̄
1(λ) + d2λη̄

2(λ))(X̄1 + X̄2)

= λη(λ)(Y 1 + Y 2) + λαφ(λ)(X̄1 + X̄2)+

+ d1λη̄
1(λ)X̄1 + d2λη̄

2(λ)X̄2 (∵ (2.23)),

so from Lemma 2.9 and Lemma 2.11, we conclude that (1.9) holds if and only
if d1 + d2 > 0 when α(X̄1 + X̄2) <∞, or equivalently, α1 <∞. Since

λη(λ)(1− ξ) = λη(λ)[(1 − t1)X̄1 + (1 − t2)X̄2]

= λαφ(λ)[(1 − t1)X̄1 + (1 − t2)X̄2]+

+ d1(1 − t1)λη̄1(λ)X̄1 + d2(1 − t2)λη̄2(λ)X̄2,

(1.8) implies that ta = 1 when da > 0 or αX̄a = ∞, a ∈ {1, 2}.
Conversely, if αφ(λ) ∈ lN , η(λ), ξ(λ) and constant c are taken as (3.6)–

(3.7) and (1.8), then from the above argument, we can easily conclude that
η(λ) ∈ Hφ, ξ(λ) ∈ Kφ and (1.5)–(1.9) hold, thus by Chen’s theorem, the
process R(λ) constructed as in (1) of Theorem 3.4 is a QE-process.

It is obvious that the process R(λ) is honest if and only if t1 = t2 = 1 and
c = 0. Furthermore, since the choices of d1, d2 and therefore η(λ) in (3.12), are
infinite, we have infinitely many honest expansion QE-processes of the minimal
QN -process φ(λ).

(2) When R(λ) is an expansion of a non-minimal QN -process ψ(λ) =
φ(λ) + X̄a(λ)F a(λ) with F a(λ) �= 0 for some a ∈ {1, 2}, then by Lemma
2.14, F a(λ) can be expressed as F a(λ) = F a(λ; c1, αa, da, db) with c1, αa, da, db
satisfying (2.30)–(2.34). Since zb is regular, by Lemma 2.9, lim

λ→∞
λη̄b(λ)X̄b =

∞, so the constant db in (2.33) should be taken as zero. Therefore

F a(λ) = F a(λ; c1, αa, da, 0).

In addition, by Chen’s decomposition theorem, there exist uniquely an
η(λ) ∈ Hψ, a ξ(λ) ∈ Kψ and a constant c such that (1.5)–(1.9) hold. By
Lemma 2.15, we have αX̄a < ∞, hence αX̄1 ∧ αX̄2 < ∞ and η(λ) can be
expressed as (3.9). By Lemma 2.9 and Remark 2.16, we get c2 satisfies (3.10).
Moreover, by Lemma 2.11(1) and Lemma 2.12,

lim sup
λ→∞

λη(λ)(Y 1 + Y 2 + X̄a) <∞,

so (1.9) is equivalent to lim
λ→∞

λη(λ)X̄b = ∞. Since

λ(η̄′(λ) − aη̄(λ))X̄b = d′bλη̄
b(λ)X̄b,

so when α1 <∞, by Lemma 2.9 and Lemma 2.17, we see that lim
λ→∞

λη(λ)X̄b =

∞, and therefore (1.9), is equivalent to d′b > 0. Combining this with (2.38), it
follows that d′a and d′b satisfy the desired conditions.
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On the other hand, by Lemma 2.18, any vector ξ(λ) ∈ Kψ satisfying
(1.5)–(1.7) can be expressed as (3.11). Furthermore, the other conclusions are
guaranteed by Chen’s theorem. The necessity is showed.

As for the sufficiency, suppose αφ(λ) ∈ lN , αX̄a <∞ and, ψ(λ), η(λ), and
ξ(λ) are taken as (3.8)–(3.11), and the constant c is taken as (1.8), then it is
easy to see ψ(λ) is a non-minimal QN -process, c satisfies (1.7)–(1.8) and, by
Lemma 2.15 and Lemma 2.18, η(λ) ∈ Hψ, ξ(λ) ∈ Kψ and they satisfy (1.5)–
(1.6). Moreover, the choosing of the constants da, d′a and d′b result in (1.9).
Therefore by Chen’s theorem, the process R(λ) defined as (1.10) and (3.1) is
an expansion QE-process of ψ(λ).

Finally, the process R(λ) is honest iff (1.5) and (1.8) hold the equality
which, by Lemma 2.15 and (2.84), are equivalent to ta = 1 and c = 0. Fur-
thermore, since the choices of da and therefore η(λ) in (3.9), are infinite, we
have infinitely many honest expansion QE-processes of the non-minimal QN -
processes. The proof is complete.

Theorem 3.5. If both z1 and z2 are exit, then QE-process exists if and
only if α1 = ∞ and αφ(λ) ∈ lN .

When α1 = ∞ and αφ(λ) ∈ lN , each QE-process R(λ) is either an ex-
pansion of the minimal QN -process φ(λ) or an expansion of a non-minimal
QN -process ψ(λ). More precisely, each R(λ) can be obtained in the following
way.

(1) When R(λ) is an expansion of φ(λ), put ψ(λ) = φ(λ), η(λ) = αφ(λ),
ξ(λ) = φ(λ)β + t1X̄

1(λ) + t2X̄
2(λ) where ta (a = 1, 2) are two constants sat-

isfying 0 ≤ ta ≤ 1 and ta = 1 if αX̄a = ∞, then take a constant c satisfying
(1.8), and finally define r(λ) as (1.10) and R(λ) as (3.1).

R(λ) is honest iff t1 = t2 = 1 and c = 0. Moreover, the honest expansion
QE-process of the minimal QN -process is unique.

(2) When R(λ) is an expansion of a process ψ(λ) �= φ(λ) (this case forces
αX̄1 ∧αX̄2 <∞ and αX̄1 ∨αX̄2 = ∞), in the case αX̄a <∞ and αX̄b = ∞,
b �= a, a, b ∈ {1, 2}, first take ψ(λ) = φ(λ) + X̄a(λ)F a(λ), where F a(λ) =
F a(λ; c1, αa, 0, 0) is taken as in Lemma 2.14, then pick up a constant A ≥ 0,
take a row vector η(λ) = η(λ; c1, c2, A, α, αa, 0, 0, 0, 0) as in Lemma 2.15, where
c2 satisfies Ac1 +c2 ≥ αX̄a (Ac1 +c2 = αX̄a if αa1 <∞), then take a column
vector ξ(λ) = ξ(λ; β, ta, F a(λ)) as in Lemma 2.18, select a constant c satisfying
(1.8), and finally, define r(λ) as (1.10) and R(λ) as (3.1).

The process R(λ) is honest iff ta = 1 and c = 0. Moreover, there exist in-
finitely many honest expansion QE-processes of the non-minimal QN -processes.

Proof. Suppose both the two boundary points z1 and z2 are exit, then
we have X̄a(λ) �= 0 and η̄a(λ) = 0 for a = 1, 2. If the QE-process exists, then
by Chen’s theorem, for each QE-process R(λ), there exist a QN -process ψ(λ),
two vectors η(λ) ∈ Hψ and ξ(λ) ∈ Kψ and a constant c such that (3.1) and
(1.5)–(1.9) hold. Since by Lemma 2.10 and Lemma 2.13, ψ(λ) must possesses
the form

(3.13) ψ(λ) = φ(λ) + X̄a(λ)F a(λ)
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for some a ∈ {1, 2} and F a(λ) having the properties of Lemma 2.14, so corre-
sponding to F a(λ) = 0 or �= 0, we have ψ(λ) = φ(λ) or ψ(λ) �= φ(λ), which
means that the QE-process R(λ) is either an expansion of the minimal QN -
process φ(λ) or an expansion of a non-minimal QN -process ψ(λ). In the former
case, η(λ) ∈ Hφ and ξ(λ) ∈ Kφ, so η(λ) takes the simple form

η(λ) = αφ(λ)

hence η(λ) ∈ lN is equivalent to αφ(λ) ∈ lN and (1.9) equivalent to α1 = ∞.
This shows the existence conditions for the first situation (1) of the theorem.

As for the second case, i.e. F a(λ) �= 0 in (3.13), it immediately follows
from Lemma 2.15 that αX̄a <∞ and αφ(λ) ∈ lN . In addition, by Lemma 2.11
(1) and the equality λη(λ)1 = λη(λ)(Y 1 + Y 2) + λη(λ)(X̄a + X̄b), we see that
(1.9) is equivalent to

(3.14) lim
λ→∞

λη(λ)(X̄a + X̄b) = ∞.

Moreover, since η̄a(λ) = 0 and η̄b(λ) = 0 (b �= a) result in all the constants da,
db in (2.33) and d′a, d′b in the expression of η̄′(λ) in Lemma 2.15 equal zero, by
Lemma 2.14 and Lemma 2.15, we have

λη(λ)(X̄a + X̄b) = λ(η′(λ) − dλ · aη(λ))(X̄a + X̄b)

= λ(η′(λ) −A · aη(λ))(X̄a + X̄b) + λ(A− dλ)aη(λ)(X̄a + X̄b)

= λ(α′φ(λ) −Aαaφ(λ))(X̄a + X̄b) + λ(A− dλ)aη(λ)(X̄a + X̄b)

= λαφ(λ)(X̄a + X̄b) + λ(A− dλ)aη(λ)(X̄a + X̄b)

where dλ =
λ〈η′(λ), X̄a〉 − c2
c1 + λ〈aη(λ), X̄a〉 . From the last equality above, and noticing

(2.63), we conclude that (3.14) is further equivalent to

(3.15) lim
λ→∞

λαφ(λ)(X̄a + X̄b) = ∞.

While the following inequality

α(X̄a + X̄b) ≤ lim
λ→∞

λαφ(λ)(X̄a + X̄b) ≤ lim
λ→∞

λαφ(λ)1

≤ α1 = α(Y a + Y b) + α(X̄a + X̄b)

implies apparently that (3.15) is equivalent to α(X̄a + X̄b) = ∞ and also
α1 = ∞. This shows the existence conditions and the by product that X̄a and
X̄b satisfy αX̄a ∧ αX̄b <∞ and αX̄a ∨ αX̄b = ∞.

We note that in situation (1), the honest QE-process is unique since the
vectors η(λ), ξ(λ) and the constant c there are all uniquely determined. The
proof of the rest conclusions of situation (1) and (2) is very similar to Theorem
3.4, and therefore is omitted.
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Theorem 3.6. If one of the two boundary points, say za, is regular,
and the other one zb is exit (b �= a, a, b ∈ {1, 2}), then QE-process exists if and
only if αφ(λ) ∈ lN .

When the condition is satisfied, each QE-process R(λ) can be obtained in
the following way.

(1) When the R(λ) is an expansion of the minimal QN -process φ(λ), put
ψ(λ) = φ(λ), let η(λ) = αφ(λ) + daη̄

a(λ), ξ(λ) = φ(λ)β + taX̄
a(λ) + tbX̄

b(λ),
where da, ta, tb (b �= a) are non-negative constants and da > 0 when α1 < ∞;
ta = 1 when αX̄a = ∞ or da > 0; tb = 1 when αX̄b = ∞. Then take a constant
c satisfying (1.8), and define r(λ) as (1.10) and R(λ) as (3.1).

The process R(λ) is honest iff ta = tb = 1 and c = 0. Moreover, there exist
infinitely many honest expansion QE-processes of the minimal QN -process φ(λ).

(2) When R(λ) is an expansion of a non-minimal QN -process ψ(λ) (this
case forces αX̄k∧αX̄ k̄ <∞, where k �= k̄, k, k̄ ∈ {1, 2}), when αX̄k <∞, first

take ψ(λ) = φ(λ) + X̄k(λ)F k(λ), where F k(λ) =
{
F a(λ; c1, αa, da, 0), if k=a
F b(λ; c1, αb, da, 0), if k=b

is taken as in Lemma 2.14, with αk satisfying αkφ(λ) ∈ lN and αkX̄ k̄ < ∞;
next pick up a constant A ≥ 0, take a row vector η(λ) = η(λ; c1, c2, A, α, αk, da,

0, d′a, 0) as in Lemma 2.15, where
{
d′a = Ada, if k = a
d′a ≥ Ada, if k �= a

and c2 satisfies Ac1 +

c2 ≥ αX̄k (Ac1 + c2 = αX̄k if αk1 < ∞ and da1{a}(k) = 0), then take a
column vector ξ(λ) = ξ(λ; β, tk, F k(λ)) as in Lemma 2.18, more precisely,

ξ(λ) = φ(λ)β + tkX̄
k(λ) + X̄ k̄(λ) − λX̄k(λ)F k(λ)(Y 1 + Y 2 + tkX̄

k + X̄ k̄)

where tk is a constant satisfying lim
λ→∞

1
c1
λ〈kη(λ),1− X̄k〉 ≤ tk ≤ 1, then select

a constant c satisfying (1.8), and finally, define r(λ) as (1.10) and R(λ) as
(3.1).

The process R(λ) constructed above is honest iff tk = 1 and c = 0. More-
over, there exist infinitely many honest expansion QE-processes of the non-
minimal QN -processes.

Proof. Suppose the boundary point za is regular, and the other one zb is
exit (b �= a, a, b ∈ {1, 2}). Then we have X̄a(λ) �= 0, X̄b(λ) �= 0, η̄a(λ) �= 0 and
η̄b(λ) = 0. If the QE-process exists, then by the same argument to Theorem
3.5, each QE-process R(λ) is an expansion of a B-type QN -process ψ(λ), which
takes the following form

ψ(λ) = φ(λ) + X̄k(λ)F k(λ),

where F k(λ) ≥ 0, k = a or b, is a row vector defined on N satisfying λF k(λ)1 ≤
1.

(1) When R(λ) is an expansion by the minimal QN -process φ(λ), i.e.
F k(λ) = 0, then by Chen’s decomposition theorem, there exist uniquely a
row vector η(λ) ∈ Hφ, a column vector ξ(λ) ∈ Kφ and a constant c such that



226 Qing-Ping Liu

(3.1) and (1.5)–(1.9) hold. By Lemma 2.11.3 of [42] and (1.6), we have

η(λ) = αφ(λ) + daη̄
a(λ), ξ(λ) = φ(λ)β + taX̄

a(λ) + tbX̄
b(λ)

for some non-negative constants da, ta and tb. So by following the same lines
of the corresponding proof in Theorem 3.4, we can easily show the existence
condition αφ(λ) ∈ lN and the first part (1).

(2) When R(λ) is an expansion of a non-minimal QN -process ψ(λ), i.e.
F k(λ) �= 0, we can also follow the same way to Theorem 3.4 to show the
existence condition αφ(λ) ∈ lN and the conclusions of the second part (2).

The proof is completed.

Finally, we give the equivalent conditions for αφ(λ) ∈ lE , which enable us
to check by using the elements of the pre-generator matrix.

Proposition 3.1. Let α1 = (q0j ; j ∈ N1), α2 = (q0j ; j ∈ N2), α =
(α1, α2). Let W1 = (· · · , w1

−j , · · · , w1
−2, w

1
−1)

τ , W2 = (w2
1, w

2
2, · · · , w2

j , · · · )τ

where w1
−j = (z1 − z−j)

j∑
n=1

µ−n +
∞∑

n=j+1

(z1 − z−n)µ−n and w2
j = (z2 −

zj)
j∑

n=1

µn +
∞∑

n=j+1

(z2 − zn)µn. Then

(1) αφ(λ) ∈ lE is equivalent to αaφa(λ) ∈ lNa
, a = 1, 2.

(2) If za is regular or exit, then αaφ
a(λ) ∈ lNa

is equivalent to αaWa <∞, or
more precisely,

∑
j∈Na

q0jw
a
j <∞.

(3) If za is entrance or natural, then αaφ
a(λ) ∈ lNa

is equivalent to αa1 <∞,
or more precisely,

∑
j∈Na

q0j <∞.

Proof. The conclusions easily follow from Theorem 6.9.3, Theorem 6.9.4
and Theorem 6.9.5 of [42].
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abilities X (Lecture Notes in Math. 511, 216–234), Berlin Heidelberg New
York, Springer, 1976.

[37] , Diffusions, Markov Processes and Martingales, Vol.1: Founda-
tions, John Wiley, Chichester, New York, 1979.

[38] William, J. Anderson, Continuous-time Markov chains: an applications-
oriented approach, Springer-Verlag, New York, 1991.

[39] Yang, X. Q., The bilateral birth and death processes (in Chinese), J. Nankai
Univ. (Natural Sci.), 5(5) (1964), 9–40.

[40] , A class of birth and death processes (in Chinese), Acta Math.
Sinica 15 (1965), 9–31.

[41] , The lateral conditions of Kolmogorov’s backward equations (in
Chinese), Acta Math. Sinica 16 (1966), 429–452.

[42] , The Construction Theory of Denumerable Markov processes, John
Wiley, England, and Hunan Science and Technology Publishing House,
China, 1990.


