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Special linearly unrelated sequences

By

Jaroslav HANCL* and Simona SOBKOVA

Abstract
The main result of this paper are a criteria giving conditions that
the certain infinite sequence of rational numbers be linearly unrelated.
The proof is direct and does not require any special theorems.

1. Introduction
In 1975 Erdés [1] defined irrational sequences.
Definition 1.1.  Let {a,}52; be a sequence of positive real numbers.

We say the sequence {a,}52 is irrational if for every sequence {c,}52, of
positive integers the series

o
>
1 AnCp

is an irrational number. If {a,}5°; is not an irrational sequence, then we say
it is a rational sequence.

Erdés also proved a theorem giving a criteria for an irrational sequences
in the same paper. Other criteria for a sequences to be irrational can also
be found in [2]. Handl [3] gave an extension of the Erdds definition to linear
independence in the following way.

Definition 1.2.  Let {a;,}22, fori =1,..., K be sequences of positive

real numbers. If for every sequence {c,}°2; of positive integers the numbers
o0 oo oo

1 1 1 . .
E , E ey E ——, and 1 are linearly independent over
n—1 a1,nCn n—1 a2,nCn p— AR nCn
rational numbers, then the sequences {a;,}32; ¢ = 1,..., K are said to be

linearly unrelated.
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There are not many results in this field. Some criteria can be found in [3]
and [4] for linear independence. Our main result is Theorem 2.1 below and it
gives the criterion of linearly unrelated sequences.

2. Main result

Theorem 2.1.  Let K be a positive integer and €, u, v be real numbers
such that 0 <e, 0 < p, 0<vandl—p—v > Tlra Suppose that {a;}o,
and {b; n}>2, @ = 1,..., K are sequences of positive integers with {ai1 ,}ney
non-decreasing, such that

1
T .
K+(K—1)u+1)

(2.1) limsupa,, " " =00
n—oo
(2.2) ayn > nite
(2.3) bin <al, i=1,... K
(2.4) lim Zenlin _ o =1, K, 0>

n—oo iynajyn

—v v .
(2.5) Qi < a1n < @inaf,, i=1,...,K

hold for every sufficiently large n. Then the sequences {3=*}o>, i =1,..., K
are linearly unrelated.

Example 2.1. The sequences
nd9" 717
n9" + 5 n=1
n?" 1117
n +13 |, _,

are linearly unrelated. It is enough to put K =2, p =
Theorem 2.1.

and

%,V:%ands:élin
Remark 1. Theorem 5 from [4] can not be used for Example 2.1 be-
cause condition (2.3) from Theorem 5 is not fulfilled.

Remark 2. Theorem 2.1 of this paper is not generalization of Theorem
5 in [4]. From Theorem 5 in [4] we obtain that the sequence {2n: 1o, is

irrational but Theorem 2.1 of this paper does not imply this fact.

Example 2.2. Let K be a positive integer with K > 2. Then the

sequences
I+ 4 i) >
{ n(K+5)" +7j }nzl

j=1,2,..., K are linearly unrelated.
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Remark 3. If we put K = 1,4 = 0,v = 0 in Theorem 2.1 then we
obtain Erdé’s Theorem from [1].

Open problem 2.1.  Are the sequences {23" +1}22, and {3%" +1}52,
linearly unrelated?

3. Proof

Lemma 3.1.  Let K, e, pu,v and the sequences {a; n}orq, {bin}oe, i =
1,..., K satisfy all conditions stated in Theorem 2.1. Then there is a positive
real number B = B(K, e, u,v) which does not depend on n such that

(3.1) Zinty -
holds for all sufficiently large n.

Proof. (of Lemma 3.1)
From (2.3) and (2.5) we obtain

(e’ o0 n v ')
(3.2) 3 bty o 3 By g
— Qintj  “ a1,n+j e ra
j=0"" j=0 ' j=0 "Lty
for every n sufficiently large.
Now we have
- 1 1 1
(3.3) Y = Y. Tt Y, T
a a
j=0 “1,n+j 1 1,n+j 1 "1n+j
n-‘,—j<all;E n+j2a11;5

We will estimate the first summand on the right hand side of (3.3) as

1 1 - 1 1
(34) E : T S T80 = 15, - = B
a f a H 1—p—v e att
11 1,n+j 1,n aq ., 1,n
n+j<a;te '
Here Bi =1—pu—v— 1%—5 is a positive real number which does not depend on

n.
We now estimate the second summand on the right hand side of (3.3).
From (2.2) we obtain

1 1 b dx
Z T1—p—v S Z . (1+ )(17 — é 1 (A+e)(A—p—v)—1
alTH— | (n+g)Fe)-p—y) affE gt
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(+e)(1—p—v)-1

30110 is a positive real constant which does not depend

where By =
on n.

Hence (3.2), (3.3), (3.4) and (3.5) imply

Kooln K oo 1 1 1
SOy s cen (o) <o

im1 j=o Yimti =0 @ a’ln a1 A1n

where B = % min(B1, Bs) is a positive real constant which does not depend on

n and (3.1) follows. O

Lemma 3.2.  Let K,e,u,v and the sequences {a; n}oeq, {bin}oe, i =
., K satisfy all conditions stated in Theorem 2.1 except that instead of (2.2)
we have

(36) ain > 2"

for all sufficiently large n. Then

(3.7 IPPELL: L

i=1 j=0 %im+j Ay n

holds for every sufficiently large n.

Proof. (of Lemma 3.2)
As in the proof of Lemma 3.1 from (2.3) and (2.5) we obtain

(3.8) 3 Zntd o > e S . .

n+j n+j<logy ai n a1,7l+j n+j>logy ai n a1,7l+j

We now estimate both sums on the right hand side of equation (3.8). For the
first summand, we have

1 log, a1.n
(3.9) Y = <

n+j<logy ai n alJH‘j al,n

Estimating the second summand of equation (3.8) inequality (3.6) implies that

1 1
ZWSZW

n+j>log, a1, 1n+J n+j>log, ai,n

1
(3.10) n+j>§g2a1,n (20w (")
1
— 9(1—p—v)logy ai,n
C

(1—p—v)’
aln
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where C'is positive real constants which does not depend on n. Therefore (3.8),
(3.9) and (3.10) together imply that

ZZ

1=1 j=0 Qintj i=1 j= O
So (3.7) follows. O

Proof. (of Theorem 2.1)
Let {¢,}52 1 be a sequence of positive integers. Then the sequences {a; ¢, 152,
and {b;,}72, ¢ = 1,..., K also satisfy conditions (2.1)—(2.5) and if in addi-
tion we reorder the sequence {ai,c,}5%; and obtain the non-decreasing se-
quence {A; ,}52; then the new sequence together with the relevant sequences
{Ain}oei=2,...,K and {B; ,}32, ¢ = 1,..., K will also immediatelly sat-
isfy (2.1), (2.3), (2.4) and (2.5). From the fact that Ay, > a;, > n'*c we
obtain that the sequence {A;,}52 also satisfies condition (2.2). It follows
that {A; 352, ¢ = 1,...,K and {B;,}>2, i = 1,..., K will satisfy all the
conditions stated in Theorem 2.1. Thus it suffices to prove that if K, i, v, e and

<log2a1n C )<2K10g2a1n
p—v | =

1—p—v 1—p— 1—p—v
ay n CLl,n ay n

the sequences {a; n 1521, {bin}oe 1 i =1,..., K satisfy all conditions stated in
oo
b
Theorem 2.1 then the numbers Z , Z 2K and the number 1 are
n=1 a1 n n=1 AKn
linearly independent over the rational numbers. To establish this we will prove
that for every K-tuple of integers aq, ag, ..., ax (not all equal to zero) the sum
K o0 b
-3yt
=1 n=1 B

is an irrational number. Suppose that I is a rational number. Let R be the
maximal index such that ag # 0. Then we have

oo R
=2 ) @
=1 n=1 n=1 i=1

By (2.4) the number

oo

bi

0o R—-1
i bR,n bi,naR,n
=) = E a———"+ag | .
Qi n L

— ARn -7 a/z,an,n
n=1 i=1

R—-1
bi,naR,n
E o;————— + QR
i—1 ai,an,n

and the number a g have the same sign for all sufficiently large n. Without loss
of generality assume that

K

bin
(3.11) > a4t >0

i—1 Ain

for every sufficiently large n. Since I is a rational number there must be integers
p,q, (g > 0) such that

=

K 0o
i,
o E Q; E

i=1 n=1 °"

Q
S
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From this and (3.11) we obtain that

(3.12)

is a positive integer for every sufficiently large N. So (3.12) implies
N-1 K K oo 4
. < . nn
(3.13) 1<y (H Han>z -
n=1 i=1 i=1n=N "

for all sufficiently large N, where Q1 = ¢ max | o; | is a positive integer
i=1,...,

constant which does not depend on N. From (2.5) we obtain

N-1 K N-1 K /Nn_1
(3.14) @i < Q2 (H al,n) (H ain>
1 n=1 n=1

n=1 i=

K-1

for every sufficiently large N, where ()5 is a positive real constant which does
not depend on N. Then (3.13) and (3.14) imply

K-

N-1 K /N-1 b
veo(Ton) (Met) T30
n=1 n=1 i 1,1
N—1 K+(K-1)v K oo b,
o(Ian) Ly
n=1 3 L3

(3.15)

for every sufficiently large N, there @ is a positive real constant which does not
depend on N. Now the proof falls into several cases.

1. Let us assume that (3.6) holds for every sufficiently large n and there is a
0 > 0 such that

1
(MHH)"

T—p—v

(3.16) limsupa

n—00

I = 00.

This implies that there exist infinitely many IV such that

1 1
(KJlr(Kfl)qulJrS)N (KT(K—I)V
—h—v —h—v
a > max a
LN k=1,..N—1 Lk

k
+1+6)
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It follows that

K+(K—1)v N
ék ﬁ+1+5)
(wﬂw)
a1, N > max @
k=1,..N—1
K+(K—1 K+ K 1)v
S LU D ) (B =le 1 4) "
(K+£K71)y+1+6)
> max a1 k
k=1,....N—1
K+(K v
N-1 —p—v +6
> H ain .
n=1
From this we obtain
K+(K Do
v +5
(3.17) ay N " > H aipn.

Lemma 3.2, (3.15) and (3.17) imply that

N—1 K+(K— 1)1/
1 S Q (H al,n) Z a

n=1 i=1n=N "
K+(K-1)v
N-—-1
< 2K 10g2 ai,N
> Q H a1,n T—p—v
n=1 a1,N
K+(K—1)v

K+(K-—Dv_

2KQa; 5 " log, a1,n
<

1—p—v
a1,N
2KQlogy a1, 2KQlogy a1, 1
T o _EirEov 50—n—1)2 <
H E+(E-Dv s KH(K—Dv+o(l—p—v)
1—p—v al N
ap N ,

for infinitely many sufficiently large N. This is a contradiction.

37

T1)

2. Let us assume that (3.6) holds for every sufficiently large n and there is no

0 > 0 such that (3.16) holds. Hence for every ¢ > 0 we have

1

(KJ{EKJ)VJFH )"

1,n

limsup a < 00.

n—oo

This and the fact that

(Bt gy g

li =
nmoe (KLUCDr 1y g
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imply that
n
| (=)™ (= d) | (= )"
limsupa,’, = limsup(a,*,, 1=p=v =1
n—oo ’ n—oo ’

From this we see that

K+ (K—-1)v n
(3.18) a1, < o (M= +2)

holds for every sufficiently large n. Equation (2.1) implies

1 1
(K+(K—1)u+1)k

(Hte=pr ) 1
(3.19) ar'y " > (1 + ]\72> pohax  apy !

for infinitely many N. Otherwise there would exist ny such that for every
n>ng

1

1 1 (7KT(K_1)”+1)’C
<(1+= )1+ —— max a;,  *
- ( n2 ( (n— 1)2) k=1,..m—2 LK
1
n — no
1\ (FrEnen)
<2 1 (145 ) o
j=no+1
1
o0 _ no
1 EE Dy
<. < H (1 + 2) al,no1 * ) < const.,
j=no+1 J

which contradicts (2.1). Hence for infinitely many N

(3.20)
K+(K—1)v N
Ktk 1w | \N N E— (ﬁ*‘l)
1 ( T-p—v +1> <7K'1*'(K_1)”+1>
r—
aN > (14 53 ety Pk
K+(K—1)v N
141 (HE5=4)
> + — X
N2
K+(K—1v [ K+(K—1)v N-1
s S ()T )
KTEK:l)V+1)
X max  ap;,
k=1,..N—1 b
K+ (K—1v
K+(K-1v N _ A=
NG AR =
> 1+ﬁ l_Ilal,n
n—
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Using Lemma 3.2, (3.15), (3.18) and (3.20) we obtain

N-1 K+(K-Lr g b
o(an) X3
n=1 i L

1=1n=N ’
N—1 K+(K-1)v 9K 1
08y a1, N

<q (H ) 2K logy o1

n=1 a) N

l—p—v
a 2K log, a

<Q 1,N go 41, N

(10 ) () ) ol
N

2KQlogy a1, N

(14 &) (Be=br )Y (1)
2KQlogy a1,

Y N
o (FFE= 1) (1) logy (14 )

K+(K—1)v +2> N

2KQlog, 2( T=n=v

—_ v N
o (FFE=2241) " (1) logs (14 75)

2K Q (XU 9N

K+(K—1)v N 1 <l
2 17”77”4'1) (1—p—v)log,(1++7)

for infinitely many N. This is a contradiction.

3. Now let us assume for infinitely many n that

(3.21) ain <2"

and that there is a 6 > 0 such that (3.16) holds. Let A be a sufficiently large
positive integer. From (3.16) we see that there exists n such that

1

K+(K—1)v "
)

(3.22) a, > A.

N

Let k be the least positive integer satisfying (3.22) and s be the greatest positive
integer less than k such that (3.21) holds. So

(K-1v k (K-1v k
(3.23) al,k>A(KTfifi +148)" _ o (K= 4146) logy 4.

Then there is a positive integer n such that

1
(K+(K71)u+1+6)n

(3.24) ap, " > 2.

Let ¢ be the least positive integer greater than s such that (3.24) holds. It
follows that for every r =s,s+1,...,t —1

K+(K—1v

(3.25) 0y, < 25T H1+0)
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and

K+(K—1v

(3.26) a1, > 2(FTEE )

The fact that the number A is sufficiently large such that A > 2 and the
definitions of the numbers ¢ and k imply ¢ < k. From (3.25) and (3.26) we
obtain

aye > 2(KT£K UUHH)
< NEG==) (B b prgs) o (BB =D 1145) )
=)

(3.27) S (tl—[l 2(K§r(’;i>”+1+5)">
n=1

1 (B ) =)
> (H al,n) (H al,n) .
n=1 n=1

The sequence {a1 52, is non-decreasing and a1 s < 2°. It follows that
5 2
(3.28) [[on<2
n=1

Together with (3.27) this implies that

K+(K—1)v
t—1 —(ﬁ*“s)
ai¢ > H a1,n H a1,n

n=1 n=1

K+(K—1)v

S+
-l tmwmy ) _(K+<K71)v+5>32

> ([ v o (=

n=1

K+(K—1v
174,5)

(3.29)

Inequalities (3.25) and (3.28) yield

K+(K v "
+145
Hawnam Ha1n<Ha1n H? )
(330) n=1 n=1
K4+ (K—1)v
, (M 1 +1+5) T
<2 .2 T—p=v .

The definitions of the numbers s, ¢t and k imply that a; , > 2" for all n =
t,t+1,..., k. From this fact, Lemma 3.1 and Lemma 3.2 we obtain

N

—1

K oo K
D 3 S S S ) M N

i=1 n=t " i=1 n=t o™ i=1 n=k Qi G1,¢

@‘




Special linearly unrelated sequences

Now (3.15),

\ /\

7, n
a1,n
=1 n= t
t—1
[T an
n=1

Q
<t_1 K+(K—1)v

) (
( K+(K-Dv g

K+ (K-1)v

2K log, ai
1 n—v
ay St

A

H ain 2KQlog, ai

3.23), (3.29), (3.30) and (3.31) imply

ay g

i—1 K+(K-1)v

[]a1n
n=1

n=1
- 1—p—v +
Ayt

K+(K-1)v

B
ay g,

2KQlogy ay

t—1
[Jan
n=1
K+(K—1)v

(A—p—v) KT (KE—Dvts(l—p—v)
ay ay ¢

-1 K+ (K-1)v
Il oin
n=1

v
T Mg (KH(K-1)v)

(1_/'5_”) K+(K57(1*M*V)

Dv+6(1—p—v)

2KQlog, ai

K+(K—1v
a(l_“_l’) Kt (K—Dvfs(l—p—v)
1,t ay ¢

i—1 K+(K-1)v
[[an

§(1—p—v)?2
K+(K—1)v+5(1—p—v)

n=1
+ o
1,k
-1 K+(K—1)v
H a1,n
— 9 (K+(K-1)v) 2KQlogy ay n=1
- S(1—p—v)2 CLB
RF(R-DvFs(1—p—v) 1,k
ay ¢
2KQlog, a4

2

sYE+H(K=1)v) |
<2 S(1—p—v)?2
aK+(K Dv+6(1—p—v)
1,t

Q25" (K+(E=1v) . 9

(K+(K —1)w) (EHE=Dr

+1+6) " et
RI(K-1
17“711114»(5

ay
2KQlog, ay

S(1—p—v)2
KT (K—1Dv+d(l—p—v)
ay ¢

< 95  (K+(K—1)v) .

N Q25° (K+(K—=1)v) . 9

(K+(K—1)u)(K+<K*1)V

T—p—v

+1+6) " et
K+(K—1)v
T—p—v 19

QB(MHM) log, A

<1
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and this is a contradiction for A large enough because s < ¢t < k tend to infinity
with A.
4. Finally let us assume that (3.21) holds for infinitely many n and that there
is no § > 0 such that (3.16) holds. This implies that (3.18) holds for every
sufficiently large n. Let A be also sufficiently large. From (2.1) we obtain

1

W

(3.32) ay, R

n

for infinitely many n. Let k be the least positive integer satisfying (3.32). Then

— v k —1)v k X
(3.33) arg > AUTEZS )T Z (M=) e 4

Let s be the greatest positive integer less than k such that (3.21) holds. As in
case 2, (3.19) holds for infinitely many N. Let ¢ be the least positive integer
greater than s satisfying

1 1

K4+ (K—1)v t K4+ (K—1)v 7
“i-p— 1! 1 1= T!
(3.34) al(t e ) > (1 + 152) _max 1a1(j v )
’ J=8,.t— §
and
1 1
KE+(K-1)v T 1 E+(K-1)v J
(3.35) ay, " ) <(1+2 max lalj“‘“ )
) r J=8,...,r— g

for every r =s+1,...,t — 1. From (3.35) we obtain

1 1

K+(K—1)v )T 1 (K+(K71)u )J
RtK-lv 4, AREY 4
1—p—v T—p—v
ar, < (1 + 7"2) _max a;;

- J=8,...,r—1

1

1 1 (7KT(K_1>”+1)j
' e
(1) () )

1

< II <1+j'12> al(,s H=n) <D,

j=s+1

IN

IN

bt 1

where D < I | (1 + _2> is a positive real constant which does not depend on
. J
Jj=1

A and k. Tt follows that

KDy 4 9)" =1y 4\"
(3.36) ar, < USSR (M=) g, 1

for every r = s+ 1,...,t — 1. From this together with a; s < 2° and the fact
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that the sequence {a1,}5%; is non-decreasing, we obtain that

ue

IN

(3.37)

gusole:
(=) (1,

t s+1
KA+ (K-1)v K+ (K—-1)v
(ﬁJﬂ) *(QJH)

I 2

t—1

Il o

)

K+(K—1)v "
Uy 1) log2D>

T—p—v

2
=25 .2

K+(K-1)v
i—p—v
KT (K—1v

S 2 T—p—v

D

KT (K—1)v
T—p—v

t

logy, D

log, D

43

Notice that (3.33) and (3.36) also imply that ¢ < k. Now from (3.34) with
a1,s < 2° and the fact that the sequence {a1 , }7%; is non-decreasing, we obtain

1

K4+ (K—1)v J
( T—pn—v +1>

W

+1) e (

that
(3.38)
(KT(K—I)u_i_l)t
e
a1 > <1 + 2 j:g}%ﬁ_l
K+(K—1)v t
1 (ﬁJrl)
> 1+t72
K+(K—1)v
% i—p—v
(7KT£K:11,)1’+1)J
max a;;
Jj=s,...,t—1 J
K+(K—1v t _
) 1 (fuepe ) (i
> +t72 jlillal’j
K+(K-1)v _
) 1 ( HK 1 +1) t—1
> +t72 jlillal’j

(( K+(K—1)v

T—p—v

K+ (K—1)v

T—p—v

K+ (K—1)v

T—p—v

(K+(K—1)y +1)t

1—p—v

T—p—v

_K+(K-1H)v

T—p—v

s—1
[La
j=1

_KH(K-Du,2
T—p—v

K+(K—1)v

1))

As in the third case Lemma 3.1 and Lemma 3.2 imply (3.31) for our definition

of the number ¢.
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Finally from (3.15), (3.18), (3.31), (3.33), (3.37), (3.38) we obtain

-1 K+(K-1)v K oo b
1< (H ) Sy b
n=1 i=ln=N "

t—1

<Q<_
n=1

[Lan

K+(K-1)v
2K ,
i _|_
¢

1

_ K+(K-1)v
al,n)

-1 K+(K-1)v
Q <H al,n)
n=1

Q (
2K log, a1 ¢+ + n
< Qa%*u*VQ(KHKA)V)t2 2K log, ai ¢

t—1
0 (H
n=1

B
ay k

>K+(K—1)V

1—p—v

g ¢
T—p—v a, ,t

1—p—v
) Cezr =

t—1

‘
n=1

[Lan

2K QUKD Jog, q

B
a1k

) K+(K—-1)v

+

K4+(K—1v

B
1—p—v al,k

(1+ )(1 = V)( +1)t

K+(K—1)v
1—p—v

QI(QQ(K+(K71)V)t2 log, 2

-1 K+(K-1)v
+2)t Q <1:[1a1,7z>

+
K+(K—1)v
2(1 I V)(

T—p—v

+1)t log, (1—4—&)

(K+(K—1)v)t?
_ 2KQ2 ( —

B
aq i

-1 K+(K-1)v
K-ty o)t Q <H alm)
+ n=1

g(1—p— A= =r 1’”+1) log, (1+% )

(

2K QK+E-1)t* (M + 2) Q <2

K+ (K—1)v
B ey
KI(K—1)v

B
ay i

t
A

T—p—v

log, D) K+(K-1)v

T——v
2(17H7V)(W+1) 10g2(1+t7) aﬁk
K+(K—1)v)t? ( K+(K—1)v t K Dv 1 9) (1 p—v) log, D
ZQKQQ( HE—)e (KK D)y 9) QQ( FUDY 1) (1—p—v) log,
2(1_M_V)<M+1) 10g2(1+t2) af:k
—1)w K-y 'y
DK Q2UEHU -t (Kb 4 gyt Q2(5FE=H+1) (1=uv) log, D
K+(K—1)v K+(K—1)v k <1
o(1=p=v) (EHE=DE 1) log, (1455 ) OB (EFL=2241) og, 4
This is a contradiction. Now the proof of Theorem 2.1 is complete. O
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