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Borcherds products for higher level modular
forms
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Abstract

We generalize Borcherds’ construction of infinite products to higher
level vector valued modular forms of Nebentypus. Then we obtain mero-
morphic modular functions for the orthogonal group whose zeros or poles
lie on the Heegner divisors. The construction involves twisted Siegel
theta functions and the singular theta integral.

1. Introduction

In his paper [2], R. E. Borcherds constructed a multiplicative lifting from
vector valued modular forms which are modular with respect to the Weil rep-
resentation ρL of Mp2(Z) attached to a non-degenerate even integral lattice
L of signature (2, b−) to modular forms on the orthogonal group Γ(L) of L.
Here a vector valued modular form F may have poles at the cusp ∞ and must
satisfy some integrality condition on the Fourier coefficients. Its lifting image
ΨF , which has Borcherds infinite product expansion, is a meromorphic func-
tion on the Hermitian symmetric space attached to L and its zeros or poles
are located on the Heegner divisors. The Heegner divisors are a generalization
of imaginary quadratic irrationals in the one-dimensional complex upper half
plane case. Their orders are explicitly determined by the singularity of F , that
is, the Fourier coefficients of terms with negative exponents. When L splits two
orthogonal hyperbolic planes over Z, the images of this lifting are characterized
by these conditions on their divisors ([6]).

Now, as Borcherds himself pointed out, the lifting works well only for
full modular forms. Some more considerations are needed if one wants to lift
higher level modular forms. In [2], he overcame this difficulty by embedding
scalar valued higher level modular forms into vector valued full modular forms
and obtained some important examples. Also he gave an application of this in
another direction, see [3].

On the other hand, Zagier [15] and Kim [10], [11] treats Hauptmoduls for
congruence subgroups of genus 0 and studies twisted traces of their singular
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moduli. In the one-dimensional full modular case, Borcherds’ theorem and
Zagier’s result are equivalent to each other. However, the connection between
Borcherds’ construction and traces of singular moduli is not clearly understood
in the higher level case. Recently, Bruinier and Yang ([7]) constructed twisted
Borcherds products in the Hilbert modular case. Their construction is based
on the argument of [5]. Specifically the automorphic Green function twisted by
a genus character is crucial.

In the present paper, we extend Borcherds lifting to higher level modular
forms of Nebentypus and give twisted Borcherds products. The resulting infi-
nite product is quite similar to that in [7]. Our way to construct the twisted
infinite products is different from the above ones and the same as in [2] for full
modular forms, but needs a suitably modified Siegel theta function in consider-
ing the singular theta correspondence. For this purpose, we use the Siegel theta
function twisted by some Dirichlet character. Then the construction proceeds
in the same way as for the full modular case. For example, we can follow the
argument of the partial Fourier transform of the Siegel theta function and un-
folding trick for the singular theta integral. As a result, we obtain meromorphic
modular functions for the orthogonal group whose zeros and poles lie on the
Heegner divisors. Their multiplicities are described by singularities of higher
level modular forms. Not as for the full modular case, the singularity occurs
from each cusp.

More specifically, let K be a Lorentzian lattice of signature (1, b−−1) and
M = Zz + Zz′ with z2 = z′ 2 = 0, (z, z′) = N . We put L = K ⊕ M . We let
χ be a real even primitive Dirichlet character modulo f with f |N and assume
that {p; p|f} = {p; p|N}. Then our main result Theorem 6.1 is that if a higher
level modular form F of weight 1 − b−/2 with respect to ρK and Γ0(N) of
Nebentypus χ satisfies some integrality condition on its Fourier coefficients at
each cusp then the infinite product

(1.1)
∏
k (f)

∏
λ∈K′

(λ,W )>0

(
1 − ζke((λ, Z))

)χ(k)cλ(λ2/2)

where cλ(λ2/2) are Fourier coefficients of F at the cusp ∞ and ζ = e(1/f)
defines a meromorphic function on the Hermitian symmetric domain attached
to L which is of weight 0 for the orthogonal group of L with some unitary
character. Moreover we find that its zeros or poles lie on the Heegner divisors
and that their orders are explicitly described by the singularity of F at each
cusp.

To find such a higher level vector valued modular form F as above, we may
twist a vector valued full modular form by some Dirichlet character. If we take
various characters, then by our theorem we obtain a family of meromorphic
modular functions from a full modular form. We are interested in the nature of
their CM values or the subgroup of meromorphic modular functions generated
by these functions. However this would require some amount of work as in
[5]–[7].
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Notations. For z ∈ C we write e(z) = exp(2πiz). We choose a branch
of

√
z = z

1
2 so that arg

(√
z ) ∈ (−π

2 , π
2

]
and put z

k
2 = (z

1
2 )k for each integer

k. As usual, H denotes the complex upper half plane.
In sums of the form

∑
k (N), the summation runs over complete represen-

tatives of integers modulo N . We understand products of the form
∏

k (N)

similarly.
For a lattice L and its associated symmetric bilinear form ( , ), we denote

the norm of γ ∈ L⊗C by γ2 = (γ, γ) where the form ( , ) is bilinearly extended
to L⊗C. We also put |γ| =

√|γ2| for γ ∈ L⊗C. For N ∈ Z, we mean (2N) to
be an even integral lattice of rank one generated by a vector of norm 2N . We
denote by II1,1 the even unimodular lattice of rank two generated by vectors z

and z′ with z2 = z′ 2 = 0, (z, z′) = 1. If L is a lattice, we denote by L(N) the
lattice whose underlying Z-module is L and norm is N multiple of that of L.
For lattices L and M , we let L⊕M be the orthogonal direct sum of L and M .
Hereafter lattices are always assumed to be non-degenerate and even integral.

A sublattice M of a lattice L is called primitive if L/M is torsion free and
a vector λ of L is primitive if it generates a primitive sublattice.

A lattice is Lorentzian if it has signature (1, b−) or (b+, 1).

2. Review of Borcherds product

We first review the Borcherds’ construction of infinite product. Some re-
sults are needed in the later sections. For details and proofs, see [2] and also
[6].

The metaplectic group Mp2(Z) is a double covering group of SL2(Z) and
is defined as Mp2(Z) = {(( a b

c d

)
, ±√

cτ + d
) | ( a b

c d

) ∈ SL2(Z)}. We have
(α, φ(τ )) (β, ϕ(τ )) = (αβ, φ(βτ)ϕ(τ )) for (α, φ(τ )), (β, ϕ(τ )) ∈ Mp2(Z),
where SL2(Z) acts on H by usual fractional linear transformations.

It is known that T = ( ( 1 1
0 1 ) , 1 ) and S =

( (
0 −1
1 0

)
,
√

τ
)

generate Mp2(Z).
Their relation is given by S2 = (ST )3 = Z, where Z =

( (−1 0
0 −1

)
, i
)

is a
generator of the center of Mp2(Z). The order of Z is four.

For
(

a b
c d

) ∈ SL2(Z), we put
(̃

a b
c d

)
=
( (

a b
c d

)
,
√

cτ + d
)
.

Let L be a lattice of signature (b+, b−) with the associated symmetric
bilinear form ( , ). We write L′ = {λ ∈ L ⊗ Q | (λ, µ) ∈ Z for all µ ∈ L } for
the dual lattice of L. Then L′/L is a finite Abelian group and is called the
discriminant group of L. Its order equals the absolute value of the determinant
of the Gram matrix of L. Since L is non-degenerate, the mod 1 reduction
of γ2/2 defines a Q/Z-valued non-degenerate quadratic form on L′/L. The
associated symmetric bilinear form is the mod 1 reduction of that of L′. We
write also ( , ) for it.

Let C[L′/L] be the group algebra of L′/L. We denote its standard basis
by (eγ)γ∈L′/L. The standard Hermitian inner product on C[L′/L] is given by

(2.1)

〈 ∑
γ∈L′/L

cγeγ ,
∑

γ∈L′/L

dγeγ

〉
=

∑
γ∈L′/L

cγdγ .
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The Weil representation ρL attached to L is a unitary representation of
Mp2(Z) on C[L′/L] and is defined by the action of generators:

ρL(T )eγ = e(γ2/2)eγ ,(2.2)

ρL(S)eγ =
√

i
b−−b+√|L′/L|

∑
δ∈L′/L

e(−(γ, δ))eδ.(2.3)

Then we readily verify ρL(Z)eγ = ib
−−b+e−γ .

We denote the matrix coefficients of ρL by ργδ(α, φ) = 〈ρL(α, φ)eδ, eγ〉.
Shintani computed this coefficient ργδ(α, φ) explicitly ([14, Proposition 1.6]).

Proposition 2.1. Let γ, δ ∈ L′/L and α =
(

a b
c d

) ∈ SL2(Z). Then we
have

ργδ(α̃) =


√

i
(b−−b+)(1−sgn(d))

e(abγ2/2) δγ,aδ if c = 0,
√

i
(b−−b+)sgn(c)

|c|(b++b−)/2
√

|L′/L|
∑

ε∈L/cL e(a(γ+ε, γ+ε)−2(γ+ε, δ)+d(δ, δ)
2c ) if c �= 0

where δ∗,∗ is the Kronecker’s delta.

As a result of this formula, we can immediately verify that ρL factors
through the finite group SL2(Z/NZ) if b+ + b− is even, and through a double
covering group of SL2(Z/NZ) if b++b− is odd, where N is the smallest positive
integer such that L′(N) is even integral. The integer N is called the level of L.

Then vector valued modular forms are defined as follows.

Definition 2.1. Let L be a lattice of signature (b+, b−) and k ∈ 1
2Z. A

holomorphic function F : H → C[L′/L] is called a nearly holomorphic modular
form of weight k with respect to ρL and Mp2(Z) if it satisfies the following
conditions.

(i) F (ατ) = φ(τ )2k
ρL(α, φ)F (τ ) for all (α, φ) ∈ Mp2(Z), α =

(
a b
c d

)
.

(ii) F is meromorphic at the cusp ∞. This means that F can be expanded
as F (τ ) =

∑
γ∈L′/L eγ

∑
n∈Q

n�−∞
cγ(n) e(nτ ).

Then the Fourier polynomial
∑

γ∈L′/L eγ

∑
n∈Q
n<0

cγ(n) e(nτ ) is called the

principal part or the singularity of F .
We put V = L⊗R. We write Gr(L) for the Grassmannian of L. This is a

real analytic manifold whose underlying set consists of b+-dimensional maximal
positive definite subspaces of V . If v ∈ Gr(L), we denote by v⊥ the orthogonal
complement of v in V . For x ∈ V and v ∈ Gr(L), we write xv (resp. xv⊥) for
the v-component (resp. the v⊥-component) of x in V = v ⊕ v⊥.

We let O(V ) = { g ∈ SL(V ) | (gx, gy) = (x, y) for all x, y ∈ V } be the
special orthogonal group of V and O(L) = { g ∈ O(V ) | g(L) ⊂ L } be the or-
thogonal group of L. The group Od(L) = { g ∈ O(L) | g acts trivially on L′/L }
is called the discriminant kernel of O(L). Moreover we put O+(V ) the con-
nected component of O(V ) and Γ(L) = O+(V ) ∩ Od(L).
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Let τ ∈ H, v ∈ Gr(L) and r, t ∈ V . The Siegel theta function attached to
L is defined by

ΘL(τ, v ; r, t) =
∑

γ∈L′/L

eγθL+γ(τ, v ; r, t),(2.4)

θL+γ(τ, v ; r, t) =
∑

λ∈L+γ

e
(
τ (λ + t)2v/2 + τ(λ + t)2v⊥/2 − (λ + t/2, r)

)
.(2.5)

When r = t = 0, we write simply ΘL(τ, v) and θL+γ(τ, v) for them.
By the standard argument using the Poisson summation formula,

Borcherds showed the following transformation behavior ([2, Theorem 4.1]).

Theorem 2.1. If (
(

a b
c d

)
,
√

cτ + d ) ∈ Mp2(Z), we have

ΘL( (aτ + b)/(cτ + d), v ; ar + bt, cr + dt )

=
√

cτ + d
b+√

cτ + d
b−

ρL(
(

a b
c d

)
,
√

cτ + d ) ΘL(τ, v ; r, t).

Moreover, if g ∈ Od(L) then ΘL(τ, gv) = ΘL(τ, v).

Now we can define the singular theta integral. We recall the basic ideas
in [2]. If one wants to define the integral

∫
SL2(Z)\H

〈F (τ ), ΘL(τ, v)〉 y
b+
2

dxdy
y2

which is not absolutely convergent, we need to regularize it in two steps. First,
if we denote by F = {τ ∈ H | |τ | ≥ 1, |Re(τ )| ≤ 1

2} the standard fundamental
domain of SL2(Z)\H and put Fu = {τ ∈ F | Im(τ ) ≤ u}, then we try to define it
by limu→∞

∫
Fu

〈F (τ ), ΘL(τ, v)〉 y
b+
2

dxdy
y2 . However, the limit may diverge and

needs one more regularization. If we multiply the integrand by y−s, we can
show that it converges for Re(s) � 0 and can be continued meromorphically in
s. Then we take the constant term in the Laurent expansion at s = 0 and define
the theta integral by its value. (Another definition of the singular theta integral
using non-holomorphic Poincare series is given in [6]. It is more natural and
gives precise information but requires a bit of work. The holomorphic infinite
product constructed by the two methods are the same. Thus we adopt the
above definition to avoid computational complications.)

Definition 2.2. If F is a nearly holomorphic modular form of weight
b+−b−

2 with respect to ρL and Mp2(Z), then the singular theta integral ΦF of
F is defined by

ΦF (v) = C
s=0

[
lim

u→∞

∫
Fu

〈F (τ ), ΘL(τ, v)〉 y
b+
2

dxdy

y2+s

]
for v ∈ Gr(L), where C

s=0
means the constant term of the Laurent expansion at

s = 0.

We can calculate the singularity of the singular theta integral and find that
it has the logarithmic singularity along the Heegner divisors which corresponds
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to the singularity of the nearly holomorphic modular form. This gives the
information on the zeros or poles of Borcherds product.

The Heegner divisors are defined as follows. We put λ⊥ =
{ v ∈ Gr(L) | v⊥λ } for λ ∈ L′ with negative norm. The subset λ⊥ is isomor-
phic to a Grassmannian manifold attached to a quadratic space of signature
(b+, b− − 1). For β ∈ L′ and m ∈ Q<0, the Heegner divisor H(β, m) of index
(β, m) in Gr(L) is defined by

(2.6) H(β, m) =
⋃

λ∈L+β
λ2/2=m

λ⊥ .

We easily verify that H(β, m) is a locally finite union of the sub-Grassmannians.
For b+ = 2, the Grassmannian Gr(L) has a complex structure. We see this

in some detail. Let P (VC) be the projective space associated to VC = V ⊗R C.
We denote by [ZL] the canonical image in P (VC) of ZL ∈ VC � {0}. We put
K = { [ZL] ∈ P (VC) | (ZL, ZL) = 0, (ZL, ZL) > 0 }. Then it is easily seen that
K is a complex manifold and consists of two connected components which are
preserved by the transitive action of the connected component O+(V ) of the
identity of the special orthogonal group O(V ). The action of O(V )\O+(V )
interchanges them. We denote by K+ one fixed connected component of K.
For v ∈ Gr(L), we choose an oriented base XL, YL of v that satisfies XL⊥YL

and XL
2 = YL

2 > 0. The image of ZL = XL + iYL in P (VC) is an element of
K. If the orientation is suitably chosen, the mapping v �→ [ZL] is a bijection
from Gr(L) onto K+ and defines a complex structure on Gr(L).

If L has a norm 0 vector, a tube domain realization of Gr(L) is also defined.
Suppose that z ∈ L is a primitive norm 0 vector. We take z′ ∈ L′ with (z, z′) =
1. Then we put K = L ∩ z⊥ ∩ z′⊥. The Lorentzian lattice K is isomorphic
to (L ∩ z⊥)/Zz and introduces coordinates on V as V = (K ⊗ R) ⊕ Rz′ ⊕ Rz.
If ZL = Z + az′ + bz ∈ VC with Z ∈ K ⊗ C and a, b ∈ C, then we write
ZL = (Z, a, b) for it. If a vector Z ∈ K ⊗ C has positive imaginary part, the
image of (Z, 1,−Z2/2 − z′ 2/2) in P (VC) is an element of K. We easily see
that this mapping is a biholomorphic isomorphism from vectors in K ⊗C with
positive imaginary part onto K. Corresponding to K+, we choose one of the
two connected components of {Y ∈ K ⊗R |Y 2 > 0 } and denote it by C. Thus
we have a tube domain realization Hb− = {Z ∈ K ⊗ C | Im(Z) ∈ C } of Gr(L)
associated to z and z′.

The main theorem in [2] is described in the tube domain realization Hb− .
For example, the sub-Grassmannian λ⊥ for λ = λK + az′ + bz ∈ L′ is written
as λ⊥ = {Z ∈ Hb− | aZ2/2 − (λK , Z) − az′ 2/2 − b = 0 }.

As we have seen above, the sub-Grassmannians in Gr(K) are also defined.
In contrast to the case of L, the Grassmannian Gr(K) which is isomorphic to
{Y/|Y | |Y ∈ C } is real hyperbolic space so that λ⊥ for λ ∈ K ′ with λ2 < 0
is a hyperplane of codimension 1. Thus the complement of all of them in
Gr(K) is not connected. We call its connected components the Weyl chambers
of Gr(K). If W is a Weyl chamber, then we will also call the subset {Z ∈
Hb− | Im(Z) ∈ W } of Hb− a Weyl chamber. (In [6], Weyl chambers are defined
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in more sharpened form. We could not reach it in our approach.) If λ ∈ K ′,
we easily verify that (λ, Z) > 0 for any Z ∈ W is equivalent to (λ, Z) > 0 for
some Z ∈ W . If this condition holds, we write (λ, W ) > 0.

If L has a primitive norm 0 vector z, we can calculate the Fourier expansion
of the singular theta integral ΦF in terms of a similar theta integral for K using
the partial Fourier transform of the Siegel theta function and the unfolding
argument. In fact, the singular theta integral for the Lorentzian lattice K is
a piecewise linear function which is linear on each Weyl chamber. Then we
define the Weyl vector attached to a Weyl chamber by the vector in K ⊗ R
representing the theta integral restricted on it.

From the Fourier expansion of the theta integral, Borcherds’ infinite prod-
uct is constructed. The convergence of the product is proved by the Hardy-
Ramanujan-Rademacher asymptotics (see [1, Lemma 5.3]). Moreover, its vari-
ous properties can be shown through the relation to the theta integral.

To describe the results of Borcherds precisely, we have to prepare one more
notation. If we put L′

0 = {λ ∈ L′ | (λ, z) ≡ 0 mod N } where N is the unique
positive integer with (z, L) = NZ, we have the projection p : L′

0/L → K ′/K
defined as follows. Let ζ ∈ L be a vector with (z, ζ) = N . Then the lattice L
can be written as L = K ⊕Zζ ⊕Zz ([6, Proposition 2.2]). We have a mapping
p : L′

0 → K ′ defined by p(λ) = λK − (λ,z)
N ζK . Here λK for λ ∈ L ⊗ Q is the

orthogonal projection to K ⊗ R with respect to the coordinates introduced by
z and z′. Since p maps L onto K, we have the induced mapping p : L′

0/L →
K ′/K.

We now state Theorem 13.3 of [2].

Theorem 2.2. Let L be a non-degenerate even integral lattice of sig-
nature (2, b−). Assume that L contains a primitive norm 0 vector z. We take
z′ ∈ L′ with (z, z′) = 1 and put K = L ∩ z⊥ ∩ z′⊥. We assume moreover that
K also contains a primitive norm 0 vector.

Let F (τ ) =
∑

γ∈L′/L eγ

∑
n∈Q

n�−∞
cγ(n) e(nτ ) be a nearly holomorphic mod-

ular form of weight 1 − b−
2 with respect to ρL and Mp2(Z). We suppose that

the coefficients cγ(n) are integral for n < 0. Then there exists a meromorphic
function ΨF on Hb− which satisfies the following properties.

(i) It is a meromorphic modular form on Hb− of weight c0(0)
2 for the or-

thogonal group Γ(L) with some multiplier system of finite order.
(ii) The divisor of ΨF is given by

div(ΨF ) =
1
2

∑
γ∈L′/L

∑
n∈Z+γ2/2

n<0

cγ(n)H(γ, n).

Here the multiplicities of H(γ, n) are 2 if 2γ = 0 in L′/L and 1 if 2γ �= 0 in
L′/L.

(iii) The relation ΦF (Z) = −4 log |ΨF (Z)|−c0(0) (2 log |Y | + Γ′(1) + log(2π))
holds.

(iv) If Z, which satisfies |Im(Z)| � 0, is in a Weyl chamber W ⊂ Hb− and



422 Yusuke Kawai

outside the poles of ΨF , then ΨF can be expanded to an infinite product which
converges absolutely and uniformly on any compact subset of that domain as
follows:

ΨF (Z) = Ce ((ρF (W ), Z))
∏

λ∈K′
(λ,W )>0

∏
δ∈L′

0/L
p(δ)=λ+K

(1 − e((λ, Z) + (δ, z′)))cδ(λ2/2)
.

Here C is a constant of absolute value∏
k∈Z/NZ

k 	=0

(1 − e(k/N))ckz/N (0)/2
,

and ρF (W ) ∈ K ⊗ R denotes the Weyl vector attached to F and W .

The Weyl vector attached to F and W is defined be means of the singular
theta integral for the Lorentzian lattice K. For the precise definition, see [2,
Section 10] or [5, Section 3.1 and Section 3.4].

3. The higher level vector valued modular forms

In this section, we define higher level vector valued modular forms and
relate them to some other scalar valued modular forms.

For an integer N �= 0, we put Γ̃0(N) = {(α, φ(τ )) ∈ Mp2(Z) |α ∈ Γ0(N)}
which is the inverse image of Γ0(N) under the covering map Mp2(Z) → SL2(Z).

Definition 3.1. Let L be a lattice of signature (b+, b−) and k ∈ 1
2Z.

For an integer N �= 0, we let χ be a Dirichlet character modulo N . Then a
holomorphic function F : H → C[L′/L] is called a nearly holomorphic modular
form of weight k with respect to ρL and Γ̃0(N) with character χ if it satisfies
the following conditions.

(i) F (ατ) = χ(d) φ(τ )2k
ρL(α, φ)F (τ ) for all (α, φ) ∈ Γ̃0(N), α =

(
a b
c d

)
.

(ii) F is meromorphic at every cusps. This means if we put (F |k(α, φ)) (τ )
= φ(τ )−2kρL(α, φ)−1F (ατ ) for any (α, φ) ∈ Mp2(Z) then we have the Fourier
expansion of the form (F |k(α, φ)) (τ ) =

∑
γ∈L′/L eγ

∑
n∈Q

n�−∞
cγ(n) e(nτ ).

The C-vector space of these functions is denoted by M !
k(Γ̃0(N), χ ρL). When

N = 1, we simply write M !
k(ρL) for it.

When the rank of a lattice is one, we can define the twist of vector valued
modular forms as follows.

Proposition 3.1. Let N be a non-zero integer and L = (2N). For a
Dirichlet character χ modulo f with f |N , we view it as a function on L′/L �
Z/2NZ via a fixed generator of L. If F (τ ) =

∑
γ∈L′/L eγfγ(τ ) ∈ M !

k(ρL) then

Fχ(τ ) =
∑

γ∈L′/L eγχ(γ)fγ(τ ) is a modular form in M !
k (Γ̃0(N), χ ρL).
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Proof. It suffices to check the transformation behavior under the action
of α̃, α =

(
a b
c d

) ∈ Γ0(N).
We denote a generator of L by λ0 and put γ = s

2N λ0, δ = t
2N λ0 ∈ L′/L

for s, t ∈ Z. Then we write ρs,t instead of ργδ.
If c �= 0, by virtue of Proposition 2.1 we can compute directly and find

ρs,t(α̃) =
√

i
−sgn(Nc)√
2|Nc| e

(
as2 − 2st + dt2

4Nc

) c∑
k=1

e
(

Na

c
k2 +

as − t

c
k

)
.

If we set c = Nc′, we have

c∑
k=1

e
(

Na

c
k2 +

as − t

c
k

)
=

c′−1∑
l=0

N∑
m=1

e
(

a

c′
(l + c′m)2 +

as − t

c
(l + c′m)

)

=
c′−1∑
l=0

e
(

a

c′
l2 +

as − t

c
l

) N∑
m=1

e
(

as − t

N
m

)
.

Therefore ρs,t(α̃) �= 0 only for t ≡ as (N). Using this we see that

Fχ(ατ )
√

cτ + d
−2k

=
∑

s (2N)

esχ(s)
∑

t (2N)
t≡as (N)

ρs,t(α̃)ft(τ )

= χ(a)−1
∑

s (2N)

es

∑
t (2N)

t≡as (N)

ρs,t(α̃)χ(t)ft(τ )

= χ(d)ρL(α̃)Fχ(τ ).

Clearly this holds also when c = 0.

4. Twisted Siegel theta functions

In this section, we define twisted Siegel theta functions for a lattice L of
signature (b+, b−). This is a vector valued interpretation of that of [13].

For this purpose, we assume that L is written as L = K ⊕ M where K is
a lattice of signature (b+ − 1, b−− 1) and M is a lattice generated by vectors z

and z′ with z2 = z′ 2 = 0, (z, z′) = N . The lattice M is isomorphic to II1,1(N).

Definition 4.1. We let τ ∈ H, v ∈ Gr(L) and r, t ∈ V . If χ is a
Dirichlet character modulo f with f |N , the χ-twisted Siegel theta function
attached to L is defined by

ΘL, χ(τ, v ; r, t) =
∑

γ∈K′/K

eγ θK+γ, χ(τ, v ; r, t),

θK+γ, χ(τ, v ; r, t) =
∑
k (f)

χ(k) θL+γ+ k
f z(τ, v ; r, t).

As in the full modular case, we write simply ΘL, χ(τ, v) and θK+γ, χ(τ, v) when
r = t = 0.
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Theorem 4.1. If (
(

a b
c d

)
,
√

cτ + d ) ∈ Γ̃0(N), we have

ΘL, χ( (aτ + b)/(cτ + d), v ; ar + bt, cr + dt )

= χ(d)
√

cτ + d
b+√

cτ + d
b−

ρK(
(

a b
c d

)
,
√

cτ + d ) ΘL, χ(τ, v ; r, t).

Moreover ΘL, χ(τ, v) is invariance under the action of Od(L).

Proof. We note ρL = ρK ⊗ ρM . By Theorem 2.1 we get

ΘL, χ(ατ, v ; ar + bt, cr + dt)
√

cτ + d
−b+√

cτ + d
−b−

=
∑

γ∈K′/K

eγ

∑
k (f)

χ(k) θL+γ+ k
f z(ατ, v ; ar + bt, cr + dt)

√
cτ + d

−b+√
cτ + d

−b−

=
∑

γ∈K′/K

eγ

∑
k (f)

χ(k)
∑

δ∈K′/K

∑
ε∈M ′/M

ργ,δ(α̃)ρ k
f z,ε(α̃) θL+δ+ε(τ, v ; r, t).

As in the proof of Proposition 3.1, we find ρ k
f z,ε(α̃) = δε, ak

f z. Therefore we
obtain ∑

γ∈K′/K

eγ

∑
k (f)

χ(k)
∑

δ∈K′/K

ργ,δ(α̃) θL+δ+ ak
f z(τ, v ; r, t)

=
∑

γ∈K′/K

eγ χ(d)−1
∑

δ∈K′/K

ργ,δ(α̃)
∑
k (f)

χ(k) θL+δ+ k
f z(τ, v ; r, t)

= χ(d)−1
∑

γ∈K′/K

eγ

∑
δ∈K′/K

ργ,δ(α̃) θK+δ, χ(τ, v ; r, t)

= χ(d)ρK(α̃) ΘL, χ(τ, v ; r, t).

This proves the assertion.

To calculate the Fourier expansion of the singular theta integral, we need
to express the theta functions as the infinite sum involving theta functions for
smaller lattices. For this, we just rewrite in our case Theorem 5.2 of [2] or The-
orem 2.4 of [6] which is proved by means of the partial Fourier transformation.
We note that z is a primitive norm 0 vector in L, z′

N ∈ L′ with (z, z′
N ) = 1 and

(z, L) = NZ. Then we obtain the following.

Lemma 4.1. Let w be the orthogonal complement of zv in v. We put

µ = − z′

N
+

zv

2zv
2

+
zv⊥

2z2
v⊥

which is a vector of V ∩ z⊥ = (K ⊗ R) ⊕ Rz. Then

θL+γ+ k
f z(τ, v) =

1√
2y |zv|

∑
c, d∈Z

c≡0 (N)

e
(
−d

f
k

)
exp

(
−π|cτ + d|2

2zv
2y

)

× θK+γ(τ, w ; dµ,−cµ).
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We denote by G(χ) =
∑

k (f) χ(k) e( k
f ) the Gaussian sum of a Dirichlet

character χ modulo f .

Proposition 4.1. If χ is primitive, then

θK+γ, χ(τ, v) =
χ(−1) G(χ)√

2y |zv|
∑

c≡0 (N)

(d, fc
N )=1

χ(d)
∑
n≥1

χ(n) exp
(
−πn2|cτ + d|2

2zv
2y

)

× θK+γ(τ, w ; dnµ,−cnµ).

Proof. We note
∑

k (f) χ(k) e(− d
f k) = G(χ) χ(−d) since χ is primitive.

From this formula and lemma 4.1, we obtain the sum over c ≡ 0 (N), d ∈ Z.
Let c = Nc′, c′ ∈ Z and n = (c′, d). If we replace c′/n, d/n by c′, d, we can take
the summation over n ≥ 1, c′, d ∈ Z with (c′, d) = 1. Again we put c = Nc′

and obtain the assertion.

For the later use, we see how ΘL, χ(τ, v) behaves under the action of
Mp2(Z). If α =

(
a b
c d

) ∈ SL2(Z), we have

(ΘL, χ| α̃) (τ, v) =ρK(α̃)−1 ΘL, χ(ατ, v)
√

cτ + d
−b+√

cτ + d
−b−

=
∑

γ∈K′/K

eγ

∑
k (f)

χ(k)
∑

ε∈M ′/M

ρ k
f z,ε(α̃) θL+γ+ε(τ, v)

=
∑

γ∈K′/K

eγ

∑
ε∈M ′/M

∑
k (f)

χ(k) ρ k
f z,ε(α̃)

 θL+γ+ε(τ, v).

In the rest of this section, we compute the constant
∑

k (f) χ(k) ρ k
f z, ε(α̃)

when χ is primitive. If c = 0, it can be easily observed by Proposition 2.1. In
the case of c �= 0 we also have the expression of it as a finite product of roots
of unity, Gaussian sums, values of Dirichlet characters and rational numbers.
As we will not need this result in the subsequent sections, the reader may skip
the following proposition.

Proposition 4.2. For a non-zero integer N , we put M = Zz+Zz′ with
z2 = z′ 2 = 0, (z, z′) = N . Let χ be a primitive Dirichlet character modulo f
with f |N and

(
a b
c d

) ∈ SL2(Z) with c �= 0. If P is the set of prime divisors of f ,
we write f =

∏
p∈P fp, χ =

∏
p∈P χp where fp (resp. χp) is the p-component

of f (resp. χ). In this case, χp is a primitive Dirichlet character modulo fp.
We fix integers s and t. For an integer n, we put n′ = n/(N, c), n′′ =

n/(N/f, (N, c)). We take integers β0 and γ0 satisfying N ′aβ0 + c′γ0 = 1.
Let P1 (resp. P2) be the set of primes consisting of p ∈ P which satisfies

(N, c)′′p ≥ f
1/2
p and χp(1 + (N, c)′′p) = e

(
(N/f)′′−1(ds)′′γ0t

′(N, c)′′p/fp

)
(resp.

(N, c)′′p < f
1/2
p and χp(1 + fp/(N, c)′′p) = e

(
(N/f)′′−1(ds)′′γ0t

′/(N, c)′′p
)
). The

expression (N, c)′′p means the p-component of the integer (N, c)′′ and (N/f)′′−1

means some representative in Z of (N/f)′′ mod (N, c)′′.
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If s ∈
(

N
f , (N, c)

)
Z, t ∈ (N, c)Z and P = P1 ∪ P2, then on the constant

involving the matrix coefficients of ρM we find

∑
k (f)

χ(k) ρ k
f z, s

N z+ t
N z′

((̃
a b
c d

))

=
1

|N ′| e
(
−N ′β0 − d

N ′c
st′
)∏

p	=q

χp(fq)

×
∏

p∈P1

χp((N/f)′′−1(ds)′′) e

(
− (N/f)′′−1(ds)′′γ0t

′

fp

)
fp

(N, c)′′p

×
∏

p∈P2

G(χp) χp(−γ0t
′),

and otherwise 0. Here the product
∏

p	=q is taken over all pairs of different
primes in P

Proof. We compute matrix coefficients of ρM by Proposition 2.1. For
c �= 0, we have

∑
k (f)

χ(k) ρ k
f z, s

N z+ t
N z′(α̃)

=
1

N |c|
∑
k (f)

χ(k)
∑

α, β (c)

e

(
a

2c

((
k

f
+ α

)
z + βz′

)2

−1
c

((
k

f
+ α

)
z + βz′,

s

N
z +

t

N
z′
)

+
d

2c

(
s

N
z +

t

N
z′
)2
)

=
1

N |c| e
(

dst

Nc

)∑
k (f)

χ(k) e
(
− t

c

k

f

)∑
β (c)

e
((

Na

f
k − s

)
β

c

)
×
∑
α (c)

e
(
(Naβ − t)

α

c

)
.

The sum over α is not 0 only if Naβ ≡ t (c). In that case, t satisfies
t ∈ (N, c)Z so that the summation over β can be replaced by β with N ′aβ ≡ t′

(c′) where primes have been defined in Proposition 4.2.
We have taken integers β0 and γ0 which satisfy N ′aβ0 + c′γ0 = 1. Then

the summation over β (c) with N ′aβ ≡ t′ (c′) can be replaced by β = β0t
′ +c′l
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with l = 1, . . . , (N, c). We immediately see∑
β (c)

N ′aβ≡t′ (c′)

e
((

Na

f
k − s

)
β

c

)

= e
(
−β0st

′

c

)
e
(

N ′aβ0t
′

fc′
k

) (c,N)∑
l=1

e
((

Na

f
k − s

)
l

(N, c)

)

The sum is not 0 only if Na
f k ≡ s ((N, c)).

Consequently we find that if s ∈
(

N
f , (N, c)

)
Z and t ∈ (N, c)Z then∑

k (f)

χ(k) ρ k
f z, s

N z+ t
N z′(α̃)

=
1

|N ′| e
(

dst

Nc

) ∑
k (f)

Na
f k≡s ((N,c))

χ(k) e
(
− t

c

k

f

)
e
(
−β0st

′

c

)
e
(

N ′aβ0t
′

fc′
k

)

=
1

|N ′| e
(

dst

Nc

)
e
(
−β0st

′

c

) ∑
k (f)

Na
f k≡s ((N,c))

χ(k) e
(

(N ′aβ0 − 1) t′

fc′
k

)

=
1

|N ′| e
(
−N ′β0 − d

N ′c
st′
) ∑

k (f)
Na
f k≡s ((N,c))

χ(k) e
(
−γ0t

′

f
k

)
.

Otherwise it equals 0.
We can replace the summation over β with Na

f k ≡ s ((N, c)) by β with

k ≡
(

N
f

)′′−1

(ds)′′ ((N, c)′′). Here tilde has been defined in the Proposition.
We easily find (N, c)′′ divides f .

To calculate the sum, we concentrate on this Gaussian type sum and in-
vestigate its properties.

If χ is a primitive Dirichlet character modulo f , we put

(4.1) G(k, χ ; α, β) =
∑
n (f)

n≡α (k)

χ(n) e
(

β

f
n

)

for 0 < k|f and α, β ∈ Z.
The next lemma is well known for the usual Gaussian sum.

Lemma 4.2. We let χ1, χ2 be primitive Dirichlet characters modulo
f1, f2 respectively and k1, k2 be integers such that k1|f1, k2|f2. If (f1, f2) = 1,
then

G(k1k2, χ1χ2 ; α, β) = χ1(f2) χ2(f1) G(k1, χ1 ; α, β) G(k2, χ2 ; α, β).
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Proof. For an integer n, we take integers n1, n2 such that n = n2f1+n1f2.
We easily find that n ≡ α (k1k2) is equivalent to n1 ≡ α (k1), n2 ≡ α (k2).
Then the assertion immediately follows from the usual argument.

By the preceding lemma, we can reduce the computation to the case of
f = pe, where p is a prime number. In this case, we write G(r, χ ; α, β) instead
of G(pr, χ ; α, β).

First, we show the following lemma.

Lemma 4.3. For 0 ≤ r ≤ e, we have

G(r, χ ; α, β) =
pe−r

G(χ)
e
(

αβ

pe

)
G(e − r, χ ;−β, α).

Proof. As in the preceding computations, we replace χ(n) by its Fourier
expansion and find

G(r, χ ; α, β) =
∑

n (pe)
n≡α (pr)

∑
k (pe)

1
G(χ)

χ(k) e
(

n

pe
k

) e
(

β

pe
n

)

=
1

G(χ)

∑
k (pe)

χ(k)
∑

n (pe)
n≡α (pr)

e
(

k + β

pe
n

)
.

If we write in the later sum n = α + prl, l = 1, . . . , pe−r, then we have

1
G(χ)

e
(

αβ

pe

) ∑
k (pe)

χ(k) e
(

α

pe
k

) pe−r∑
l=1

e
(

k + β

pe−r
l

)

=
pe−r

G(χ)
e
(

αβ

pe

) ∑
k (pe)

k≡−β (pe−r)

χ(k) e
(

α

pe
k

)

=
pe−r

G(χ)
e
(

αβ

pe

)
G(e − r, χ ;−β, α).

Thus we proved the assertion.

We readily find G(r, χ ; α, β) = χ(α) G(r, χ ; 1, αβ). If r ≥ e/2, the map-
ping l �→ χ(1 + prl) is an additive character of Z/pe−rZ. Therefore we may
write χ(1 + prl) = e

(
γ

pe−r l
)

for some γ ∈ Z, so that we obtain

G(r, χ ; 1, αβ) = e
(

αβ

pe

) pe−r∑
l=1

e
(

γ + αβ

pe−r
l

)

=

 e
(

αβ
pe

)
pe−r if χ(1 + pr) = e

(
− αβ

pe−r

)
,

0 if χ(1 + pr) �= e
(
− αβ

pe−r

)
.
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If r < e/2, then we can compute G(r, χ ; 1, αβ) by Lemma 4.3.
As a result, we obtain

G(r, χ ; α, β) =


χ(α) e

(
αβ
pe

)
pe−r if r ≥ e/2, χ(1 + pr) = e

(
− αβ

pe−r

)
,

G(χ) χ(β) if r < e/2, χ(1 + pe−r) = e
(
−αβ

pr

)
,

0 otherwise.

This proves Proposition 4.2.

5. The Singular theta integral

In this section, we define the singular theta integral of a higher level nearly
holomorphic vector valued modular form.

In order to define the singular theta integral of a nearly holomorphic mod-
ular form with respect to Γ̃0(N), we just consider the integration on Γ0(N)\H
and regularize it on each cusp by a similar way as in the full modular case.

Although we can not take the standard fundamental domain for Γ0(N),
we choose one of them and truncate it. Then we multiply the integrand by
y−s corresponding to each cusp so that the invariance of it under the action of
Γ0(N) does not hold. However if we take the limit to the whole domain, we
can show that the integral converges when Re(s) is sufficiently large and can
be meromorphically continued to the whole s-plane. Taking its constant term
of the Laurent expansion at s = 0, we obtain the singular theta integral which
is a function on Gr(L) invariant under Γ(L).

As before, let K be a lattice of signature (b+−1, b−−1) and M = Zz+Zz′

with z2 = z′ 2 = 0, (z, z′) = N . We put L = K ⊕ M . We let χ be a Dirichlet
character modulo f with f |N .

Let { l } be the complete representatives of the set of Γ0(N)-equivalent
classes of cusps and hl be the width of a cusp l. We take αl ∈ SL2(Z) such
that αl(∞) = l for each l. We consider the integration over

∐
l αlFl,u where

Fl,u = { τ ± i
2 | τ ∈ Fu, i = 1, . . . , hl }.

Definition 5.1. If F (τ ) ∈ M !
b+−b−

2

(Γ̃0(N), χ ρK) and v ∈ Gr(L), then

the singular theta integral ΦF of F is defined by

ΦF (v) = C
s=0

 lim
u→∞

∑
l

∫
Fl,u

〈F (αlτ ), ΘL, χ(αlτ, v)〉 Im(αlτ )
b+
2

dxdy

y2+s

 .

Proposition 5.1. The regularized integral of ΦF converges when Re(s)
> b+

2 −1 and can be meromorphically continued to the complex s-plane. It may
have a simple pole at s = b+

2 − 1 and is holomorphic elsewhere. Therefore the
singular theta integral ΦF (v) is well-defined for any v ∈ Gr(L).

Proof. The proof is identical to that of [2] Theorem 7.1. We follow its
argument.
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It suffices to prove the convergence and meromorphic continuation of the
integral

(5.1)
∫

y>1

∫
0<x<hl

〈 (F | α̃l) (τ ), (ΘL, χ| α̃l) (τ, v) 〉 y
b+
2 −2−s dxdy

for each l. We put (F | α̃l) (τ ) =
∑

γ∈K′/K eγ

∑
n∈Q

n�−∞
cγ(n)l q

n. The inner

product of (5.1) is expanded as

〈 (F | α̃l) (τ ), (ΘL, χ| α̃l) (τ, v) 〉
=

∑
γ∈K′/K
ε∈M ′/M

∑
k (f)

χ(k) ρ k
f z,ε(α̃l)

∑
n∈Q

n�−∞

cγ(n)l q
n θL+γ+ε(τ, v)

If we carry out the integral over x, we obtain a linear combination of

(5.2)
∑

λ∈L+γ+ε
n=λ2/2

cγ(n)l exp

(
−2π

(
n +

λv
2 − λ2

v⊥

2

)
y

)
y

b+
2 −2−s.

We will verify that the integral over y > 1 of (5.2) is absolutely convergent
except for finitely many terms and remaining terms can be continued mero-
morphically.

Since (F | α̃l) (τ ) grows at most exponentially as y → ∞, there exists a
constant A > 0 such that |cγ(n)l| exp(−2πny) ≤ exp(2πAy) for any y > 1, γ ∈
K ′/K and n ∈ Q. If we put σ = Re(s), we have an estimate∫

y>1

∑
λ∈L+γ+ε
n=λ2/2

|cγ(n)l| exp

(
−2π

(
n +

λv
2 − λ2

v⊥

2

)
y

)
y

b+
2 −2−σ dy

≤
∫

y>1

∑
λ∈L+γ+ε

exp

(
2π

(
A − λv

2 − λ2
v⊥

2

)
y

)
y

b+
2 −2−σ dy.

Except for finitely many λ, we have A− λv
2−λ2

v⊥
2 < − 1

2π

(
λv

2−λ2
v⊥

2

)
. For these

λ, the above integral and sum are estimated by

(5.3)
∫

y>1

∑
λ∈L′�{0}

exp

(
−λv

2 − λ2
v⊥

2
y

)
y

b+
2 −2−σ dy

Since the positive definite norm in the bracket attains the minimum for λ ∈
L′ � {0}, it is easily seen that (5.3) is convergent for any s.

For remaining finitely many λ, we have to show that the integral

cγ(λ2/2)l

∫
y>1

exp(−2πλ2
vy ) y

b+
2 −2−s dy
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can be meromorphically continued to the whole s-plane. If λ2
v > 0 it converges

absolutely. If λ2
v = 0 then we may compute it explicitly.

This completes the proof of Proposition 5.1.

Now we calculate the singularity of the singular theta integral in the sense
of [2]. It lies on Heegner divisors as in the full modular case and in contrast to
that case it occurs from each cusp of Γ0(N).

We first recall the definition of singularity. Let X be a real analytic mani-
fold and f, g be functions on some open dense subset of X. We say that f has
a singularity of type g at x ∈ X if f − g can be continued to a real analytic
function near x.

Proposition 5.2. Suppose F (τ ) ∈ M !
b+−b−

2

(Γ̃0(N), χ ρK) has its

Fourier expansion (F | α̃l) (τ ) =
∑

γ∈K′/K eγ

∑
n∈Q

n�−∞
cγ(n)l q

n for each l. Then

the singularity of ΦF (v) at v0 ∈ Gr(L) is given by

∑
l

∑
λ∈L′�{0}

λv0=0

∑
k (f)

χ(k) ρ k
f z,λM

(α̃l)

hl cλK
(λ2/2)l (−2πλ2

v)
1− b+

2 log(λ2
v)

if b+ = 0, 2 and

−
∑

l

∑
λ∈L′�{0}

λv0=0

∑
k (f)

χ(k) ρ k
f z,λM

(α̃l)

hl cλK
(λ2/2)l (2πλ2

v)
1− b+

2 Γ
(
−1 +

b+

2

)

otherwise. Here we denote the orthogonal projection of λ ∈ L′ to K ⊗ R (resp.
M ⊗ R) by λK (resp. λM ).

Proof. It suffices to compute the singularity of

C
s=0

 ∫
y>1

∫
0<x<hl

〈 (F | α̃l) (τ ), (ΘL, χ| α̃l) (τ, v) 〉 y
b+
2 −2−s dxdy

 .

As we have seen in the proof of Proposition 5.1, it is the constant term of

−
∑
λ∈L′

∑
k (f)

χ(k) ρ k
f z,λM

(α̃l)

hl cλK
(λ2/2)l

∫
y>1

exp(−2πλ2
vy) y

b+
2 −2−s dy.

Since λ = 0 and λ ∈ L′ with λ2
v0

> 0 give real analytic functions near v0, it is
sufficient to consider only λ ∈ L′ �{0} with λv0 = 0. From [2, Lemma 6.1], the
singularity from these λ can be worked out. Then we have the assertion.

We can compute the Fourier expansion of ΦF (v) using the unfolding trick
as in [2] or [6] under some conditions. Thus the proof of Theorem 7.1 in [2]
works also in our case.
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Before stating the theorem, we recall one more notation. For v ∈ Gr(L)
let w be the orthogonal complement of zv in v. The orthogonal projection
L⊗R → K⊗R induces an isometric embedding of w into K⊗R (see [6, p.42]).
Thus for λ ∈ K ′ the notation λw makes sense.

Theorem 5.1. Let K be a Lorentzian lattice and χ be a primitive
Dirichlet character modulo f with f |N . We assume {p; p|f} = {p; p|N}.
Let F (τ ) =

∑
γ∈K′/K eγ

∑
n∈Q

n�−∞
cγ(n) qn be in M !

1− b−
2

(Γ̃0(N), χ ρK). If v ∈
Gr(L) is outside the Heegner divisors and |zv| � 1, then we have the Fourier
expansion

ΦF (v) = 2 χ(−1) G(χ)L(1, χ) c0(0)

+ 2 χ(−1) G(χ)
∑

λ∈K′�{0}

∑
n≥1

χ(n)
n

cλ(λ2/2) e(n(λ, µ)) exp
(
−2πn

|λw|
|zv|

)
.

Proof. We first calculate for arbitrary even integral lattice K, then we
specialize the result to the case of Lorentzian lattice.

From Proposition 4.1 and the assumption {p; p|f} = {p; p|N}, we write

〈F (τ ), ΘL, χ(τ, v)〉 y
b+
2

=
χ(−1) G(χ)√

2 |zv|
∑
n≥1

χ(n)
∑

c≡0 (N)
(d, Nc)=1

χ(d) exp
(
−πn2|cτ + d|2

2zv
2y

)

× 〈F (τ ), ΘK(τ, w ; dnµ,−cnµ)〉 y
b+−1

2 .

If we put Γ∞ = { ( 1 h
0 1 ) |h ∈ Z }, then we obtain a bijection between { (c, d) ∈

Z2 � {0} | c ≡ 0 (N), (d, Nc) = 1 } and Γ∞\Γ0(N). Since the sum of c = d = 0
vanishes, we find

∑
c≡0 (N)

(d, Nc)=1

χ(d) exp
(
−πn2|cτ + d|2

2zv
2y

)
〈F (τ ), ΘK(τ, w ; dnµ,−cnµ)〉 y

b+−1
2

=
∑

α∈Γ∞\Γ0(N)

exp
(
− πn2

2zv
2 Im(ατ )

)
〈F (ατ ), ΘK(ατ, w ; nµ, 0)〉 Im(ατ )

b+−1
2 .

Therefore we can use the unfolding trick as in the full modular case.
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Then we have∑
l

∫
Fl,u

〈F (αlτ ), ΘL, χ(αlτ, v)〉 Im(αlτ )
b+
2

dxdy

y2+s

=
χ(−1) G(χ)√

2 |zv|
∑

l

∫
Fl,u

∑
n≥1

χ(n)
∑

α∈Γ∞\Γ0(N)

exp
(
− πn2

2zv
2 Im(ααlτ )

)

× 〈F (ααlτ ), ΘK(ααlτ, w ; nµ, 0)〉 Im(ααlτ )
b+−1

2
dxdy

y2+s

=
χ(−1) G(χ)√

2 |zv|
∫
Fu

∑
n≥1

χ(n)
∑

α∈Γ∞\SL2(Z)

exp
(
− πn2

2zv
2 Im(ατ )

)

× 〈F (ατ), ΘK(ατ, w ; nµ, 0)〉 Im(ατ )
b+−1

2
dxdy

y2+s
.

We can then exchange the integral and sums as shown in [2, Theorem 7.1].
For α /∈ Γ∞, exp

(−πn2/2zv
2 Im(ατ )

)
decreases rapidly if |zv| is sufficiently

small, so that it kills off the growth of F (ατ ). Therefore the integral and sums
for these α are absolutely convergent. We may replace y−s by Im(ατ)−s in
considering to take the constant term. For α ∈ Γ∞ the regularization process
justifies the exchange. Considering the contribution of ±1 ∈ Γ0(N), we have

ΦF (v) =
√

2 χ(−1) G(χ)
|zv| C

s=0

[∑
n≥1

χ(n)
∫

y>0

∫
0<x<1

exp
(
− πn2

2zv
2 y

)

× 〈F (τ ), ΘK(τ, w ; nµ, 0)〉 y
b+−5

2 −s dxdy

]
.

The Fourier expansions of F and ΘK give us the following expansion of the
sum in the bracket:∑
n≥1

χ(n)
∫

y>0

exp
(
− πn2

2zv
2 y

) ∑
λ∈K′

cλ(λ2/2) e(n(λ, µ)) exp(−2πλ2
wy) y

b+−5
2 −s dy.

From the estimate on cλ(λ2/2), we can exchange the integral and sums if
Re(s) � 0. Consequently it becomes∑

λ∈K′

∑
n≥1

χ(n) cλ(λ2/2) e(n(λ, µ))
∫

y>0

exp
(
− πn2

2zv
2 y

− 2πλ2
wy

)
y

b+−5
2 −s dy.

From [2, Lemma 7.2 and Lemma 7.3], the integral over y > 0 can be written as

2
(

n

2|zv||λw|
) b+−3

2 −s

K b+−3
2 −s

(
2πn

|λw|
|zv|

)
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if λw �= 0 and as (
πn2

2z2
v

) b+−3
2 −s

Γ
(

s − b+ − 3
2

)
if λw = 0, where Kµ(t) denotes the modified Bessel function of the third kind.

Now we specialize the above results to the case b+ = 2. Note that
K1/2(t) =

√
π/(2t) e−t. If we use an estimate of the Fourier coefficients of F by

Hardy-Ramanujan circle method given in [1, Lemma 5.3] and the assumption
that v is outside the Heegner divisors, we can show that we may simply put
s = 0 in the sum to take the constant term of the Laurent expansion at s = 0.
Putting b+ = 0 and s = 0, we find that the integral over y > 0 for λw �= 0 and
λw = 0 are the same. Then it is easily seen that the vector λ = 0 contributes

2 χ(−1) G(χ)L(1, χ) c0(0)

and all the other vectors contribute

2 χ(−1) G(χ)
∑

λ∈K′�{0}

∑
n≥1

χ(n)
n

cλ(λ2/2) e(n(λ, µ)) exp
(
−2πn

|λw|
|zv|

)
.

6. Borcherds products

In this section, we construct Borcherds products for higher level vector
valued modular forms. We let the signature of a lattice L be (2, b−). Results
are described in the tube domain realization Hb− of Gr(L) introduced in Section
2. In that coordinates, we have |zv| = 1/|Y |, |λw| = |(λ, Y )|/|Y | and (λ, µ) =
(λ, X) for Z = X + iY ∈ Hb− corresponding to v ∈ Gr(L).

Theorem 6.1. Let K be a Lorentzian lattice of signature (1, b− − 1)
and M = Zz + Zz′ with z2 = z′ 2 = 0, (z, z′) = N . We put L = K ⊕ M .
Suppose that χ is a real even primitive Dirichlet character modulo f with f |N .
We assume {p; p|f} = {p; p|N}.

We let F (τ ) be in M !

1− b−
2

(Γ̃0(N), χ ρK). At a cusp l, we have the Fourier

expansion (F | α̃l) (τ ) =
∑

γ∈K′/K eγ

∑
n∈Q

n�−∞
cγ(n)lq

n for αl ∈ SL2(Z) such

that αl(∞) = l. Suppose that
(∑

k (f) χ(k) ρ k
f z,ε(α̃l)

)
hl cγ(n)l is an integer for

any cusp l, γ ∈ K ′/K, ε ∈ M ′/M and n < 0. Then there exists a meromorphic
function ΨF on Hb− which satisfies the following properties.

(i) It is a meromorphic modular form on Hb− of weight 0 for Γ(L) with
some unitary character of finite order.

(ii) The divisor of ΨF is given by

div(ΨF ) =
1
2

∑
l

∑
γ∈K′/K
ε∈M ′/M

∑
n∈Z+γ2/2

n<0

∑
k (f)

χ(k) ρ k
f z,ε(α̃l)

hl cγ(n)lH(γ + ε, n) .
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(iii) The relation ΦF (Z) = −4 log |ΨF (Z)| + 2 G(χ)L(1, χ) c0(0) holds.
(iv) If Z, which satisfies |Im(Z)| � 0, is in a Weyl chamber W ⊂ Hb− and

outside the poles of ΨF , then ΨF can be expanded to an infinite product which
converges absolutely and uniformly on any compact subset of that domain as
follows:

ΨF (Z) = C
∏
k (f)

∏
λ∈K′

(λ,W )>0

(
1 − ζke((λ, Z))

)χ(k)cλ(λ2/2)
.

Here C is a constant of absolute value 1 and ζ = e(1/f).

Proof. The theorem is proved in the same way as [2, Theorem 13.3].
First, we define a function ΨF on some open subset of Hb− by

(6.1) ΨF (Z) =
∏
k (f)

∏
λ∈K′�{0}
(λ,W )>0

(
1 − ζke((λ, Z))

)χ(k)cλ(λ2/2)
.

If Z is in a Weyl chamber W and outside the poles of ΨF , we have to show
that the infinite product (6.1) converges for |Im(Z)| � 0. We need again an
estimate on the Fourier coefficients of F given in [1, Lemma 5.3]. This gives
the fourth assertion of Theorem 6.1.

Next, we prove the third assertion. We let Z ∈ W and Y 2 � 1. From
Theorem 5.1 we have

ΦF (Z) = 2 G(χ)L(1, χ) c0(0)

+ 2 G(χ)
∑

λ∈K′�{0}

∑
n≥1

χ(n)
n

cλ(λ2/2) e(n(λ, X)) exp (−2πn|(λ, Y )|) .

Since χ(n) = 1
G(χ)

∑
k (f) χ(k) ζnk and χ is a real even character, we find

2 G(χ)
∑

λ∈K′�{0}

∑
n≥1

χ(n)
n

cλ(λ2/2) e(n(λ, X)) exp (−2πn|(λ, Y )|)

= 2
∑
k (f)

χ(k)
∑

λ∈K′�{0}
cλ(λ2/2)

∑
n≥1

1
n

(
ζke((λ, X) + i|(λ, Y )|))n

= −2
∑
k (f)

χ(k)
∑

λ∈K′�{0}
cλ(λ2/2) log

(
1 − ζke((λ, X) + i|(λ, Y )|))

= −4
∑
k (f)

χ(k)
∑

λ∈K′�{0}
(λ,W )>0

cλ(λ2/2) log
∣∣1 − ζke((λ, Z))

∣∣

= −4 log

∣∣∣∣∣ ∏
k (f)

∏
λ∈K′�{0}
(λ,W )>0

(
1 − ζke((λ, Z))

)χ(k)cλ(λ2/2)

∣∣∣∣∣.
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This proves the third assertion.
From this relation, the type of singularity of ΦF , the integrality condition

on the Fourier coefficients and pluriharmonicity of ΦF , we can continue ΨF to
a single valued meromorphic function on Hb− as in the proof of [6, Theorem
3.16]. In that process, we find the divisor of ΨF .

Finally we derive the first assertion from the relation in the third assertion
and [2, Lemma 13.1],

This completes the proof.

6.1. Examples
We focus on the one-dimensional case and present a few modular forms

constructed from our Borcherds products.

Example 6.1. We take a real even primitive Dirichlet character χ mod-
ulo f . We put L = (2f)⊕II1,1(f) and denote the generators of (2f) and II1,1(f)
by λ0 with λ0

2 = 2f and z, z′ with z2 = z′ 2 = 0, (z, z′) = f . In this case, we
write ej for eγ , γ = j

2f λ0, j ∈ Z.
If we apply Proposition 3.1 to the theta function Θ(2f)(τ ) of a lattice

(2f), then we get the function Θ(2f), χ(τ ) =
∑

j (2f) ejχ(j)
∑

n≡j (2f) e
(

n2

4f τ
)

in M 1
2
(Γ̃0(f), χ ρ(2f)). Since Θ(2f), χ(τ ) has no singularity at any cusps, we find

from Theorem 6.1 that ηχ(τ ) =
∏

k (f)

∏
n≥1

(
1 − ζkqn

)χ(kn) defines a modular
function which is holomorphic on H with some character of finite order. In
fact, the function ηχ(τ ) is a modular function with respect to Γ0(f) and satisfies

ηχ|Wf2 = ηχ for the Fricke involution Wf2 =
(

0 −1
f2 0

)
. (This can be verified by

the argument of Weil. See [12, Theorem 4.4.1] or [9, Lemma 1.3.]) Moreover we
have ΦΘ(2f),χ

(τ ) = −4 log |ηχ(τ )|. We would call ηχ(τ ) as a twisted Dedekind
eta function. (T. Horie and N. Kanou [9] studies the arithmetic of another type
of twisted function.)

Example 6.2. In the second example, we take an odd prime number p
congruent to 1 modulo 4. We put L = (2p)⊕ II1,1(p) and denote generators of
(2p) and II1,1(p) by λ0 with λ0

2 = 2p and z, z′ with z2 = z′ 2 = 0, (z, z′) = p
respectively. Let χ be the real even primitive Dirichlet character modulo p.
We know that Γ0(p) has only two cusps ∞ and 0. Their widths are 1 and p
respectively.

Let F (τ ) =
∑

j (2p) ej

∑
n∈Q cj(n) qn be a modular form in M !

1
2
(ρ(2p)). We

calculate the Fourier coefficients of the twist Fχ(τ ) and rewrite the integrality
condition in Theorem 6.1 explicitly.

We find at the cusp ∞ that
∑

k (p) χ(k) ρ k
p z, ε(1) = χ(m) if ε ≡ m

p z mod
II1,1(p) and = 0 otherwise, and at the cusp 0 that

∑
k (p) χ(k) ρ k

p z, ε(S) =
χ((z,ε))√

p . We have to express cj(n)0 in terms of cj(n). We take α̃0 = S. By
the transformation law of the full modular form F (τ ), we have (Fχ|S)(τ ) =
−χ(2)

2
√

p

∑
j (2p) ej

∑
n∈Q

∑
i (2p)(1 + e( j−i

2 ))χ(j − i) ci(n) qn and therefore we ob-
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tain cj(n)0 = −χ(2)
2
√

p

∑
i (2p)(1 + e( j−i

2 ))χ(j − i) ci(n).
Consequently if cj(n) ∈ Z for any n < 0 and j modulo 2p, the integrality

condition for Fχ(τ ) is satisfied. We can always find such a modular form F (τ ),
for example the Siegel theta function Θ(2p)(τ ) times any modular function in
Z[j(τ )].

Now we assume that the space of holomorphic Jacobi forms J2,p of weight
2 and index p is zero. For example, by [8, Theorem 9.1] we readily verify
that when p = 5 this assumption is satisfied. Since J2,p is the obstruction
space to find singularities and constant terms of modular forms in M !

1
2
(ρ(2p))

by [3, Theorem 3.1] and [8, Theorem 5.1], there exists a unique modular form
Fd(τ ) = ej0q

−d +
∑

j (2p) ej

∑
n>0 cj(n) qn in M !

1
2
(ρ(2p)) for an integer j0 and a

positive integer d with −d ∈ Z + j2
0/4p.

For simplicity, let j0 = 0. As a result of the above discussion and The-
orem 6.1, we conclude that there exists a meromorphic function Ψd(τ ) on
H which is a modular function for Γ0(p) with some character with divisor
−1

2

∑
a,b,c (p) χ(a)χ(c)H(a

pλ0 + b
pz + c

pz′,−d). For a, b, c ∈ Z, the Heegner divi-
sor H(a

pλ0 + b
pz + c

pz′,−d) is a union of quadratic irrationals on H and given
by

H

(
a

p
λ0 +

b

p
z +

c

p
z′, −d

)
=

 τ ∈ H

∣∣∣∣∣∣∣∣∣
pc′τ2 − 2a′τ − b′

p
= 0,

a′ ≡a (p), b′ ≡ b (p), c′ ≡ c (p),

a′2 + b′c′ = −dp

 .
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