# A remark on pseudoconvex domains with analytic complements in compact Kähler manifolds

By

## Takeo Ohsawa

#### Abstract

For an effective divisor A with support B in a compact Kähler manifold M of dimension  $\geq 3$ , the following are antinomic.

- a)  $M \setminus B$  has a  $C^{\infty}$  plurisubharmonic exhaustion function whose Levi form has pointwise at least 3 positive eigenvalues outside a compact subset of  $M \setminus B$ .
  - b) [A]|B, the normal bundle of A, is topologically trivial.

## Introduction

The purpose of this note is to ensure the following nonexistence result.

**Theorem.** Let M be a compact Kähler manifold and let D be a domain in M. Suppose that  $B := M \setminus D$  is a complex analytic subset of pure codimension one such that there exists an effective divisor A with support B for which the line bundle  $[A] \mid B$  is topologically tirivial. Then D admits no  $C^{\infty}$  plurisubharmonic exhaustion function whose Levi form has at least 3 positive eigenvalues everywhere outside a compact subset of D. In particular D is not Stein.

A similar result was obtained in [O-2], where  $M \backslash D$  is assumed to be a real hypersurface of class  $C^{\omega}$ .

As a crucial step for the proof of Theorem, we shall show: If we suppose the existence of an exhaustion function on D as above, then the sheaf of germs of holomorphic 1-forms on M would admit a subsheaf  $\mathcal L$  such that the analytic restriction of  $\mathcal L$  to B is invertible and canonically isomorphic to  $[-A] \mid B$  as a line bundle. Such a subsheaf induces a foliation on M admitting analytic singularities. Based on this, the rest of the argument towards a contradiction proceeds similarly as in [O-2].

 $2000\ Mathematics\ Subject\ Classification(s).$  Primary 32E40, 32V40, Secondary 53C40 Received September 19, 2006 Revised February 23, 2007

**Acknowledgements.** The construction of  $\mathcal{L}$  was suggested by the referee of [O-3], to whom the author would like to express his indebtedness.

### 1. Construction of $\mathcal{L}$

Let (M, D, A, B) be as in the introduction. Suppose that there exists a  $C^{\infty}$  plurisubharmonic exhaustion function  $\varphi$  on D whose Levi form has at least 3 positive eigenvalues outside a compact subset of D.

Let  $\mathcal{O} (= \mathcal{O}_M)$  be the structure sheaf of M, let  $\Omega^p (= \Omega_M^p)$  be the sheaf of holomorphic p-forms, and let  $\Omega^p(\log A)$  be the sheaf generated over  $\mathcal{O}$  by  $\Omega^p$  and df/f for the local defining functions of f of A.

We shall identify the natural homomorphism

$$\begin{array}{cccc} \delta: \mathcal{O}(-A)/\mathcal{O}(-A-B) & \longrightarrow & \Omega^1/\mathscr{I}_B\Omega^1 \\ & & & & & \psi \\ & [f] & \longmapsto & [df] \end{array}$$

with an element of  $H^0(B, \mathcal{O}(A) \bigotimes (\Omega^1/\mathscr{I}_B\Omega^1))$ , where we denote by  $\mathscr{I}_B$  the ideal sheaf of B and put  $\mathcal{O}(\pm A) = \mathcal{O}([\pm A])$ .

Then  $\delta$  is contained in the subspace

$$H^0(B, \Omega^1(\log A)/\mathscr{I}_B\Omega^1(\log A)) = H^0(B, \Omega^1(\log A)/\Omega^1)$$

because  $\delta$  induces the correspondence  $[1] \mapsto [df/f]$ . Moreover, if we denote by  $\Omega^1_c$  and  $\Omega^1_c(\log A)$  respectively the subsheaves of  $\Omega^1$  and  $\Omega^1(\log A)$  consisting of d-closed germs,  $\delta$  is clearly contained in the subspace  $H^0(B, \Omega^1_c(\log A)/\Omega^1_c) \subset H^0(B, \mathbb{C})$ .

We are going to show the surjectivity of the restriction map

$$H^0(B, \Omega^1_c(\log A)) \to H^0(B, \Omega^1_c(\log A)/\Omega^1_c)$$

by exploiting the existence of  $\varphi$  and the topological triviality of [A]|B.

First we note that there exist a neighbourhood  $U \supset B$  and a  $C^{\infty}$  map F from U onto the unit disc  $\mathbb{D}$  in  $\mathbb{C}$  such that  $F^{-1}(0) = B$  and dF is nowhere zero on  $U \setminus B$ , for  $[A] \mid B$  is topologically trivial.

Since  $F|(U\backslash B)$  is surjective, it induces an injective homomorphism  $F^*: H^1(\mathbb{D}\backslash\{0\},\mathbb{C}) \to H^1(U\backslash B,\mathbb{C})$ . Therefore, since  $H^1(U\backslash B,\mathbb{C}) \simeq \mathbb{C}$ , the residue homomorphism (or the Gysin map)  $H^1(U\backslash B,\mathbb{C}) \to H^0(B,\mathbb{C})$  is surjective.

On the other hand, since D has  $\varphi$  and a Kähler metric, B is connected and the restriction homomorphism

$$H^1(D,\mathbb{C}) \to H^1(U \backslash B,\mathbb{C})$$

is surjective (cf. [O-1], [D], [O-T]).

Hence the residue homomorphism

$$\rho_0: H^1(M, \iota_*\mathbb{C}) \to H^0(B, \mathbb{C}) \simeq \mathbb{C}$$

is surjective. Here  $\iota$  denotes the inclusion map  $M \backslash B \hookrightarrow M$  and  $\iota_* \mathbb{C}$  the direct image of the constant sheaf  $\mathbb{C}$ .

By the standard exact sequence

$$0 \to \iota_* \mathbb{C} \stackrel{j}{\hookrightarrow} \widetilde{\mathcal{O}} \stackrel{d}{\to} \Omega^1_c(\log A) \to 0$$

where  $\widetilde{\mathcal{O}}$  deotes the sheaf locally generated by  $\log f$  and  $\mathcal{O}$  over  $\mathbb{C}$ , we have an exact sequence

$$H^0(M, \Omega^1_c(\log A)) \to H^1(M, \iota_*\mathbb{C}) \to H^1(M, \widetilde{\mathcal{O}}).$$

It is easy to see that  $H^1(M, \widetilde{\mathcal{O}}) \simeq H^1(M, \mathcal{O})$ . Here the isomorphism is induced from the inclusion  $\mathcal{O} \hookrightarrow \widetilde{\mathcal{O}}$ .

Hence by the Hodge theory the image of  $H^1(M, \mathbb{C})$  in  $H^1(M, \iota_*\mathbb{C})$  is mapped onto  $H^1(M, \widetilde{\mathcal{O}})$  by  $j_*$ . This means, since  $c_1([A]|B) = 0$  by assumption, that the residue map  $\rho: H^0(M, \Omega^1_c(\log A)) \to H^0(B, \mathbb{C})$  is also surjective.

Therefore, the injective homomorphism

$$\delta: \mathcal{O}(-A)/\mathcal{O}(-A-B) \to \Omega^1/\mathscr{I}_B\Omega^1$$

can be lifted to a homomorphism say  $\tilde{\delta}$  from  $\mathcal{O}(-A)$  to  $\Omega^1$  of the form  $f \to f(df/f + \omega)$  for some  $df/f + \omega \in H^0(M, \Omega^1_c(\log A))$ .

Thus, by letting  $\mathcal{L} = \delta(\mathcal{O}(-A))$ , we obtain a desired subsheaf of  $\Omega^1$  with  $\mathcal{L}/\mathscr{I}_B\mathcal{L} \simeq \mathcal{O}(-A)/\mathcal{O}(-A-B)$  which defines a foliation of codimension one on M, possibly with singularities, which contains B as a leaf.

## 2. End of the proof

Since  $\mathcal{L}/\mathscr{I}_B\mathcal{L} \simeq \mathcal{O}(-A)/\mathscr{I}_B\mathcal{O}(-A)$ ,  $\mathcal{L}$  is invertible on a neighbourhood say V of B, so that one may canonically identify  $1 \in H^0(B,\mathbb{C})$  with a section of  $\Omega^1(\mathcal{L}^*)$  on V, say s.

By shrinking V if necessary, we may assme that  $\mathcal{L}^*$  is topologically trivial on V.

Then, by a vanishing theorem of Grauert and Riemenschneider [G-R], there exists a topologically trivial holomorphic line bundle  $\tilde{\mathcal{L}}^*$  over M which extends  $\mathcal{L}^*$ . (For a more detailed arugument, see [O-2]).

Since M is a compact Kähler manifold,  $\widetilde{\mathcal{L}}^*$  is unitarily flat. Hence, by the  $L^2$  Hodge theory s is extendable to a holomorphic section  $\tilde{s}$  of  $\Omega^1(\widetilde{\mathcal{L}}^*)$  over M (cf. [O-1], [D], [O-T]). By the Kähler condition again, we have  $d\tilde{s} = 0$ .

Let  $\{U_{\alpha}\}_{\alpha=1}^{m}$  be a set of finitely many coordinate neighbourhoods of M such that  $\bigcup_{\alpha=1}^{m} U_{\alpha} \supset B$  and that s is identified with a system of holomorphic 1-forms  $\{s_{\alpha}\}_{\alpha=1}^{m}$ ,  $s_{\alpha}$  being defined on  $U_{\alpha}$ , such that  $s_{\alpha} = e^{i\theta_{\alpha\beta}}s_{\beta}$  hold on  $U_{\alpha} \cap U_{\beta} (\neq \emptyset)$  for some  $\theta_{\alpha\beta} \in \mathbb{R}$ . Here  $U_{\alpha}$  are chosen in such a way that they are biholomorphically equivalent to  $\mathbb{D}^{n}$  and  $U_{\alpha} \cap B$  and  $U_{\alpha} \cap U_{\beta}$  are connected and contractible.

Let  $f_{\alpha}(1 \leq \alpha \leq m)$  be holomorphic functions on  $U_{\alpha}$  such that  $df_{\alpha} = s_{\alpha}$  and  $f_{\alpha} \mid U_{\alpha} \cap B = 0$ . Then we have adjacent relations

$$(\#) f_{\alpha} = e^{i\theta_{\alpha\beta}} f_{\beta}$$

on  $U_{\alpha} \cap U_{\beta}$ .

Then we put  $T_{\epsilon} = \bigcup_{\alpha=1}^{m} \{z \in U_{\alpha} \mid |f_{\alpha}(z)| = \epsilon\}$  for  $\epsilon > 0$ . By (#)  $T_{\epsilon}$  is a compact set for sufficiently small  $\epsilon$ . Fix such  $\epsilon$  and take a point  $z_{0} \in T_{\epsilon}$  where  $\varphi \mid T_{\epsilon}$  takes its maximum. Then, since  $f_{\alpha}^{-1}(f_{\alpha}(z_{0})) \subset T_{\epsilon}$  holds if  $U_{\alpha} \ni z_{0}$ , we have

$$i\partial \overline{\partial}(\varphi \mid f_{\alpha}^{-1}(f_{\alpha}(z_0)))\mid_{z=z_0} \leq 0,$$

but this contradicts with the assumption that the Levi form of  $\varphi$  has at least 3 positive eigenvalues near B.

**Remark 1.** Some non-Kähler manifolds contain D as in the theorem. For instance, let  $M = (\mathbb{C}^n \setminus \{0\})/\mathbb{Z}$   $(n \geq 2)$ , where two points  $z, w \in \mathbb{C}^n \setminus \{0\}$  are identified if and only if

$$\begin{pmatrix} z_1 \\ \cdot \\ \cdot \\ z_n \end{pmatrix} = \begin{pmatrix} e & 0 \\ \cdot \cdot \cdot \\ 0 & e & e \\ 0 & o & e \end{pmatrix}^m \begin{pmatrix} w_1 \\ \cdot \\ \cdot \\ w_n \end{pmatrix}$$

for some  $m \in \mathbb{Z}$ , let  $H = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_n = 0\}$ , and let  $D = \{[z] \in M \mid z \notin H\}$ . Then the boundary B of D obviously satisfies  $[B] \mid B = \mathbb{C} \times B$ , but D is Stein because it is biholomorphic to  $\mathbb{C}^{n-1} \times \mathbb{C}^*$  by the map

$$(z_1,\ldots,z_n)\mapsto (z_1/z_n,\ldots,z_{n-2}/z_n,e^{2\pi i z_{n-1}/z_n},z_ne^{-z_{n-1}/z_n})$$

so that D admits an exhaustion function as in the theorem if  $n \geq 3$ .

Remark 2. There exist Kähler surfaces which contain complex curves of self-intersection zero whose complements are Stein. For instance, the total space X of a holomorphic affine line bundle over a compact Riemann surface C is Stein if and only if it contains no analytic sections, and there exists such an affine line bundle which is at the same time topologially equivalent to  $C \times \mathbb{C}$  if the genus C is not zero. By adding to such X the section at infinity, we obtain a Kähler surface containing a Stein domain D = X whose complement is a complex curve of self-intersection zero. See [U] for an analytic theory related to this phenomenon.

**Question.** Under the assumption of Theorem, is it true that there exist neither 3-dimensional closed Stein subvarieties in  $M \setminus B$  nor proper holomorphic maps from  $M \setminus B$  onto Stein spaces of dimension  $\geq 3$ ?

**Acknowledgements.** The author thanks to the referee for the valuable criticisims. It must be mentioned that the example of Remark 2 is due to him/her.

NAGOYA UNIVERSITY GRADUATE SCHOOL OF MATHEMATICS 464-8602 NAGOYA, JAPAN e-mail: ohsawa@math.nagoya-u.ac.jp

### References

- [D] Demailly, J.-P., Cohomology of q-convex spaces in top degree, Math. Z. **204** (1990), 283–295.
- [G-R] Grauert, H. and Riemenschneider, O., Kählersche Mannigfaltigkeiten mit hyper-q-konvexem Rand, Problems in Analysis, Princeton Univ. 1970, pp. 61–79.
- [O-1] Ohsawa, T., A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds, Invent. Math. 63 (1981), 335–354, Addendem: Invent. Math. 66 (1982), 391–393.
- [O-2] \_\_\_\_\_, On the complement of Levi-flats in Kähler manifolds of dimension  $\geq 3$ , Nagoya Math. J. **185** (2007), 161–169.
- [O-3] \_\_\_\_\_, On the existence of foliations with unitary holonomy along complex curves, preprint.
- [O-T] Ohsawa, T. and Takegoshi, K., *Hodge spectral sequence on pseudoconvex domains*, Math. Z. **197** (1988), 1–12.
- [U] Ueda, T., On the neighbourhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ. 22 (1983), 583–607.



