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Geometric inequalities outside a convex set in a
Riemannian manifold
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Abstract

Let M be an n-dimensional complete simply connected Riemannian
manifold with nonpositive sectional curvature for n = 2, 3 and 4. We
prove the following Faber-Krahn type inequality for the first eigenvalue
λ1 of the mixed boundary problem. A domain Ω outside a closed convex
subset C in M satisfies

λ1(Ω) ≥ λ1(Ω
∗)

with equality if and only if Ω is isometric to the half ball Ω∗ in R
n, whose

volume is equal to that of Ω. We also prove the Sobolev type inequality
outside a closed convex set C in M .

1. Introduction

One of the most important inequalities in geometric analysis is the Faber-
Krahn inequality. In the 1920’s, for a bounded domain Ω ⊂ R

n, Faber and
Krahn proved independently the following inequality

(1.1) λ1(Ω) ≥ λ1(Ω∗),

where equality holds if and only if Ω is a ball (See [1]). Here λ1 denotes the
first Dirichlet eigenvalue and Ω∗ is a ball of the same n-dimensional volume as
Ω. For the first Neumann eigenvalue µ1, in 1954 Szegö[10] showed that for a
simply connected domain Ω ⊂ R

2

µ1(Ω) ≤ µ1(Ω∗),

where Ω∗ is as above and equality holds if and only if Ω is a disk. It should
be mentioned that µ1 is the first positive eigenvalue of the Neumann boundary
problem. Two years later Weinberger [11] generalized the inequality for Ω ⊂
R

n, n ≥ 2. On the other hand, for the first eigenvalue λ1 of the mixed boundary
problem, Nehari [8, Theorem III] proved (1.1) for a simply connected bounded
domain Ω ⊂ R

2 satisfying that a subarc α ⊂ ∂Ω is concave with respect to
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Ω. In this case Ω∗ is a half disk of the same area as Ω. Equality holds if and
only if Ω is a half disk. In Section 2, we prove the Faber-Krahn type inequality
(Theorem 2.1) extending Nehari’s result to a Riemannian manifold case.

In [9], the author has proved the Sobolev type inquality outside a closed
convex set in a nonpositively curved surface. In Section 3, we study Sobolev
type inequality outside a closed convex set in a 3 and 4-dimensional Riemannian
manifold with nonpositive sectional curvature.

The key ingredient in the proofs of our theorems is the following relative
isoperimetric inequality.

Theorem 1 ([2], [3], [5], [9]). Let M be an n-dimensional complete
simply connected Riemannian manifold with nonpositive sectional curvature for
n=2, 3 and 4, and let C ⊂M be a closed convex set with smooth boundary. Then
for a domain Ω ⊂M ∼ C we have

(1.2)
1
2
nnωnVol(Ω)n−1 ≤ Vol(∂Ω ∼ ∂C)n,

where equality holds if and only if Ω is a Euclidean half ball.

Recently Choe-Ghomi-Ritoré [4] have proved that this inequality holds for
a domain in R

n.

Theorem 2 ([4]). Let C ⊂ R
n be a closed convex set with smooth

boundary. Then for a domain Ω ⊂ R
n ∼ C, (1.2) is still true and equality

holds if and only if Ω is a Euclidean half ball.

2. Faber-Krahn type inequality

Let Ω be a bounded domain outside a closed convex subset C with smooth
boundary in an n-dimensional Riemannian manifold M . The Laplacian opera-
tor ∆ acting on functions is locally given by

∆ =
1√
g

∂

∂xi

(√
ggij ∂

∂xj

)
,

where (x1, . . . , xn) is a local coordinate system, (gij) is the inverse of the metric
tensor (gij), and g = det(gij). We consider the mixed eigenvalue problem as
follows :

∆u+ λu = 0 in Ω
u = 0 on ∂Ω ∼ ∂C

∂u

∂ν
= 0 on ∂Ω ∩ ∂C,

where ν is the outward unit normal to ∂Ω along ∂Ω ∩ ∂C and ∼ denotes the
set exclusion operator. Then, using the divergence theorem, we see that the
first eigenvalue λ1(Ω) of the mixed boundary problem satisfies

λ1(Ω) = inf
u∈H1

0 (Ω)

∫
Ω
|∇u|2∫
Ω
u2

,
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where H1
0 (Ω) is the Sobolev space such that u ∈ H1

0 (Ω) vanishes on ∂Ω ∼ ∂C.
We note that u ∈ H1

0 (Ω) need not vanish on ∂Ω ∩ ∂C.
First we show that the first eigenvalue of the mixed boundary problem for a

half ball in space form M
n(κ) is equal to that of Dirichlet boundary problem for

a ball in M
n(κ), where M

n(κ) denotes an n-dimensional complete Riemannian
manifold of constant sectional curvature κ.

Proposition 2.1. Let λ1(B+(r)) be the first mixed eigenvalue of a half
ball B+(r) with radius r in M

n(κ) and λ1(B(r)) the first eigenvalue of the
Dirichlet boundary problem of a ball B(r) with the same radius r in M

n(κ). If
κ > 0 assume r < 1/

√
κ. Then we have

λ1(B+(r)) = λ1(B(r))

Proof. First let φ be an eigenfunction ofB+(r) associated with λ1(B+(r)).
Then,

∆φ+ λ1(B+(r)) = 0 in B+(r)
φ = 0 on ∂B+(r) ∼ ∂H

∂φ

∂ν
= 0 on ∂H,

where ∂H denotes the boundary of the half space, which has flat geodesic
curvature. We can extend the eigenfunction φ to φ̃ defined on B(r) by reflecting
φ across ∂H.

Using λ1(B(r)) = inf
u∈H1

0 (B(r))

∫
B(r)

|∇u|2∫
B(r)

u2
, we have

(2.1) λ1(B(r)) ≤
∫

B(r)
|∇φ̃|2∫

B(r)
φ̃2

=

∫
B+(r)

|∇φ|2∫
B+(r)

φ2
= λ1(B+(r)),

where H1
0 (B(r)) is the Sobolev space on B(r). Conversely let ψ be an eigen-

function of the Dirichlet problem in a ball B associated with λ1(B(r)), that
is,

∆ψ + λ1(B(r)) = 0 in B(r)
ψ = 0 on ∂B(r).

Since ψ is a radial function,
∂ψ

∂ν
= 0 on ∂H. Hence ψ satisfies the boundary

condition for the mixed eigenvalue problem. We immediately get

(2.2) λ1(B+(r)) ≤
∫

B+(r)
|∇ψ|2∫

B+(r)
ψ2

=

∫
B(r)

|∇ψ|2∫
B(r)

ψ2
= λ1(B(r)).

Therefore we have λ1(B+(r)) = λ1(B(r)) by (2.1) and (2.2).

We need the following well-known lemma before we prove our theorems.
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Lemma 2.1. Let Ω be a domain in an n-dimensional Riemannian man-
ifold M and let f be any eigenfunction with the first eigenvalue λ1 for mixed
eigenvalue problem. Then f is strictly positive or strictly negative in Ω.

Proof. Note that

λ1(Ω) =

∫
Ω
|∇f |2∫
Ω
f2

=

∫
Ω
|∇|f ||2∫
Ω
f2

.

It follows that |f | also is an eigenfunction associated with λ1 and |f | ∈
C2(Ω)∩C0(Ω) by elliptic regularity theory[7]. We also have ∆|f | = −λ1|f | ≤ 0.
Using maximum principle we have |f | > 0 in Ω and hence f > 0 or f < 0 in
Ω.

We now prove the following Faber-Krahn type inequality for the mixed
eigenvalue problem using symmetrization and relative isoperimetric inequality.

Theorem 2.1. Let M be an n-dimensional complete simply connected
Riemannian manifold with nonpositive sectional curvature for n=2, 3 and 4,
and let C ⊂ M be a closed convex set with smooth boundary. Then for a
domain Ω ⊂M ∼ C, we have

(2.3) λ1(Ω) ≥ λ1(Ω∗),

where Ω∗ is a half ball in R
n, whose volume is equal to that of the domain Ω.

Equality holds if and only if the domain Ω is isometric to the half ball Ω∗ in
R

n.

Proof. Let f be the first eigenfunction of Ω, that is,

∆f + λ1(Ω)f = 0 in Ω
f = 0 on ∂Ω ∼ ∂C

∂f

∂ν
= 0 on ∂Ω ∩ ∂C.

We may assume that f is nonnegative by lemma 2.1. Consider the set Ωt =
{x ∈ Ω : f(x) > t} and Γt = {x ∈ Ω : f(x) = t}. Using a symmetrization
procedure, we construct the concentric geodesic half ball Ω∗

t in R
n such that

Vol(Ω∗
t ) = Vol(Ωt) for each t, and Ω∗

0 = Ω∗. We define a function F : Ω∗ → R+

such that F is a radially decreasing function and ∂Ω∗
t ∼ ∂H = {x ∈ Ω∗ :

F (x) = t}.
Then it suffices to prove

∫
Ω

f2dv =
∫

Ω∗
F 2dv,(2.4)

∫
Ω

|∇f |2dv ≥
∫

Ω∗
|∇F |2dv.(2.5)
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For (2.4), using the co-area formula [6],

∫
Ω

f2dv =
∫ ∞

0

∫
Γt

f2

|∇f |dAtdt =
∫ ∞

0

t2
( ∫

Γt

dAt

|∇f |
)
dt

= −
∫ ∞

0

t2
d

dt
Vol(Ωt)dt = −

∫ ∞

0

t2
d

dt
Vol(Ω∗

t )dt =
∫

Ω∗
F 2dv,

where dAt is the (n−1)-dimensional volume element on Γt. Here we have used
the identity

d

dt
Vol(Ωt) = −

∫
Γt

|∇f |−1dAt.

For (2.5), using Hölder inequality we have
∫

Γt

dAt =
∫

Γt

|∇f |1/2|∇f |−1/2dAt

≤
( ∫

Γt

|∇f |
)1/2( ∫

Γt

|∇f |−1
)1/2

=
( ∫

Γt

|∇f |
)1/2(

− d

dt
Vol(Ωt)

)1/2

.

From the relative isoperimetric inequality (1.2) as mentioned in the introduc-
tion, we see that

∫
Γt

|∇f |dAt ≥ Vol(Γt)2

− d
dtVol(Ωt)

(2.6)

≥ Vol(Γ∗
t )2∫

Γ∗
t
|∇F |−1dA∗

t

=
∫

Γ∗
t

|∇F |dA∗
t ,

where Γ∗
t = {x ∈ Ω∗ : F (x) = t}, and dA∗

t is the (n − 1)-dimensional vol-
ume element on Γ∗

t . Integrating in t, we get (2.5). To have equality, the second
inequality in (2.6) should become equality. Since equality in the relative isoperi-
metric inequality holds if and only if Ω is isometric to a half ball in R

n, we get
the conclusion.

Using [4], we can also prove the following.

Theorem 2.2. Let C ⊂ R
n be a closed convex set with smooth bound-

ary. Then for a domain Ω ⊂ R
n ∼ C, we have

(2.7) λ1(Ω) ≥ λ1(Ω∗),

where Ω∗ is a half ball in R
n, whose volume is equal to that of the domain Ω.

Equality holds if and only if the domain Ω is isometric to the half ball Ω∗ in
R

n.
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3. Sobolev type inequality

In this section we prove Sobolev type inequality outside a closed convex
set in a Riemannian manifold.

Theorem 3.1. Let M be an n-dimensional complete simply connected
Riemannian manifold with nonpositive sectional curvature for n=2, 3 and 4.
Let C ⊂M be a closed convex set. Then we have

1
2
nnwn

( ∫
M∼C

|f | n
n−1 dA

)n−1

≤
(∫

M∼C

|∇f |dA
)n

, f ∈W 1,1
0 (M ∼ C).

Equality holds if and only if up to a set of measure zero, f = cχD where c is a
constant and D is a half ball in R

n.

Proof. For simplicity, we assume f ≥ 0. By the co-area formula
∫

M

|∇f |dv =
∫ ∞

0

Area(f = σ)dσ.

We apply the relative isoperimetric inequality (1.2) to obtain
∫

M

|∇f |dv =
∫ ∞

0

Area(f = σ)dσ ≥ n
(ωn

2

) 1
n

∫ ∞

0

Vol(f > σ)
n−1

n dσ.

Since we have∫
M

|f | n
n−1 dv =

∫ ∞

0

Vol(f
n

n−1 > ρ)dρ =
n

n− 1

∫ ∞

0

Vol(f > σ)σ
1

n−1 dσ,

it suffices to show that∫ ∞

0

Vol(f > σ)
n−1

n dσ ≥
( n

n− 1

)n−1
n

( ∫ ∞

0

Vol(f > σ)σ
1

n−1 dσ
)n−1

n

.

Define

F (σ) := Vol(f > σ),

ϕ(t) :=
∫ t

0

F (σ)
n−1

n dσ,

ψ(t) :=
( ∫ t

0

F (σ)σ
1

n−1 dσ
)n−1

n

.

Then we can see that ϕ(0) = ψ(0) = 0. Since F (σ) is monotone decreasing, we
obtain

ϕ′(t) ≥
( n

n− 1

)n−1
n

ψ′(t).

It follows that

ϕ(∞) ≥
( n

n− 1

)n−1
n

ψ(∞).
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Moreover it is easy to see that quality holds if and only if f is cχD where c is
a constant and D is a half ball in R

n.

Applying the same arguments as in the proof of the above theorem and
the relative isoperimetric inequality (1.2), we also have the following theorem.

Theorem 3.2. Let C ⊂ R
n be a closed convex set with smooth bound-

ary. Then we have

1
2
nnwn

( ∫
Rn∼C

|f | n
n−1 dA

)n−1

≤
( ∫

Rn∼C

|∇f |dA
)n

, f ∈W 1,1
0 (Rn ∼ C).

Equality holds if and only if up to a set of measure zero, f = cχD where c is a
constant and D is a half ball in R

n.

Remark. In our Theorem 3.1 and 3.2, the function f may not vanish
on ∂C. It is sufficient that f is compactly supported in the relative topology
on S ∼ C for a closed convex set C ⊂ S.
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