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Geometric inequalities outside a convex set in a
Riemannian manifold
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Abstract

Let M be an n-dimensional complete simply connected Riemannian
manifold with nonpositive sectional curvature for n = 2,3 and 4. We
prove the following Faber-Krahn type inequality for the first eigenvalue
A1 of the mixed boundary problem. A domain §2 outside a closed convex
subset C in M satisfies

AL(Q) = A ()

with equality if and only if  is isometric to the half ball 2* in R™, whose
volume is equal to that of 2. We also prove the Sobolev type inequality
outside a closed convex set C' in M.

1. Introduction

One of the most important inequalities in geometric analysis is the Faber-
Krahn inequality. In the 1920’s, for a bounded domain 2 C R", Faber and
Krahn proved independently the following inequality

(1.1) A () > A (),

where equality holds if and only if  is a ball (See [1]). Here A1 denotes the
first Dirichlet eigenvalue and 2* is a ball of the same n-dimensional volume as
Q. For the first Neumann eigenvalue pq, in 1954 Szegd[10] showed that for a
simply connected domain Q C R?

11(2) < pa (927,

where (2* is as above and equality holds if and only if  is a disk. It should
be mentioned that p; is the first positive eigenvalue of the Neumann boundary
problem. Two years later Weinberger [11] generalized the inequality for  C
R™ n > 2. On the other hand, for the first eigenvalue \; of the mixed boundary
problem, Nehari [8, Theorem III] proved (1.1) for a simply connected bounded
domain  C R? satisfying that a subarc a C 99 is concave with respect to
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Q. In this case Q* is a half disk of the same area as ). Equality holds if and
only if €2 is a half disk. In Section 2, we prove the Faber-Krahn type inequality
(Theorem 2.1) extending Nehari’s result to a Riemannian manifold case.

In [9], the author has proved the Sobolev type inquality outside a closed
convex set in a nonpositively curved surface. In Section 3, we study Sobolev
type inequality outside a closed convex set in a 3 and 4-dimensional Riemannian
manifold with nonpositive sectional curvature.

The key ingredient in the proofs of our theorems is the following relative
isoperimetric inequality.

Theorem 1 ([2], [3], [5], [9]). Let M be an n-dimensional complete
simply connected Riemannian manifold with nonpositive sectional curvature for
n=2,3 and 4, and let C C M be a closed convex set with smooth boundary. Then
for a domain Q@ C M ~ C we have

1
(1.2) 5" wa Vol(Q)" " < Vol(90 ~ 9C)",

where equality holds if and only if Q is a Euclidean half ball.

Recently Choe-Ghomi-Ritoré [4] have proved that this inequality holds for
a domain in R™.

Theorem 2 ([4]). Let C C R™ be a closed conver set with smooth
boundary. Then for a domain Q@ C R™ ~ C, (1.2) is still true and equality
holds if and only if Q is a Euclidean half ball.

2. Faber-Krahn type inequality

Let 2 be a bounded domain outside a closed convex subset C' with smooth
boundary in an n-dimensional Riemannian manifold M. The Laplacian opera-
tor A acting on functions is locally given by

1 0 i 0
A=—_— " —
V9 Oz’ (ﬁg 2 > ’
where (21, ...,2") is a local coordinate system, (¢g%/) is the inverse of the metric

tensor (g;;), and g = det(g;;). We consider the mixed eigenvalue problem as
follows :

Au+du=0 in Q

u=0 on 0~ 0C

8_u =0 on 0NNAC,
ov

where v is the outward unit normal to 99 along 92 N dC and ~ denotes the
set exclusion operator. Then, using the divergence theorem, we see that the
first eigenvalue A;(€2) of the mixed boundary problem satisfies
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where H{(€) is the Sobolev space such that u € Hg () vanishes on 9Q ~ 9C.
We note that u € H}(Q2) need not vanish on 92N dC.

First we show that the first eigenvalue of the mixed boundary problem for a
half ball in space form M" (k) is equal to that of Dirichlet boundary problem for
a ball in M"(k), where M"(x) denotes an n-dimensional complete Riemannian
manifold of constant sectional curvature .

Proposition 2.1.  Let A\ (B4 (r)) be the first mized eigenvalue of a half
ball By (r) with radius r in M™(k) and M\ (B(r)) the first eigenvalue of the
Dirichlet boundary problem of a ball B(r) with the same radius v in M"™ (k). If
k>0 assume r < 1/y/k. Then we have

AL(By(r)) = M (B(r))

Proof.  First let ¢ be an eigenfunction of B (r) associated with A1 (B, (r)).
Then,

Aé+M(B:(r) =0 in By(r)
¢=0 on 0Bi(r)~0H
9¢

520 on OH,

where OH denotes the boundary of the half space, which has flat geodesic
curvature. We can extend the eigenfunction ¢ to ¢ defined on B(r) by reflecting

¢ across OH.
[ Vul?
Using A1(B(r)) =  inf IB()ig
uweHL(B(r)) fB(T) u

Joy VP [g 0 IVoI>
(2.1) A (B(r)) < Jpy & T o ® A (B (7)),

where H}(B(r)) is the Sobolev space on B(r). Conversely let ¢ be an eigen-
function of the Dirichlet problem in a ball B associated with A;(B(r)), that
is,

, we have

A+ A (B(r)) =0 in B(r)
=0 on OB(r).

0
Since 1) is a radial function, % = 0 on JH. Hence 1 satisfies the boundary
condition for the mixed eigenvalue problem. We immediately get

fB+(r) V|2 _ fB(T) [Vy|? _

(2.2) A (B4 (r)) < = A(B(r)).

T e ?? B S ¥?
Therefore we have A1 (B4(r)) = A1(B(r)) by (2.1) and (2.2). O

We need the following well-known lemma before we prove our theorems.
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Lemma 2.1.  Let Q be a domain in an n-dimensional Riemannian man-
ifold M and let f be any eigenfunction with the first eigenvalue A1 for mized
eigenvalue problem. Then f is strictly positive or strictly negative in €.

Proof. Note that

VIR ISP
MO T e

It follows that |f| also is an eigenfunction associated with A; and |f| €
C?(Q)NC°(Q) by elliptic regularity theory[7]. We also have A|f| = —\1|f] < 0.
Using maximum principle we have |f| > 0 in © and hence f > 0 or f < 0 in
Q. O

We now prove the following Faber-Krahn type inequality for the mixed
eigenvalue problem using symmetrization and relative isoperimetric inequality.

Theorem 2.1.  Let M be an n-dimensional complete simply connected
Riemannian manifold with nonpositive sectional curvature for n=2,3 and 4,
and let C C M be a closed conver set with smooth boundary. Then for a
domain Q0 C M ~ C, we have

(2.3) M (Q) = M (),

where Q* is a half ball in R™, whose volume is equal to that of the domain 2.
Equality holds if and only if the domain Q is isometric to the half ball Q* in
R™,

Proof. Let f be the first eigenfunction of €2, that is,

Af+0(Q)f=0 in Q
f=0 on 890~ dC

ﬁ:0 on 92 NOC.
ov

We may assume that f is nonnegative by lemma 2.1. Consider the set ; =
{r eQ: flx) >t} and T, = {z € Q: f(z) = t}. Using a symmetrization
procedure, we construct the concentric geodesic half ball ©f in R™ such that
Vol(€2) = Vol(§) for each ¢, and Qf = Q*. We define a function F : Q* — R
such that F' is a radially decreasing function and 02} ~ O0H = {x € Q* :
F(x) =t}.

Then it suffices to prove

(2.4) /Qf% = /Q F2dv,

(2.5) /|Vf\2dv2/ |VF|?dv.
Q Q*



Geometric inequalities outside a convex set in a Riemannian manifold 661

For (2.4), using the co-area formula [6],

/Qdev—/ooo/Ft |éjc|azAtczt—/Omzs?(/rt |dv/;t|>dt

:—/ tQEVol(Qt)dtz —/ tQEVol(QI)dt: F2dv,
o dt o dt o

where dA; is the (n — 1)-dimensional volume element on I';. Here we have used
the identity

d

—Vol () :—/ IVfI~tdA;.
dt r,

For (2.5), using Holder inequality we have
[ aai= [ v aa,
r r

< (L) ([ o))"

([ 10)" (- e

From the relative isoperimetric inequality (1.2) as mentioned in the introduc-
tion, we see that

Vol(T;)?
(2.6) 1V fldA, > )™
T, —EVOI(Qt)

Vol(T'})?
_— = F|dA;
fr; |VF|~1dA; T IVEldA;,

where I'y = {z € Q* : F(z) = t}, and dA} is the (n — 1)-dimensional vol-
ume element on I';. Integrating in ¢, we get (2.5). To have equality, the second
inequality in (2.6) should become equality. Since equality in the relative isoperi-
metric inequality holds if and only if € is isometric to a half ball in R"™, we get
the conclusion. |

Using [4], we can also prove the following.

Theorem 2.2. Let C C R™ be a closed convex set with smooth bound-
ary. Then for a domain @ C R™ ~ C, we have

(2.7) AL(Q) > A (927),

where Q* is a half ball in R™, whose volume is equal to that of the domain 2.
Equality holds if and only if the domain Q is isometric to the half ball Q* in
R™.
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3. Sobolev type inequality

In this section we prove Sobolev type inequality outside a closed convex
set in a Riemannian manifold.

Theorem 3.1.  Let M be an n-dimensional complete simply connected
Riemannian manifold with nonpositive sectional curvature for n=2,3 and 4.
Let C C M be a closed conver set. Then we have

%n"wn(/MNc |f|n’+1cz,4)n_1 < (/MNC |Vf\dA)",f e Wl (M ~C).

Equality holds if and only if up to a set of measure zero, f = cxp where ¢ is a
constant and D is a half ball in R™.

Proof. For simplicity, we assume f > 0. By the co-area formula

/M IV fldv = /Ooo Area(f = o)do.

We apply the relative isoperimetric inequality (1.2) to obtain

1
Wn\ n

[ e = [ areats = oo = ()" [Tvol(s > 0

0

Since we have

s

it suffices to show that

n_ [ 1
T Vol(f > o)om1do,
—LJo

n

n > _n_
p— d’U — / Vol(f'rLQl > p)dp =
0

n—1 n—1

/Ooo\fol(f>a)nnldcrz (n’zl)T(/Ooovo1(f>a)mllda) "

Define

F(o) :=Vol(f > o),
o= [ Flo)*Tae,
P(t) := </0t F(U)Uﬁdcr) ”;1.

Then we can see that ¢(0) = (0) = 0. Since F(c) is monotone decreasing, we
obtain

It follows that
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Moreover it is easy to see that quality holds if and only if f is cxp where ¢ is
a constant and D is a half ball in R™. |

Applying the same arguments as in the proof of the above theorem and
the relative isoperimetric inequality (1.2), we also have the following theorem.

Theorem 3.2. Let C C R™ be a closed convex set with smooth bound-
ary. Then we have

%nnwn(/R"NC \f|#d,4)"_1 < (/RMC |Vf|dA)n, fe W (R ~0).

Equality holds if and only if up to a set of measure zero, f = cxp where ¢ is a
constant and D is a half ball in R™.

Remark. In our Theorem 3.1 and 3.2, the function f may not vanish
on JC. It is sufficient that f is compactly supported in the relative topology
on S ~ C for a closed convex set C' C S.

SCHOOL OF MATHEMATICS

KOREA INSTITUTE FOR ADVANCED STUDY
207-43 CHEONGNYANGNI 2-DONG
DONGDAEMUN-GU, SEOUL 130-722
KOREA

e-mail: kseo@Qkias.re.kr

References

[1] I. Chavel, Figenvalues in Riemannian Geometry, Academic Press, New
York, 1984.

[2] J. Choe, Relative isoperimetric inequality for domains outside a convex
set, Archives Inequalities Appl. 1 (2003), 241-250.

, The double cover relative to a convex set and the relative isoperi-
metric inequality, J. Austral. Math. Soc. 80 (2006), 375-382.

[4] J. Choe, M. Ghomi and M. Ritore, The relative isoperimetric inequality
outside convex domains in R™, Calc. Var. Partial Differential Equations
29 (2007), 421-429.

[5] J. Choe and M. Ritore, The relative isoperimetric inequality in Cartan-
Hadamard 3-manifolds, J. Reine Angew. Math. 605 (2007), 179-191.

=

H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.

=

D. Gilbarg and N. Trudinger, Elliptic partial differential equations of sec-
ond order, Second edition, Springer-Verlag, Berlin, 1983.

[8] Z. Nehari, On the principal frequency of a membrane, Pacific J. Math. 8
(1958), 285-293.



664 Keomkyo Seo

[9] K. Seo, Relative isoperimetric inequality on a curved surface, J. Math.
Kyoto Univ. 46 (2006), 525-533.

[10] G. Szego, Inequalities for certain eigenvalues of a membrane of given area,
J. Rational Mech. Anal. 3 (1954), 343-356.

[11] H. Weinberger, An isoperimetric inequality for the N-dimensional free
membrane problem, J. Rational Mech. Anal. 5 (1956), 633-636.



