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Exact controllability of a Timoshenko beam
with dynamical boundary”*

By

Chun-Guo ZHANG and Hong-Xiang Hu

Abstract
We consider the exact controllability of a Timoshenko beam system,
clamped at one end and attached at the other end to a rigid antenna.
Such a system is governed by two partial differential equations and two
ordinary differential equations. Using the HUM method, we show that
the system is exactly controllable in the usual energy space.

1. Introduction

In recent years, the boundary feedback stabilization of a Timoshenko beam
or the exact boundary controllability of a hybrid system of elasticity has been
studied extensively (see [1]-[7]), but little attention has been paid to the exact
controllability for a Timoshenko beam with dynamical boundary. In this work
we consider a Timoshenko beam system clamped at one end and attached at
the other end to a rigid antenna, whereon are applied the dynamical controls
u1,us. More precisely, we consider the following control problem:

Wi (2, 1) — kqwee (2,8) + k1o (2, t) =0, 0<z <L, t>0,

o (x,t) — kapre(x,t) — Fyws (2, t) + kro(x, t) = 0,
0<x<L t>&

(1. th (L t) +wz(L t) o(L,t) =ui(t), t>0,

Jsott L7 ) SOI(L t) - u2(t) t> 07

( O) ( ) wt(m70) = wl(x),go(x,O) = 900(*77)»

or(z,0) =p1(z), O0<z<lL,

here a uniform beam of length L moves in w — x plane, w(z,t) is the dis-
placement of the center line of the beam, ¢(x,t) is the rotation angle of the
cross-section area at the location = € [0,L], k; > 0 (j = 1,2) are two wave
speeds, M is a mass, and J is rotatory inertia. For more details concerning
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the descriptions of the physical structure of the system, we refer to Kim and
Renardy [1] or Morgul [2].

For the usual initial data (wo, @o, w1, 1) € H(0, L) x H(0, L) x L?(0, L) x
L?(0,L), the regularity of weak solution is insufficient to define the traces
wet (L, t) and @4 (L, t). In that case following an idea of Slemrod [8], the bound-
ary conditions involving the dynamical terms wy (L,t) and @y (L,t) can be
treated as two ordinary differential equations (with respect to the time variable
t). More specifically, denoting by y(x,t) = (w(x,t), p(z,t), w(L,t), p(L,t)) the
state of the system (1.1) and by u = (0,0, u1, uz2) the control, we transform the
system (1.1) into an abstract system

(1.2) yie + Ay =u, y(0) =vo, v(0) =y,

where A is a self-adjoint and positive definite operator in the product space
L?(0,L) x L?(0,L) x R x R. We obtain a weak formulation of the original
system (1.1).

In this paper, we will adapt the Hilbert uniqueness method to the exact
controllability of the abstract problem (1.2). The main difficulty in this ap-
proach consists in establishing an inverse energy inequality, the direct energy
inequality is easy to establish for this kind of problem. Inspired from the uni-
form stability results, we look for the estimates of the traces of higher order of
the solution of the associated homogeneous problem. This allows us to estab-
lish the exact controllability of the abstract system (1.2) for usual initial data
by means of two controllers uy,us.

The plan of this paper is as follows. In Section 2, we consider the asso-
ciated homogeneous problem. The direct and inverse energy inequalities are
established with the usual norm. In Section 3, we show that the system is
exactly controllable in the usual energy space.

2. Homogeneous system

In this section we consider the homogeneous problem:

(2.1) Vit — Vg + ¢ =0, O0<z<L, t>0,
(2.2) Gt — bpe — Ve +0=0, 0<z<L, t>0,
(2.3) 0(0,8) = 6(0,6) =0, >0,

(2.4) (L) + 0a (Lo t) — S(L,t) = 0, £ 0,
(25) Gue(L,t) + ¢o(L,t) =0, ¢>0.

Since the physical constants k1, ks, M, J are strictly positive, without loss of
generality, we will take k; = ko = M = J = 1 throughout this paper. We first
write formally the system (2.1)—(2.5) into

(U(:Ev t)a d)(z? t)v U(Lv t)v ¢(L7 t))tt
(2.6) + (—vza (2, 1) + Ou (2, 1), —Pua(2,1) — va(2,1)
+ ¢(x,t),v:(L,t) — ¢(L, t), ¢ (L, 1)) = 0.
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According to this formulation, we introduce the product space
(2.7) H=170,L) x L?*(0,L) x R x R,

endowed with the usual norm

L
28) ol = [ (7ot € b, Vo= (0,6.60) € H
0
We next define the linear operator A as follows

®=(v,9,&,m): v, € H*0,L),
D<A)‘( 0(0) = 6(0) = 0: € = o(L),n = (L) )
(210) Ad = (_Urm + ¢za _¢mm — Uz + (ba UI(L) - ¢(L)7 ¢I(L>)7
Yo = (v,6,€,1m) € D(A).

(2.9)

Then setting

(211) &) =v(Lot), 0(t) = B(L,1), Dla,t) = (v(,1), bz, 1), £(), n(t)).
We write the equation (2.6) into evolutionary equation

(2.12) Dy +AD =0, B(0) =Dy, &,(0)= ;.

Proposition 2.1.  The operator A defined in (2.9)—(2.10) is self-adjoint
and definite positive. Moreover A" is compact in H.

Proof. We first prove that A is a symmetric operator in H. A straight-
forward computation gives that

L
(A2, D) = [ (025, + 0261+ 09) ~ (023 + 6T, )do = (2, AB)a,
0
for all ® = (v, 9,&, 1), P = (v, 0, &, 1) € D(A). In particular, using Poincaré’s
inequality we get
L

L
(AD, )5 = / (0 + 62 + ¢%) — 2v.0lda = / (va — 6) + 62)dz > C||@ |

Now let :Ii: (v, 5,8,?7) € D(A*), then there exists ®q = (vo, ¢o,&0,Mm0) €
H such that (@, A®) = (P, P) for all ® € D(A). This means that

L ~ ~
/O B(—v0n + 62) + B(—buo — s + 8)]dx + E(va(L) — S(L)) + (L)

L
- /0 (vov + god)dx + Eu(L) + nogp(L)
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for all v,¢ € H?(0, L) satisfying v(0) = ¢(0) = 0. Then indeed a straightfor-
ward computation shows that

v, € H*0,L), (0)=¢(0)=0, £=70(L), 7=q(L).

It follows that ® € D(A), therefore we obtain A* = A.
Finally let ® = (v, ¢,v(L),#(L)) € D(A) solve the equation AD = &, for
Dy = (vo, Po,&0,M0) € H. Then we have

Vg — ¢z = —Vo, 0< <L,

Pux + Ve —P=—¢g, 0<zx <L,
(2.13) o(0) = 6(0) =0,

vz (L) — o(L) =&,  ¢x(L) =1n0.

The uniqueness theorem of ODEs shows that there exists a unique solution
(v,¢) € H*(0,L) x H?(0, L) such that |(v, )| m2(0,0)x#2(0,0) < C||®ol|z. We
obtain thus the compactness of A~1. The proof is complete. 1

Since A is self-adjoint and definite positive, and A~!' is compact,

using the spectral decomposition theorem, we can define the powers Az €
1

L(D(Az),D(A"2)), we have

b (®=(btm)eH: (0,6)€H'(0,L)x H'(0,L),
(2.14) D(A”:(v(mzqs(mzo; € =v(L),n = o(L) )

L
(2.15) 2] = /O [(ve — ¢)* + ¢3ldz, V@ = (v,¢,6,m) €V,

where V = D(Az).
The following result is classic (see [9]).

Proposition 2.2.  Assume that (®g, 1) € V x H, then the equation
(2.12) admits a unique solution ®(t) such that

(2.16) ®(t) € C([0,+00); V) N CH([0, +00); H).
Moreover, for t > 0, we have
(2.17) 12T + 1217 = 1ol + (@117
Theorem 2.1.  Let ®(z,t) = (v(x,t),d(x,t),v(L,t),p(L,t)) be the so-

lution of the equation (2.12). Then for any T > 0, there exist constants C; > 0
and Cy > 0 depending only on T, such that the following estimates hold

T
(2.18) c, / (W2(Lot) + §2(L,1))dt < |[Bo]2 + @113,
0

T
(2.19) 1Doll2 + 14]13, < Cs / (W3(L,1) + §2(L, 1)) dt.
0
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Proof. Since D(A*®) x D(A®°) is dense in V' x H, we can assume that
(v, @) is sufficiently smooth. Then we have

L
(2200 [|@,(0)]% = / (02 (2, t) + 62(, 1)) + 12 (L) + 62(L 1),

Therefore using (2.17) and (2.20), it is easy to verify that the direct inequality
(2.18).

Now, we use the multipliers zv, and z¢, to the equations (2.1) and (2.2).
Integrating by parts, we obtain that

(2.21)
L T oL T
0= / [xvpv,]d da — / / TV pdadt — / L(vg(L,t) — ¢(L,t))vs (L, t)dt

/ / P)vgdxdt + / / @)y dxdt,

and
L T L
0= / [mtm%dx— / / "
(2.22)
Inserting
L 1 T L
/ / TV U pdadt = —/ Ut2 —/ / 11 (z, t)dxdt,
2 2Jo Jo
L 1 T L
/ / T Pgdrdt = —/ X —/ / 2 (x, t)dxdt,
2 2Jo Jo
and

T /L L T 1 T L
0 0 2 0 2 0 0

into (2.21) and (2.22), therefore we have

L L [T 1 /T [k
0= / [zvv,)E da — 5/ vZ(L,t)dt + —/ / v? (v, t)dadt
0 0

(2.23) _/TL(%(L £) = &(L, £))on (L, 1) dt+/ / V2 dudt

/ / ¢)pdxdt + / / P)rvypdadt,
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and

(2.24)

L L T 1 T L
0:/ x¢t¢era;——/ o3 ( L,tdt+—/ / ¢2(z, t)dxdt
——/ ®2(L,t)dt + = //¢2xtdxdt // @) r o drdt.

Taking the sum of (2.23) and (2.24), we obtain

(2.25)
T

L
0= / (2040, + Thy ) d dr — g (VZ(L,t) + ¢2(L,t))dt
0 0

1 Tl - T . - .
5| [ e edat— [ Lz - oL ) (L)t

/ / dmdt—&—/OT/oL(vw— ¢dxdt—§/OT¢i(Lat)dt
[ s [ [ = o - oy

Because of

/oT /OL(U"” = 9)z((ve — ¢)a)dwdt
= é/o (va(L,t) — ¢(L, t))2dt — / / o,

therefore we have

(2.26)

T L T L
/ / ((vg —¢)2+¢i)dxdt+/ (/ (v? +¢$)d$+U?(L,t)+¢tZ(L7t)> dt
o Jo 0 0

L

= TU2 2 — 2005 + T, T da

(@4 1) [ A0 + L)~ 2 [ oo+ 06rn]Fd
T

+L/ ¢2Lt)dt+L/ (o (L, ) — &(L, 1))va (L, £)dt

+L/0 (vo (L, t) — (L, 1)) d(L, t)dt — / / o) pdxdt.
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Then
(2.27)

T(H(I)(t)”%/'i_”q)t(t”l%{):/O (@@IF + (1@ ()[17)dt
T 2 2 L T
= (L+1)/O (v; (L,t)+¢t(L,t))dt—2/0 [Tvve + 2P1 2] dx

T

+L/ (va(L,t) — &(L, t))va (L, t)dt+L/ (va(L,t) — &(L,£))d(L, t)dt

+L/ G2 (L, t)dt — // })pdadt.

Now applying Cauchy-Schwartz inequality, we obtain that

L
2/0 (zvpv, + 2P, )dx

(2.28)

< (1o + 19(1)ellF) + Cell (v, DT (0,711 0,0 x 112 0,1))
(2.29)

<e(|o@)F + @®)ell7) + Cell (v, ¢)HZLw(o,T;Hs(o,L)st(o,L))a

(2.30) ‘ / oot

<e(||e(t )||v + ||®(t)t||%{) + Cel|(v, ¢)||2Loo(o,T;Hs(o,L)st(o,L))

for any € > 0, provided % <s<1.
Finally inserting (2.28)—(2.30) into (2.27) gives that

1) + e ()13

T

(2.31)

provided 0 < 3¢ < T and % <s <1
We will use a compactness- uniqueness argument of Zuazua [10] to prove
that the term of lower order ”(U’¢)||2L°°(07T;HS(0,L)><HS(0,L)) can be absorbed.

If (2.19) is false, then there exists a sequence {(®f,®T)} C D(A>) x D(A™)
such that

(2.32) 1" ()12 + | 82(6)% =1, vie R,
T

(2.33) / (o (L, O + 167 (L, )Pt — 0, n— oo,
0

where ®"(z,t) = (v"(x,t), 9" (z,t),v"(L,t), ¢"(L,t)) is the solution of the fol-
lowing equation

(2.34) B+ AD" =0, O"(0) =Y, DT(0) = PV
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On the other hand, from (2.32) it follows that

(2.35) (0", 6™ M2 (0,711 (0,0) % F11.0,1))

+ [I(vy's ¢?)H%oo(o,T;L2(0,L)xL?(o,L)) <L

By the compact embedding (see Simon [11]), there exists a sequence {(v", ¢™)},
still indexed by n for convenience such that

(2.36) (0" (), 9" (8)) — (v(t), &(t))

strongly in L>(0,T; H*(0,L) x H*(0, L)) for £ < s < 1. Then using (2.33) and
(2.36) in (2.31), we see that {(®"(t), 7 (¢))} is a Cauchy sequence in the space
L*°(0,T;V x H). This implies that

(@7(2), @7 (1)) — (R(1), (1))
strongly in L*°(0,T;V x H).
Let n — oo in (2.32)—(2.33), we obtain ®(z,t) = (v(z,t), ¢(z,t),v(L, 1),
¢(L,t)) solves the equation

(2.37) Oy (t) + AD(t) =0, @(0) =Py, D4(0) = Py,
and satisfies the following conditions

(2.38) ve(L,t) =0, ¢(L,t) =0,
(2.39) IR + 12 ()IIF =1, VteRT.

From (2.37)—(2.38), a straightforward computation gives

);

Vi (2, 1) — Vg (2, 8) + P (2, 8) =0, O<ax <L, t>0,

d)tt( ) (bazz(mvt) *’Uz(l',t)+¢(l',t) :O,
0<x<L,t>0

v(0,t) = ¢(0,t) =0, ¢

Utt(Lvt):UJE( ) ) d)( ):07 t>07

¢tt(L7t):¢x( 5 ):O t>0

Setting v = vy, 5 = ¢y in (2.40), we find that (o, 5) solves, in the sense of
distributions, the following equation:

(2.40)

U@, t) — o (2,0) + Gu(2,0) =0, 0<z <L, t>0,
(z,t) — ¢m( t) — U (z,t) + ¢p(x,t) =0, 0<z<L, t>0,
5(0.) = 9(0,6) =0, t>0,

ToLot) — (Lt) = Bullot) =0, ¢ 0.

=R

Applying Holmgren's theorem (see Lions [12]), we deduce & = vy = 0,¢ =
¢4 = 0. This implies in turn that

Vg (2, 1) — @u(x,8) =0, O<ax <L, t>0,

Gz (T, ) + vz (2, t) — d(x,t) =0, O0<xz<L, t>0,
0(0,8) = ¢(0,8) =0, t>0,

va(Lit) — S(Lit) = 6u(L,t) =0, > 0.
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The uniqueness theorem of ODEs shows that there exists a unique solution
(v,¢) = (0,0), this contradicts (2.39). The proof is complete. O

3. Exact controllability for usual initial data

In this section, we consider the exact controllability of the Timoshenko
beam system (1.1) with usual initial data. We first give the following estimates.

Theorem 3.1.  Let ®(z,t) = (v(x,t), d(x,t),v(L,t),p(L,t)) be the so-
lution of the homogeneous equation (2.12). Then for any T > 0, there exist
two constants C1 > 0 and Cy > 0 depending only on T such that the following
estimates hold

2
Vs

T
(3.1) Cy / (WA (Lot) + (L, )t < || @03 + |®1]

(32) [@oll7 + ||®1]

T
2, < 02/ (V*(L,t) + ¢*(L,t))dt,
0

where V* is a dual space of V' with respect to the pivot space H.

Proof. Because of the density, we consider only (®g,®;) € D(A®) x
D(A®). Defining

(3.3) dg=—-A"1®,, P =,
we have
(3.4) 1ol + 191117 = [@ollZ + (|13

Now let ®(z,t) = (ﬂ(x,t),qz(x,t),ﬂ(L,t),(g(L,t)) be the solution of the
equation

(3.5) Dy(t) + AD(t) =0, B(0) =Dy, P,(0) = Dy.

Then applying the inequalities (2.18)—(2.19) to the solution ® of the equation
(3.5), it follows that

T
(3.6) c / BR(L,1) + B2(L, 0))dt < |[Bo]% + [8:1]1%,
T
(3.7) 1303 + 1311% < Cs / (F(L.t) + (L)),
0

On the other hand, since ‘I%(O) = 51 = @, 5“(0) = —A%(O) = ®q, it
follows that ®; = ®. Then replacing v; and ¢; by v and ¢ in (3.6)—(3.7) and
using (3.4) gives the estimates (3.1)—(3.2). Thus the proof is complete. O
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Now we consider the following controlled problem

Wy — Wee + 9, =0, 0<z<L, t>0,

Ot — Paz —We +=0, 0<xz<L, t>0,
w(0,t) = ¢(0,t) =0, t>0,

(3.8) wy (L, t) + we (L, t) — (L, t) = uy (t), t >0,
(Ptt(Lvt) + @E(Lvt) = u2(t)7 t>0,

w(, 0) = wo(w), wy(z, 0) = wy (x), p(x,0) = go(a),
or(z,0) =p1(z), 0<x<L.

Setting

(3.9) y(a,t) = (w(z,t), oz, ), w(l,t), (L, 1), uw=(0,0,u1,us),
we write the system (3.8) into the following form:

(3.10) yu + Ay =u, y(0) =wo, w(0) =11

Let @ be a solution of the homogeneous problem (2.12). It follows from
the inner product of (3.10) with ® in H. Integrating by parts, we remark that
(Ay,®)p = (y, A®)y = —(y, Pst) 1y, we obtain

(00, ®1) 17 — (92, Bo)rs + / (ur (5)0(L, 5) + ua(s)d(L, 5))ds

= (y(®), 2e()) m — (%e(t), ©(¢)) -
Next defining the linear form B by setting

(3.12)
B(®g, 1)

(3.11)

¢
= (Yo, P1)vxve = (Y1, Po)rxn +/ (u1(s)v(L, s) + ua(s)B(L, s))ds,
0
we obtain a weak formulation of equation (3.10)

(3.13) B(®o, ®1) = ((—we(t),y(t)), St)(Po, P1)) Hxv,mx v+,

where S(t) denotes the semigroup of isometries associated to the homogeneous
problem (2.12).

Theorem 3.2.  For any (yo,v1) € V x H and (u,u2) € L*(0,T) x
L2(0,T), the controlled equation (3.10) admits a unique weak solution y such
that

(3.14) y € C0O,T;V)NCH0,T; H),

defined in the sense that the equation (3.13) is satisfied for all (Do, 1) € HxV*
and all 0 <t <T. Moreover the linear application

(3.15) (Yo, Y1, w1, u2) — (Y, yt)

18 continuous for the corresponding topologies.
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Proof. By Cauchy-Schwartz inequality and theorem 3.1, we have

Awwww@+m@waww

C(llurll 20,7y + lluzllp2o,7)) Ulv(Ls )l 20,1y + [|6(Ls )|l L20,1))

<
< ClluallL20,m) + lluallL20,m) ([P0l + [[1]

ve).

This implies that the linear form B is continuous in the space H x V*. Moreover,
we have

(3.16) B[l < C(llyollv + Iyl + lluallzz0,r) + lluzllz2(0,1))-

From Riesz’s representation theorem, there exists a unique (U(t), Us(t)) € V x
H such that

B(®o, ®1) = ((—U(t), U(t)), (Po, 1)) Hxv,HxV*,

for all (g, ®1) € H x V*. Then indeed setting

(= (), y(1) := S(O)(=Ue(t), U (1)),

we obtain the equation (3.13). Moreover from (3.16) it follows that

B17) My@llv + lye @Ol < Cllyollv + llyallz + lurllz2 o) + lluzliz2,m))-

Now let u; € C°°([0,T]),us € C*([0,T]). We know that the equation
(3.10) admits a smooth solution y possessing the regularity (3.14). Since
C°°([0,T)) is dense in L%(0,T), by virtue of (3.17) we see that the weak so-
lution y satisfies also the regularity (3.14). The continuous dependence of the
application (3.15) follows also from (3.17). The proof is complete. O

Theorem 3.3.  Let T > 0, then for all (yo,y1) € V x H, there exists
a controller (ug,u;) € L%*(0,T) x L*(0,T) such that the weak solution y of
controlled problem (3.10) satisfies the final conditions

(3.18) y(T) =y (T) = 0.

Proof. Let ® be the solution of homogeneous system (2.12) with the initial
data (®g, 1) € H x V*. We define the semi-norm

T
(3.19) M%@M@=L(#@ﬁ+&@ﬁﬂt

From theorem 3.1, we know that (3.19) defines an equivalent norm in the space
F=HxV*
Choosing the controllers uy, us as follows

(3.20) up =v(L,t), us=¢(L,t).
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According to the inequality (3.1), we have

(3:21) (1, u2) 20,7y x 20,7y < Cll(®o, 1) [Frscv--
Next we solve the backward problem

(3:22) yu + Ay =u, y(T) =y(T)=0.

From theorem 3.2, we see that (3.22) admits a unique weak solution possessing
the regularity (3.14). In particular, we have

(3.23) 1), ye OV wcmr < Cll(ur, u2)ll72(0,7) % 20,7 -
Now defining the operator A as
(3.24) A(@o, 1) = (1:(0), —y(0)), V(Po,®1) € H x V7,
by virtue of the inequalities (3.23) and (3.21) we obtain
[A(®o, @1)|[7rxv < Cll(u17u2)||%2(O,T)><L2(O,T) < O[(®o, @1)llzrxv--

This proves that A is a linear continuous operator from H x V* into H x V.
Now it follows from the inner product of (3.22) with ® in H, integrating
by parts, we obtain

T
(3.25) —(y0, ®1)m + (Y1, Qo) = / (v*(L, s) + ¢*(L, s))ds.
0
Interpreting (3.25) into the following form

(3.26) (A(®o, @1), (R0, P1))rrxv.xv= = [[(Po, 1) |7

and using Lax-Milgram’s theorem, we deduce that A is an isomorphism from
H x V* into H x V. Therefore given any (y1,—yo) € H x V, there exists a
unique (®g, ®1) € H x V* such that

(3.27) A(®o, @1) = (y:(0), —y(0)) = (y1, —%0)-

This means precisely that the weak solution y of the backward problem (3.22),
with the right-hand side u given by (3.20), satisfies the initial value conditions

(3.28) y(0) = yo, %:(0) = w1.

In other words, we have proved that the system (3.10) is driven to rest by
the controls u,us given in (3.20). The proof is thus complete. O
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