Murre's conjectures for certain product varieties

By
Kenichiro Kimura

Abstract

We consider Murre's conjectures on Chow groups for a fourfold which is a product of two curves and a surface. We give a result which concerns Conjecture D:the kernel of a certain projector is equal to the homologically trivial part of the Chow group. We also give a proof of Conjecture B for a product of two surfaces.

1. Introduction

Let X be a smooth projective variety over \mathbb{C} of dimension d. Let $\Delta \subset X \times X$ be the diagonal. There is a cohomology class $\operatorname{cl}(\Delta) \in H^{2 d}(X \times X)$.
In this paper we use Betti cohomology with rational coefficients. There is the Künneth decomposition

$$
H^{2 d}(X \times X) \simeq \bigoplus_{i=0}^{2 d} H^{2 d-i}(X) \otimes H^{i}(X)
$$

We write $\operatorname{cl}(\Delta)=\sum_{i=0}^{2 d} \pi_{i}^{h o m}$ according to this decomposition. Here $\pi_{i}^{h o m} \in$ $H^{2 d-i}(X) \otimes H^{i}(X)$. If the Künneth conjecture is true, then each $\pi_{i}^{h o m}$ is an algebraic cycle.
Murre ($[\mathrm{Mu}]$, $[\mathrm{Mu} 2]$) formulated the following conjecture. For an abelian group M, we write $M_{\mathbb{Q}}=M \otimes \mathbb{Q}$.
(A) The $\pi_{i}^{\text {hom }}$ lift to a set of orthogonal projectors π_{i} in $C H^{d}(X \times X)_{\mathbb{Q}}$ which satisfy the equality

$$
\sum_{i=0}^{2 d} \pi_{i}=\Delta
$$

(B) The correspondences $\pi_{0}, \cdots, \pi_{j-1}, \pi_{2 j+1}, \cdots, \pi_{2 d}$ act as zero on $C H^{j}(X)_{\mathbb{Q}}$.
(C) Let $F^{\nu} C H^{j}(X)=\operatorname{Ker}_{2 j} \cap \operatorname{Ker}_{2 j-1} \cdots \cap \operatorname{Ker} \pi_{2 j-\nu+1}$. Then the filtration F^{*} is independent of the choice of π_{i}.
(D) $F^{1} C H^{j}(X)_{\mathbb{Q}}=C H^{j}(X)_{h o m, ~}$.

It is shown by Jannsen ([Ja]) that this conjecture of Murre is equivalent to Beilinson's conjectures on the filtration on Chow groups.
There are not yet many evidences for this conjecture. For a projective smooth curve C and a closed point p on C, set $\pi_{0}=p \times C, \pi_{2}=C \times p$ and $\pi_{1}=$ $\Delta-\pi_{0}-\pi_{2}$. Then Conjectures (A), (B) and (D) are true for these projectors. For a projective smooth surface Murre ([Mu]) constructed a set of projectors π_{0}, \cdots, π_{4} for which Conjectures (A), (B) and (D) are true. About Conjecture (C) he proved that the filtration on Chow groups given by these projectors is a natural one in the following sense (Theorem 3 in $[\mathrm{Mu}]$):

- $F^{1}\left(C H^{1}(S)_{\mathbb{Q}}\right)=\operatorname{Ker}\left(\pi_{2}\right)=\operatorname{Pic}^{0}(S)_{\mathbb{Q}}$.
- $F^{1}\left(C H^{2}(S)_{\mathbb{Q}}\right)=C H^{2}(S)_{h o m, \mathbb{Q}} \cdot F^{2}\left(C H^{2}(S)_{\mathbb{Q}}\right)=\operatorname{Ker}\left(\pi_{3}\right)=\operatorname{Ker}(a l b:$ $\left.C H^{2}(S)_{\text {hom }, \mathbb{Q}} \rightarrow \operatorname{Alb}(S)_{\mathbb{Q}}\right)$.

Conjecture (A) is also true for abelian varieties (Shermenev [Sh], DeningerMurre [DM]), hypersurfaces (easy), certain class of threefolds (del Angel-Müller-Stach [deM], [deM2]), and some modular varieties (Gordon-Murre [GM], Gordon-Hanamura-Murre [GHM], [GHM2], Miller-Müller-Stach-Wortmann-Yang-Zuo [Pic]).
Note that if Conjecture (A) is true for varieties X and Y, then it is also true for $X \times Y$. One can put $\pi_{i X \times Y}=\sum_{p+q=i} \pi_{p_{X}} \times \pi_{q_{Y}}$.
In [Mu2] Murre proves that Conjectures (B) and (D) are true for a product of a curve and a surface for this product Chow-Künneth decomposition.

Recently Murre ([KMP]) proved the validity of Conjecture (B) and some part of Conjecture (D) for a product of two surfaces. More precisely, Murre proved that Conjecture (D) is true for a product $S_{1} \times S_{2}$ of two smooth projective surfaces except the following part:

The projector $\pi_{2 S_{1}} \times \pi_{2 S_{2}}$ act as zero on $C H^{2}\left(S_{1} \times S_{2}\right)_{h o m, \mathbb{Q}}$.
If this is true for the case of a self-product $S_{1}=S_{2}$ of a surface, then Bloch's conjecture ($p_{g}=0 \Rightarrow$ albanese map is injective) for S_{1} is true. If one assumes that the Chow group of S_{1} is finite dimensional in the sense of Kimura ([Ki]), then for an element $z \in C H^{2}\left(S_{1} \times S_{1}\right)_{\text {hom, } \mathbb{Q}}$ one has the equality

$$
\left(\pi_{2} \times \pi_{2}(z)\right)^{n}=0
$$

where ${ }^{n}$ means the power as a correspondence and n is determined by the second Betti number of S_{1}.

In this paper we consider Conjecture (D) for the case where X is a product of two curves and a surface $C_{1} \times C_{2} \times S$. In this case the most crucial part is to show that $\pi_{1 C_{1}} \times \pi_{1 C_{2}} \times \pi_{2 S}$ act as zero on $C H^{2}(X)_{h o m, \mathbb{Q}}$. Here the projectors $\pi_{1 C_{i}}$ for $i=1$ and 2 are defined as above and we refer the reader to $[\mathrm{Mu}]$ for the definition of the projector $\pi_{2 S}$. Our original aim was to show that if the cohomology $H^{1}\left(C_{1}\right) \otimes H^{1}\left(C_{2}\right) \otimes H^{2}(S)$ has no non-zero Hodge cycle, then $\pi_{1 C_{1}} \times \pi_{1 C_{2}} \times \pi_{2 S}$ kills all the codimension 2 cycles on X. We could not completely solve the problem, so instead we studied what kind of cycles are killed by $\pi_{1 C_{1}} \times \pi_{1 C_{2}} \times \pi_{2 S}$. It seems that under certain assumptions on X,
"generic" cycles are killed by this projector (Theorem 2.1). This is the main result of this paper.

We also give a proof of the essential part of Conjecture (B) for a product of two surfaces. Our proof is similar to that of Murre in that we make essential use of the properties of the Chow-Künneth projectors for surfaces constructed by Murre. However there are still some differences, so we decided to include our proof here. The basic ideas of the proof come from [Mu2].

This paper is organized as follows. In Section two we prove our main result about Conjecture (D). Section three is devoted to a proof of Conjecture (B) for a product of two surfaces.

The author expresses his deep gratitude to Jacob Murre for his patience in reading an earlier version of this paper, and for valuable comments and encouragement. Part of this work was carried out when the author visited CIMAT and the Fields Institute. He is grateful to the people there for their hospitality. Finally he thanks the referee for patience and comments on the paper.

2. The main result

Theorem 2.1. Let C_{1} and C_{2} be a projective smooth curves over \mathbb{C} and let S be a projective smooth surface over \mathbb{C}.
Let $X=C_{1} \times C_{2} \times S$. Assume that these varieties satisfy the following conditions:

- $N S(S) \otimes \mathbb{Q}=\mathbb{Q} H$ where H is a hyperplane section of S.
- The cohomology groups $H^{1}\left(C_{2}\right) \otimes H^{1}(S)$ and $H^{1}\left(C_{1}\right) \otimes H^{1}(S)$ have no non-zero Hodge cycle.
Let $Z=\sum a_{s} Z_{s}$ be a codimension 2 cycle of X which is homologically trivial. Assume that each component Z_{s} satisfies one of the following conditions.

1. $p r_{12}\left(Z_{s}\right) \subset C_{1} \times C_{2}$ has dimension ≤ 1.
2. $p r_{3}\left(Z_{s}\right) \subset S$ has dimension ≤ 1.
3. $p r_{12}: Z_{s} \rightarrow C_{1} \times C_{2}$ and $p r_{3}: Z_{s} \rightarrow S$ are surjective and for $i=1$ or 2 , $\operatorname{pr}_{i 3}\left(Z_{s}\right) \subset C_{i} \times S$ satisfies the following:
There exists a resolution of singularity $f: \mathbf{S} \rightarrow p r_{i 3}\left(Z_{s}\right)$ for which there exists a divisor Z^{\prime} on $C_{3-i} \times \mathbf{S}$ with the following property:

- $\left(i d_{C_{3-i}} \times f\right)_{*}\left(Z^{\prime}\right)=Z_{s}$.
- Let $\operatorname{cl}\left(Z^{\prime}\right) \in H^{2}\left(C_{3-i} \times \mathbf{S}\right)$ be the cohomology class of Z^{\prime}. When we write $c l\left(Z^{\prime}\right)=c_{1}+c_{2}+c_{3}$ according to the decomposition

$$
H^{2}\left(C_{3-i} \times \mathbf{S}\right) \simeq H^{2}\left(C_{3-i}\right) \oplus H^{1}\left(C_{3-i}\right) \otimes H^{1}(\mathbf{S}) \oplus H^{2}(\mathbf{S})
$$

then c_{2} is contained in $H^{1}\left(C_{3-i}\right) \otimes f^{*} H^{1}\left(p r_{i 3}\left(Z_{s}\right)\right)$.
Then the Chow-Künneth projector $\pi_{1 C_{1}} \times \pi_{1 C_{2}} \times \pi_{2 S}$ kills Z in $C H^{2}(X)_{\mathbb{Q}}$.
The condition 3 is satisfied if Z_{s} is a Cartier divisor of $C_{3-i} \times p r_{i 3}(Z)$ which is the case if the projection $p r_{i 3}: Z_{s} \rightarrow p r_{i 3}\left(Z_{s}\right)$ is flat (Lemma 2.3).

Proof. Assume that the condition 1 holds for Z_{s}. Note that we have a
factorization

$$
\pi_{1 C_{1}} \times \pi_{1 C_{2}} \times \pi_{2 S}=\left(\pi_{1 C_{1}} \times \pi_{1 C_{2}} \times i d_{S}\right) \circ\left(i d_{C_{1} \times C_{2}} \times \pi_{2 S}\right)
$$

and they commute. We write $C=p r_{12}\left(Z_{s}\right) \subset C_{1} \times C_{2}$. Let $\eta_{C} \stackrel{j}{\hookrightarrow} C$ be the generic point of C. We apply the projector $i d_{C_{1} \times C_{2}} \times\left(\pi_{2}\right)_{S}$ on Z_{s} as a cycle on $C \times S$. We have the equality

$$
\left(j \times i d_{S}\right)^{*}\left(i d_{C} \times \pi_{2 S}\right)\left(Z_{s}\right)=\left(\eta_{C} \times \pi_{2 S}\right)\left(\left(j \times i d_{S}\right)^{*} Z_{s}\right)
$$

We write $\left(j \times i d_{S}\right)^{*} Z_{s}=Z_{s \eta}$.
Lemma 2.1. The cycle $Z_{s \eta}$ is algebraically equivalent to a cycle $\eta_{C} \times E$ on the surface $\eta_{C} \times S$ where E is a divisor on S defined over the base field \mathbb{C}.

Proof. Consider the cycle $\eta_{C} \times Z_{s}$ on $\eta_{C} \times S \times C=\eta_{C} \times S \times_{\eta_{C}}\left(\eta_{C} \times C\right)$. The fiber of $\eta_{C} \times Z_{s}$ over $\eta_{C} \in C\left(\eta_{C}\right)=C_{\eta_{C}}\left(\eta_{C}\right)=Z_{s \eta}$ and the fiber over a closed point $p \in C(\mathbb{C}) \subset C\left(\eta_{C}\right)$ is of the form $\eta_{C} \times E$ for a divisor E on S.

By Lemma 2.1 and ([Mu , Theorem 3]) we have the equality

$$
\left(\eta_{C} \times \pi_{2 S}\right) Z_{s \eta}=\left(\eta_{C} \times \pi_{2 S}\right)\left(\eta_{C} \times E\right) .
$$

Here we use that $\pi_{2 S}\left(\operatorname{Pic}^{0}(S)_{\mathbb{Q}}\right)=0$. By taking the closure of this equality in $C \times S$, it follows that

$$
\left(i d_{C} \times \pi_{2 S}\right)\left(Z_{s}\right)=C \times \pi_{2 S}(E)+\sum_{t} p_{t} \times S
$$

where for each t, p_{t} is a closed point on C. Applying $i d_{C} \times \pi_{2 S}$ on both sides of the equality kills $p_{t} \times S$ because by Conjecture (B) for $S, \pi_{2 S}(S)=0$.
By applying $\pi_{1 C_{1}} \times \pi_{1 C_{2}} \times i d_{S}$ on both sides of the equality we see that

$$
\left(\pi_{1} \times \pi_{1} \times \pi_{2}\right)\left(Z_{s}\right)=\left(\pi_{1} \times \pi_{1}\right)(C) \times \pi_{2}(E) .
$$

If the cycle Z_{s} satisfies the condition 2 , we can see in a similar way that $\left(\pi_{1} \times\right.$ $\left.\pi_{1} \times \pi_{2}\right)\left(Z_{s}\right)$ is of the form $\left(\pi_{1} \times \pi_{1}\right)(C) \times \pi_{2}(E)$ for a curve E on S and for a divisor C on $C_{1} \times C_{2}$.
Next we assume that the condition 3 holds for Z_{s} with $i=2$.
Lemma 2.2. The subvariety $p r_{23}\left(Z_{s}\right) \subset C_{2} \times S$ is an ample divisor.
Proof. By the assumptions on C_{2} and S, we see that

$$
N S\left(C_{2} \times S\right) \otimes \mathbb{Q}=\mathbb{Q}(p t \times S) \oplus \mathbb{Q}\left(C_{2} \times H\right)
$$

We denote $D_{1}=p t \times S$ and $D_{2}=C_{2} \times H$. Write $a D_{1}+b D_{2}$ for the class of $p_{23}\left(Z_{s}\right)$ in $N S\left(C_{2} \times S\right) \otimes \mathbb{Q}$. We see that $a=\left(C_{2} \times p t, p r_{23}\left(Z_{s}\right)\right)>0$ and $b=\frac{\left(p t \times H, p r_{23}\left(Z_{s}\right)\right)}{(H, H)}>0$. Here $(*, *)$ denotes intersection number. So it follows
that $p r_{23}\left(Z_{s}\right)-a D_{1}-b D_{2} \in \operatorname{Pic}^{0}\left(C_{2} \times S\right) \simeq \operatorname{Pic}^{0}\left(C_{2}\right) \oplus \operatorname{Pic}^{0}(S)$. So there are divisors $d_{1} \in \operatorname{Pic}\left(C_{2}\right)$ and $d_{2} \in \operatorname{Pic}(S)$ such that $p r_{23}\left(Z_{s}\right)=p r_{2}^{*} d_{1}+p r_{3}^{*} d_{2}$ in $\operatorname{Pic}\left(C_{2} \times S\right)$. By Nakai's criterion d_{2} is an ample divisor on S and d_{1} is ample on C_{2}.

By Lemma 2.2 the open subscheme $C_{2} \times S-p r_{23}\left(Z_{s}\right)$ is affine. It follows that $H^{1}\left(p r_{23}\left(Z_{s}\right)\right) \simeq H^{1}\left(C_{2} \times S\right) \simeq H^{1}\left(C_{2}\right) \oplus H^{1}(S)$.
Let $f: \mathbf{S} \rightarrow p r_{23}\left(Z_{s}\right)$ be a resolution of singularity which satisfies the condition 3. By the assumption $H^{1}\left(C_{1}\right) \otimes H^{1}(S)$ has no Hodge cycle. So there is a divisor D on $C_{1} \times C_{2}$ such that $\left(p r_{1} \times\left(p r_{2} \circ f\right)\right)^{*} c l(D)=c_{2}$.
So there are divisors $d_{1} \in \operatorname{Pic}\left(C_{1}\right)$ and $d_{2} \in \operatorname{Pic}(\mathbf{S})$ such that in $\operatorname{Pic}\left(C_{1} \times \mathbf{S}\right)$, there is an equality

$$
\left(i d_{C_{1}} \times f\right)^{*} Z_{s}-\left(p r_{1} \times\left(p r_{2} \circ f\right)\right)^{*} D=d_{1} \times \mathbf{S}+C_{1} \times d_{2}
$$

Pushing down to $C_{1} \times p r_{23}\left(Z_{s}\right)$ by the map $i d_{C_{1}} \times f$ we have an equality

$$
Z_{s}=d_{1} \times p r_{23}\left(Z_{s}\right)+C_{1} \times f_{*}\left(d_{2}\right)+p r_{12}^{*} D \cap p r_{23}(Z)
$$

in $\mathrm{CH}_{2}\left(C_{1} \times p r_{23}\left(Z_{s}\right)\right)$.
One can see that Chow-Künneth projector $\pi_{1 C_{1}} \times \pi_{1 C_{2}} \times \pi_{2 S}$ kills $d_{1} \times p r_{23}\left(Z_{s}\right)+$ $C_{1} \times f_{*}\left(d_{2}\right)$ in $C H^{2}(X)$ because by Conjecture (B) for $C_{2} \times S([\mathrm{Mu} 2]), \pi_{1 C_{2}} \times \pi_{2 S}$ kills $p r_{23}\left(Z_{s}\right)$ and $\pi_{1 C_{1}}$ kills C_{1}. Each component of $p r_{12} *\left(p r_{12}^{*} D \cap p r_{23}(Z)\right)$ has dimension $\leqq 1$. So by a similar argument to the one above it follows that $\left(\pi_{1} \times \pi_{1} \times \pi_{2}\right)\left(Z_{s}\right)$ is a sum of the cycles of the form $\left(\pi_{1} \times \pi_{1}\right)(C) \times \pi_{2}(E)$ where C is a curve on $C_{1} \times C_{2}$ and E is a curve on S.
So we can assume that each component Z_{s} of Z is of the form $C \times E$ where C is a curve on $C_{1} \times C_{2}$ and E is a curve on S. Since $\left(\pi_{1} \times \pi_{1}\right)\left(\operatorname{Pic}^{0}\left(C_{1} \times C_{2}\right)\right)=0$ and $\pi_{2}\left(\operatorname{Pic}^{0}(S)\right)=0$ and Z is homologically trivial, it follows that $\left(\pi_{1} \times \pi_{1} \times\right.$ $\left.\pi_{2}\right)(Z)=0$.

Lemma 2.3. If the projection $p r_{23}: Z_{s} \rightarrow p r_{23}\left(Z_{s}\right)$ is flat, then Z_{s} is a Cartier divisor on $C_{1} \times p r_{23}\left(Z_{s}\right)$.

Proof. Let $I_{Z_{s}}$ be the ideal sheaf of Z_{s} in $C_{1} \times p r_{23}\left(Z_{s}\right)$. For any point $x \in$ $p r_{23}\left(Z_{s}\right)$, Let $\left\{z_{i}\right\}_{i}$ be the set of closed points on the fiber $Z_{s} \times{ }_{p r_{23}\left(Z_{s}\right)} \operatorname{Spec} \kappa(x)$. The image of $I_{Z_{s}}$ in the local ring $\mathcal{O}_{C_{1} \times{ }_{C} \operatorname{Spec} \kappa(x), z_{i}}$ is a principal ideal $\left(f_{i}\right)$. For each i take a local section $\tilde{f}_{i} \in I_{Z_{s}}$ which has the image f_{i} in $\mathcal{O}_{C_{1} \times_{\mathbb{C}} \operatorname{Spec} \kappa(x), z_{i}}$. For a sufficiently small neighborhood U of x in $p r_{23}\left(Z_{s}\right)$ we can consider a Cartier divisor D on $C_{1} \times U$ which is defined by the equation \tilde{f}_{i} in a neighborhood of z_{i}. Let K be the kernel of natural surjection $\mathcal{O}_{D} \rightarrow \mathcal{O}_{Z_{s}}$.
Let ϕ_{D} be the function on the set of points on U defined by

$$
\phi_{D}(y)=\operatorname{dim}_{\kappa(y)} \mathcal{O}_{D} \otimes_{\mathcal{O}_{U}} \kappa(y) .
$$

It is an upper semicontinuous function on U. So there is an neighborhood $U^{\prime} \subset U$ of x such that for any $y \in U^{\prime}$, one has

$$
\phi_{D}(y) \leq \phi_{D}(x) .
$$

On the other hand, $\operatorname{dim}_{\kappa(y)} \mathcal{O}_{Z_{s}} \otimes_{\mathcal{O}_{U}} \kappa(y)$ is a constant function since Z_{s} is flat over $\operatorname{pr}_{23}\left(Z_{s}\right)$. Also note that $\phi_{D}(y) \geq \operatorname{dim}_{\kappa(y)} \mathcal{O}_{Z_{s}} \otimes_{\mathcal{O}_{U}} \kappa(y)$ on U^{\prime}. Since $\phi_{D}(x)=\operatorname{dim}_{\kappa(x)} \mathcal{O}_{Z_{s}} \otimes_{\mathcal{O}_{U}} \kappa(x)$ it follows that

$$
\phi_{D}(y)=\operatorname{dim}_{\kappa(y)} \mathcal{O}_{Z_{s}} \otimes_{\mathcal{O}_{U}} \kappa(y)
$$

on U^{\prime}. As $\mathcal{O}_{Z_{s}}$ is a flat \mathcal{O}_{U} module, it follows that $K \otimes_{\mathcal{O}_{U}} \kappa(y)=0$ for any point $y \in U^{\prime}$. Hence $K=0$.

3. A proof of Conjecture (B) for a product of two surfaces

In this section we give a proof of the essential part of Conjecture (B) for a product of two surfaces.
Let S_{1} and S_{2} be projective smooth surfaces over \mathbb{C} and let $X=S_{1} \times S_{2}$. For each S_{i} there is a Chow-Künneth decomposition $\pi_{0 S_{i}}, \cdots, \pi_{4 S_{i}}$ of the diagonal constructed by Murre ([Mu]). They have the following properties:

```
\(\pi_{4}, \pi_{3}\) and \(\pi_{0}\) act as 0 on \(C H^{1}\left(S_{i}\right)_{\mathbb{Q}}\).
\(F^{1} C H^{1}\left(S_{i}\right)_{\mathbb{Q}}=\operatorname{Ker}\left(\pi_{2}\right)=C H^{1}\left(S_{i}\right)_{h o m, \mathbb{Q}}\).
\(F^{2} C H^{1}\left(S_{i}\right)_{\mathbb{Q}}=\operatorname{Ker}\left(\left.\pi_{1}\right|_{F^{1}}\right)=0\).
\(\pi_{0}\) and \(\pi_{1}\) act as 0 on \(C H^{2}\left(S_{i}\right)_{\mathbb{Q}}\).
\(F^{1} C H^{2}\left(S_{i}\right)_{\mathbb{Q}}=\operatorname{Ker}\left(\pi_{4}\right)=C H^{2}\left(S_{i}\right)_{h o m, \mathbb{Q}}\).
\(F^{2} C H^{2}\left(S_{i}\right)_{\mathbb{Q}}=\operatorname{Ker}\left(\left.\pi_{3}\right|_{F^{1}}\right)=\operatorname{Ker}\left(\operatorname{alb}: C H^{2}\left(S_{i}\right)_{h o m, \mathbb{Q}} \rightarrow \operatorname{Alb}\left(S_{i}\right) \otimes \mathbb{Q}\right)\).
\(F^{3} C H^{2}\left(S_{i}\right)_{\mathbb{Q}}=\operatorname{Ker}\left(\left.\pi_{2}\right|_{F^{2}}\right)=0\).
```

There is a Chow-Künneth decomposition for X given by the product of those for S_{i}.
Murre has proven Conjecture (B) for X. Here we give another proof of the essential part of his result.

Theorem 3.1. The Chow-Künneth projectors $\pi_{3 S_{1}} \times \pi_{3 S_{2}}$ and $\pi_{3 S_{1}} \times$ $\pi_{2 S_{2}}$ act as zero on $C H^{2}(X)_{\mathbb{Q}}$.

Proof. Let Z be an element of $C H^{2}(X)$. Let $\eta_{i} \stackrel{j_{i}}{\hookrightarrow} S_{i}$ be the generic point of S_{i} for $i=1,2$ and $Z_{\eta_{i}}$ be the generic fiber of Z.
The case of $\pi_{3 S_{1}} \times \pi_{3 S_{2}} .\left(i d_{S_{1}} \times j_{2}\right)^{*}\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)(Z)=\pi_{3} \times \eta_{2}\left(\left(i d_{S_{1}} \times j_{2}\right)^{*} Z\right)$. We write $\pi_{3} \times \eta_{2}=\pi_{3 \eta_{2}}$. For $p=1$ and 2 let $C_{p} \stackrel{i_{p}}{\hookrightarrow} S_{p}$ be a smooth hyperplane section defined over the base field \mathbb{C}. Then by Lemma 2.3 of $[\mathrm{Mu}], i_{p_{*}}: \operatorname{Jac}\left(C_{p}\right) \rightarrow$ $\operatorname{Alb}\left(S_{p}\right)$ is a surjection. So it follows that $i_{1 *}: \operatorname{Jac}\left(C_{1}\right)\left(\eta_{2}\right)_{\mathbb{Q}} \rightarrow \operatorname{Alb}\left(S_{1}\right)\left(\eta_{2}\right)_{\mathbb{Q}}$ is also surjective. Let d be the degree of $Z_{\eta_{2}}$ and let e_{1} be a closed point on S_{1} which is rational over the base field \mathbb{C}. Then $Z_{\eta_{2}}-d\left(e_{1}\right) \in C H^{2}\left(S_{1 \eta_{2}}\right)_{h o m, \mathbb{Q}}$ and so there is a cycle $D \in \operatorname{Pic}{ }^{0} C_{1}\left(\eta_{2}\right)_{\mathbb{Q}}$ such that $\operatorname{alb}\left(Z_{\eta_{2}}-d\left(e_{1}\right)\right)=i_{1 *}(D)$. Let \bar{D} be the closure of D in X. Since D is supported on $C_{1} \times \eta_{2}, \bar{D}$ is supported on $\overline{C_{1} \times \eta_{2}}=C_{1} \times S_{2}$.
Since $K e r \pi_{3}=\operatorname{Ker}(a l b)$, we have the equality

$$
\left(i d_{S_{1}} \times j_{2}\right)^{*}\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)\left(Z-d\left(e_{1}\right) \times S_{2}-\bar{D}\right)=\pi_{3 S_{1} \eta_{2}}\left(Z_{\eta_{2}}-d\left(e_{1}\right)-i_{1 *} D\right)=0 .
$$

So it follows that

$$
\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)(Z)=\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)(\bar{D})+d \pi_{3 S_{1}}\left(e_{1}\right) \times S_{2}+\sum_{k} D_{k}
$$

where for each $k D_{k}$ is supported on $S_{1} \times Y_{k}$ for an irreducible curve Y_{k}. We apply the projector $\pi_{3 S_{1}} \times i d_{S_{2}}$ again on both sides of the equality. We apply $\pi_{3 S_{1}} \times i d_{S_{2}}$ on each D_{k} as a cycle on $S_{1} \times Y_{k}$. Let $\eta_{Y} \stackrel{j_{Y}}{\longleftrightarrow} Y_{k}$ be the generic point of Y_{k}. We have the equality

$$
\left(i d_{S_{1}} \times j_{Y}\right)^{*}\left(\pi_{3 S_{1}} \times i d_{Y_{k}}\right)\left(D_{k}\right)=\left(\pi_{3 S_{1}} \times \eta_{Y}\right)\left(\left(i d_{S_{1}} \times j_{Y}\right)^{*} D_{k}\right)
$$

Since $\left(i d_{S_{1}} \times j_{Y}\right)^{*} D_{k}$ is a divisor on the surface $S_{1} \times \eta_{Y}$, from Conjecture (B) for S_{1} it follows that

$$
\left(\pi_{3 S_{1}} \times \eta_{Y}\right)\left(\left(i d_{S_{1}} \times j_{Y}\right)^{*} D_{k}\right)=0
$$

By taking closure of this equality in $S_{1} \times Y_{k}$ we have the equality

$$
\left(\pi_{3 S_{1}} \times i d_{Y_{k}}\right)\left(D_{k}\right)=\sum_{i} S_{1} \times p_{i}
$$

where for each $i p_{i}$ is a closed point on Y_{k}. Applying $\pi_{3 S_{1}} \times i d_{S_{2}}$ again on both sides of the equality it follows that $\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)\left(S_{1} \times p_{i}\right)=0$ since by Conjecture (B) for $S_{1} \pi_{3 S_{1}}\left(S_{1}\right)=0$.
Next we apply $i d_{S_{1}} \times \pi_{3 S_{2}}$ on both sides of the equality. By Conjecture (B) for S_{2} we see that

$$
\left(i d_{S_{1}} \times \pi_{3 S_{2}}\right)\left(d \pi_{3 S_{1}}\left(e_{1}\right) \times S_{2}\right)=d \pi_{3 S_{1}}\left(e_{1}\right) \times \pi_{3 S_{2}}\left(S_{2}\right)=0
$$

Let $\eta_{C_{1}} \stackrel{j_{C_{1}}}{\hookrightarrow} C_{1}$ be the generic point of C_{1}. We apply $i d_{S_{1}} \times \pi_{3 S_{2}}$ on \bar{D} as a cycle on $C_{1} \times S_{2}$. By Conjecture (B) for $\eta_{C_{1}} \times \pi_{3},\left(\eta_{C_{1}} \times \pi_{3}\right)\left(j_{C_{1}} \times i d_{S_{2}}\right)^{*}(\bar{D})=0$. Since

$$
\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)\left(i d_{S_{1}} \times \pi_{3 S_{2}}\right)=\left(i d_{S_{1}} \times \pi_{3 S_{2}}\right)\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)
$$

it follows that

$$
\begin{aligned}
\left(i d_{S_{1}} \times \pi_{3 S_{2}}\right)\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)(\bar{D}) & =\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)\left(i d_{S_{1}} \times \pi_{3 S_{2}}\right)(\bar{D}) \\
& =\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)\left(\sum_{l} p_{l} \times S_{2}\right)
\end{aligned}
$$

for a set of closed points p_{l} on S_{1}. So we are reduced to the case where each component of Z is of the form $p t \times S_{2}$ for a closed point $p t$. We can see that the projector $\pi_{3 S_{1}} \times \pi_{3 S_{2}}$ kills $p t \times S_{2}$, because by Conjecture (B) for surfaces $\pi_{3 S_{i}}\left(S_{i}\right)=0$ for $i=1$ and 2 .

Remark 1. Murre pointed out that there is a simpler argument than the one above. We use the equality

$$
\pi_{3 S_{1}} \times i d_{S_{2}}(Z)=Z \circ{ }^{t} \pi_{3 S_{1}}=Z \circ \pi_{1 S_{1}}
$$

where \circ is composition as correspondences and ${ }^{t}$ is transpose. By construction of π_{1} there is a curve C on S_{1} such that $\pi_{1 S_{1}}$ is supported on $C \times S_{1}$ (cf. (ii) of Proposition 2.1 in [KMP]). So one can immediately conclude that $\pi_{3 S_{1}} \times$ $i d_{S_{2}}(Z)$ is supported on $C \times S_{2}$.

The case of $\pi_{3 S_{1}} \times \pi_{2 S_{2}}$. We use the factorization $\pi_{3 S_{1}} \times \pi_{2 S_{2}}=\left(i d_{S_{1}} \times\right.$ $\left.\pi_{2 S_{2}}\right)\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)$. We have the equality

$$
\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)(Z)=\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)(\bar{D})+d \pi_{3 S_{1}}\left(e_{1}\right) \times S_{2}+\sum_{k} D_{k}
$$

where for each $k D_{k}$ is supported on $S_{1} \times Y_{k}$ for an irreducible curve Y_{k} and \bar{D} is supported on $C_{1} \times S_{2}$. The D_{k} part can be treated as above. Then we apply $i d_{S_{1}} \times \pi_{2 S_{2}}$ on both sides of the equality. By Conjecture (B) for S_{2} it follows that

$$
\left(i d_{S_{1}} \times \pi_{2 S_{2}}\right)\left(d \pi_{3 S_{1}}\left(e_{1}\right) \times S_{2}\right)=d \pi_{3 S_{1}}\left(e_{1}\right) \times \pi_{2 S_{2}}\left(S_{2}\right)=0
$$

By using the equality

$$
\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)\left(i d_{S_{1}} \times \pi_{2 S_{2}}\right)=\left(i d_{S_{1}} \times \pi_{2 S_{2}}\right)\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)
$$

we have

$$
\left(i d_{S_{1}} \times \pi_{2 S_{2}}\right)\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)(\bar{D})=\left(\pi_{3 S_{1}} \times i d_{S_{2}}\right)\left(i d_{S_{1}} \times \pi_{2 S_{2}}\right)(\bar{D})
$$

Let $\eta_{C_{1}} \stackrel{j_{C_{1}}}{\hookrightarrow} C_{1}$ be the generic point of C_{1}. We apply $i d_{S_{1}} \times \pi_{2 S_{2}}$ on \bar{D} as a cycle on $C_{1} \times S_{2}$. Since the divisor $\left(j_{C_{1}} \times i d_{S_{2}}\right)^{*}(\bar{D})$ on $\eta_{C_{1}} \times S_{2}$ is algebraically equivalent to a divisor $\eta_{C_{1}} \times E$ on $\eta_{C_{1}} \times S_{2}$ where E is a divisor on S_{2} defined over the base field \mathbb{C}, it follows that

$$
\begin{aligned}
& \left(j_{C_{1}} \times i d_{S_{2}}\right)^{*}\left(i d_{S_{1}} \times \pi_{2 S_{2}}\right)\left(\bar{D}-C_{1} \times E\right) \\
& \quad=\left(\eta_{C_{1}} \times \pi_{2 S_{2}}\right)\left(\left(j_{C_{1}} \times i d_{S_{2}}\right)^{*}(\bar{D})-\eta_{C_{1}} \times E\right)=0
\end{aligned}
$$

So by taking the closure of equality in $C_{1} \times S_{2}$ it follows that

$$
\left(i d_{S_{1}} \times \pi_{2 S_{2}}\right)(\bar{D})=\left(i d_{S_{1}} \times \pi_{2 S_{2}}\right)\left(C_{1} \times E\right)+\sum_{k} p_{k} \times S_{2}
$$

for a set $\left\{p_{k}\right\}$ of closed points on S_{1}. In this way we are reduced to the case where each component of Z is a product of two curves or is of the form $p t \times S_{2}$ or $S_{1} \times p t$. By Conjecture (B) for surfaces one can see that the projector $\pi_{3 S_{1}} \times \pi_{2 S_{2}}$ kills the cycles of this form in $C H^{2}(X)_{\mathbb{Q}}$.

Institute of Mathematics, University of Tsukuba Tsukuba, Ibaraki, 305-8571, Japan
 e-mail: kimurak@math.tsukuba.ac.jp

References

[deM] P. L. del Angel and S. Müller-Stach, Motives of uniruled 3-folds, Compositio Math. 112 (1998), 1-16.
[deM2] \qquad , On Chow motives of 3-folds, Trans. Amer. Math. Soc. 352 (2000), 1623-1633.
[DM] C. Deninger and J. P. Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201-219.
[GM] B. Gordon and J. P. Murre, Chow motives of elliptic modular threefolds, J. Reine Angew. Math. 514 (1999), 145-164.
[GHM] B. Gordon, M. Hanamura and J. P. Murre, Relative Chow-Kunneth projectors for modular varieties, J. Reine Angew. Math. 558 (2003), 1-14.
[GHM2] _, Absolute Chow-Kunneth projectors for modular varieties, J. Reine Angew. Math. 580 (2005), 139-155.
[Ja] U. Jannsen, Motivic sheaves and filtrations on Chow groups, Proc. Sympos. Pure Math. 55, Part 1 (1994), 245-302.
[JA] R. Akhtar and R. Joshua, Künneth decompositions for quotient varieties, preprint, to appear in Indag. Math.
[Ki] S. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), 173-201.
[KMP] B. Kahn, J. P. Murre and C. Pedrini, On the transcendental part of the motive of a surface, preprint (2005).
[Mu] J. P. Murre, On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990), 190-204.
[Mu2] , On a conjectural filtration on the Chow groups of an algebraic variety, I and II, Indag. Math. (N.S.) 4 (1993), 177-201.
[Pic] A. Miller, S. Müller-Stach, S. Wortmann, Y.-H. Yang and K. Zuo, Chow-Künneth decomposition for universal families over Picard modular surfaces, preprint (2005).
[Sh] A. M. Shermenev, Motif of an Abelian variety, Funckcional. Anal. i Priložen. 8 (1974), 55-61.

