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Towards a general theory of unprojection
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Stavros Argyrios Papadakis

Abstract

Unprojection is an effort, initiated by Miles Reid, to develop an
algebraic language for the study of birational geometry. [Ki] contains
motivation and examples, and poses the problem of developing a general
theory of unprojection. The main purpose of the present work is to
suggest a general definition of unprojection, and to show that it indeed
generalizes previous work done in the topic. In addition, in Section 6 we
present an unprojection analysis of an example of Reid and K. Suzuki,
and Section 7 contains more examples.

1. Introduction

Birational geometry is an old and important field of algebraic geometry.
Since the late 1970s there has been spectacular progress, especially in the es-
tablishment of the Mori minimal model program for threefolds due to work of
S. Mori and many others. The methods of the Mori minimal model program
are often abstract and cohomological, while explicit birational geometry [EBG]
initiated by Reid and A. Corti aims to study the objects (such as Fano 3-folds)
and the maps between them (such as birational contractions) in more detail
on specific situations. Unprojection plays an important role in this study and
has found many applications, for example in the birational geometry of Fano
3-folds [CPR] and [CM], in the construction of weighted complete intersection
K3 surfaces and Fano 3-folds [Al], and in the study of Mori flips [BrR].

[Ki] discusses more examples and applications of unprojection, and poses
the problem of developing a general theory of unprojection. The cases that
have been studied so far are the unprojection of type Kustin–Miller (or type
I) [KM], [PR] and [P], the generic case of type II unprojection [P2], and the
generic case of type III unprojection [P3], while [R] contains examples of type
IV unprojection. The definitions of unprojection in [P2] and [P3] apply only
to their respective generic cases, while the definitions in [KM] and [PR] need
strong Gorenstein assumptions.

In Section 2 we propose a general definition of unprojection (Definition 2.1),
while in Section 3 we use the well–known general machinery of homological al-
gebra to write down explicitly some of the constructions needed.
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In Section 4 we study in some detail the important special case of un-
projection of an ideal, while in Section 5 we prove that Definition 2.1 indeed
generalizes those of [PR], [P2] and [P3].

Section 6 presents an analysis of a construction of Reid and Suzuki [RS]
which is an unprojection but is not the unprojection of an ideal. Finally,
Section 7 contains more examples of unprojection analysis of rings appearing
in geometry.

A very interesting open question stated in Remark 7 is to study under
which conditions good properties of the unprojection initial data are preserved
by the unprojection ring. Another open question is whether unprojection can
be used for an inductive treatment of families of rings arising in geometry such
as homogeneous coordinate rings of Grassmannians and other homogeneous
spaces, cf. [KM, Section 2].

2. General definition of unprojection

Assume OX is a commutative ring with unit, M is an OX -module, and

φ : OX →M

is a homomorphism ofOX -modules. We assume that there exists anOX -regular
element q ∈ OX such that qM = 0. We will define an OX -algebra unprOX

φ
which we will call the unprojection algebra of φ.

Since a mapM → OX/(q) is a homomorphism ofOX -modules if and only if
is a homomorphism of OX/(q)-modules, by Rees lemma ([BH, Lemma 3.1.16])
there are canonical isomorphisms

Ext1OX
(M,OX) ∼= HomOX

(M,OX/(q)),

and

Ext1OX
(Ext1OX

(M,OX),OX) ∼= HomOX
(HomOX

(M,OX/(q)),OX/(q)).

In Section 3 we explicitly write down, using the well–known general ma-
chinery of homological algebra, how an extension induces a homomorphism and
also how a homomorphism induces an extension.

As a consequence, composing the natural double dual map

M → HomOX
(HomOX

(M,OX/(q)),OX/(q))

with φ and taking the value of the composition at 1OX
∈ OX we obtain an

extension

(2.1) 0→ OX
i−→ Q→ Ext1OX

(M,OX)→ 0.

Again from general principles of homological algebra, if we choose another
OX -regular element q′ with q′M = 0 we would get an extension isomorphic to
(2.1).
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We define the OX -algebra R1 with

R1 =
SymOX

Q

(i(1OX
)− 1)

,

where SymOX
Q is the symmetric algebra of the OX -module Q. We also define

the multiplicatively closed subset T ⊂ OX

T = {t ∈ OX : t is both OX and M -regular } ⊂ OX .

Therefore, the set T consists of the elements of OX which multiplied by
any nonzero element of OX or M give a nonzero element of the respective
OX -module. In particular T contains the invertible elements of OX .

Definition 2.1. The unprojection algebra unprOX
φ is the OX -algebra

unprOX
φ = R1/J,

where

J = {u ∈ R1 : there exists t ∈ T with tu = 0 ∈ R1}.

Remark 1. An important case for the applications is when a morphism
φ̃ : D̃ → X of affine schemes having codimension one image in X is given. In
this case we set

φ : OX →M = φ̃∗O eD

to be the homomorphism of OX -modules induced by the morphism φ̃, compare
the Reid–Suzuki example in Section 6. A particular case, which we study in
some detail in Section 4, is when D ⊂ X is a codimension one subscheme and
φ̃ : D → X is the inclusion morphism.

3. The relation between extensions and homomorphisms

In the following OX is a commutative ring, A,B are two OX -modules, and
q ∈ OX is an OX and B-regular element such that qA = 0. By Rees lemma
([BH, Lemma 3.1.16])

Ext1OX
(A,B) ∼= HomOX

(A,B/(q)).

We use the well–known general machinery of homological algebra to write down
explicitly the correspondence between homomorphisms A→ B/(q) and exten-
sions 0→ B → Q→ A→ 0 used in Section 2.

3.1. Construction of the homomorphism given an extension
Assume we are given an extension

(3.1) 0→ B
q1−−→ Q

q2−−→ A→ 0.



582 Stavros Argyrios Papadakis

We will define a homomorphism of OX -modules

g : A→ B/(q)

as follows.
Let a ∈ A. Choose lifting ã ∈ Q. Then qã ∈ ker q2 (since qA = 0), so there

exists unique b ∈ B such that qã = b (equality in Q). We set

g(a) = b+ (q) ∈ B/(q).
Assume ã′ ∈ Q is another lifting of a, and b′ ∈ B such that qã′ = b′ Since

ã− ã′ ∈ Ker q2 and (3.1) is exact, there exists b3 ∈ B with

ã− ã′ = b3

(equality in Q). As a consequence

b− b′ = q(ã− ã′) = qb3,

hence

b+ (q) = b′ + (q),

(equality in B/(q)) and therefore g is well defined, independent of the choice
of the lifting of a.

3.2. Construction of the extension given a homomorphism
Assume now we are given a homomorphism

g : A→ B/(q)

We will use g to define an extension

0→ B
q1−−→ Q

q2−−→ A→ 0.

of OX -modules.
Fix a generating set ai, i ∈ I for A, denote by F the free OX -module with

basis ei, i ∈ I, and by

p1 : F → A

the surjective OX -module homomorphism with p1(ei) = ai.
Moreover, fix (arbitrary) set–theoretic lifting

g̃ : A→ B

of g.

Lemma 3.1. Assume ri ∈ OX with i ∈ I and all except a finite number
of ri equal to 0, such that

∑
i∈I riai = 0 in A. We then have∑
i∈I

rig̃(ai) ∈ (q) ⊂ B.

(The map g̃ in general is not a homomorphism of OX-modules, so it may happen
that

∑
i∈I rig̃(ai) �= 0 ∈ B.)
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Proof. Clear, since
∑

i∈I rig(ai) = 0 ∈ B/(q) and g̃ is a lifting of g.

By Lemma 3.1, if
∑

i∈I riai = 0 in A, there exists unique (since q is OX -
regular) b ∈ B such that

qb =
∑
i∈I

rig̃(ai)

in B. We define an OX -submodule M ⊂ B × F with

M =

{(
b,
∑
i∈I

riei

)
∈ B × F :

∑
i∈I

riai = 0 ∈ A and qb =
∑
i∈I

rig̃(ai) ∈ B
}

and we set

Q = (B × F )/M.

Lemma 3.2. We have an extension of OX -modules,

0→ B
q1−−→ Q

q2−−→ A→ 0.

where q1 is the map

b �→ (b, 0) +M ∈ Q
and q2 is the map (

b,
∑
i∈I

riei

)
+M �→

∑
i∈I

riai ∈ A.

Proof. The map q2 is well defined, since if (b,
∑

i∈I riei) ∈ M we have∑
i∈I riai = 0 ∈ A.

We also have that q1 is injective. Indeed, assume (b, 0) ∈M . This implies
that qb = 0 ∈ B, and since q is B-regular we have b = 0.

It is clear that

q2 ◦ q1 = 0.

Assume now (b,
∑

i∈I riei) +M ∈ ker q2. This implies that
∑

i∈I riai = 0 ∈ A.
By Lemma 3.1 we have ∑

i∈I

rig̃(ai) ∈ (q) ⊂ B,

so there exists b′ ∈ B such that

qb′ = qb−
∑
i∈I

rig̃(ai)

(equality in B). As a result(
b− b′,

∑
i∈I

riei

)
∈M,
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hence (
b,
∑
i∈I

riei

)
+M = (b′, 0) +M = q1(b′) ∈ Im q1.

It is clear that q2 is surjective, which finishes the proof of the lemma.

It is easy to check that the extension does not depend on the choices of
the generating set ai, i ∈ I of A and of the lifting g̃ of g.

4. Unprojection of an ideal

In the following, OX is a commutative ring with unit, and ID ⊂ OX an
ideal containing an OX -regular element q ∈ ID. We set OD = OX/ID and
denote by

φ : OX → OD

the natural projection map.

Definition 4.1. The unprojection algebra unprOX
ID of the ideal ID ⊂

OX is the OX -algebra

unprOX
ID = unprOX

φ,

where unprOX
φ has been defined in Definition 2.1.

It is easy to see that the extension corresponding to the projection map φ
is just the natural short exact sequence

(4.1) 0→ OX → HomOX
(ID,OX)→ Ext1OX

(OD,OX)→ 0

obtained by applying the derived functor of HomOX
(−,OX) to the exact se-

quence 0→ ID → OX → OD → 0 (cf. [PR, p. 563]).
In particular, Q = HomOX

(ID,OX), and hence we have that

unprOX
ID = R1/J,

where

R = SymOX
HomOX

(ID,OX),

i ∈ HomOX
(ID,OX) is the inclusion map ID → OX , R1 = R/(i− 1),

J = {u ∈ R1 : there exists t ∈ T with tu = 0 ∈ R1},

and T ⊂ OX is the multiplicatively closed subset

T = {t ∈ OX : t is both OX and OD-regular } ⊂ OX .
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Remark 2. In general, the ring unprOX
ID is not graded - for an im-

portant exception see Remark 3 below. However, the natural grading of R
induces an increasing filtration

F0 ⊂ F1 ⊂ F2 ⊂ . . .
of unprOX

ID, where Fk is the image of the direct sum of the first k+1 graded
components of R under the natural projection map R→ unprOX

ID.

Remark 3. Let OX be Z-graded and ID ⊂ OX a homogeneous ideal.
We call an OX -module homomorphism s̃ : ID → OX graded, if there exists
k ∈ Z, called the degree of s̃, such that s̃ sends homogeneous elements of ID of
degree a to homogeneous elements of OX of degree a+ k for all a ∈ Z.

Assume that HomOX
(ID,OX) is generated by graded homomorphisms, a

sufficient condition for that is that OX is Noetherian (cf. [BH] p. 33). Then,
there is a unique natural grading on R extending the gradings of OX and
HomOX

(ID,OX). Under this grading, i is homogeneous of degree 0, hence the
ideal (i− 1) ⊂ R is homogeneous and R1 and unprOX

ID become graded rings.

4.1. Relation with OX [I−1
D ]

From now on, we assume that ID contains an OX -regular element. We
denote by K(X) the total quotient ring of OX , i.e., the localization of OX with
respect to the multiplicatively closed subset of OX consisting of all OX -regular
elements, and we set

I−1
D = {f ∈ K(X) : fID ⊂ OX}.

I−1
D is an OX -submodule of K(X), which under the above assumption that

ID contains an OX -regular element is naturally isomorphic to HomOX
(ID,OX).

Indeed, the map

I−1
D → HomOX

(ID,OX)

sends f ∈ I−1
D to the multiplication map by f , while the inverse map sends

g ∈ HomOX
(ID,OX) to g(q)/q ∈ I−1

D , where q ∈ ID is any OX -regular element.
In the following we will identify these two isomorphic OX -modules.

We denote by OX [I−1
D ] the OX -subalgebra of K(X) generated by I−1

D . The
inclusion I−1

D ⊂ OX [I−1
D ] and the universal property of R = SymOX

I−1
D induce

a surjective homomorphism of OX -algebras

ρ : R→ OX [I−1
D ],

which restricted to the first graded part of R is the identity.

Lemma 4.1. The natural inclusion OX ⊂ R as degree 0 graded part
induces injective maps OX → R1 and OX → unprOX

ID.

Proof. The second claim follows from the first, since T contains only OX -
regular elements. We will show that OX ∩ (i− 1) = 0 ⊂ R, this will prove the
first claim.
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Let a ∈ OX ∩ (i − 1). There exist homogeneous elements b0, . . . , br of R,
with degree of bt equal to t, such that

a = (1− i)(b0 + · · ·+ br).

Comparing homogeneous degrees we get 0 = bri = air+1. Using the map ρ we
get 0 = ρ(air+1) = a.

Clearly (i− 1) ⊂ ker ρ, so there is an induced map

ρ1 : R1 → OX [I−1
D ].

Lemma 4.2. We have

ker ρ1 = J2,

where

J2 = {u ∈ R1 : there exists t ∈ OX which is OX -regular with tu = 0 ∈ R1}.
Proof. It is clear that J2 ⊂ ker ρ1. We will show the opposite inclusion.

By the assumptions, there exists q ∈ ID which is OX -regular. Therefore, if
a ∈ I−1

D , there exists z ∈ OX ⊂ R1 (depending on a) with

qa− z = 0 ∈ R1.

Let u ∈ ker ρ1. Since R1 is generated as a ring by I−1
D , u is a polynomial in

elements of I−1
D , hence for a sufficiently large integer n there exists z ∈ OX ⊂ R1

with

qnu− z = 0 ∈ R1.

Since u ∈ ker ρ1 we necessarily have ρ1(z) = 0, hence z = 0.

By the above, the map ρ1 factors through the natural quotient maps

R1 → unprOX
ID → OX [I−1

D ]

The last map unprOX
ID → OX [I−1

D ] is often (examples of Section 7, normal
case of unprojection of type Kustin–Miller ([PR, Remark 1.3]), generic type II
[P2], generic type III [P3]) but not always an isomorphism.

Example 4.1. Consider the Kustin–Miller unprojection pair (cf. [P,
Section 4])

ID = (x, y) ⊂ OX = k[x, y]/(x2 − y3)

and set

u =
y2

x
=
x

y
∈ I−1

D .

Then, u2−y is zero in OX [I−1
D ] ⊂ K(X), but, using Theorem 5.1 below, u2−y

is nonzero in unprOX
ID.
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Remark 4. It is obvious that when ρ1 is an isomorphism, we have that
unprOX

ID is isomorphic to OX [I−1
D ] and to R1 (case of only linear relations).

In the generic type II unprojection [P2], ρ1 is not an isomorphism (there exist
quadratic relations) but still unprOX

ID is isomorphic to OX [I−1
D ].

Remark 5. In our experience, we have often found easier to first study
the ring OX [I−1

D ] and then use the results to study the unprojection ring
unprOX

ID.

Remark 6. Unlike the case where OX is Gorenstein, the OX -module
Ext1OX

(OD,OX) which appears in (4.1) in general depends both on OD and
OX . For an example, fix

OD =
k[x1, x2, x3]
(x1, x2, x3)

,

where k is any field, and set

(OX)n =
k[x1, x2, x3]

(IX)n
,

where (IX)n is generated by the maximal minors of a general n×n+ 1 matrix
with linear entries in xi.

Remark 7. It will be very interesting to study under which conditions
good properties of the unprojection initial data are preserved by the unpro-
jection ring. Compare [PR, Theorem 1.5], [P2, Theorem 2.15] and [P3, Theo-
rem 3.5].

5. Compatibility with previously defined unprojections

5.1. Case of unprojection of type Kustin–Miller
In this subsection, we prove that Definition 4.1 generalizes Definition 1.2

of [PR].
Assume we are under the assumptions of [PR, Section 1]. That is, OX

is a local Gorenstein ring, and ID = (f1, . . . , fr) ⊂ OX is a codimension
one ideal such that the quotient ring OD = OX/ID is also Gorenstein. We
choose as in [PR] an injective map s̃ : ID → OX generating the OX -module
HomOX

(ID,OX)/OX , and we set gi = s̃(fi) ∈ OX .
Let

ψ : OX [S]→ R

be the OX -algebra homomorphism with ψ(S) = s̃ ∈ R1, where OX [S] is the
polynomial ring over OX in one variable. The map ψ is not surjective, but
induces two surjective maps

ψ1 : OX [S]→ R1
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and

ψ2 : OX [S]→ unprOX
ID.

The following lemma gives a presentation of I−1
D = HomOX

(ID,OX) as
OX -module.

Lemma 5.1. As an OX-module

I−1
D
∼= OXs0 ⊕OXs1

(fis1 − gis0)
,

where s0 corresponds to the inclusion i : ID → OX , and s1 corresponds to s̃.

Proof. Assume l1, l2 ∈ OX with

l1i− l2s̃ = 0 ∈ I−1
D .

Then

l2s̃ = 0 ∈ HomOX
(ID,OX)/OX

∼= OD,

hence l2 ∈ ID. Fix q ∈ ID an OX -regular element, such an element exists since
OX is Cohen–Macaulay and ID has codimension one. Then

l1q = (l1i)(q) = l2s̃(q) = s̃(l2q) = qs̃(l2),

therefore l1 = s̃(l2).

Using elementary properties of the symmetric algebra of a module (cf. [Ei,
p. 570 Prop. A2.2]) we have the following corollary.

Corollary 5.1. We have that

kerψ1 = (Sfi − gi).

Theorem 5.1. We have that

kerψ2 = (Sfi − gi).

As a consequence, Definition 4.1 of unprojection generalizes Definition 1.2 of
[PR] and

unprOX
ID ∼= R1.

Proof. Let h = h(S) = anS
n + · · · + a0 ∈ kerψ2, with ai ∈ OX and

an �= 0. We prove by induction on the degree n of h that h ∈ (Sfi − gi).
Assume n = 0. Then h ∈ OX and th = 0 ∈ OX for t ∈ T implies that

h = 0, since T contains only OX -regular elements.
Assume n ≥ 1, and that the result is true for all polynomials of degree

strictly less than n. Using Corollary 5.1, and the definition of unprOX
ID,

there exist li(S) ∈ OX [S] and t ∈ T , with

th(S) =
∑

li(S)(Sfi − gi) ∈ OX [S].
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Write

li = mki
Ski + lower terms,

with mki
∈ OX nonzero.

We remark that for ui ∈ OX ,
∑
uifi = 0 implies s̃(

∑
uifi) = 0, so∑

uigi = 0. Therefore, tan ∈ (fi) = ID. By definition, T contains only OD-
regular elements, hence an ∈ (fi). As a consequence, there exists h′ ∈ OX [S]
with degree strictly less than n, with h − h′ ∈ (Sfi − gi). By the inductive
hypothesis h′ ∈ (Sfi−gi), so also h ∈ (Sfi−gi) which proves the theorem.

5.2. Case of generic type II unprojection
In this subsection, we prove that Definition 4.1 generalizes Definition 2.2

of [P2].
We use the notations of [P2, Section 2]. In addition, we define JL ⊂

OX [T0, . . . , Tk] to be the ideal generated by all affine linear polynomials fa
i,j,p

and f b
j,p.

Lemma 5.2. Using the notations of [P2, Section 2], we have that

a11g
a
ij ∈ JL

for all i, j with i+ j ≤ k, and that

a11g
b
ij ∈ JL

for all i, j with i+ j ≥ k + 1.

Proof. We prove the first inclusion, the second follows by similar argu-
ments. For r = 1, 2, . . . , i we define elements yr, ur ∈ OX [T0, . . . , Tk] by

yr = (Tj(ar,1Ti−r+1 + ar+1,1Ti−r)− T0(ar,1Ti+j−r+1 + ar+1,1Ti+j−r))(−1)r+1

and

ur = (Tjf
a
r,1,i−r − T0f

a
r,1,i+j−r)(−1)r+1.

From the identity

a11(TiTj − T0Ti+j) = y1 + y2 + · · ·+ yi,

it follows that the element

a11g
a
ij − u1 − · · · − ui

is affine linear in Tp and in the kernel of φ. As a consequence, it is an element
of JL.

From the above Lemma 5.2 and Proposition 2.6 of [P2], it follows that
Definition 4.1 generalizes Definition 2.2 of [P2].



590 Stavros Argyrios Papadakis

5.3. Case of generic type III unprojection
In this subsection, we prove that Definition 4.1 generalizes Definition 3.3

of [P3].
We use the notations of [P3, Section 3].
From [P3, Theorem 3.5], it follows that the natural map R → OX [I−1

D ]
induces an isomorphism R/(i− 1) ∼= OX [I−1

D ]. Therefore, using Remark 4, we
have that

R1
∼= unprOX

ID ∼= OX [I−1
D ].

6. The Reid–Suzuki example

The aim of this section is to analyze using unprojection a construction
from [RS, p. 235], which provides an example of unprojection which is not the
unprojection of an ideal.

We fix a field K, the projective line P
1 with homogeneous coordinates v, w

over K, and three points P1 = [1, 0] = (w = 0), P2 = [0, 1] = (v = 0) and
Q = [1, 1] = (v − w = 0) of P1.

Remark 8. Recall that for a Q-divisor D of P1, H0(P1, D) is the K-
vector space

H0(P1, D) = {f ∈ K(P1)∗ : div(f) +D is effective Q-divisor } ∪ {0}.
Consider now the two Q-divisors

D1 =
3
5
P1 +

4
5
P2 −Q, D2 =

3
5
P1 +

4
5
P2

of P1, and the corresponding graded rings

OX =
⊕
k≥0

H0(P1, kD1),

OY =
⊕
k≥0

H0(P1, kD2).

By [Wa] OX and OY are both Cohen–Macaulay but not Gorenstein.

6.1. Explicit calculations for the rings OX and OY

Define y, z, t, u1, u2 ∈ K(P1) with

y =
(v − w)2

vw
, z =

(v − w)3

v2w
, t =

(v − w)4

v3w
,

u1 =
(v − w)5

v4w
, u2 =

(v − w)5

v2w3
.

We consider these elements as homogeneous elements of OX of degrees
2, 3, 4, 5, 5 respectively. It is easy to see that they generate the K-algebra OX ,
and

(6.1) OX
∼= K[Y, Z, T, U1, U2]/I,
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with

I = (Z2−Y T, h1 =ZT−Y U1, h2 =Y 4−ZU2, T
2−ZU1, Y

3Z−TU2, Y
3T−U1U2)

where Y, Z, T, U1, U2 are indeterminants of degrees 2, 3, 4, 5, 5 respectively.

Remark 9. Macaulay 2 code to produce OX

kk = ZZ/101
S = kk[v,w]
R = kk[y,z,t,u1,u2, Degrees => {2,3,4,5,5}]
M = matrix {{ v*w, v*w^2,v*w^3, v*w^4, v^3*w^2}}
I = kernel (map (S, R, M))
-- we have \Oh_X = S/I
-- codim I --answer 3 -- res I --answer r, r^6, r^8 , r^3,
-- \Oh_X is CM, but not Gorenstein

For the ring OY , we take coordinates s0, s1, y, z, t, u1, u2 where y, z, t, u1, u2

are as above and s0, s1 ∈ K(P1) with

(6.2) s0 = 1, s1 =
v − w
w

.

We consider s0 and s1 as homogeneous elements of OY of degrees 1 and 2
respectively, and we also notice that

s0 =
zy

y2 − t , s1 =
y3

y2 − t .

Using a computer algebra system such as Singular [GPS01] or Macaulay 2
[GS93-08], we easily get

(6.3) OY
∼= K[S0, S1, Y, Z, T, U1, U2]/J,

where S0, S1, Y, Z, T, U1, U2 are indeterminants of degrees 1, 2, 2, 3, 4, 5, 5 re-
spectively, and

J = J1 + J2 + J3

with J1 = I,

J2 =(−ZS0 + Y S1 − Y 2,−TS0 + ZS1 − Y Z, (Y 2 − T )S0 − Y Z,
h3 = −U1S0 + TS1 − Y T, (Y Z − U1)S0 − Y T,
h4 = (U1 − U2)S0 + Y 3 + Y T, h5 = Y TS0 − U1S1,

Z(U1 − U2)S0 + (Y 2U1 + TU2), T (U1 − U2)S0 + (Y ZU1 + U1U2),
h6 = −Y (Y 2 + T )S0 + (U1 + U2)S1 − Y U2,

h7 = 2Y U2S0 − Y (Y 2 + T )S1 − ZU2),

(the linear relations between s0 and s1) and

J3 = (h8 = f4 = Y S2
0 − S2

1 + ZS0 + Y 2)

(the quadratic relation).
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Remark 10. Macaulay 2 code to produce OY

kk = ZZ/101
S = kk[v,w]
newR = kk[y,z,t,u1,u2,s0,s1, Degrees =>{2,3,4,5,5,1,2}]
newM = matrix {{ v*w*(v-w)^2, v*w^2*(v-w)^3, v*w^3*(v-w)^4,

v*w^4*(v-w)^5, v^3*w^2*(v-w)^5, v*w, (v-w)*v^2*w}}
newI = kernel (phi2= map (S, newR, newM))
-- we have \Oh_Y = newR / newI
-- codim newI --answer 5
-- res newI --answer r, r^15, r^40, r^45, r^24, r^5
-- \Oh_Y is CM but not Gorenstein

Define the prime ideal ID ⊂ OX , with

ID = (z2 − y3, t− y2, u1 − yz, u2 − yz)

It is easy to see that ID is the ideal of the point [1, 1, 1, 1, 1] ∈ X = ProjOX ⊂
P(2, 3, 4, 5, 5).

We have

OY ⊂ OX [I−1
D ],

however the inclusion is strict. Indeed, using the following Macaulay 2 code
continuing the code in Remark 9

ID = ideal(t-y^2, z^2-y^3,u1-y*z, u2-y*z)
betti presentation Hom(ID, R^1/I)
presentation Hom(ID, R^1/I)

we get that HomOX
(ID,OX) is generated by

q0 =
z

y2 − t , q1 =
y2

y2 − t , q2 = 1

the first of homogenous degree −1, the other two of homogeneous degrees 0.
Clearly

s0 = yq0 and s1 = yq1.

Another calculation shows that

(u1 + u2)h8 = (s1 − y)h1 + (−2s0)h2 + (−z)h3 + (s0y)h4

+ (−2y)h5 + (−s1 − y)h6 + (s0)h7

and it is easy to see that u1+u2 is both OX and OD = OX/ID-regular element.
As a consequence, the quadratic relation h8 multiplied by a regular element is
inside the ideal generated by the linear relations (cf. Definition 2.1).
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6.2. The OX-algebra OY as unprojection
Define D̃ = ProjK[a] ∼= P(1) where a is an indeterminate of degree 1 and

the morphism of schemes

φ̃ : D̃ → X ⊂ P(2, 3, 4, 5, 5)

with

φ̃([a]) = [a2, a3, a4, a5, a5]

induced by the graded homomorphism of graded K-algebras

φ : OX → K[a]

specified by

φ(y) = a2, φ(z) = a3, φ(t) = a4, φ(u1) = φ(u2) = a5.

It is clear that the scheme–theoretic image of φ̃ is D ⊂ X, and also that
K[a] needs two generators, corresponding to 1 and a, when viewed as OX -
module via φ.

The interpretation of the calculations in Subsection 6.1 is that we have

OY
∼= unprOX

φ,

while OY is not isomorphic to unprOX
ID.

7. More examples

We discuss below more examples of unprojections related to geometry. In
all cases we start from a triple of embedded schemes

D ⊂ X ⊂ P

and construct by unprojection a new embedded scheme

Y ⊂ P′ .

P and P′ are usual projective spaces, in each case clear from the construction.
By IX , IY and ID we will denote the homogeneous ideals of the corresponding
schemes, and by OX ,OY etc. the corresponding homogeneous coordinate rings.
By abuse of notation, we will also denote by ID the homogeneous ideal of OX

corresponding to D ⊂ X. In all cases

OY = unprOX
ID

and moreover the map ρ1 defined in Section 4.1 is an isomorphism, hence by
Remark 4

OY
∼= R1

∼= OX [I−1
D ].
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If the minimal resolution of OX as OP-module taking no accounts of the
twists is

Oh0
P
←− Oh1

P
←− · · · ←− Ohd

P
←− 0

we say that the Betti vector of X is (h0, h1, . . . , hd), and similarly for OD and
OY .

We have checked the calculations of all examples using the computer alge-
bra programs Macaulay 2 [GS93-08] and Singular [GPS01] over the field Q and
the finite field Z101. We believe that with a little extra effort one should be able
to prove the results with coefficients over any field, and even more generally.

7.1. Rolling factors format
According to [Ki, Example 10.8], the rolling factors format first appeared

- in a disguised codimension four form - in D. Dicks Ph.D. thesis [D]. It has
also appeared in [R1], [S] and [BCP].

Let M be the 2× 2 matrix

M =
(
x1 x2 x3 x4

y1 y2 y3 y4

)
and denote by IM the ideal generated by the 2× 2 minors of M . Let

f1 = a1x1 + · · ·+ a4x4

f2 = b1x1 + · · ·+ b4x4

g1 = a1y1 + · · ·+ a4y4

g2 = b1y1 + · · ·+ b4y4

and set

IY = IM + (f1, f2, g1, g2).

The ideal IY defines a codimension five projectively Gorenstein subscheme Y ⊂
P

15 with Betti vector (1, 10, 19, 19, 10, 1).
Let N be the submatrix of M obtained by deleting the first column of M ,

and denote by IN the ideal generated by the 2× 2 minors of N .
Define X ⊂ P13 (with coordinates of P13 those of P15 minus x1, y1) by

IX = IN + (b1f1 − a1f2, b1g1 − a1g2).

X is a codimension three projectively Gorenstein subscheme with Betti vector
(1, 5, 5, 1).

Consider the subscheme D ⊂ X with

ID = IX + (a1, b1).

The ideal ID is codimension four projectively Cohen–Macaulay with Betti vec-
tor (1, 5, 9, 7, 2) (actually ID is a hyperplane section of IN ), and we have

OY = unprOX
ID ∼= R1

∼= OX [I−1
D ].
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7.2. Veronese surface
Let Y ⊂ P5 be the Veronese surface. It is well known that if

M =

 a11 a12 a13

a22 a23

sym a33


is the generic 3 × 3 symmetric matrix on the coordinates of P

5, then IY is
generated by the six 2× 2 minors of M . In addition, Y has codimension three
and Betti vector (1, 6, 8, 3). Therefore, it is projectively Cohen–Macaulay, but
not projectively Gorenstein.

Let N be the submatrix of M obtained by deleting the first row of M .
Define X ⊂ P

4 (with coordinates of P4 those of P5 minus a11) with IX
generated by the three 2 × 2 minors of N . X has codimension two and Betti
vector (1, 3, 2). Consider the codimension three complete intersection D ⊂ P4,
with

ID = (a22, a23, a33).

We have D ⊂ X and

OY = unprOX
ID ∼= R1

∼= OX [I−1
D ].

7.3. Grass(2,6)
Let Y ⊂ P14 be the Grassmannian Grass(2, 6) of dimension 2 vector sub-

spaces of a 6 dimensional vector space in its natural Plücker embedding. It is
well known that if M = [aij ] is the generic 6 × 6 skew–symmetric matrix on
the coordinates of P 14, then IY is the ideal generated by the 15 4× 4 Pfaffians
of M (that is, the Pfaffians of all 4× 4 skew–symmetric submatrices of M ob-
tained by deleting from M two rows and the corresponding two columns). In
addition, Y is codimension six and projectively Gorenstein, with Betti vector
(1, 15, 35, 42, 35, 15, 1).

Let N be the 5× 5 submatrix of M obtained by deleting the first row and
the first column of M , and let Pf(N) be the ideal generated by the 5 4 × 4
Pfaffians of N .

Define X ⊂ P
12 (with coordinates of P12 those of P14 minus a12, a13) by

IX = Pf(N) + (a14a56 − a15a46 + a16a45),

and D ⊂ X with

ID = IX + (a45, a46, a56).

X is codimension four projectively Gorenstein with Betti vector (1, 6, 10,
6, 1), and D is codimension five projectively Cohen–Macaulay with Betti vector
(1, 6, 14, 16, 9, 2). We have

OY = unprOX
ID ∼= R1

∼= OX [I−1
D ].
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7.4. Spinor Variety
Denote by Y ⊂ P 15 the ten-dimensional spinor variety Spin(5, 10) in its

canonical embedding. It has Betti vector (1, 10, 16, 16, 10, 1), hence it is pro-
jectively Gorenstein.

According to [Ki, Problem 8.7],

IY = (pos1, . . . ,pos5, neg1, . . . ,neg5),

where

pos1 = zy1 − x23x45 + x24x35 − x25x34

pos2 = zy2 − x13x45 + x14x35 − x15x34

pos3 = zy3 − x12x45 + x14x25 − x15x24

pos4 = zy4 − x12x35 + x13x25 − x15x23

pos5 = zy5 − x12x34 + x13x24 − x14x23

neg1 = x12y2 − x13y3 + x14y4 − x15y5

neg2 = x12y1 − x23y3 + x24y4 − x25y5

neg3 = x13y1 − x23y2 + x34y4 − x35y5

neg4 = x14y1 − x24y2 + x34y3 − x45y5

neg5 = x15y1 − x25y2 + x35y3 − x45y4.

Define X ⊂ P14 (with coordinates of P14 those of P15 minus z), by

IX = (neg1, . . . ,neg5).

X is a codimension four almost complete intersection (hence not projectively
Gorenstein) with Betti vector (1, 5, 12, 10, 2), as a consequence it is projectively
Cohen–Macaulay.

Consider the codimension five complete intersection D ⊂ P14 with

ID = (y1, y2, . . . , y5).

We have D ⊂ X, and

OY = unprOX
ID ∼= R1

∼= OX [I−1
D ].
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