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An upper bound for the 3-primary homotopy
exponent of the exceptional Lie group E7

By

Stephen D. Theriault

Abstract

A new homotopy fibration is constructed at the prime 3 which shows
that the quotient group E7/F4 is spherically resolved. This is then used
to show that the 3-primary homotopy exponent of E7 is bounded above
by 323, which is at most four powers of 3 from being optimal.

1. Introduction

Let p be a prime. A torsion Lie group is a Lie group which has p-torsion
in its integral cohomology. When p is odd the only torsion Lie groups which
are connected, compact, and simple are F4, E6, E7, and E8 at the prime 3,
and E8 at the prime 5. The homotopy exponent of a space X is the least power
of p which annihilates the p-torsion in π∗(X). We write this as exp(X) = pr.
In [Th1] upper bounds were calculated for the homotopy exponents of F4 and
E6 at 3 which equalled the known lower bounds, thereby determining exact
values for the homotopy exponents. In [Th2] an upper bound was calculated
for the homotopy exponent of E8 at 5 which differed from the known lower
bound by one power of 5. The purpose of this paper is to deal with the next
case by calculating an upper bound on the homotopy exponent of E7 at 3.
Specifically, we show:

Theorem 1.1. exp(E7) ≤ 323.

A lower bound for the 3-primary homotopy exponent of E7 was given by
Davis [D2]. He calculated the v1-periodic homotopy groups of E7, which repre-
sent a certain subcollection of all the homotopy groups of E7. His calculation
showed that exp(E7) ≥ 319. Thus Theorem 1.1 is at most four powers of 3
from being optimal. Davis has conjectured that the homotopy exponent of any
connected, compact, simple Lie group equals the exponent of its v1-periodic
homotopy groups. Theorem 1.1 leaves open the possibility that there exists
elements in π∗(E7) which are of order greater than 319. It would be very inter-
esting to know if such elements exist.
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Theorem 1.1 is proved by closely examining the fibration F4 −→ E7 −→
E7/F4. A crucial step, which is of interest in its own right, is to show that
E7/F4 is spherically resolved. This positively resolves a conjecture of Mimura.
The lack of such a spherical resolution until now has often been a thorn in the
side when studying the 3-primary homotopy theory of E7. Cohomologically,
with mod-3 coefficients, we have H∗(E7/F4) ∼= Λ(x19, x27, x35), where the right
side is the exterior algebra on generators in dimensions 19, 27, and 35 respec-
tively. The action of the Steenrod algebra is trivial but there do exist nontrivial
secondary operations. It is well known that the stable class α2 ∈ πm+7(Sm)
is detected by a secondary operation Φ. Mimura, as reported in [D2], showed
that Φx19 = x27 and Φx27 = x35. We prove:

Theorem 1.2. There is a 3-primary homotopy fibration

S19 −→ E7/F4 −→ B(27, 35)

where H∗(B(27, 35)) ∼= Λ(x27, x35) with Φx27 = x35 and there is a homotopy
fibration

S27 −→ B(27, 35) −→ S35.

An alternative spherical resolution is given by:

Corollary 1.1. The composition E7/F4 −→ B(27, 35) −→ S35 results
in a homotopy fibration

B(19, 27) −→ E7/F4 −→ S35

where H∗(B(19, 27)) ∼= Λ(x19, x27) with Φx19 = x27 and there is a homotopy
fibration

S19 −→ B(19, 27) −→ S27.

The strategy behind the proof of Theorem 1.2 is as follows. The standard
first approach to constructing a map E7/F4 −→ B(27, 35) which is an injection
in cohomology is to start with a map from some skeleton of E7/F4 to B(27, 35)
and then extend over the remaining cells of E7/F4 one at a time. In trying
to do so, however, one encounters potential obstructions to the extensions in
the homotopy groups of B(27, 35) which are difficult to resolve. Instead, we
take a different approach which is based on Cohen and Neisendorfer’s [CN] con-
struction of finite H-spaces. We produce a space B whose 62-skeleton satisfies:
(i) H∗(B62) ∼= H∗((E7/F4)62) and (ii) there exists a map B62 −→ B(27, 35)
which is an injection in cohomology. Other methods from [CN] then allow us
to produce a homotopy equivalence (E7/F4)62 � B62. It remains to extend
(E7/F4)62 −→ B(27, 35) over the 81-cell of E7/F4. This is done using Davis’
proof [D2] that the top cell of E7/F4 is stably spherical.

This paper is organized as follows. Section 2 records some simple but useful
facts about the homology of E7/F4. Section 3 reviews the work of Cohen and
Neisendorfer and does the work to set up Section 4, which proves Theorem 1.2.
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Section 5 records a method for calculating an upper bound on the homotopy
exponent of a spherically resolved space. This requires certain ingredient maps,
which Section 6 establishes in the context of E7. The exponent bound in
Theorem 1.1 is then proved in Section 7.

2. The homology of E7/F4

This brief section simply records some observations about the homol-
ogy of E7/F4 which the reader may find helpful to keep in mind. Dualizing
H∗(E7/F4) ∼= Λ(x19, x27, x35) we obtain H∗(E7/F4) ∼= Λ(u, v, w) where u, v, w
are in degrees 19, 27, 35 respectively. Let Φ∗ be the hom-dual of the secondary
operation Φ. Then Φ∗w = v and Φ∗v = u.

Let A = (E7/F4)35, the 35-skeleton of E7/F4. Observe that A has three
cells and H∗(A)={u, v, w}. It is useful to observe that H∗(E7/F4)∼=Λ(H̃∗(A)).
Let V = H̃∗(A). In terms of monomials, we can write Λ(V ) ∼= ⊕3

i=1Λi(V ),
where Λi(V ) consists of the monomials of length i in Λ(V ). Observe that
Λ1(V ) = V has dimension 35, Λ2(V ) = {uv, uw, vw} has “connectivity” > 35
and dimension 62, while Λ3(V ) = {uvw} consists of a single element in de-
gree 81. So Λ1(V ), Λ2(V ), and Λ3(V ) occupy distinct degree ranges.

We will also often use the 62-skeleton of E7/F4. Observe that there is an
isomorphism H∗((E7/F4)62) ∼= Λ1(V ) ⊕ Λ2(V ).

3. Cohen and Neisendorfer’s construction of finite H-spaces

In this section we review the work of Cohen and Neisendorfer [CN] in
detail. Their methods led to a construction of finite p-local H-spaces, which
we state in Theorem 3.1. But the methods can do more, as they knew, and
we present one generalization in Theorem 3.2. This is then applied in the
context of E7/F4. In terms of the strategy to prove Theorem 1.2 outlined in
the Introduction, the goal of this section is to produce a 3-local space F such
that H∗(F62) ∼= H∗((E7/F4)62) and there exists a map F62 −→ B(27, 35) which
is onto in homology.

We begin with Cohen and Neisendorfer’s statement regarding H-spaces.
Assume that homology is taken with mod-p coefficients.

Theorem 3.1. Fix an odd prime p. Let A be a p-local complex of l odd
dimensional cells, where l < p − 1. Then there is a homotopy fibration B −→
R −→ ΣA satisfying:

(a) ΩΣA � B × ΩR;

(b) H∗(B) ∼= Λ(H̃∗(A));

(c) the composite A
E−→ ΩΣA −→ B includes H̃∗(A) into H∗(B) as

the generating set of the exterior algebra.

Further, all of these statements are functorial for maps f : A −→ A′ between
spaces satisfying the hypotheses.
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Note that Theorem 3.1 (a) implies B is an H-space. The functorial prop-
erty implies that B is spherically resolved. For if the bottom cell of A is S2m+1

then the homotopy cofibration

S2m+1 −→ A −→ A′

results in a homotopy fibration

S2m+1 −→ B −→ B′.

We can then iterate with respect to A′ and B′.
Ideally, we would like to apply Theorem 3.1 to A = (E7/F4)35. Then the

resulting H-space B would satisfy H∗(B) ∼= Λ(H̃∗(A)) ∼= H∗(E7/F4) and B
would be spherically resolved. Showing E7/F4 and B are homotopy equivalent
would then prove Theorem 1.2. However, as p = 3 and A has three cells,
Theorem 3.1 does not apply. Instead, we go back to the methods that made
Theorem 3.1 work and derive a more general statement in Theorem 3.2 which
can be applied to A, although in a more limited way.

Everything that follows comes from [CN]. The idea is to study ΩΣA and
see if it is possible to produce a retract corresponding to B. The first step is
to see what is possible in homology. The Bott-Samelson Theorem says that
H∗(ΩΣA) ∼= T (H̃∗(A)), where T ( ) is the free tensor algebra. It is well known
that T (H̃∗(A)) is isomorphic to the universal enveloping algebra of the free
Lie algebra generated by H̃∗(A). So we need to consider how the universal
enveloping algebra behaves.

In general, for a graded vector space V , let L = L〈V 〉 be the free Lie
algebra generated by V . Let UL be the universal enveloping algebra. Let
Lab = Lab〈V 〉 be the free abelian Lie algebra generated by V , that is, the
bracket in Lab is identically zero. Let [L, L] be the kernel of the quotient map
L −→ Lab. The short exact sequence of Lie algebras

0 −→ [L, L] −→ L −→ Lab −→ 0

results in a short exact sequence of Hopf algebras

0 −→ U [L, L] −→ UL −→ ULab −→ 0.

When the elements of V are all of odd dimension, an explicit Lie basis for [L, L]
is given by the following.

Lemma 3.1. Suppose V = {u1, . . . , ul} where each ui is of odd dimen-
sion and l is a positive integer. Let L = L〈V 〉. Then a Lie basis for [L, L] is
given by the elements

[ui, uj ], [uk1 , [ui, uj ]], [uk2 , [uk1 , [ui, uj ]]], . . .

where 1 ≤ j ≤ i ≤ l and 1 ≤ kt < kt−1 < · · · < k2 < k1 < i. In particular, the
basis elements have bracket lengths from 2 through l + 1.
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We now bring in the topology. Let A be a CW -complex consisting of l odd
dimensional cells. Localize at p. Let V = H̃∗(A) and L = L〈V 〉. We would
like to geometrically realize the Lie basis elements of [L, L] in Lemma 3.1 as
certain Whitehead products. By [SW] we can do so if the bracket length is not
a power of p. This is a much stronger statement than we need, however. For
our purposes it will suffice to geometrically realize the brackets of length < p.

To describe how this comes about, let A(k) be the k-fold smash of A with
itself. Let

wk : ΣA(k) −→ ΣA

be the k-fold Whitehead product of the identity map on ΣA with itself. Observe
that if σ is a permutation in the symmetric group Σk on k letters then there
is a corresponding map σ : ΣA(k) −→ ΣA(k) defined by permuting the smash
factors. Define a map

βk : ΣA(k) −→ ΣA(k)

inductively by letting β2 = 1 − (1, 2) and

βk = (1 − (k, k − 1, . . . , 2, 1)) ◦ (1 ∧ βk−1).

In homology (ignoring the suspension coordinate),

(βk)∗(x1 ⊗ · · · ⊗ xk) = [x1, [x2, . . . [xk−1, xk] . . .]].

This map has the property that (βk)∗ ◦ (βk)∗ � k · (βk)∗. Thus if we restrict
to k < p and define βk = 1

kβk then (βk)∗ is an idempotent. Let Rk be the
mapping telescope of βk. Then H∗(Rk) ∼= Im (βk)∗. In particular, the cells
in Rk are in one-to-one correspondence with the Lie basis elements in [L, L] of
bracket length k, where the dimension of the cell is one more than the degree
of the corresponding bracket. Note that if A has l cells, where l < p − 2, then
Lemma 3.1 implies that [L, L] has no basis elements of length k for l +2 ≤ k ≤
p− 1, and so H∗(Rk) = 0, implying that Rk is homotopy equivalent to a point.
Let Sk be the mapping telescope of 1−βk. As (βk)∗ +(1−βk)∗ is the identity
map, the map

ΣA(k) −→ Rk ∨ Sk

is an isomorphism in homology and so is a homotopy equivalence. Let R be
the wedge sum

R �
p−1∨
k=2

Rk.

Define

R −→ ΣA

as the wedge sum of the composites

Ri −→ ΣA(i) wi−→ ΣA.
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Observe that the cells of R are in one-to-one correspondence with the Lie basis
elements of [L, L] of bracket length k for 2 ≤ k ≤ p − 1. Define B by the
homotopy fibration

B −→ R −→ ΣA.

Cohen and Neisendorfer [CN] proved the following result. Note that their
explicit statement restricted to the case when l < p − 1, but their argument
held in the generality stated below.

Theorem 3.2. Let A be a p-local CW complex consisting of l odd di-
mensional cells, where l is some positive integer. Let V = H̃∗(A) and let
L = L〈V 〉. Then there is a homotopy fibration sequence

ΩR −→ ΩΣA −→ B −→ R −→ ΣA

with the following property. Let t be the least degree of the Lie basis elements
in [L, L] of length p. A homological model for the homotopy fibration ΩR −→
ΩΣA −→ B in degrees < t is given by the short exact sequence of Hopf algebras

0 −→ U [L, L] −→ UL −→ ULab −→ 0.

In particular, if l < p − 1 then no basis element of [L, L] has length p and
so t = ∞, implying that H∗(B) ∼= ULab

∼= Λ(H̃∗(A)). Furthermore, all of
these statements are functorial for maps A −→ A′ between spaces satisfying the
hypotheses.

Example 3.1. Let p = 3. Let A = (E7/F4)35. Let V = H̃∗(A), so
V = {u, v, w} where u, v, and w have degrees 19, 27, and 35 respectively. Note
that H∗(E7/F4) ∼= Λ(V ). Let L = L〈V 〉. Using the Lie basis for [L, L] in
Lemma 3.1, observe that the basis element of length three or more of least
degree is [u, [v, u]], which has degree 65. Theorem 3.2 says there is a homotopy
fibration sequence

ΩR −→ ΩΣA
∂−→ B −→ R −→ ΣA

where the terms ΩR −→ ΩΣA −→ B are modelled homologically through di-
mension 64 by the short exact sequence of Hopf algebras 0 −→ U [L, L] −→
UL −→ ULab −→ 0. Note that as p = 3 the wedge defining R consists only
of the summand R2, which corresponds to the length two brackets in [L, L].
The isomorphism H∗(B) ∼= ULab

∼= Λ(u, v, w) through degree 64 accounts for
every element in Λ(u, v, w) except uvw. Note that we only need this isomor-
phism up to degree 62 as the length two monomial of highest degree is vw. In
particular, there is an isomorphim H∗(B62) ∼= H∗((E7/F4)62). Further, there
are isomorphisms UL ∼= T (V ) and ULab

∼= S(V ), where T (V ) is the tensor
algebra generated by V and S(V ) is the symmetric algebra generated by V .
The map UL −→ ULab is the abelianization T (V ) −→ S(V ). Thus ∂∗ is the
abelianization of the tensor algebra through degree 62.
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We can push Example 3.1 further by using the functoriality of Theorem 3.2.

Lemma 3.2. There is a map

B62 −→ B(27, 35)

which is an epimorphism in homology, where B(27, 35) is a space satisfying:
(i) H∗(B(27, 35)) ∼= Λ(y27, y35) with Φ∗y35 = y27 and (ii) there is a homotopy
fibration S27 −→ B(27, 35) −→ S35.

Proof. The content of Example 3.1 is assumed throughout. Also note
that the homological description of E7/F4 in Section 2 implies there are (dual)
secondary operations Φ∗w = v and Φ∗v = u in V = H̃∗(A). Including S19 into
A gives a homotopy cofibration

S19 −→ A −→ A′

and then including S27 into A′ gives a homotopy cofibration

S27 −→ A′ −→ S35.

The definition of A′ implies that Φ∗w = v in H̃∗(A′). Let V ′ = H̃∗(A′) = {v, w}
and let V ′′ = H̃∗(S35) = {w}. Let L′ = L〈V ′〉 and L′′ = L〈V ′′〉. Observe that
the Lie basis elements of length three or more in [L′, L′] are in degrees 89 and
higher, while the Lie basis elements of length three or more in [L′′, L′′] are
in degrees 105 and higher. Theorem 3.2 shows there are homotopy fibrations
B′ −→ R′ −→ ΣA′ and B′′ −→ R′′ −→ S35 whose associated homotopy
fibrations ΩR′ −→ ΩΣA′ −→ B′ and ΩR′′ −→ ΩΣS35 −→ B′′ are modelled
homologically through dimensions 88 and 104 respectively by the short exact
sequences of Hopf algebras 0 −→ U [L′, L′] −→ UL′ −→ UL′

ab −→ 0 and 0 −→
U [L′′, L′′] −→ UL′′ −→ UL′′

ab −→ 0. The functoriality of Theorem 3.2 then
shows there is a homotopy fibration diagram (in which the rows are fibrations)

(3.1)

ΩR ��

��

ΩΣA ��

��

B

��
ΩR′ ��

��

ΩΣA′ ��

��

B′

��
ΩR′′ �� ΩΣS35 �� B′′

where the diagram as a whole is modelled homologically through degree 62 by
the diagram of Hopf algebras (in which the rows are short exact sequences)

0 �� U [L, L] ��

��

UL ��

��

ULab
��

��

0

0 �� U [L′, L′] ��

��

UL′ ��

��

UL′
ab

��

��

0

0 �� U [L′′, L′′] �� UL′′ �� UL′′
ab

�� 0.



548 Stephen D. Theriault

Here, the vertical arrows are determined by the projections

V = {u, v, w} −→ V ′ = {v, w} −→ V ′′ = {w}
of the generating sets of the underlying Lie algebras.

Restrict (3.1) to 62-skeletons. In particular, consider the sequence B62 −→
(B′)62 −→ (B′′)62. Observe that UL′

ab
∼= Λ(v, w) has dimension 62. So

H∗((B′)62) ∼= UL′
ab

∼= Λ(v, w). Further, Φ∗w = v since the same is true
in H∗(ΩΣA) ∼= UL. Define the space B(27, 35) as (B′)62. Then the only
assertion in the statement of the Lemma which remains to be proved is the
existence of the homotopy fibration S27 −→ B(27, 35) −→ S35. Observe that
UL′′

ab
∼= Λ(w) has dimension 35. So H∗((B′′)62) ∼= UL′′

ab
∼= Λ(w). Thus (B′′)62

is homotopy equivalent to S35. The map (B′)62 −→ (B′′)62 then becomes
a map B(27, 35) −→ S35 which is onto in homology. Its homotopy fiber is
immediately seen to have homology isomorphic to Λ(v) by the Serre spectral
sequence, and so is homotopy equivalent to S27.

Another aspect of Cohen and Neisendorfer’s [CN] work we will use is the
construction of certain retractions. Again, let A be a p-local CW -complex such
that H̃∗(A) is concentrated in odd degrees. Consider H∗(ΩΣA) ∼= T (H̃∗(A)).
Let V = H̃∗(A). Let Tk(V ) be the submodule of T (V ) consisting of the tensors
of length k. Let Sk(V ) be the submodule of Tk(V ) consisting of the symmetric
tensors of length k. Let V ⊗k be the k-fold tensor product of V with itself. The
symmetric group Σk on k letters acts on V ⊗k by permuting the tensor factors.
If k < p then a standard calculation shows that the map sk : V ⊗k −→ V ⊗k

defined by sk = 1
k!Σσ∈Σk

σ is an idempotent. The image of sk is isomorphic to
Sk(V ). All this algebra can be realized geometrically. The symmetric group
Σk acts on A(k) by permuting the smash factors. Suspending so that we can
add and restricting to k < p, the algebraic map sk has a geometric analogue
s̄k : ΣA(k) −→ ΣA(k). If A is a co-H space then [ΣA(k), ΣA(k)] is an abelian
group and we can perform the arithmetic to show that s̄k is an idempotent. If
A is not a co-H space then we only know in general that s̄k is a self-map, but its
image in homology is an idempotent as (s̄k)∗ is the suspension of sk. In either
case, the mapping telescope Tel(s̄k) of s̄k has the property that H∗(Tel(s̄k)) ∼=
ΣSk(V ). Consequently, if k < p then

∨k
i=1 Tel(s̄k) is a retract of

∨k
i=1 ΣA(k)

and has the property that H∗(
∨k

i=1 Tel(s̄k)) ∼= ⊕k
i=1ΣSk(V ).

Using this in tandem with the James decomposition [J] ΣΩΣA �∨∞
i=1 ΣA(i) we obtain:

Lemma 3.3. If k < p then
∨k

i=1 Tel(s̄k) is a retract of ΣΩΣA and has
the property that

H∗

(
k∨

i=1

Tel(s̄k)

)
∼=

k⊕
i=1

ΣSk(V ).

In the context of E7/F4 at 3 we use Lemma 3.3 as follows. Let A be the
35-skeleton of E7/F4, so H̃∗(A) ∼= {u, v, w} where u, v, w have degrees 19, 27,
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and 35 respectively. Let V = {u, v, w}. Then H∗(E7/F4) ∼= Λ(V ). As u, v, w
are of odd degree, Λ(V ) is isomorphic to the symmetric algebra S(V ), so we
can write H∗(E7/F4) ∼= ⊕3

i=1Si(V ), where Si(V ) consists of the tensors of
length i in S(V ). Observe that S2(V ) has dimension 62 while S3(V ) consists
of the single element uvw in degree 81. Thus H∗((E7/F4)62) ∼= S1(V )⊕S2(V ).
We do not work with (E7/F4)62 directly because we do not yet know enough
about it. Instead, we work with the 62-skeleton of the space B constructed
in Example 3.1. Recall that there is a homotopy fibration sequence ΩΣA

∂−→
B −→ R −→ ΣA and H∗(B62) ∼= S1(V ) ⊕ S2(V ). Further, in homology the
map ∂∗ is the abelianization T (V ) −→ S(V ) through degree 62.

Lemma 3.4. There is a map B62 −→ ΩΣA such that the composite
B62 −→ ΩΣA

∂−→ B is a monomorphism in homology.

Proof. By Lemma 3.3 with p = 3, there is a map Tel(s̄1) ∨ Tel(s̄2) −→
ΣΩΣA whose image in homology is ΣS1(V )⊕ΣS2(V ). Since ∂∗ is the abelian-
ization T (V ) −→ S(V ) through degree 62, the composite Tel(s̄1)∨Tel(s̄2) −→
ΣΩΣA

Σ∂−→ ΣB is an isomorphism in homology through degree 63. Thus
Tel(s̄1) ∨ Tel(s̄2) −→ ΣB62 is a homotopy equivalence. This proves a sus-
pended version of the assertion: there is a map ΣB62 −→ ΣΩΣA such that the
composite ΣB62 −→ ΣΩΣA

Σ∂−→ ΣB is a monomorphism in homology.
It remains to desuspend. Consider the composite θ : B62 −→ ΩΣΩΣA

Ωev−→
ΩΣA where the left map is the adjoint of ΣB62 −→ ΣΩΣA and ev is the
evaluation map. For convenience, rewrite the elements of V = {u, v, w} as
{u1, u2, u3}. To prove the assertion we will show that, in homology, the com-
posite B62

θ−→ ΩΣA
∂−→ B acts as the identity map on both direct summands

S1(V ) = V and S2(V ) of H∗(B62). Observe that in homology the adjunction,
the evaluation, and ∂ all act as the identity on the generators in V , and there-
fore so do θ∗ and (∂ ◦ θ)∗. Next, consider how θ∗ acts on S2(V ). We have
θ∗(ui) = ui for 1 ≤ i ≤ 3. Since θ∗ is a coalgebra map, it commutes with the
reduced diagonal. A standard calculation then shows that θ∗(uiuj) = uiuj + λ
where λ is primitive. The module of primitives in H∗(ΩΣA) ∼= T (V ) consists
of the free Lie algebra L〈V 〉 and the 3rd-powers of even degree elements. In
degrees ≤ 62, there are no such 3rd-powers. As well, by comparing degrees,
λ cannot be an element of V , so we have λ ∈ [L, L] ⊆ L〈V 〉. As ∂∗ is the
abelianization T (V ) −→ S(V ) through degree 62, it therefore sends λ to zero
and so ∂∗ ◦ θ∗(uiuj) = uiuj . Thus ∂∗ ◦ θ∗ acts as the identity map on the
submodule S2(V ) ⊆ H∗(B62). This finishes the proof.

4. The spherical resolution of E7/F4

In this Section we prove Theorem 1.2. The proof considers E7/F4 in two
pieces. First, we prove a statement about (E7/F4)62 in Corollary 4.1 and then
we prove a property of the one remaining cell in dimension 81 in Lemma 4.1.

Proposition 4.1 is the crucial step. We know that B62 and (E7/F4)62 have
the same homology. We also know that B62 is “spherically resolved,” in the
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sense of Lemma 3.2, which is the property we want for E7/F4. We now connect
the two by showing that B62 and (E7/F4)62 are homotopy equivalent. To do
so, we consider the stablilization Q(E7/F4) of E7/F4. Here, for any space X,
there is a sequence of iterated suspensions

E∞ : X
E−→ ΩΣX

ΩΣE−→ Ω2Σ2X −→ · · · −→ Ω∞Σ∞X = Q(X).

Let E be the truncation

E : ΩΣX
ΩΣE−→ Ω2Σ2X −→ · · · −→ Q(X).

Consider the composite

θ : B62 −→ ΩΣA
ΩΣi−→ ΩΣE7/F4

E−→ Q(E7/F4)

where the left map comes from Lemma 3.4 and i is the skeletal inclusion.

Proposition 4.1. There is a lift

B62

θ

�����
�

�
�

�
λ

E7/F4
E∞

�� Q(E7/F4)

for some map λ.

Deferring the proof of Proposition 4.1 for the moment, let us first state the
consequence of interest.

Corollary 4.1. The restriction of λ to the 62-skeleton of E7/F4 results
in a homotopy equivalence B62

�−→ (E7/F4)62.

Proof. Recall that H∗(B62) is isomorphic to the submodule of the ex-
terior algebra Λ(u, v, w) consisting of the length 1 and 2 monomials. Con-
sider how the three maps comprising the definition of θ act on H∗(B62). By
Lemma 3.4, B62 −→ ΩΣA is a monomorphism in homology which sends
H∗(B62) ∼= S1(V )⊕S2(V ) onto the submodule S1⊕S2(V ) ⊆ T (V ) ∼= H∗(ΩΣA).
The definition of E shows it is a loop map, so E ◦ ΩΣi is a loop map, and so
(E ◦ΩΣi)∗ is multiplicative. As (E ◦ΩΣi)∗ acts as the identity on V = S1(V ),
it multiplicatively acts as the identity on S2(V ). Hence θ∗ is a monomorphism.
The factorization of θ in Proposition 4.1 then implies that λ∗ is a monomor-
phism. As H∗(B62) ∼= H∗((E7/F4)62), we see that λ∗ is in fact an isomorphism
in degrees ≤ 62, and so B62 −→ (E7/F4)62 is a homotopy equivalence.

Proof of Proposition 4.1. We need to consider the homology of Q(E7/F4)
up to dimension 63. For a simply connected space X, [DL] or [CLM] showed
that H∗(Q(X)) (homology with mod-p coefficients) is isomorphic to the free
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symmetric algebra generated by the independent admissible sequences of Dyer-
Lashof operations acting on H̃∗(X). Further, the map X

E∞−→ Q(X) induces
the inclusion of the generating set in homology. We write the Dyer-Lashof
operations using lower notation,

Qs(p−1) : Ht(X) −→ Hpt+s(p−1)(X),

and note that for odd primes s + t is required to be even. In our case, p = 3
and H∗(E7/F4) ∼= Λ(u, v, w) where u, v, w have degrees 19, 27, 35 respectively.
Excluding the elements coming from H∗(E7/F4), a basis for H∗(Q(E7/F4))
through dimension 63 is as follows:

(4.1)

Dimension Basis
58 βQ2u
59 Q2u
62 βQ6u
63 Q6u.

Write Pt
∗ for the hom-dual of the Steenrod operation Pt. Then there are Nishida

relations

P1
∗Q6u = Q2u

P1
∗βQ6u = 2βQ2u.

Define C by the homotopy cofibration

(4.2) E7/F4
E∞−→ Q(E7/F4) −→ C.

Since (E∞)∗ is an inclusion, a basis for H∗(C) through dimension 63 is given
by the images of the basis elements in (4.1). That is,

H∗(C) ∼= {y58, y59, y62, y63}
for ∗ ≤ 63 with βy59 = y58, βy63 = y62, P1

∗y62 = 2y58, and P1
∗y63 = y59.

In particular, C is 57-connected. As E7/F4 is 18-connected, the Serre exact
sequence implies the homotopy cofibration defining C is also a homotopy fibra-
tion through dimension 75. Thus, as B62 is 62-dimensional, we can regard (4.2)
as a homotopy fibration, which implies that the asserted lift λ will exist once
we show that the composite ϕ : B62

θ−→ Q(E7/F4) −→ C is null homotopic.
Since C is 57-connected, ϕ collapses out the 57-skeleton of B62, resulting

in a factorization

B62
q ��

ϕ

��

S62

φ

��
C C

for some map φ, where q is the pinch map onto the top cell. We will show that
φ is null homotopic, implying that ϕ is null homotopic.



552 Stephen D. Theriault

It suffices to restrict to the 62-skeleton of C. The homological description
of C implies that there is a homotopy cofibration

P 59(3) −→ C62 −→ S62.

Let x ∈ H62(S62) be a generator. If φ∗x = y58 then the relation P1
∗y62 = 2y58

implies that P1
∗x �= 0, a contradiction. Thus φ∗x = 0. Hence the composite

S62 φ−→ C −→ S62 is zero in homology and so is null homotopic. This results
in a lift

S62

φ

�����
�

�
�

γ

P 59(3) �� C62
�� S62

for some map γ. Here, we have used the fact that the Serre exact sequence
implies the homotopy cofibration along the bottom row of the diagram is also
a homotopy fibration through a dimension larger than 62. To deal with γ, use
the homotopy cofibration S58 −→ P 59(3) −→ S59. A simple calculation shows
that π62(P 59(3)) = Z/3Z, where the generator ᾱ1 is a lift of the stable class α1

which generates π62(S59) = Z/3Z. As α1 is detected by the Steenrod operation
P1, so is ᾱ1. But in H∗(C) we have P1

∗y63 = y59, implying that S59 ᾱ1−→ P 59(3)
has been coned off in C. Hence the composite S59 γ−→ P 59(3) −→ C – that is,
φ – is null homotopic, as required.

We now turn to the 81-dimensional cell of E7/F4. The statement in
Lemma 4.1 was proved in [D2]. The proof is included for the sake of com-
pleteness.

Lemma 4.1. The 81-dimensional cell in E7/F4 is stably spherical.

Proof. We prove the dual statement that the bottom cell of the Spanier-
Whitehead dual of E7/F4 stably splits off. Since E7/F4 is a manifold, its
Spanier-Whitehead dual is the Thom space of the stable normal bundle ν over
E7/F4. The bottom cell of this Thom space stably splits off if and only if J(f) =
0, where f : E7/F4 −→ BO classifies ν, and J is the stable J-homomorphism.
For any space X, the standard map KO(X) −→ J(X) is an epimorphism. But
in [D2] it is shown that KO(E7/F4) = 0 and so J(f) = 0.

Proof of Theorem 1.2. By Corollary 4.1, there is a homotopy equivalence
(E7/F4)62 � B62. Using this in combination with Lemma 3.2, we obtain a
map f : (E7/F4)62 −→ B(27, 35) which is onto in homology. Now consider the
homotopy cofibration

S80 −→ (E7/F4)62 −→ E7/F4

which attaches the top cell to E7/F4. Let g be the composite

g : S80 −→ (E7/F4)62
f−→ B(27, 35).
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If g is null homotopic then f extends to a map

h : E7/F4 −→ B(27, 35)

which is onto in homology because f is. A Serre spectral sequence calculation
then immediately shows that the homotopy fiber M of h satisfies H∗(M) ∼=
H∗(S19) and so M is homotopy equivalent to S19, completing the proof.

It remains to show that g is null homotopic. Consider the homotopy fibra-
tion

S27 −→ B(27, 35) −→ S35

from Lemma 3.2. Composing g to S35 gives an element in π80(S35). This is in
the stable range. On the other hand, Lemma 4.1 says that the attaching map
S80 −→ (E7/F4)62 is stably trivial, and so g is stably trivial. Thus g composed
to S35 is null homotopic. This means that g lifts to a map S80 −→ S27. But
by [To2], π80(S27) = 0. Hence g is null homotopic.

Proof of Corollary 1.1. The composition E7/F4 −→ B(27, 35) −→ S35

results in a homotopy pullback

S19 �� B(19, 27) ��

��

S27

��
S19 �� E7/F4

��

��

B(27, 35)

��
S35 S35

which defines the space B(19, 27). The asserted homotopy fibration is the
top row of the pullback. A Serre spectral sequence calculation applied to
the homotopy fibration B(19, 27) −→ E7/F4 −→ S35 immediately shows that
H∗(B(19, 27)) ∼= Λ(x19, x27) and H∗(E7/F4) surjects onto H∗(B(19, 27)). The
existence of the secondary operation Φx19 = x27 in H∗(B(19, 27)) follows.

5. A method for computing upper bounds on exponents

In this section we outline a general method for calculating an upper bound
on the homotopy exponent of spaces which arise as the total space in certain
homotopy fibrations. The method is also described and applied in [Th1, Th2].

If B is an H-space, the identity map can be multiplied by pr to give a map

B
pr

−→ B. Let B{pr} be the homotopy fiber of this map. By [N2], if p is odd
then the homotopy exponent of B{pr} is pr.

Lemma 5.1. Suppose there is a homotopy fibration

F
f−→ E

g−→ B
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where E and B are simply connected H-spaces. Suppose as well that there is a
map B

i−→ E such that g ◦ i � pr. Then there is a homotopy fibration

ΩF × ΩB
Ωf ·(−Ωi)−−−−−−→ ΩE −−−−−−→ B{pr}.

Consequently, exp(E) ≤ pr · max(exp(F ), exp(B)).

Proof. The homotopy g ◦ i � pr results in a homotopy pullback

B{pr} ��

��

B
pr

��

i

��

B

F
f �� E

g �� B.

Since E is an H-space we can multiply the maps f and −i. The pullback in
the diagram above then results in a homotopy fibration

B{pr} −−−−→ F × B
f ·(−i)−−−−→ E

which is analogous to a Mayer-Vietoris sequence. Continuing the homotopy
fibration sequence two steps to the left gives the fibration stated in the lemma.
The exponent bound immediately follows.

Lemma 5.1 is typically applied when B = S2n+1 or B = ΩS2n+1. In what
follows, we will also need a modified version of Lemma 5.1 which allows for the
possibility that E is not an H-space. We state it with B = ΩkS2n+1 as this is
how it will occur in practise.

Lemma 5.2. Let 0 ≤ k < 2n−1. Suppose there is a homotopy fibration

F
f−→ E

g−→ ΩkS2n+1

in which each space is 2-connected. Suppose there is a map ΩkS2n+1 i−→ E
such that g ◦ i � pr. Then there is a homotopy fibration

Ω2F × Ωk+2S2n+1 ε−→ Ω2E −→ Ωk+1S2n+1{pr}

where ε = Ω2f ·(−Ωk+2i). Consequently, exp(E) ≤ pr·max(exp(F ), exp(S2n+1)).

Proof. Loop to obtain a homotopy fibration ΩF
Ωf−→ ΩE

Ωg−→ Ωk+1S2n+1

and apply Lemma 5.1.

We now consider two examples of Lemma 5.1 which later play a role in
our exponent calculations. Recall from [CMN, N1] that at odd primes we have
exp(S2n+1) = pn.
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Example 5.1. Let q = 2(p − 1). Let α1 ∈ πS
q−1(S

0) be a generator of
the stable stem. Following Mimura and Toda [MT], for m ≥ 1 define a space
B = B(2m + 1, 2m + q + 1) as the homotopy pullback

S2m+1 �� B(2m + 1, 2m + q + 1)
q ��

��

S2m+q+1

α1

��
S2m+1 �� S4m+3 w �� S2m+2

where w is the Whitehead product of the identity map on S2m+2 with itself.
Since α1 has order p there is a characteristic map i : S2m+q+1 −→ B satisfying
q ◦ i � p. As B is not immediately known to be an H-space, we use Lemma 5.2
and obtain exp(B) ≤ p · exp(S2m+q+1) = pm+p.

Example 5.2. Let α2 ∈ πS
2q−1(S

0) be a generator of the stable stem.
As in Example 5.1, for m ≥ 1 there is a homotopy pullback

S2m+1 �� B(2m + 1, 2m + 2q + 1)
q ��

��

S2m+2q+1

α2

��
S2m+1 �� S4m+3 w �� S2m+2

which defines the space B = B(2m + 1, 2m + 2q + 1). Since α2 has order p
there is a characteristic map j : S2m+2q+1 −→ B satisfying q ◦ j � p. Again, as
B is not immediately known to be an H-space, we use Lemma 5.2 and obtain
exp(B) ≤ p · exp(S2m+2q+1) = pm+2p−1.

6. Characteristic maps

In this section we wish to produce “characteristic” maps S19 −→ E7,
S27 −→ E7, and S35 −→ E7 which will allow us, in the right context, to apply
Lemma 5.1 in order to calculate an upper bound on the 3-primary exponent of
E7. This is ultimately done in Proposition 6.2.

We first consider E7/F4. The spherical resolution in Theorem 1.2 implies
there are homotopy fibrations

S19 −→ E7/F4 −→ B(27, 35)

S27 −→ B(27, 35) −→ S35

as well as homotopy fibrations

B(19, 27) −→ E7/F4 −→ S35

S19 −→ B(19, 27) −→ S27.

Lemma 6.1. The following hold:
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(a) there is a map b1 : S27 −→ B(19, 27) such that the composite
S27 b1−→ B(19, 27) −→ S27 is of degree 3; and

(b) there is a map b2 : S35 −→ E7/F4 such that the composite
S35 b2−→ E7/F4 −→ S35 is of degree 32.

Proof. Recall that the 35-skeleton of E7/F4 consists of cells in dimensions
19, 27, and 35. The 19 and 27-cells are attached by an α2 as are the 27 and
35-cells. In particular, as the bottom two cells in B(19, 27) are attached by an
α2, the existence of the map b1 in part (a) follows from Example 5.2.

Similarly, as the bottom two cells in B(27, 35) are attached by an α2,
Example 5.2 implies there is a homotopy commutative diagram

S35 3 ��

b

��

S35

B(27, 35) �� S35

for some map b. Let b̃ : S34 −→ ΩB(27, 35) be the adjoint of b. Consider the
homotopy fibration sequence

ΩE7/F4 −→ ΩB(27, 35) ∂−→ S19 −→ E7/F4 −→ B(27, 35).

By [To1], 3-locally we have π34(S19) = Z/3Z, generated by α4, implying that

the composite S34 b̃−→ ΩB(27, 35) ∂−→ S19 has order at most p. Thus b̃ ◦ 3 lifts
to ΩE7/F4, resulting in a homotopy commutative diagram

S34 3 ��

b̃2
��

S34

b̃
��

ΩE7/F4
�� ΩB(27, 35)

for some map b̃2. Taking the adjoint of this square and combining it with the
square above we obtain a homotopy commutative diagram

S35 3 ��

b2
��

S35 3 ��

b

��

S35

E7/F4
�� B(27, 35) �� S35

which proves part (b).

Now consider the homotopy fibration E7 −→ E7/F4 −→ BF4. Ratio-
nally, F4 has homotopy groups in dimensions 3, 11, 15, 23, so πt(BF4) is tor-
sion for t ∈ {19, 27, 35}. Therefore when the inclusion i : S19 −→ E7/F4 is
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multiplied by some power of 3 it will lift to E7. Similarly, when the maps
S27 b1−→ B(19, 27) −→ E7/F4 and S35 b2−→ E7/F4 coming from Lemma 6.1 are
multiplied by some other powers of 3, they too will lift to E7. We wish to
minimize the number of powers of 3 necessary to produce each lift. This is the
intention of Proposition 6.2.

To prepare the way, we need to more closely examine the homotopy theory
of F4. Harper [H], and subsequently Kono and Wilkerson in unpublished work
using different methods, showed that there is a 3-primary homotopy decompo-
sition

(6.1) F4 � K3 × B(11, 15)

where the spaces K3 and B(11, 15) are described cohomologically as follows.
First,

H∗(K3) ∼= Z/3Z[x8]/(x3
8) ⊗ Λ(x3, x7)

and the action of the Steenrod algebra is given by P1x3 = x7 and βx7 = x8.
Second,

H∗(B(11, 15)) ∼= Λ(x11, x15)

and P1x11 = x15. Further, the space B(11, 15) is spherically resolved; there is
a homotopy fibration

(6.2) S11 −→ B(11, 15) −→ S19.

As described in [Th1], a consequence of [D2] is the existence of a homotopy
fibration of H-maps and H-spaces

(6.3) A −→ ΩK3〈3〉 −→ ΩS23

where K3〈3〉 is the three-connected cover of K3, and the 34-skeleton of A is the
mod-3 Moore space P 18(3) of dimension 18. We will need the following two
properties of (6.3) which were proved in [Th1].

Lemma 6.2. The following hold:

(a) there is a map ΩS23 −→ ΩK3〈3〉 such that the composite ΩS23 −→
ΩK3〈3〉 −→ ΩS23 is homotopic to multiplication by 3;

(b) exp(A) = 3.

In what follows, we also need to know the orders of select homotopy groups
of K3 and B(11, 15). These are stated in terms of loop spaces for later con-
venience. The proofs of both Lemmas 6.3 and 6.4 freely use Toda’s [To1]
calculations of the low dimension homotopy groups of spheres, and share the
same notation.

Lemma 6.3. The following hold:
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(a) 3 · π17(ΩK3〈3〉) = 0;

(b) 32 · π25(ΩK3〈3〉) = 0;

(c) 33 · π33(ΩK3〈3〉) = 0.

Proof. All three cases use the homotopy fibration A −→ ΩK3〈3〉 −→
ΩS23. On the level of homotopy groups, this homotopy fibration implies that
for any m ≥ 1 the order of πm(ΩK3〈3〉) is bounded above by the product of
the orders of πm(ΩS23) and πm(A). As we only care about m ≤ 33, we may
replace A by its 34-skeleton, which is P 18(3). In dimensions 33 and below, the
homotopy cofibration S17 −→ P 18(3) −→ S18 is in the stable range and so
is also a homotopy fibration. So if m ≤ 33 then the order of πm(P 18(3)) is
bounded above by the product of the orders of πm(S17) and πm(S18). Hence
for m ∈ {17, 25, 33}, the order of πm(ΩK3〈3〉) is bounded above by the product
of the orders of πm(ΩS23), πm(S17), and πm(S18).

The m = 17 case is a bit special, in that π17(S17) = Z(3). But as P 18(3) is
the homotopy cofiber of the degree 3 map on S17, we have π17(P 18(3)) = Z/3Z.
On the other hand, by connectivity, πm(ΩS23) = 0. Part (a) then follows.

When m = 25, we have π25(ΩS23) = Z/3Z, generated by the stable element
α1, π25(S17) = 0, and π25(S18) = Z/3Z, generated by the stable class α2.
Part (b) now follows.

When m = 33, we have π33(ΩS23) = Z/32
Z, generated by the stable

element α′, π33(S17) = 0, and π33(S18) = Z/3Z, generated by the stable class
α5. Part (c) now follows.

Lemma 6.4. The following hold:

(a) 32 · π17(ΩB(11, 15)) = 0;

(b) 33 · π25(ΩB(11, 15)) = 0;

(c) 33 · π33(ΩB(11, 15)) = 0.

Proof. All three cases use the homotopy fibration ΩS11 −→ ΩB(11, 15)
−→ ΩS15 As in Lemma 6.3, this homotopy fibration implies that for any m ≥ 1
the order of πm(ΩB(11, 15)) is bounded above by the product of the orders of
πm(ΩS11) and πm(ΩS15).

When m = 17, we have π17(ΩS11) = Z/3Z, generated by the stable class
α2, while π17(ΩS15) = Z/3Z, generated by the stable class α1. Part (a) follows.

When m = 25, we have π25(ΩS11) = Z/3Z, generated by the stable class
α4, while π25(ΩS15) = Z/32

Z, generated by the stable class α′
3. Part (b)

follows.
When m = 33, we have π33(ΩS11) = Z/32

Z, generated by the stable
class α′

6, while π33(ΩS15) = Z/3Z, generated by the stable class α5. Part (c)
follows.
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Next, we define two new spaces as homotopy pullbacks. First, the com-
posite E7 −→ E7/F4 −→ S35 results in a homotopy pullback

X ��

��

E7
��

��

S35

B(19, 27) ��

��

E7/F4
��

��

S35

BF4 BF4

which defines the space X. Second, the composite X −→ B(19, 27) −→ S27

results in a homotopy pullback

Y ��

��

X ��

��

S27

S19 ��

��

B(19, 27) ��

��

S27

BF4 BF4

which defines the space Y .

Proposition 6.1. There are homotopy commutative diagrams

S19 32
��

c1

��

S19 S27 33
��

c2

��

S27

b1
��

S35 33
��

c3

��

S35

b2
��

Y �� S19 X �� B(19, 27) E7
�� E7/F4

for some maps c1, c2, and c3.

Proof. Consider the homotopy fibration Y −→ S19 −→ BF4. To show
the existence of a map c1 which satisfies the asserted homotopy commutative
diagram, it suffices to show that the map S19 −→ BF4 has order at most 32.
Equivalently, we need to show that the double adjoint, t : S17 −→ ΩF4 has
order at most 32. The homotopy decomposition ΩF4 � ΩK3 × ΩB(11, 15)
then implies that it suffices to show that the projections of t to both ΩK3

and ΩB(11, 15) have order at most 32. But π17(ΩK3) = π17(ΩK3〈3〉) and
π17(ΩB(11, 15)) are both annihilated by 32 by Lemmas 6.3 (a) and 6.4 (a)
respectively.

Next, consider the homotopy fibration X −→ B(19, 27) −→ BF4. To show
the existence of a map c2 which satisfies the asserted homotopy commutative
diagram, it suffices to show that the composite S27 b1−→ B(19, 27) −→ BF4 has
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order at most 33. Arguing as in the first case, this follows since π25(ΩK3) =
π25(ΩK3〈3〉) and π25(ΩB(11, 15)) are both annihilated by 33 by Lemmas 6.3 (a)
and 6.4 (a) respectively.

Finally, consider the homotopy fibration E7 −→ E7/F4 −→ BF4. To show
the existence of a map c3 which satisfies the asserted homotopy commutative
diagram, it suffices to show that the composite S33 b2−→ E7/F4 −→ BF4 has
order at most 33. Arguing as before, this follows since π33(ΩK3) = π33(ΩK3〈3〉)
and π33(ΩB(11, 15)) are both annihilated by 33 by Lemmas 6.3 (a) and 6.4 (a)
respectively.

Combining the homotopy commutative diagrams of Lemma 6.1 and Propo-
sition 6.1 we obtain:

Proposition 6.2. There are homotopy commutative diagrams

S19 32
��

c1

��

S19 S27 34
��

c2

��

S27 S35 35
��

c3

��

S35

Y �� S19 X �� S27 E7
�� S35.

7. An upper bound for the homotopy exponent of E7

In this section we prove Theorem 1.1. We are almost immediately ready
to apply Lemma 5.1 to the maps in Proposition 6.2 in order to compute the
exponent bound of E7. But first we have to deal with a complication. In what
follows, we need to show that exp(Y ) ≤ 313. However, the usual argument
gives a weaker bound, as follows. From here on, we repeatedly use the fact
from [CMN, N1] that 3-locally we have exp(S2n+1) = 3n. Consider the homo-
topy fibration F4 −→ Y −→ S19. By Corollary 6.1, the composite S19 c1−→
Y −→ S19 has degree 32. Since Y is not necessarily an H-space, we loop and
use Lemma 5.2 to obtain a homotopy fibration Ω2F4 × Ω2S19 −→ Ω2X −→
ΩS19{32}. Thus exp(Y ) ≤ 32 · max(exp(F4), exp(S19)). Now exp(S19) = 39,
and by [Th1] exp(F4) = 312. So exp(Y ) ≤ 314. A more delicate argument
is needed to reduce this bound by another power of 3. This is done in the
following Lemma.

Lemma 7.1. exp(Y ) ≤ 313.

Proof. Step 1: We begin by defining some spaces and maps. Using the
three-connected cover of F4, there is a homotopy fibration sequence ΩS19 δ−→
F4〈3〉 −→ Y 〈3〉 −→ S19. Recall from (6.1) and (6.3) that F4〈3〉 � K3〈3〉 ×
B(11, 15) and that there is a homotopy fibration of H-spaces and H-maps
A −→ ΩK3〈3〉 −→ ΩS23. Let f be the composite

f : ΩF4〈3〉 π−→ ΩK3〈3〉 −→ ΩS23
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where π is the projection. Note that f is an H-map as it is a composite of H-
maps. Consider the composite Ω2S19 Ωδ−→ ΩF4〈3〉 f−→ ΩS23. By [CMN, N1],

multiplication by 3 on Ω2S19 factors as a composite Ω2S19 −→ S17 E2−→ Ω2S19

where E2 is the double suspension. Thus f ◦Ωδ◦3 is null homotopic as it factors
through a map S17 −→ ΩS23. Since f is an H-map, f ◦ Ωδ ◦ 3 � 3 ◦ f ◦ Ωδ,
and so the composite Ω2S19 Ωδ−→ ΩF4〈3〉 3◦f−→ ΩS23 is null homotopic. Define Q
by the homotopy fibration

Q −→ ΩF4〈3〉 3◦f−→ ΩS23.

Then Ωδ lifts to Q and we obtain a homotopy pullback

R �� Ω2Y 〈3〉 b ��

��

Ω2S23

��
R �� Ω2S19 ��

Ωδ

��

Q

��
ΩF4〈3〉 ΩF4〈3〉

which defines the space R and the map b.
Step 2: We next find an upper bound for exp(Q). The definition of Q

implies there is a homotopy pullback of H-spaces and H-maps

A × ΩB(11, 15) �� Q ��

��

ΩS23{3}

��
A × ΩB(11, 15) �� ΩF4〈3〉 f ��

3◦f

��

ΩS23

3

��
ΩS23 ΩS23.

Since ΩB(11, 15) is a retract of ΩF4〈3〉, it is also a retract of Q. As Q is an
H-space we then obtain a homotopy decomposition Q � ΩB(11, 15)×Q′ where
there is a homotopy fibration A −→ Q′ −→ ΩS23{3}. By Lemma 6.2, exp(A) =
3, while by [N2], exp(S23{3}) = 3. Thus exp(Q′) ≤ 32. By Example 5.1,
exp(B(11, 15)) ≤ 38. The decomposition of Q then implies that exp(Q) ≤ 38.

Step 3: Now we find an upper bound for exp(R). Consider the homotopy
fibration R −→ Ω2S19 −→ Q from Step 1. We claim that the composite

g : Ω2S19 32−→ Ω2S19 −→ Q is null homotopic. It is equivalent to check that g
composes trivially to each factor of Q � ΩB(11, 15) × Q′. First consider the
composite

Ω2S19 32−→ Ω2S19 −→ Q −→ ΩB(11, 15).
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The decomposition of Q is defined so that the composite Ω2S19 −→ Q −→
ΩB(11, 15) is homotopic to the composite Ω2S19 Ω∂−→ ΩF4〈3〉 −→ ΩB(11, 15).
By the leftmost square in Lemma 6.1, Ω∂ has order 32, so g composes trivially
to ΩB(11, 15). Next consider the composite

Ω2S19 32−→ Ω2S19 −→ Q −→ Q′.

By [CMN], [N1], multiplication by 32 on Ω2S19 factors as a composite Ω2S19 −→
S17 3−→ S17 E2−→ Ω2S19. Thus the projection of g to Q′ factors through a
composite S17 3−→ S17 t−→ Q′ for some map t. In the homotopy fibration
A −→ Q′ −→ ΩS23{3}, the space ΩS23{3} is 20-connected, so the 18-skeleton
of Q′ is the same as that of A, which is the Moore space P 18(3). Thus t ◦ 3
represents an element in π17(P 18(3)) = Z/3Z, and so must be null homotopic.
Hence g projected to Q′ is null homotopic.

With g null homotopic, we obtain a lift

Ω2S19

���
�

�
�

�
32

��
R �� Ω2S19 �� Q.

This allows us to apply Lemma 5.1 to show exp(R) ≤ 32·max(exp(S19), exp(Q)).
As exp(S19) = 39 and exp(Q) ≤ 38, we have exp(R) ≤ 311.

Step 4: Finally, we prove the exponent bound for Y . Consider the homo-
topy fibration R −→ ΩY −→ Ω2S23. Taking vertical connecting maps in the
pullback defining R in Step 1 we obtain a homotopy commutative diagram

Ω2F4〈3〉

��

Ω2F4〈3〉
3◦f

��
ΩY �� Ω2S23.

By Lemma 6.2, there is a map ΩS23 t−→ ΩF4〈3〉 such that f ◦t � 3. Combining
Ωt and the diagram above, we obtain a homotopy commutative diagram

Ω2S23

��

32

�����������

ΩY �� Ω2S23.

By Lemma 5.1 we then have exp(Y ) ≤ 32 ·max(exp(S23), exp(R)). As exp(S23)
= 311 and exp(R) ≤ 311, we have exp(Y ) ≤ 313, as desired.

Proof of Theorem 1.1. First consider the homotopy fibration X −→ E7

−→ S35. By Proposition 6.2, the composite S35 c3−→ E7 −→ S35 has degree 35,
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so by Lemma 5.1 there is a homotopy fibration ΩX × ΩS35 −→ ΩE7 −→
S35{35}. Thus exp(E7) ≤ 35 ·max(exp(X), exp(S35)). Since exp(S35) = 317, if
exp(X) ≤ 317 then exp(E7) ≤ 323 and we are done.

It remains to show that exp(X) ≤ 317. Consider the homotopy fibration
Y −→ X −→ S27. By Proposition 6.2, the composite S27 c2−→ X −→ S27 has
degree 34. Since X is not necessarily an H-space, we loop and use Lemma 5.2
to obtain a homotopy fibration Ω2Y × Ω2S27 −→ Ω2Y −→ ΩS27{34}. Thus
exp(X) ≤ 34 ·max(exp(Y ), exp(S27)). Now exp(S27) = 313 and by Lemma 7.1,
exp(Y ) ≤ 313. So exp(X) ≤ 317 and we are done.
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