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ULTRAPRODUCTS OF CROSSED PRODUCT
VON NEUMANN ALGEBRAS

REIJI TOMATSU

Abstract. We study a relationship between the ultraproduct of
a crossed product von Neumann algebra and the crossed product

of an ultraproduct von Neumann algebra. As an application,

the continuous core of an ultraproduct von Neumann algebra is
described.

1. Preliminary

1.1. Ultraproduct. Our references are [1], [7]. In this paper, we denote by
ω a fixed free ultrafilter on N = {1,2, . . .}. By M , we always denote a von
Neumann algebra with separable predual. The automorphism group of a von
Neumann algebra N is denoted by Aut(N), and the center of N is by Z(N).

Denote by �∞(M) the unital C∗-algebra which consists of all norm bounded
sequences (xν) = (x1, x2, . . . ), xν ∈M . An element (xν) ∈ �∞(M) is said to
be ω-trivial when xν converges to 0 in the strong∗ topology as ν → ω. By
Iω(M), we denote the set of all ω-trivial sequences. It is known that Iω(M)
is a C∗-subalgebra of �∞(M), but it is not an ideal when M is infinite. Hence,
we consider its normalizer M ω(M) defined by

M ω(M) :=
{
x ∈ �∞(M) | xIω(M) +Iω(M)x⊂Iω(M)

}
.

Then the quotient C∗-algebra Mω := M ω(M)/Iω(M) is in fact a W∗-algebra
that is called an ultraproduct von Neumann algebra. We denote by (xν)ω the
equivalence class (xν) +Iω(M) for (xν) ∈ M ω(M).

Note that M is regarded as a von Neumann subalgebra of Mω by map-
ping x ∈M to its constant sequence (x,x, . . . )ω =: xω . Since the norm unit
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ball of M is σ-weakly compact, each (xν) ∈ �∞(M) has the σ-weak ultra-
limit limν→ω xν . This gives us a well-defined map EM :Mω →M defined by
EM ((xν)) := limν→ω xν . Then EM is actually a faithful normal conditional
expectation. For a weight ϕ on M , we denote by ϕω the ultraproduct weight
of ϕ on Mω , that is, ϕω := ϕ ◦EM .

An element (xν) ∈ �∞(M) is said to be ω-central if xνϕ− ϕxν ∈M∗ con-
verges to 0 in norm as ν → ω for all ϕ ∈M∗, where we use the usual notation
aϕ(x) := ϕ(xa) and ϕa(x) := ϕ(ax) for a,x ∈M and ϕ ∈M∗. Then Cω(M),
the set of all ω-central sequences, is a unital C∗-subalgebra of �∞(M) and
contains Iω(M). We denote by Mω the quotient C∗-algebra Cω(M)/Iω(M)
that is a W∗-subalgebra of Mω . We will call Mω the asymptotic centralizer
of M .

1.2. Action and crossed product. Let G be a locally compact Hausdorff
group that is always assumed to be second countable. We use the usual
notation Cc(G) and L2(G) for the set of compactly supported continuous
functions on G and the Hilbert space associated with a fixed left invariant
Haar measure on G. The ∗-algebra operations of Cc(G) are defined as usual

f ∗ g(s) :=
∫
G
f(t)g(t−1s)dt and f∗(s) := Δ(s)−1f(s−1) for f, g ∈ Cc(G) and

s ∈G, where Δ denotes the modular function of G and dt the left invariant
Haar measure.

An action of G on M means a group homomorphism α : G � s �→ αs ∈
Aut(M) such that ‖ϕ ◦ αs − ϕ‖M∗ → 0 for all ϕ ∈M∗ if s→ e in G, where
e denotes the neutral element of G. The fixed point algebra Mα means the
collection of all x ∈M such that αs(x) = x for all s ∈G. We next introduce
the crossed product von Neumann algebra M �α G as follows. Suppose M is
acting on a Hilbert space H . We define the operators πα(x) and λα(s) on the
tensor product Hilbert space H ⊗ L2(G) = L2(G,H) as follows: for x ∈M ,
s, t ∈G and ξ ∈ L2(G,H),(

πα(x)ξ
)
(t) := αt−1(x)ξ(t),

(
λα(s)ξ

)
(t) := ξ

(
s−1t

)
.

We can also write λα(s) = 1 ⊗ λ(s) for s ∈ G, where λ denotes the left
regular representation on L2(G). Then M �α G denotes the von Neumann
algebra generated by πα(M) and λα(G). For f ∈Cc(G), we denote λα(f) :=∫
G
f(s)λα(s)ds. Note that λα is a ∗-representation of Cc(G) on H ⊗L2(G).

For Abelian G, M �α G admits the dual action α̂ of the dual group Ĝ
satisfying

α̂p

(
πα(x)

)
= πα(x), α̂p

(
λα(s)

)
= 〈s, p〉λα(s), x ∈M,s ∈G,p ∈ Ĝ,

where 〈·, ·〉 denotes the dual coupling of G and Ĝ. By Takesaki duality, we

have an isomorphism Γα from (M �α G)�α̂ Ĝ onto M ⊗B(L2(G)) such that

Γα

(
πα̂

(
πα(x)

))
= πα(x), Γα

(
πα̂

(
λα(s)

))
= 1⊗ λ(s),

Γα

(
λα̂(p)

)
= 1⊗ 〈p, ·〉
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for x ∈M , s ∈G and p ∈ Ĝ. As for the bidual action ̂̂α, we have Γα ◦ ̂̂αs =
αs ⊗ Adρ(s) for s ∈ G, where ρ denotes the right regular representation on
L2(G).

2. Main result

2.1. Equicontinuous parts. Readers are referred to [5, Chapter 3]. Note
that basic results introduced there are concerned with R, but they also hold
for a general locally compact Hausdorff groups.

Definition 2.1. Let α be an action of a locally compact Hausdorff group
G on a von Neumann algebra M . A norm bounded sequence (xν), xν ∈M ,
is said to be (α,ω)-equicontinuous when the following holds: for every σ-
strong* neighbourhood V of 0 ∈ M , there exist a neighbourhood U of the
neutral element e ∈G and A ∈ ω such that αs(x

ν)− xν ∈ V for all s ∈ U and
ν ∈A.

Denote by E ω
α (M) the collection of all (α,ω)-equicontinuous sequences. Set

Mω
α :=

(
E ω
α (M)∩M ω(M)

)
/Iω(M)

and

Mω,α :=
(
E ω
α (M)∩C ω(M)

)
/Iω(M),

which we will call the equicontinuous parts of Mω and Mω , respectively.
Note that Mω,α ⊂ Mω

α , M ⊂ Mω
α and they are von Neumann subalgebras

which admit the G-action αω defined by αω
s ((x

ν)ω) := (αs(x
ν))ω for s ∈ G

and (xν)ω ∈Mω
α .

Note the crucial fact that M ω(M) coincides with E ω
α (M) for α := σϕ, the

modular automorphism group of a given faithful normal state ϕ on M . (See
[1, Proposition 4.11] and [6, Theorem 1.5] for its proof.)

A useful tool to construct an equicontinuous sequence is to average a
norm bounded sequence by L1-function. To be precise, we let f ∈ L1(G)
and (xν) ∈ �∞(M). Then (αf (x

ν)) is (α,ω)-equicontinuous, where αf (y) =∫
G
f(s)αs(y)ds for y ∈ M . Note that the averaging and the ultraprod-

uct of an equicontinuous sequence are commutative operations, that is, for
x := (xν)ω ∈ Mω

α , we have αω
f (x) = (αf (x

ν))ω . In particular, the set which

consists of (αf (x
ν))ω , f ∈ L1(G) and (xν) ∈ M ω(M) is σ-weakly dense in

Mω
α .

Example 2.2. Consider the action α of G on M := L∞(G) by left trans-
lation. Then Mω

α is actually nothing but M . This fact tells us that equicon-
tinuous parts could be small. We need the following claim to show this: if
a uniformly norm bounded net {fn}n∈I in M converges to 0 in the σ-weak
topology, then the convolution g ∗ fn converges to 0 compact uniformly for all
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g ∈ L1(G). Then for t ∈G

g ∗ fn(t) =
∫
G

g(ts)fn
(
s−1

)
ds= 〈gt−1 , f̃n〉,

where gr(s) := g(r−1s), f̃n(s) := fn(s
−1), and 〈·, ·〉 denotes the pairing of

L1(G) and L∞(G). It is trivial that f̃n → 0 σ-weakly, and g ∗ fn converges to
0 pointwise.

Let K ⊂ G be a compact set. The map K � t �→ gt−1 ∈ L1(G) is norm-
continuous. Thus for ε > 0, there exist t1, . . . , tk ∈K such that for any t ∈K,
‖gt−1 − gt−1

i
‖ < ε for some ti. Take n0 ∈ I so that |〈gt−1

i
, f̃n〉| < ε for all

i = 1, . . . , k and n≥ n0. For t ∈K, take ti so that ‖gt−1 − gt−1
i
‖< ε. When

n≥ n0, we have∣∣g ∗ fn(t)∣∣ ≤ ∣∣〈gt−1 − gt−1
i
, f̃n〉

∣∣+ ∣∣〈gt−1
i
, f̃n〉

∣∣
≤ ε‖fn‖∞ +

∣∣〈gt−1
i
, f̃n〉

∣∣ < (
‖fn‖∞ + 1

)
ε.

So, we have proved the claim.
Recall that Mω

α has the σ-weakly total set which consists of (αg(f
ν)),

g ∈ L1(G) and (fν) ∈ �∞(M). Putting f := limν→ω fν , we see αg(f
ν) =

g ∗fν → g ∗f compact uniformly. In particular, (αg(f
ν))ω equals the constant

sequence αg(f)
ω .

Lemma 2.3. There exists a unique faithful normal conditional expectation
Eα from Mω onto Mω

α such that for an arbitrary faithful normal semifinite
weight ϕ on M , one has ϕω = ϕω ◦Eα.

Proof. Since Mω
α contains M , ϕω is semifinite on Mω

α . We will show that
Mω

α is globally invariant by σϕω

. By [1, Theorem 4.1], [3, Proposition 2.1] or

[8, Theorem 2.1], we obtain σϕω

t ((xν)ω) = (σϕ
t (x

ν))ω for (xν)ω ∈Mω . Then
for t ∈R, s ∈G, (xν)ω ∈Mω

α and ν ∈N, we have

αs

(
σϕ
t

(
xν

))
= σ

ϕ◦αs−1

t

(
αs

(
xν

))
= [Dϕ ◦ αs−1 :Dϕ]tσ

ϕ
t

(
αs

(
xν

))
[Dϕ ◦ αs−1 :Dϕ]∗t .

This implies that (σϕ
t (x

ν)) is (α,ω)-equicontinuous for each t ∈R since (xν) is
an element of M ω(M). (See [5, Lemma 3.6].) Hence, Mω

α is globally invariant
by σϕω

. Thanks to Takesaki’s criterion [10, p. 309], we can take a faithful
normal conditional expectation Eα from Mω onto Mω

α so that ϕω = ϕω ◦Eα.
This equality implies that EM =EM ◦Eα, and Eα is unique. �

2.2. Main results. The canonical embedding πα of M into M �αG induces
π∞
α : E ω

α (M)∩M ω(M)→ �∞(M �α G) by putting π∞
α ((xν)) := (πα(x

ν)).

Lemma 2.4. If (xν) ∈ E ω
α (M)∩M ω(M), then π∞

α ((xν)) ∈ M ω(M �α G).
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Proof. Let (yν) be an ω-trivial sequence in M �α G with ‖yν‖ ≤ 1 for
all ν. It suffices to show that ‖yνπα(x

ν)(ξ ⊗ f)‖→ 0 as ν → ω for ξ ∈H and
f ∈Cc(G) with compact support K ⊂G.

Let ε > 0. Since (xν) is (α,ω)-equicontinuous, we can take W ∈ ω and a
open neighborhood V of e ∈G so that if t−1s ∈ V , s, t ∈K and ν ∈W , then
‖αs−1(xν)ξ − αt−1(xν)ξ‖< ε.

Take s1, . . . , sN ∈K so that K ⊂ s1V ∪ · · · ∪ sNV . Let {h1, . . . , hN} be a
partition of unity on K subordinate to the cover {s1V, . . . , sNV }. (See [9,
Theorem 2.13].) Then for ν ∈W , we obtain the following:∥∥∥∥∥

(
πα

(
xν

)
−

N∑
j=1

(
αs−1

j

(
xν

)
⊗ hj

))
(ξ ⊗ f)

∥∥∥∥∥
2

=

∫
K

∥∥∥∥∥
(
αs−1

(
xν

)
−

N∑
j=1

αs−1
j

(
xν

)
hj(s)

)
ξ

∥∥∥∥∥
2∣∣f(s)∣∣2 ds

=

∫
K

∥∥∥∥∥
N∑
j=1

hj(s)
(
αs−1

(
xν

)
− αs−1

j

(
xν

))
ξ

∥∥∥∥∥
2∣∣f(s)∣∣2 ds

≤
∫
K

(
N∑
j=1

hj(s)
∥∥αs−1

(
xν

)
− αs−1

j

(
xν

)
ξ
∥∥)2∣∣f(s)∣∣2 ds

≤ ε2‖f‖22.
Thus for all ν ∈W , we have∥∥yνπα

(
xν

)
(ξ ⊗ f)

∥∥ ≤ ε‖f‖2 +
∥∥∥∥∥yν

N−1∑
j=0

(
αs−1

j

(
xν

)
⊗ hj

)
(ξ ⊗ f)

∥∥∥∥∥.
In the last term, we know that (αs−1

j
(xν)⊗1) belongs to M ω(M ⊗B(L2(G)))

by the proof of [5, Lemma 2.8]. In particular, the last term converges to 0 in
the strong topology as ν → ω. Hence, the above inequality implies that

lim
ν→ω

∥∥yνπα

(
xν

)
(ξ ⊗ f)

∥∥ ≤ ε‖f‖2.

Thus, we are done. �

The map π∞
α induces a well-defined map πω

α from Mω
α into (M �αG)ω such

that πω
α((x

ν)ω) := (πα(x
ν))ω for (xν)ω ∈Mω

α . In the proof of Lemma 2.4, we
have shown πω

α is actually a map from Mω
α into (M ⊗ B(L2(G)))ω . Re-

call the isomorphism Ψ from (M ⊗ B(L2(G)))ω onto Mω ⊗ B(L2(G)) that
is given in the proof of [5, Lemma 2.8]. Note that the map Ψ is naturally
defined so that for f, g ∈ L2(G) and x= (xν)ω ∈ (M ⊗B(L2(G)))ω , we have
(id ⊗ φf,g)(Ψ(x)) = ((id ⊗ φf,g)(x

ν))ω , where φf,g denotes the normal func-
tional 〈·f, g〉 on B(L2(G)).
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Lemma 2.5. For any x ∈Mω
α , one has Ψ(πω

α(x)) = παω (x).

Proof. Let f, g ∈ L2(G) and x= (xν)ω ∈Mω
α . On the one hand, we have

(id⊗ φf,g)
(
Ψ

(
πω
α(x)

))
=

(
(id⊗ φf,g)

(
πα

(
xν

)))ω
.

On the other hand, using the equicontinuity (cf. [5, Lemma 3.15]), we have

(id⊗ φf,g)
(
παω (x)

)
=

∫
G

f(s)g(s)αω
s−1(x)ds=

(∫
G

f(s)g(s)αs−1

(
xν

)
ds

)ω

=
(
(id⊗ φf,g)

(
πα

(
xν

)))ω
.

Thus, we are done. �

We now prove the main result of this paper which strengthens [6, Theo-
rem 1.10]. Note that a generalization of Example 2.2 to the crossed product
for G being Abelian.

Theorem 2.6. Let α be an action of a second countable locally compact
Hausdorff group G on a von Neumann algebra M with separable predual. Then
the following statements hold:

(1) There exists a canonical embedding Φα of Mω
α �αω G into (M �α G)ω

such that Φα(παω (x)) = πω
α(x) and Φα(λ

αω

(s)) = λα(s)ω , respectively, for
all x ∈Mω

α and s ∈G.
(2) If G is Abelian, the map Φα induces the isomorphism from Mω

α �αω G
onto (M �α G)ωα̂.

Proof. (1) Put N := πω
α(M

ω
α ) ∨ {λα(t)ω | t ∈ G}′′ that is a von Neumann

subalgebra of (M �α G)ωα̂. We will show that there exists a canonical isomor-
phism from Mω

α �αω G onto N .
Let ϕ be a faithful normal semifinite weight on M and ψ the dual weight

of ϕ on M �α G. It is obvious that ψω is semifinite on N since N contains
M �α G. Then for (xν)ω ∈Mω

α , s ∈G and t ∈R, we have

σψω

t

(
λα(s)ω

)
=

(
σψ
t

(
λα(s)

))ω
=ΔG(s)

itλα(s)ωπα

(
[Dϕ ◦ αs :Dϕ]t

)ω
and

σψω

t

(
πω
α

((
xν

)ω))
= σψω

t

((
πα

(
xν

))ω)
=

(
σψ
t

(
πα

(
xν

)))ω
=

(
πα

(
σϕ
t

(
xν

)))ω
= πω

α

((
σϕ
t

(
xν

))ω)
,

where we note that the last term is well-defined from the proof of Lemma 2.3.
This observation implies N is globally invariant under σψω

. Thanks to Take-
saki’s theorem, we can take a faithful normal conditional expectation from
(M �α G)ω onto N . In particular, the restriction of the modular conjugation
Jψω on L2(N,ψω) gives the modular conjugation associated with ψω �N .

Let χ be the dual weight of ϕω �Mω
α
on P :=Mω

α �αω G. We will compare the

GNS Hilbert spaces L2(P,χ) and L2(N,ψω). The definition left ideals are as
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usual denoted by nχ and nψω , respectively. (See [11, Lemma VII.1.2].) Denote
by Λχ : nχ → L2(P,χ) and Λψω : nψω → L2(N,ψω) the canonical embeddings.

Let us introduce a map V which maps Λχ(λ
αω

(f)παω (x)) to
Λψω (λα(f)ωπω

α(x)) for f ∈ Cc(G) and x ∈ Mω
α . We claim that V ex-

tends to an isometry from L2(P,χ) into L2(N,ψω). Take f, g ∈ Cc(G) and
x, y ∈Mω

α . Then we have〈
Λψω

(
λα(f)ωπω

α(x)
)
,Λψω

(
λα(g)ωπω

α(y)
)〉

= ψω
(
πω
α

(
y∗

)
λα

(
g∗ ∗ f

)ω
πω
α(x)

)
= ψ

(
lim
ν→ω

πα

((
yν

)∗)
λα(h)πα

(
xν

))
,

where h := g∗ ∗ f . Let F be the support of h. Then for each ν ∈N, we have

πα

((
yν

)∗)
λα(h)πα

(
xν

)
=

∫
F

h(s)πα

((
yν

)∗
αs

(
xν

))
λα(s)ds.

Using [5, Lemma 3.3], we know that

lim
ν→ω

πα

((
yν

)∗)
λα(h)πα

(
xν

)
=

∫
F

h(s)πα

(
lim
ν→ω

yναs

(
xν

))
λα(s)ds.

Hence it follows from the definition of the dual weight ψ the following:〈
Λψω

(
λα(f)ωπω

α(x)
)
,Λψω

(
λα(g)ωπω

α(y)
)〉

= h(e)ϕ
(
lim
ν→ω

(
yν

)∗
xν

)
= h(e)ϕω

(
y∗x

)
,

which equals to 〈Λχ(λ
αω

(f)παω (x)),Λχ(λ
αω

(g)παω (y))〉 again by the defini-
tion of the dual weight χ. Thus, we have proved the existence of the isome-
try V .

We next claim that K, the image of V , is N ′-invariant. For a σϕω

-analytic
y ∈Mω

α and t ∈G, we obtain the followings for all f ∈Cc(G) and x ∈Mω
α :

Jψωσψω

i/2

(
πω
α(y)

)∗
JψωΛψω

(
λα(f)ωπω

α(x)
)
=Λψω

(
λα(f)ωπω

α(xy)
)
∈K

and

Jψωσψω

i/2

(
λα(t)ω

)∗
JψωΛψω

(
λα(f)ωπω

α(x)
)
=Λψω

(
λα(g)ωπω

α

(
αω
t−1(x)

))
∈K,

where g(s) := ΔG(t)
−1f(st−1). Hence, K is N ′-invariant.

Now let us take a σψω

-analytic y ∈ nψω . Then

Jψωσψω

i/2(y)
∗JψωΛψω

(
λα(f)ωπω

α(x)
)
= λα(f)ωπω

α(x)Λψω (y).

This implies that Λψω (y) is contained in the closure of N ′K. Since N ′K ⊂
K, Λψω (y) belongs to K. Thus, K = L2(N,ψω) ⊂ L2((M �α G)ω, ψω).
Then the map N � x �→ V ∗xV provides us with the isomorphism from N
onto Mω

α �αω G. More precisely, we can check V ∗πω
α(x)V = παω (x) and

V ∗λα(s)ωV = λαω

(s) for x ∈Mω
α and s ∈G. Denote by Φα its inverse map.
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(2) Suppose that G is Abelian. Then the image of Φα is clearly contained
in (M �αG)ωα̂. Let us apply the statement of (1) to the dual action β := α̂ on

R :=M �αG. Then we have the embedding Φβ of Rω
β �βω Ĝ into (R�β Ĝ)ω

β̂
.

Recall the isomorphism Ψ from (M ⊗ B(L2(G)))ω onto Mω ⊗ B(L2(G))
that is introduced in the remark before Lemma 2.5. Then Ψ induces an
isomorphism from (M ⊗ B(L2(G)))ωα⊗Adρ onto Mω

α ⊗ B(L2(G)). This fact

can be directly proved or deduced from [5, Lemma 3.12] for general groups.
In summary, we have the following diagram:

Rω
β �βω Ĝ � � Φβ �� (R�β Ĝ)ω

β̂

(Γα)ω �� (M ⊗B(L2(G)))ωα⊗Adρ

Ψ

��
P �α̂ω Ĝ

��

Φα⊗id

��

Mω
α ⊗B(L2(G))

(Γαω )−1

�� f �� Mω
α ⊗B(L2(G))

where (Γα)
ω is defined by (Γα)

ω((xν)ω) := (Γα(x
ν))ω for (xν)ω ∈ (R�β Ĝ)ω

and f denotes the composition of all of them.
We will show f actually equals the identity map. This implies the surjec-

tivity of Φα ⊗ id in the diagram above, and we obtain Φα(P ) =Rω
β by taking

the fixed point algebra of the dual action of βω . Recall that Mω
α ⊗B(L2(G)) is

generated by παω (Mω
α ), 1⊗λ(G) and 1⊗L∞(G). We can directly check that

f identically maps 1⊗λ(G) and 1⊗L∞(G). For x ∈Mω
α , it is not difficult to

show παω (x) is mapped to πω
α(x) in (M ⊗B(L2(G)))ωα⊗Adρ, and it turns out

from Lemma 2.5 that f(παω (x)) = παω (x). �

It would be interesting to generalize the previous theorem to a locally
compact Hausdorff group or quantum group by introducing the equicontinuity
of their actions.

3. Applications

3.1. Continuous or discrete crossed product decomposition of Mω.
Let M =N �θ R be the continuous crossed product decomposition of a prop-
erly infinite von Neumann algebra M , that is, N is a semifinite von Neumann
algebra that is endowed with the R-action θ and a faithful normal tracial
weight τ satisfying τ ◦ θs = e−sτ for s ∈ R. Let ϕ be the dual weight of τ .

Since the dual action θ̂ is nothing but the modular automorphism σϕ, the
following result follows from Theorem 2.6, [1, Proposition 4.11] and [6, The-
orem 1.5].

Theorem 3.1. Let M =N �θ R be the continuous crossed product decom-
position of a properly infinite von Neumann algebra M . Then the continuous
crossed product decomposition of Mω is given by Mω =Nω

θ �θω R. In partic-
ular, the flow of weights of Mω is given by the restriction of θω on Z(Nω

θ ).
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The following result on a discrete crossed product decomposition is proved
first by Ando–Haagerup in [1]. We will present another proof using Theo-
rem 2.6.

Theorem 3.2 (Ando–Haagerup). Let M be a type IIIλ factor with 0 ≤
λ < 1. Let M =N �θ Z be the discrete crossed product decomposition. Then
the discrete crossed product decomposition of Mω is given by Mω =Nω�θω Z.
In particular, if 0< λ< 1, then Mω is a type IIIλ factor.

Proof. The dual action θ̂ of Ẑ on M satisfies θ̂t(xλ
θ(m)) = e−imtxλθ(m)

for t ∈ Ẑ, x ∈N and m ∈ Z, where the usual coordinate Ẑ= [0,2π) is used. It
turns out from Theorem 2.6 that Mω

θ̂
=Nω

�θ Z. Hence, it suffices to show

that Mω
θ̂
=Mω . For λ �= 0, θ̂ is nothing but the modular automorphism στ̂ ,

where τ denotes a faithful normal tracial weight on N with τ ◦ θ = λτ . Hence,
we are done.

Suppose next that λ = 0. Take a faithful normal tracial weight τ on N
such that τ ◦ θ ≤ μτ with 0 < μ < 1. Let Hn be the selfadjoint operator
affiliated with Z(N) such that τ ◦ θn = τexp(Hn) for n ∈ Z. Then the spectrum

of Hn is contained in (−∞, n logμ] and [n logμ−1,∞) when n≥ 1 and n≤−1,
respectively.

Let ϕ := τ̂ and gβ(t) :=
√
β/π exp(−βt2) for β > 0 and t ∈ R and

Uβ := ĝβ(− logΔϕ) =
∫
R
gβ(t)Δ

it
ϕ dt, where ĝβ(p) :=

∫
R
gβ(t)e

−ipt dt =

exp(−p2/(4β)), p ∈R. Then Uβ → 1 in the strong topology as β →∞.
Now we will show Mω =Mω

θ̂
. Take x = (xν)ω ∈Mω . It suffices to show

that σϕω

gβ
(x) is contained in Mθ̂ since σϕω

gβ
(x) converges to x as β →∞ in the

strong∗ topology. Note that σϕω

gβ
(x) = (σϕ

gβ
(xν))ω .

Let y =
∑

m∈Z
y(m)λθ(m) with y(m) ∈N be the formal decomposition of

y ∈M . Namely, we set y(m) := 1
2π

∫ 2π

0
eimtθ̂t(y)λ

θ(m)∗ dt which we will call
the Fourier coefficients of y. Note that y = 0 if and only if y(m) = 0 for all
m ∈ Z. By direct computation, we have the formal decomposition of σϕ

gβ
(y)

as follows:
σϕ
gβ
(y) =

∑
m∈Z

y(m)λθ(m)ĝβ(−Hm).

Note the series in the right-hand side actually converges in the norm topology
since ‖ĝβ(−Hm)‖∞ ≤ exp(−m2| logμ|2/(4β)) for all m ∈ Z. Hence, the series
in the right-hand side defines an element z ∈M . By definition of z, all Fourier
coefficients of z equal those of σϕ

gβ
(y), and the formal decomposition above is

actually a genuine equality.
Now we fix k ∈N and take a faithful state χ ∈N∗. Let χ̂ be the dual state

of χ on M . Then for all y ∈M , we have∥∥∥∥σϕ
gβ
(y)−

∑
|m|≤k

y(m)λθ(m)ĝβ(−Hm)

∥∥∥∥
χ̂

≤ ‖y‖
∑

|m|>k

exp
(
−m2| logμ|2/(4β)

)
.
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Hence for x= (xν)ω ∈Mω and β > 0, we have∥∥∥∥σϕω

gβ
(x)−

∑
|m|≤k

(
xν(m)λθ(m)ĝβ(−Hm)

)ω∥∥∥∥
χ̂

≤ ‖x‖
∑

|m|>k

exp
(
−m2| logμ|2/(4β)

)
.

It is clear that (xν(m)λθ(m)ĝβ(−Hm))ω is contained in Mω
θ̂
, and so is σϕω

gβ
(x).

�

Thanks to [1, Theorem 6.11], we know Mω is actually a type III1 factor
when M is. Hence, Nω

θ is a type II∞ factor in this situation, but we could
not directly prove this without appealing Ando–Haagerup’s result.

3.2. Description of Mω and fullness of M . Let M be an infinite type III
factor with separable predual and M = N �θ R be the continuous crossed
product decomposition of M as before. Then the following result holds.

Lemma 3.3. The asymptotic centralizer Mω is isomorphic to (Nω,θ)
θω

.

Proof. Let τ be a faithful normal tracial weight on N satisfying τ ◦ θs =
e−sτ for s ∈ R and ϕ the dual weight of τ . Then by Theorem 3.1, we have

Mω = Nω
θ �θω R. We will compute (M ′ ∩Mω)σ

ϕω

which equals Mω . (Use
[1, Proposition 4.35] and the Connes cocycle derivative.) Using λθ(t) ∈M ,
t ∈R, we have

(3.1) M ′ ∩Mω ⊂ πθω

((
Nω

θ

)θω)
∨

{
λθω

(t) | t ∈R
}′′

.

This implies that (M ′ ∩ Mω)σ
ϕω

⊂ πθω (N ′ ∩ (Nω
θ )

θω

). Since the converse

inclusion trivially holds and N ′ ∩Nω =Nω , we obtain Mω = πθω ((Nω,θ)
θω

).
�

A separable factor M is said to be full when Mω = C. The fullness of M
has been studied by several researchers in terms of the continuous core. See
references cited in [4], [12]. Also see [2] for recent progress in study of fullness.
Among them, Marrakchi in [4] shows that N is full if and only if M is a full
type III1 factor with τ -invariant being the usual topology of R. The following
theorem would suggest that the τ -invariant could measure how continuously
θω is acting on Nω . Our proof is similar to that of [12, Lemma 3].

Theorem 3.4. Let M be a type III1 factor with the continuous crossed
product decomposition M =N �θ R as before. Then M is full if and only if
Nω,θ =C.

Proof. The “if” part is trivial from the previous lemma or [6, Corollary 1.9].
Suppose that M is full. Let p ∈ R be an element of the Arveson spectrum
of θω on Nω,θ. By [5, Theorem 7.7], we can take a unitary u ∈ Nω,θ such
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that θωt (u) = eiptu for all t ∈ R. Let (uν) ∈ �∞(N) be a unitary representing

sequence of u. Then Adπθ(u
ν) converges to θ̂p in Aut(M). The fullness of M

implies the innerness of θ̂p, and it turns out that p= 0. Namely, θω is trivial
on Nω,θ, and the previous lemma implies Nω,θ =C. �

Remark 3.5. Ueda’s problem asks if M ′ ∩Mω =C holds for any full fac-
tor M . This is affirmatively solved by Ando–Haagerup in [1, Theorem 5.2].
We would like to deduce this result by strengthening (3.1), but this approach
has not been successful yet. Instead, let us present a short proof of the
problem. Put R := M ′ ∩ Mω . Suppose R were non-trivial. Let ϕ be a
faithful normal state on M . Since Rϕω =Mω = C, R would be a type III1
factor. We claim that for any ε > 0, there exists δ > 0 such that if x ∈ R
with ‖x‖ ≤ 1 satisfies ‖xϕω − ϕωx‖(Mω)∗ < δ, then ‖x − ϕω(x)‖ϕω < ε. By
usual diagonal argument, we can show this claim by contradiction. Readers
are referred to [7, Chapter 5] for this. Also note that ‖xϕω − ϕωx‖(Mω)∗ =
limν→ω ‖xνϕ − ϕxν‖ for all x = (xν)ω ∈ Mω . For proof of this fact, see
[1, Lemma 4.36] or [5, Lemma 9.3]. However, since R is a type III1 fac-
tor, there exist many non-trivial norm bounded sequences (yk) ∈ �∞(R) such
that ‖ykϕω − ϕωyk‖ → 0 as k →∞, and we have a contradiction. The last
claim is implied by the fact that (Rω)ψω is a type II1 factor, where ψ := ϕω

[1, Proposition 4.24].
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