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ON THE CLASSIFICATION OF RATIONAL SPHERE MAPS

JOHN P. D’ANGELO

Abstract. We prove a new classification result for (CR) rational
maps from the unit sphere in some C

n to the unit sphere in

C
N . To do so, we work at the level of Hermitian forms, and we

introduce ancestors and descendants.

1. Introduction

There is considerable literature on proper holomorphic mappings between
unit balls in possibly different dimensional complex Euclidean spaces. See,
for example, [D1], [D2], [DHX], [Fa1], [Fa2], [Fo], [H2], [HJ], [JZ], [L], [LP]
and their references. By a well-known result of Forstnerič [Fo], when the
domain dimension is at least 2, and a proper map f between balls is assumed
sufficiently differentiable at the boundary sphere, then f is a rational function.
By a result of Cima–Suffridge [CS], f has no singularities on the sphere. Thus,
f maps the unit sphere in the domain to the unit sphere in the target. We
write R(n,N) for the collection of rational maps sending the unit sphere in
C

n to the unit sphere in C
N ; we allow domain dimension 1 and we include

constant maps. We write R∗(n,N) for the non-constant maps in R(n,N).
Despite many papers on this topic, the collection of rational sphere maps is
not well understood when N is large relative to n.

In this paper, we introduce two new ideas. First, we define ancestors and
descendants of the Hermitian forms corresponding to rational sphere maps.
We show that every rational sphere map is an ancestor of a final descendant.
We then fix the denominator and the degree of the numerator, and provide a
partial classification of the final descendants. When the rational sphere map
is a polynomial, we recover (in different language) a result of the author. See
Theorem 4.1. When the denominator is of first degree, we give a decisive result
classifying the possible numerators of final descendants. See Theorem 5.2. The
general situation (Theorems 5.1 and 7.1) uses similar ideas but it is harder
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to state the results in simple language. In all cases, there is a canonical
subspace of the target space of a final descendant, on which we give complete
information. In the polynomial case, this space is the full target space. When
the denominator is of degree 1, this subspace, although proper, tells the full
story. Additional complications arise when the degree of q exceeds 1.

We also study an invariance property of the Hermitian form associated with
the final descendant of a rational sphere map, proving the following result. If f
is the final descendant of a rational sphere map, and its associated Hermitian
form is invariant under the circle action z �→ eiθz, then either f is a polynomial
(and hence Uz⊗m for U unitary), or its numerator and denominator have the
same degree, thereby simplifying the classification. In [DX1] and [DX2], the
author and Xiao have systematically studied analogues of this result when
the Hermitian form is invariant under general subgroups of the automorphism
group of the unit ball.

Section 2 summarizes known results on the complexity of rational sphere
maps. Sections 3 and 4 show how Hermitian forms arise in this setting; we
introduce ancestors and descendants in Section 4. Section 5 describes in detail
the relevant linear system of equations involving the inner products of vector-
valued homogeneous polynomials. We prove Theorem 5.2 there. We prove the
invariance result in Section 6 and the results about higher order denominators
in Section 7.

2. A summary of known results

Let Cn denote complex Euclidean space with norm ‖ ‖ and inner product
〈 , 〉. We recall that the holomorphic automorphism group of the unit ball
Bn in C

n consists of linear fractional transformations of the form Uφa, where
‖a‖< 1, where U is unitary, and

φa(z) =
a−Laz

1− 〈z, a〉

for a linear map La depending on a. With s2 = 1− ‖a‖2, one has

(1) La(z) =
〈z, a〉a
s+ 1

+ sz.

Constants and ball automorphisms provide the simplest examples of ratio-
nal sphere maps. We consider rational functions f : Cn → C

N such that the
image of the unit sphere in the domain lies in the unit sphere in the target.
Thus ‖f(z)‖2 = 1 whenever ‖z‖2 = 1. We write R(n,N) for the collection of
such maps. These maps are functions of z = (z1, . . . , zn) and independent of
the z variables. We assume that the rational map is reduced to lowest terms
and (when n ≥ 2) that the constant term in the denominator equals 1. We
write R∗(n,N) for the non-constant maps in R(n,N).
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We use the following notations throughout this paper. We write f ⊕ 0 for
the map to C

N given by z → (f(z),0). More generally, f ⊕ g denotes the
orthogonal sum of f and g. Next, suppose f : Cn → CN is a polynomial of
degree d. We write

f =
d∑

k=ν

fk

to denote its decomposition into vector-valued homogeneous polynomials. See
also Section 3.

Definition 2.1. Assume f, g ∈ R(n,N). They are spherically equivalent
if there are automorphisms φ of the domain ball and χ of the target ball such
that f = χ ◦ g ◦ φ.

Definition 2.2. Assume f, g ∈R∗(n,N). They are homotopically equiva-
lent in target dimension N if there is a one-parameter family Ht such that

• Ht ∈R∗(n,N) for each t ∈ [0,1].
• H0 = f ⊕ 0 and H1 = g⊕ 0.
• The coefficients of Ht depend continuously on t.

Spherical equivalence implies homotopy equivalence, but the converse is
false.

The second item in Definition 2.2 may require some comment. Consider
the family of maps z → (cos(θ)z, sin(θ)z2) from C to C

2. This family shows
that (z,0) and (0, z2) are homotopic in target dimension 2; since the unitary
group is path-connected, it follows that (z,0) and (z2,0) are homotopic in
target dimension 2. But z and z2 are not homotopic in target dimension 1.
It can be shown that any f, g ∈ R(n,N) are homotopic in target dimension
N + 1 if we allow constant maps in the homotopy, and in target dimension
N + n if we allow only non-constant maps.

The following theorem (see [D2]) shows that R(n,N) is a large set when
N is large. It also suggests that classification by target dimension might be
impossible.

Theorem 2.1. Let p
q : Cn → C

K be an arbitrary rational map, reduced to

lowest terms, with ‖p
q (z)‖2 < 1 when ‖z‖2 ≤ 1. Then there is a polynomial

h :Cn →CM such that p⊕h
q ∈R(n,M +K).

In Theorem 2.1, no bounds on N = M + K or deg(h) in terms of K,n
and deg(p) alone are possible. Theorem 2.1 implies that every polynomial
which is non-zero on the unit sphere is the denominator for a rational sphere
map, reduced to lowest terms. Thus classification of rational sphere maps
requires regarding something as fixed. Up to now most authors have fixed
the target dimension. In this paper, we will proceed differently by fixing the
denominator.
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We summarize well-known results in the next several propositions and the-
orems.

Proposition 2.1. The set R(n,N) consists only of constants when N < n.

Proof. Since n≥ 2 here, a non-constant rational sphere map extends to a
proper map f of the unit balls. The inverse image of a point would be a
compact positive dimensional complex analytic subvariety of the ball, which
is impossible. Thus in this case each rational sphere map is a constant. �

The next result is a special case of much more general results giving circum-
stances when proper holomorphic self-maps are necessarily automorphisms.
See [P] and the recent work [J].

Proposition 2.2. For n≥ 2, the set R(n,n) consists only of constants and
linear fractional transformations which are automorphisms of the unit ball.

Proposition 2.3. The set R(1,1) is the set of functions given by

(2) eiθz−m
K∏
j=1

z − aj
1− ajz

,

where |aj | �= 1 and m,K ≥ 0.

Note that a proper holomorphic map of the unit disk is a finite Blaschke
product; each |aj |< 1 and m= 0. Factors in (2) where |aj |= 1 are constant,
and hence omitted. Only in one dimension are there non-constant rational
sphere maps that are not proper holomorphic maps of the ball, corresponding
to the term z−m or to factors with |aj |> 1 in (2).

One of the author’s aims has been to view these three Propositions as
part of a unified theory. Before getting to those ideas, we continue with our
summary.

In the next two results, the authors proved stronger theorems than we state
here, as they considered proper maps between balls with some regularity at
the boundary.

Theorem 2.2 (Faran). Consider rational sphere maps R(n,N).

• Each f ∈R(2,3) has degree at most 3. There are four spherical equivalence
classes of proper maps in R(2,3). See [Fa1].

• Assume 2≤ n≤N ≤ 2n−2. Each f ∈R(n,N) has degree at most 1. There
is one spherical equivalence class of proper maps in R(n,N). See [Fa2].

Theorem 2.3 (Huang–Ji). For n ≥ 3, each f ∈ R(n,2n − 1) has degree
at most 2. There are two spherical equivalence classes of proper maps in
R(n,2n− 1). See [HJ] and also [H1], [H2] for related results.

Theorem 2.4 (Lebl). In source dimension at least 2, each quadratic ratio-
nal sphere map is spherically equivalent to a quadratic monomial map. See [L].
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We remark that Theorem 2.4 fails in one dimension; the simplest example
is given by 1

z2 .

Theorem 2.5. For N ≥ 2n and all n, the maps in R∗(n,N) lie in infinitely
many spherical equivalence classes. In fact, there is a one-parameter family Ht

of quadratic polynomials where each Ht lies in a different spherical equivalence
class.

See [DL1] for the following stronger statement and finiteness theorem.

Theorem 2.6 (D’Angelo–Lebl). Let Ht be a homotopy of rational proper
maps between balls. Then either all the maps are spherically equivalent or
there are uncountably many spherical equivalence classes.

Theorem 2.7 (D’Angelo–Lebl). For n ≥ 2 and each N , the maps in
R∗(n,N) lie in finitely many homotopy equivalence classes.

We close this section by discussing the degree estimate conjecture made by
the author many years ago.

Conjecture. Assume f ∈R(n,N). The following sharp bounds hold:

• If n= 2, then deg(F )≤ 2N − 3.
• If n≥ 3, then deg(F )≤ N−1

n−1 .

By Proposition 2.3, there is no bound on the degree of elements in R(1,1)
and hence in R(1,N). The conjecture is known for monomial maps; see [DKR]
for n= 2 and [LP] for n≥ 3. The proofs are rather complicated in both cases.
There are explicit examples with the given degrees, and hence the conjecture
would be sharp if proved. The following non sharp-bound is known. See
[DL2].

Theorem 2.8 (D’Angelo–Lebl). If n≥ 2, and f ∈R(n,N) is of degree d,
then

(3) d≤ N(N − 1)

2(2n− 3)
.

The proof of (3) relies on a degree estimate proved by Meylan [M] when
n= 2.

3. Hermitian forms

The main tool in this paper is Hermitian forms. Let W (n,d) denote the
complex vector space of polynomials of degree at most d in n variables, and
let V (n,d) denote the subspace of homogeneous polynomials of degree d. (Of
course we also include the zero polynomial.) It is possible to homogenize by
adding a variable and then to work with V (n+ 1, d) instead of W (n,d), but
it makes no essential difference.
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We make V (n,m) into an inner product space by decreeing that the distinct
monomials are orthogonal and that ‖zα‖2V =

(
m
α

)
, the multinomial coefficient.

We will often work with C
N -valued homogeneous polynomials. We use the

following abbreviated notation. Suppose, with coefficients cα ∈C
N , we have

p(z) =
∑

|α|=m

cαz
α.

We write p(z) = L(z⊗m) where L : V (n,m)→C
N is a linear map. Thus, z⊗m

amounts to a list of the monomials forming an orthonormal basis.

Example 3.1. Suppose p(z1, z2) = (z21 ,
√
2z1z2, z

2
2). Then

p(z1, z2) =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝ z21√

2z1z2

z22

⎞
⎠= L

(
z⊗2

)
.

Next, we discuss positivity conditions. In coordinates, a Hermitian form
on W (n,d) can be written

r(z, z) =
∑

|α|,|β|≤d

cαβz
αzβ ,

where the matrix (cαβ) is Hermitian symmetric. We make a well known but
crucial comment: the conditions that r(z, z) be non-negative as a function of
z and be non-negative as a Hermitian form differ. If the form is non-negative
definite, then the function is non-negative. If the function is non-negative,
then the form can have some negative eigenvalues.

Example 3.2. Put r(z, z) = (|z1|2 − |z2|2)2. As a function, r is non-
negative. The underlying Hermitian form on V (2,2) is diagonal with eigen-
values 1,−2,1.

We write

(4) r(z, z) =
∑

|α|,|β|≤d

cαβz
αzβ � 0

when the matrix (cαβ) has only non-negative eigenvalues, and we use the
symbol � when all the eigenvalues are positive. We note that (4) holds if
and only if r is a Hermitian squared norm; that is, there are holomorphic
polynomials fj of degree at most d such that

r(z, z) =

K∑
j=1

∣∣fj(z)∣∣2 = ∥∥f(z)∥∥2.
Rational sphere maps p

q will correspond to certain Hermitian forms ‖p‖2−
|q|2 with exactly one negative eigenvalue. See (7) below.

The following theorem (see [Q], [CD], [D2]) plays a key role in the proof of
Theorem 2.1.
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Theorem 3.1 (Quillen, Catlin–D’Angelo). Suppose

r(z, z) =
∑

|α|=|β|=m

cαβz
αzβ > 0

on the unit sphere. Then there is an integer d such that

‖z‖2dr(z, z)� 0.

Example 3.3. Consider the monomial αzw in two variables. This func-
tion is a component of a polynomial map to some sphere if |α|< 2. To find
the target dimension and degree d + 2 that work we need an inequality on
Hermitian forms:

(5) |α|2|z|2|w|2
(
|z|2 + |w|2

)d � (
|z|2 + |w|2

)d+2
.

For each k we therefore require

|α|2
(
d

k

)
≤
(
d+ 2

k+ 1

)

and thus for 0≤ k ≤ d we obtain

|α|2 ≤ (d+ 2)(d+ 1)

(k+ 1)(d− k+ 1)
.

Assuming d is even, the critical value is when k = d
2 . We get |α|2 ≤ 4(d+1)

(d+2) .

Hence (after rewriting), for αzw to be a component of a map of degree d+2,
we require

(6) d≥ 2|α|2 − 4

4− |α|2 .

By (6), if |α| approaches 2, then d approaches ∞. A similar situation happens
for the target dimension.

4. Hermitian forms and rational sphere maps

Consider p
q ∈R(n,N). Write (p; q) for the corresponding polynomial map

from Cn to CN+1. Thus, q is scalar-valued and not 0 on the closed unit ball.
Without loss of generality we assume p and q have no common factors and
that q(0) = 1.

Given an arbitrary polynomial map (p; q) to C
N+1 with no common factors,

we ask when it corresponds to an element of R(n,N) or R∗(n,N). We want
‖p‖2 − |q|2 = 0 on the sphere. Equivalently, there are polynomial maps f, g
such that

(7) ‖p‖2 − |q|2 =
(
‖f‖2 − ‖g‖2

)(
‖z‖2 − 1

)
.
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We call ‖f‖2 −‖g‖2 the quotient form. The quotient form is not 0 when p
q is

not a constant. Then formula (7) is equivalent to saying that∥∥(f ⊗ z)⊕ g
∥∥2 − ∥∥(g⊗ z)⊕ f

∥∥2
has signature pair (N,1). Thus, as a Hermitian form, there are N positive and
1 negative eigenvalue. Formula (7) seems easy, but things are quite subtle.

Definition 4.1. Let g = p
q ∈R∗(n,N) be a rational sphere map, reduced

to lowest terms and with q(0) = 1. We define its associated Hermitian form
H(g) by

H(g) = ‖p‖2 − |q|2.
When g is of degree d, we regard H(g) as a Hermitian form on the vector
space W (n,d).

Let g = p
q be a rational sphere map and let φa be an automorphism of the

ball in the target space. Write G= P
Q = φa ◦ g. Then we have

(8) ‖P‖2 − |Q|2 =
(
1− ‖a‖2

)(
‖p‖2 − |q|2

)
.

Thus, H(G) is a constant multiple of H(g) and the quotient form of G is
1− ‖a‖2 times the quotient form of g. See [L] for applications such as Theo-
rem 2.4. Theorem 6.1 provides an elegant result about the invariance of H(g)
under a circle action.

We next compute H(g) when g is the tensor product of automorphisms.
For ‖a‖ < 1, we put ca = 1 − ‖a‖2. We write ρ = ‖z‖2 − 1 for the defining
equation of the unit sphere and we put Wj =Wj(z, z) = |1− 〈z, aj〉|2.

Proposition 4.1. Suppose g = p
q is the tensor product of K automor-

phisms φaj . We assume each aj �= 0. Write cj for cαj . Then we have the
following formula for the Hermitian form corresponding to g.

(9) ‖p‖2 − |q|2 =
K∏
j=1

(cjρ+Wj)−
K∏
j=1

Wj .

Proof. By (8), applied when g is the identity map, the squared norm of the
numerator of φaj can be written:

cjρ+Wj .

Note that the squared norm of a tensor product is the product of the squared
norms of the factors. Hence the numerator of p

q is the tensor product of the

corresponding numerators and the denominator is the product of the corre-
sponding denominators. As claimed, we obtain

‖p‖2 − |q|2 =
K∏
j=1

(cjρ+Wj)−
K∏
j=1

Wj .
�
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Formula (9) defines a polynomial
∑K

j=1Bjρ
j in the defining function ρ.

The coefficients Bj are functions, but satisfy simple formulas such as

B0 = 0,

B1 =
∑
j

cj
∏
k �=j

Wk,

B2 =
∑
j �=k

cjck
∏
l �=j,k

Wl,

BK =

K∏
j=1

cj .

These formulas indicate the symmetry of the result in the points aj .

Definition 4.2. Let r = ‖p‖2−|q|2 and s= ‖f‖2−|q|2 be Hermitian forms
with the same negative term. We say that r is a first ancestor of s or that s
is a first descendant of r if

(10) s=E(r) =E
(
‖p‖2 − |q|2

)
= ‖p‖2 +

(
‖z‖2 − 1

)∥∥π(p)∥∥2 − |q|2,
and the degree of s equals the degree of r. Here π is orthogonal projection
onto a nonzero subspace of the target CN of p

q . For k ≥ 2, we say that s is a

kth descendant of r if it is a first descendant of a (k − 1)st descendant of r.
We say that s is a final descendant of r, if we cannot apply the operation E
in (10) without increasing the degree.

By (10), the quotient form of E(r) equals the quotient form of r plus
‖π(p)‖2. This fact arises in the proof of a result from [D3], stated below as
Theorem 4.2.

We clarify a notational issue. Assume p = (p1, . . . , pN ). Then π(p) =
(pj1 , . . . , pjk) can be regarded, after a unitary map, as simply a list of some of
the components of p.

Note that E(r) and r are equal on the unit sphere. In particular, if r
corresponds to a rational sphere map, then so does E(r). Furthermore, the
denominator is unchanged. The basic idea of this paper is simple; we start
with a rational sphere map p

q and consider its Hermitian form r = ‖p‖2−|q|2.
We apply the operation E until we reach a final descendant. Then we describe
all final descendants. In [D3] this process is called orthogonal homogenization.
See Theorem 4.1 below.

The number of positive eigenvalues of the form r is not generally preserved
by the operation in (10). It can increase, decrease, or stay the same. This
situation partially explains why the degree estimate conjecture is difficult.

Example 4.1. Consider the Hermitian form (on W (2,5))

|z|10 + |w|10 + 5|z|6|w|2 + 5|z|2|w|4 − 1.
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It corresponds to the polynomial sphere map (z5,
√
5z3w,

√
5zw2,w5) in

R(2,4). The Hermitian form

|z|10 + |w|10 +
(
|z|2 + |w|2

)(
5|z|6|w|2 + 5|z|2|w|4

)
− 1

is a first descendant. The form(
|z|2 + |w|2

)5 − 1

= |z|10 + |w|10 +
(
|z|2 + |w|2

)(
5|z|6|w|2

)
+
(
|z|2 + |w|2

)2(
5|z|2|w|4

)
− 1

is a second (and final) descendant. It corresponds to an element in R(2,6).

Remark 4.1. The ancestor form in Examples 4.1 provides an example
of a polynomial sphere mapping invariant under a cyclic group of order five:
(z,w) �→ (ηz, η2w), where η is a 5th root of unity. A map corresponding to the
first descendant is not invariant under any non-trivial group. The map corre-
sponding to the final descendant is invariant under a different representation
of the cyclic group of order five: (z,w) �→ (ηz, ηw).

This new language yields the following reformulation of a result from [D1].

Theorem 4.1. Let p be a polynomial sphere map of degree m. Then
‖p‖2 − 1 is an ancestor of ‖z‖2m − 1 = ‖z⊗m‖2 − 1.

We recall an alternative way to state this result, which focuses on the sphere
map rather than on the Hermitian form.

Corollary 4.1. Let p be a polynomial sphere map of degree m. Then
there is a finite number of tensor product operations E1, . . . ,Ek and a unitary
map U such that

(Ek · · ·E1)(p) = Uz⊗m.

Remark 4.2. Let p be a polynomial sphere map. Assume p vanishes to
order ν at 0 and is of degree m. Then z⊗m is a kth descendant of p, where
k =m− ν.

We mention a volume inequality from [D3] whose proof uses the operation
(10).

Theorem 4.2. Let Vp be the volume (with multiplicity counted) of the im-
age of the ball under a polynomial sphere map p of degree m. Then

(11) Vp ≤
πnmn

n!
.

Equality occurs in (11) if and only if p= Uz⊗m for some unitary U .

The proof of Theorem 4.2 relies on the following result. Identify a poly-
nomial map p with the Hermitian form H(p) = ‖p‖2 − 1. Then the volume
of the image of a descendant is greater than the volume of the image of the
ancestor.
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5. Equations on inner products

Consider a C
N -valued rational function p

q . We write

p(z) =
∑

Aαz
α,

q(z) =
∑

bαz
α,

where each Aα ∈C
N and each bα ∈C. The condition for being a sphere map

is a system of linear equations in the inner products 〈Aα,Aβ〉 and the scalars

bαbβ . For ‖z‖2 = 1, we have:

(12)
∥∥p(z)∥∥2 − ∣∣q(z)∣∣2 =∑

α,β

(
〈Aα,Aβ〉 − bαbβ

)
zαzβ = 0.

Homogenizing and equating coefficients leads to messy formulas.
Let D(n,d) =

(
d+n−1
n−1

)
denote the dimension of V (n,d). The following

combinatorial result gives the number of linear equations satisfied by the inner
products of the vector coefficients of a polynomial sphere map of degree d in
n variables. If we regard the denominator of a rational sphere map as known,
then the inner products of the vector coefficients of the numerator satisfy the
same number of equations.

Proposition 5.1. Let p(z) =
∑

Cαz
α denote a polynomial sphere map of

degree d. The inner products of the vector coefficients Cα of p satisfy a linear
system of K =K(n,d) equations, where

(13) K(n,d) =D(n,d)

d−1∑
j=0

D(n, j) +

(
D(n,d)(D(n,d) + 1)

2

)
.

For fixed n, the number K(n,d) is a polynomial of degree 2n− 1 in d.

Proof (Sketch). The term D(n,d) in (13) is the dimension of V (n,d). Each
term in the sum is the dimension of D(n, j) for j < d. Hence, the expression
D(n,d) times the sum results from counting the number of inner products
arising when the degree of homogeneity is d in the z variables and less than d
in the conjugated variables. The other term equals 1+2+ · · ·+D(n,d), which
is the number of inner products arising from terms homogeneous of degree d
in both the z variables and in the conjugated variables. �

Example 5.1. We have the following results:

• K(1, d) = d+ 1.

• K(2, d) = d3+3d2+4d+2
2 .

• K(3, d) = 2d5+15d4+44d3+69d2+62d+24
24 .

Expanding in terms of homogeneous polynomials is easier. We illustrate
with the next example. There are 34 equations in the approach where we
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regard the coefficient vectors as unknowns, and there are 4 equations if we
regard homogeneous polynomials as unknowns.

Example 5.2. Consider the map F :C2 →C
10 defined by

f(z,w) =A+Bz +Cw+Dz2 +Ezw+ Fw2 +Gz3 +Hz2w+ Izw2 + Jw3.

We can regard A,B,C,D,E,F are parameters. The inner products involv-
ing G,H, I, J are then determined by the equations in (12) after equating
coefficients.

〈A,G〉= 〈A,H〉= 〈A,I〉= 〈A,J〉= 0,〈
Gz3 +Hz2w+ Izw2 + Jw3,Bz +Cw

〉
=−

〈
Dz2 +Ezw+ Fw2,A

〉(
|z|2 + |w|2

)
,〈

Gz3 +Hz2w+ Izw2 + Jw3,Dz2 +Ezw+ Fw2
〉

=−
〈
Dz2 +Ezw+ Fw2,Bz +Cw

〉(
|z|2 + |w|2

)
− 〈Bz +Cw,A〉

(
|z|2 + |w|2

)2
.

There is one more long equation involving squared norms. Using the expansion
in terms of homogeneous parts the equations become

〈p3, p0〉 = 0,

〈p3, p1〉 = −〈p2, p0〉
(
|z|2 + |w|2

)
,

〈p3, p2〉 = −〈p2, p1〉
(
|z|2 + |w|2

)
− 〈p1, p0〉

(
|z|2 + |w|2

)2
,

‖p3‖2 =
(
|z|2 + |w|2

)3 − (
|z|2 + |w|2

)
‖p2‖2

−
(
|z|2 + |w|2

)2‖p1‖2 − (
|z|2 + |w|2

)3‖p0‖2.
We can regard these last four equations as follows. We think of p0, p1, p2
as known. All the right-hand sides are then known. The left-hand sides
then tell us the inner products of p3 with each of these lower order terms.
Expanding each of the homogeneous polynomials in coordinates gives the
more complicated system described above.

We approach the analogous equations in the rational case by fixing the
denominator and degree of numerator. We will find all maps, ignoring target
dimension, and provide a partial classification. Given q with q(z) �= 0 on the
sphere, how do we construct all possible numerators p? Assume the degree of
q is k. The equations in (12) imply that the degree of p is at least as large
as the degree of q, and hence we assume p has degree m+ k for m≥ 0. The
condition ‖p‖2 = |q|2 on the sphere yields the following results.

Proposition 5.2. Assume n ≥ 2. Let p
q ∈ R(n,N). Put q = 1 + · · · +

qk. For ‖z‖ ≤ 1 and 0 ≤ j ≤ k − 1 we have |qk−j(z)| <
(
k
j

)
. In particular

|qk(z)|< 1.



ON THE CLASSIFICATION OF RATIONAL SPHERE MAPS 881

Proof. Choose z with ‖z‖2 = 1, and consider the complex line t �→ tz. The
restriction to this line defines a rational sphere map, with no singularities in
the disk, in one dimension. By homogeneity its denominator is

u(t) =
k∑

j=0

qj(z)t
j .

But all the roots aj of u lie outside the unit disk, and hence we can write

u(t) =
k∏

j=1

(
1− aj(z)t

)
,

where |aj(z)|< 1 for each j. Expanding and estimating gives the result. �
Proposition 5.3. Let p

q be a rational sphere map. Assume the degree of p

is m+ k. Expand q as q = 1+ · · ·+ qk in terms of homogeneous polynomials.
Then there is a final descendant ‖g‖2 − |q|2 with gj = 0 for j <m and

(14) 〈gm+k, gm〉= qk‖z‖2m =
〈
qkz

⊗m, z⊗m
〉
.

Proof. On the sphere, we have

m+k∑
j,l=0

〈pj , pl〉=
k∑

j,l=0

qjql.

Replace z by eiθz and use homogeneity to get:

(15)

m+k∑
j,l=0

〈pj , pl〉eiθ(j−l) =

k∑
j,l=0

qjqle
iθ(j−l).

We equate Fourier coefficients in this equality of trig polynomials. Put
j − l= b. Then −(m+ k)≤ b≤ (m+ k). We call b the gap in indices.

On the sphere, for each b with −(m+ k)≤ b≤m+ k, we get

(16)
m+k−b∑

l=0

〈pl+b, pl〉=
k−b∑
l=0

qb+lql.

Since qj = 0 for j > k, we must have b+ l≤ k in the right-hand side of (16).
The largest gap is when b =m+ k. Put this value into (16). Both sums

have only one term, and we get

〈pm+k, p0〉= qm+k.

Since q is of degree k, we conclude either thatm= 0 or that pm+k is orthogonal
to p0. If m= 0, we put g = p and we already have gj = 0 for j <m. Further-
more 〈pk, p0〉= qk on the sphere and, by homogeneity, (14) holds. Thus, the
conclusion holds when m= 0.

Assume m> 0 and that pm+k is orthogonal to p0. If p0 �= 0, then we let V
be the subspace spanned by p0. Since pm+k is orthogonal to V , we can apply
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(10) to get a new polynomial g of the same degree m+ k with g0 = 0. Thus,
whether or not p0 = 0, we may assume we have a descendant ‖g‖2 − |q|2 with
g0 = 0.

Now the largest gap is when b=m+ k− 1. We apply the same reasoning.
If m= 1, we get what we want, since, on the sphere,

〈pm+k, pm〉= 〈pk+1, p1〉= qk.

Homogenizing gives (14).
If m> 1, then p vanishes to order at least 2, and as above, we can apply

(10) to fix the degree and increase the order of vanishing. We can proceed in
this way until we get a descendant ‖g‖2 − |q|2 satisfying g = gm + · · ·+ gm+k.

Take b= k in (16), with p replaced by g. The sum on the right-hand side
has only one term (when l= 0), namely qk. Hence on the sphere, we have

m∑
l=0

〈gl+k, gl〉= qk.

But now gj = 0 for j < m and the sum on the left-hand side has only one
term. We conclude that 〈gm+k, gm〉= qk. Homogenizing gives (14).

We summarize the proof. We expand the numerator and denominator of
a rational sphere map into homogeneous parts. We express the condition
for being a sphere map in terms of inner products. We let the circle act on
the sphere by replacing z by eiθz, and then equate Fourier coefficients. The
resulting identities hold on the sphere. We use them in conjunction with the
notion of descendant to reduce to the case where

(17)
g

q
=

gm + · · ·+ gm+k

1 + · · ·+ qk
.

Maps as in (17) satisfy identities such as (18a)–(18c) below. �

Once we have a sphere map g
q satisfying the properties in Proposition 5.1,

we can draw several conclusions. The first conclusion is that there is a canon-
ical non-zero subspace W into which both gm and gm+k map. Then (14)
provides one of the major parts of Theorem 5.1 below.

We rewrite (14) along with two of the other bihomogenized identities:

〈gm+k, gm〉= qk‖z‖2m,(18a)

〈gm+k, gm+1〉+ 〈gm+k−1, gm〉‖z‖2 = qkq1‖z‖2m + qk−1‖z‖2m+2,(18b) ∑
l

‖gm+l‖2‖z‖2k−2l =
∑

|ql|2‖z‖2m+2k−2l.(18c)

The condition in (18a) arises when the gap in the indices is maximal,
namely k. The condition in (18b) arises when this gap is k − 1, and the
condition in (18c) is when the gap is 0. We do not write out the intermediate
expressions; they arise from bihomogenizing (16).
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These ideas lead to a general result. Recall that V (n,m) is the complex
vector space of homogeneous polynomials of degree m in n variables.

Theorem 5.1. Let f = p
q be a rational sphere map. Assume deg(p) =m+k

and deg(q) = k. The following hold:

• There is a finite number of tensor operations such that

(19) Es ◦ · · · ◦E1(f) =
gm + · · ·+ gm+k

q
.

In other words f is an ancestor of g
q satisfying (19).

• There is a non-zero subspace W of the target space of g
q with πW (gm) = gm.

By the next item, W is isomorphic to V (n,m).
• There is an invertible linear map M : (V,n)→W such that

πW (gm+k) = qk
(
M−1

)∗(
z⊗m

)
,

gm =M
(
z⊗m

)
⊕ 0.

• There is a complete orthogonal decomposition of the target space described
below.

Before completing this description, we give a complete analysis when the
denominator is of first degree.

Theorem 5.2. Let f = p
q be a rational sphere map with linear denominator

1 + q1 and of degree m+ 1. The following hold:

• There is a finite number of tensor operations such that

(20) Es ◦ · · · ◦E1(f) =
gm+1 + gm

1 + q1
=

g

q
.

• There is a non-zero subspace W of the target space with πW (gm) = gm. By
the next item, W is isomorphic to V (n,m).

• There is an invertible linear map M from the space of vector-valued homo-
geneous polynomials of degree m to W , and a homogeneous mapping hm+1,
such that

gm+1 = q1
(
M−1

)∗(
z⊗m

)
⊕ hm+1,

gm =M
(
z⊗m

)
⊕ 0.

• The Hermitian form defined by

(21) |q1|2
(
‖z‖2m −

∥∥(M−1
)∗(

z⊗m
)∥∥2)+ ‖z‖2

(
‖z‖2m −

∥∥M(
z⊗m

)∥∥2)
is non-negative definite.

Proof. Proposition 5.1 establishes the first three conclusions of both results.
We therefore first finish the proof of Theorem 5.2, as it is easier. We write
q1 = 〈z, a〉.

(22)
g

q
=

gm+1 + gm
1 + 〈z, a〉 .
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The expression (22) is a rational sphere map if two conditions are met:

〈gm+1, gm〉= ‖z‖2m〈z, a〉,(23)

‖gm+1‖2 + ‖z‖2‖gm‖2 = ‖z‖2m+2 + ‖z‖2m
∣∣〈z, a〉∣∣2.(24)

If (23) holds, then polarization (regarding z and z independently) implies
that πW (gm+1) is divisible by q1. Since gm and gm+1 are homogeneous, we
can then find linear maps M and L such that

gm =M
(
z⊗m

)
⊕ 0,

gm+1 =
(
〈z, a〉L

(
z⊗m

))
⊕ hm+1.

Formula (23) forces L= (M−1)∗. Here hm+1 is a vector-valued polynomial,
the orthogonal projection of gm+1 onto the orthogonal complement of W . We
need to make (21) hold as well. Solving for the unknown ‖hm+1‖2 gives

(25) ‖hm+1‖2 = ‖z‖2
(
‖z‖2m−

∥∥M(
z⊗m

)∥∥2)+ ∣∣〈z, a〉∣∣2(‖z‖2m−
∥∥L(z⊗m

)∥∥2).
Since Hermitian squared norms correspond to non-negative definite Hermitian
forms, the form on the right-hand side of (25) must be non-negative definite.

�

We have proved Theorem 5.2 and the first three parts of Theorem 5.1.

Corollary 5.1. Let p
q be a rational sphere map of degree m+1 and assume

the degree of q is 1. Then the final descendant of ‖p‖2 − |q|2 is completely
determined by the linear map M satisfying (21). Maps M and M ′ give the
same descendant if and only if there is a unitary map U on W such that
M ′ = UM .

Proof. Let W be the subspace in the theorem. The final descendant is
given by

(26)
∥∥(M + q1

(
M−1

)∗)(
z⊗m

)∥∥2 + ‖hm+1‖2 − |q|2.
The second term in (26) is determined by (21). The first term is determined
by q1 and M . We note that the first term is unchanged if we replace M by
UM , where U is unitary on W , because

UM + q1
(
(UM)−1

)∗
= UM + q1

(
M−1U−1

)∗
(27)

= UM + q1U
(
M−1

)∗
= U

(
M + q1

(
M−1

)∗)
.

We have used U = (U−1)∗. Taking norms of (24) on W gives the result. �

The final descendant of a polynomial sphere map is completely determined
by its degree. The final descendant of a rational sphere map with denominator
of first degree is determined by the subspace W and the isomorphism M :
V (n,m)→W .
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We wish to interpret (21), or equivalently (25), in terms of the spectrum
of M . Recall that distinct monomials are orthogonal and that ‖zα‖2 =

(
m
α

)
.

After identifying V (n,m) with the subspace W , we can express our inequali-

ties in terms of eigenvalues of M . Assume Mv = λv and hence ‖L(v)‖2 = ‖v‖2

|λ|2 .

After some computation with (25), we obtain

(28) ‖h‖2 = ‖z‖2m
(
1− |λ|2

)(
‖z‖2 − |〈z, a〉|2

|λ|2
)
.

Using the Cauchy–Schwarz inequality, the condition becomes ‖a‖ ≤ |λ| ≤ 1.

Remark 5.1. In this situation, but not for general denominators, a simpli-
fication occurs. On the right-hand side of (28), we multiply a form on V (n,1)
by ‖z‖2m. But, unlike in the situation of Theorem 3.1, this term doesn’t
impact positive semi-definiteness. A form on V (n,1) is a Hermitian squared
norm if and only if it is non-negative as a function.

The inequality in (21) is fundamental. It constrains the map M ; we note
that as a tends to 0, M is less constrained, as it may have eigenvalues of even
smaller modulus. This seems at first a bit counter-intuitive; when a= 0 we get
a polynomial map. The polynomial we get, however, is not a final descendant.
We illustrate this issue in the one-dimensional case; similar examples apply
in general.

Example 5.3. For |a| < 1 and 0 ≤ θ ≤ π
2 , consider the family of sphere

maps(
cos(θ)z

a− z

1− az
, sin(θ)z

)
=

1

1− az

(
cos(θ)

(
az − z2

)
, sin(θ)

(
z − az2

))
.

For 0 < θ < π
2 , these maps are in the form p2+p1

1+q1
. A simple computation

verifies that 〈p2, p1〉= q1|z|2 =−a|z|2z. As a tends to 0, the limit map is(
− cos(θ)z2, sin(θ)z

)
.

We see that the coefficient μ of z (the analogue of M ) lies anywhere in 0<
|μ|< 1.

In Theorem 4.1, when p is a polynomial, and hence q = 1, the final Hermit-
ian form is completely determined. In Theorem 5.1, when q is of first degree,
the final Hermitian form is not completely determined. It is determined by
the isomorphism M , whose spectrum lies in the annular region

‖a‖ ≤ |λ| ≤ 1.

The target space for p
q contains an isomorphic copy of V (n,m). The orthog-

onal complement contains excess; it is determined up to a unitary.
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Remark 5.2. Theorem 5.2 provides information for sphere maps of degree
1, and even about formula (1) for automorphisms. A rational sphere map of
degree 1 can be written p0+p1

1+q1
. The bihomogenized version of the identities

in (18) become

‖p0‖2‖z‖2 + ‖p1‖2 = ‖z‖2 + |q1|2,(29a)

〈p1, p0〉= q1 = 〈z, a〉.(29b)

When m= 0, equation (22) yields

(30)
∥∥h(z)∥∥2 = ‖z‖2

(
1− ‖p0‖2

)
+
∣∣〈z, a〉∣∣2

(
1− 1

‖p0‖2
)
.

Thus the right-hand side of (30) must be non-negative. There is no excess if
and only if h(z) = 0. This condition occurs when ‖p0‖ = 1, and the map is
constant. The opposite end of the scale is when ‖a‖= ‖p0‖. Up to a unitary we
may put p0 = a. Then p1 = 〈z, a〉 a

‖a‖2 ⊕h. In this case we write p1(z) = La(z)

and discover that 〈La(z), a〉 = 〈z, a〉. Therefore, La(z) = v〈z, a〉 + cz for a
constant vector v and constant scalar c. Plugging this ansatz in (29a) and
(29b) determines v and c, thereby yielding formula (1).

6. Invariance under a circle action

Let g be a rational sphere map, and let f = p
q be its final descendant.

We are interested in invariance of the form H(f) under subgroups of the
automorphism group of the ball. In this section, we prove one such result.

Theorem 6.1. Let f = g
q be the final descendant of a rational sphere map

of degree d. Suppose that H(f) is invariant under the map z �→ eiθz. Then
either

• f is a polynomial and hence f = Uz⊗d, or
• both g and q are of degree exactly d.

Proof. Expand g and q in terms of homogeneous polynomials. We may
assume that (17) holds, where d=m+ k. Note that (18a) then holds as well.
We write

(31) H(f) = ‖g‖2 − |q|2 =
∥∥∥∑gj

∥∥∥2 − ∣∣∣∑ qj

∣∣∣2.
Expanding (31) yields many terms. When we replace z by eiθz in this expan-
sion, there is only one term of the form cke

ikθ, namely

ck = 〈gm+k, gm〉 − qk.

By (18a), however, we can write this term as

(32)
(
‖z‖2m − 1

)
qk.
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If H(f) is invariant, then this term must vanish. It follows that either m= 0,
in which case g and q are both of degree k, or that qk = 0. If qk = 0 then (18a)
implies that gm is orthogonal to gm+k. Suppose gm is not 0. In this case,
however, we can apply the tensor product operation on the space spanned by
gm, and obtain a sphere map E(f) which is still of degree m+ k. Since f is
assumed to be a final descendant, we get a contradiction. Hence, gm = 0. We
are now in the same situation as before, except that we have increased the or-
der of vanishing of the numerator and lowered the degree of the denominator.
We can proceed in this fashion to establish that gj = 0 for m≤ j <m+ k = d
and that q is of degree 0. We conclude that g = gm+k and q = 1. Therefore,
f is a homogeneous polynomial sphere mapping of degree d. Corollary 4.1
implies the conclusion in this case.

We repeat the idea; invariance under the circle action forces a certain term
to vanish. That term is (‖z‖2m − 1)qk. When the first factor vanishes, we
get a map whose numerator and denominator have the same degree. When
the second factor vanishes, we have lowered the degree of q and increased the
order of vanishing of g. Because f is a final descendant, invariance allows us
to repeat the process until we obtain q = 1. Thus, f is a polynomial and also
a final descendant; Corollary 4.1 implies the desired conclusion. �

7. Denominators of higher degree

The part of Theorem 5.1 already proved shows that there is a natural
subspace W of the target space isomorphic to V (n,m). Assume n≥ 2. Here
m is the order of vanishing of the (final descendant) map g

q at 0, and hence

also the order of vanishing of g there. If g
q is a polynomial, and hence the final

descendant form is ‖g‖2 − 1, then W is the full target space. If the degree of
q is 1, then W is a proper subspace of the target corresponding to the final
descendant Hermitian form ‖g‖2 − |q|2. But the map is determined up to a
unitary map by the isomorphism M . When q has degree at least 2, additional
subspaces arise because of (18a)–(18c).

We analyze this fully in degree two. Assume q has degree 2 and p has
degree m+2. Theorem 5.1 shows that the final descendant of p

q will have the

form

‖gm + gm+1 + gm+2‖2 − |q|2.
Also

〈gm+2, gm〉= q2‖z‖2.
Again there is a subspace W and a linear map M : V (n,m)→W such that
πW (gm) = gm and gm =M(z⊗m) and πW (gm+2) = q2(M

−1)∗(z⊗m). We recall
the additional equations involving q1 and gm+1. We have

〈gm+2, gm〉= qk‖z‖2m,(33)
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〈gm+2, gm+1〉+ 〈gm+1, gm〉‖z‖2(34)

= qkq1‖z‖2m + qk−1‖z‖2m+2,

‖gm+2‖2 + ‖gm+1‖2‖z‖2 + ‖gm‖2‖z‖4(35)

= |q2|2‖z‖2m + |q1|2‖z‖2m+2 + ‖z‖2m+4.

We return to our study of R(n,N) with a general denominator. Assume
that ‖p‖2 − |q|2 is a final descendant. Then

(36)
∑

‖pm+j‖2‖z‖2k−2j =
∑

|qj |2‖z‖2m+2k−2j

holds by (18c). Hence, there is (a large dimensional!) unitary matrix U with⎛
⎜⎜⎜⎜⎝

pm+k

· · ·
pm+j ⊗ z⊗(k−j)

· · ·
pm ⊗ z⊗k

⎞
⎟⎟⎟⎟⎠= U

⎛
⎜⎜⎜⎜⎝

qkz
⊗m

· · ·
qjz

⊗(m+k−j)

· · ·
q0z

⊗(m+k)

⎞
⎟⎟⎟⎟⎠ .

Thus we could put pm+j = qjz
⊗m ⊗ vj ⊕ fm+j .

For simplicity, we choose U in a simple way. The method does not construct
all possible numerators. One must take additional subspaces into account.

Theorem 7.1. Let f be a rational sphere map of degree m+k with denom-
inator of degree k. Then there is a finite number of tensor operations such
that

(37) Es ◦ · · · ◦E1(f) =

∑k
j=0 pm+j∑k
j=0 qj

.

Given q we can construct p as follows: Choose vj with 〈vi, vj〉 = 1 for i �= j
such that the Hermitian form defined by

(38) ‖z‖2m
(∑

j

|qj |2
(
1− ‖vj‖2

)
‖z‖2k−2j

)

is positive semi-definite. There are vector-valued maps fm+j such that

pm+j = qj
(
z⊗m ⊗ vj

)
⊕ fm+j .

Remark 7.1. Observe that, although the sum in (38) is non-negative as a
function, the terms in the sum in (38) can be of both signs. Hence, without the
factor ‖z‖2m, the resulting Hermitian form need not be positive semi-definite.
Hence, this factor is typically needed as in Theorem 3.1.
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