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FATOU’S THEOREM FOR SUBORDINATE BROWNIAN
MOTIONS WITH GAUSSIAN COMPONENTS

ON C1,1 OPEN SETS

HYUNCHUL PARK

Abstract. We prove Fatou’s theorem for nonnegative harmonic
functions with respect to killed subordinate Brownian motions

with Gaussian components on bounded C1,1 open sets D. We

prove that nonnegative harmonic functions with respect to such

processes on D converge nontangentially almost everywhere with

respect to the surface measure as well as the harmonic measure

restricted to the boundary of the domain. In order to prove this,

we first prove that the harmonic measure restricted to ∂D is mu-
tually absolutely continuous with respect to the surface measure.
We also show that tangential convergence fails on the unit ball.

1. Introduction

In [15], Fatou showed that bounded classical harmonic functions in the unit
disc converge nontangentially almost everywhere. The nontangential conver-
gence of harmonic functions is generally called Fatou’s theorem. Later the
Fatou’s theorem for diffusion processes is extended into many directions. The
Fatou theorem is established on more general domains and in [1] the au-
thor proved the Fatou’s theorem for classical harmonic functions on uniform
domains. The other direction is to establish the Fatou’s theorem for more
general operators than Laplacian. In [9] the authors established Fatou’s the-
orem for a family of elliptic operators in the unit ball in Cd, d ≥ 2. These
results deal with the nontangential convergence of harmonic functions with
respect to operators that correspond to diffusion processes.

The Fatou’s theorem is also established for pure jump processes. In [4], [5],
the authors showed that regular harmonic functions with respect to stable
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processes (see Definition 2.3 for definition of the regular harmonic functions)
converge nontangentially almost everywhere on half-spaces and Lipschitz do-
mains, respectively. The Fatou’s theorem is established for other jump pro-
cesses and in [17] the author proved the Fatou’s theorem for harmonic func-
tions with respect to censored stable processes on bounded C1,1 open sets.

Recently, there have been many interests about Markov processes that have
both diffusion and jump components. A typical prototype of these processes
would be an independent sum of a Brownian motion with a symmetric stable
process and their potential theoretical properties have been investigated in
[10], [11], [12]. In [20] the authors studied subordinate Brownian motions
(SBMs) with Gaussian components and established the boundary Harnack
principle for harmonic functions with respect to such processes, established
sharp two-sided Green function estimates, and identified the Martin boundary
with the Euclidean boundary of C1,1 open sets.

In this paper, we consider subordinate Brownian motions X with a diffu-
sion component and a quite general jump component (see Section 2 for precise
definition). The main goal of this paper is to prove that the Fatou theorem
holds true for nonnegative harmonic functions with respect to killed processes
XD (Corollary 4.12) on bounded C1,1 open sets D. We prove that the non-
tangential convergence occurs almost every point with respect to the surface
measure of ∂D. Note that this is a very different situation from a case when
underlying processes are pure jump processes. For regular harmonic functions
with respect to symmetric stable processes the authors in [4], [5] showed that
the Fatou theorem for stable processes requires more restrictive conditions
than for Brownian motions. For harmonic functions with respect to killed
symmetric stable processes, it is proved that a certain harmonic function is
comparable to δD(x)

α
2 −1, which cannot converge as the point x approaches a

point in ∂D in [8, Equation 11].
We prove the Fatou theorem using both analytical techniques and prob-

abilistic techniques that are similar to [17] or [18]. However, this process is
not straightforward. In the probabilistic techniques to establish the Fatou
theorem for censored stable processes in [17] or the relative Fatou theorem
for symmetric stable processes in [18], the author identified the probabilis-
tic martingale convergence of nonnegative harmonic functions with analytical
nontangential convergence and an oscillation estimate for harmonic functions
on balls of different radii played an important role ([17, Proposition 3.9] and
[18, Proposition 3.11]). The oscillation estimate for harmonic functions on
balls with respect to those processes is quite straightforward due to explicit
expressions for Poisson kernels for balls for stable processes. Such explicit
expressions for the Poisson kernels are not available anymore for general sub-
ordinate Brownian motions with Gaussian components. To overcome this dif-
ficulty, we first establish relative Fatou theorem for harmonic functions with
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respect to killed processes (Theorem 3.5) and we use the relative Fatou theo-
rem to identify the probabilistic convergence with the analytic nontangential
convergence (Proposition 4.7).

This paper is organized as follows. In Section 2, we define the subor-
dinate Brownian motions with Gaussian components and state a few prop-
erties about them. In Section 3, we establish the relative Fatou’s theorem
for harmonic functions with respect to XD, which asserts the existence of
nontangential limit of the ratio of harmonic functions with respect to killed
processes. In Section 4, we prove the Martin measure of harmonic function
F (x) := Px(XτD ∈ ∂D), which represents the probability that the processes
exit the domain through the boundary, is absolutely continuous with respect
to the surface measure (Theorem 4.11) and establish the Fatou theorem for
XD (Corollary 4.12). In Section 5, we establish an integral representation
theorem (Theorem 5.3) for harmonic functions with respect to X . We also
show that our result is best possible by showing that tangential convergence
of harmonic functions on the unit ball can fail.

In this paper, the upper case constants Λ,R0,R1,R2,C1,C2,C3,C4 will be
fixed. The value of lower case constants ε, δ, η, c or c1, c2, . . . will not be
important and may change from line to line.

2. Preliminaries

In this section, we define subordinate Brownian motions with Gaussian
components and state some properties about them. Recall that a subordinator
S = (St, t≥ 0) is an one-dimensional Lévy process taking values on [0,∞) with
increasing sample paths. A subordinator S can be characterized by its Laplace
exponent φ through the relation

E
[
e−λSt

]
= e−tφ(λ), t > 0, λ > 0.

A smooth function φ : (0,∞) → [0,∞) is called a Bernstein function if
(−1)nDnφ ≤ 0 for every positive integer n. The Laplace exponent φ of a
subordinator is a Bernstein function with φ(0+) = 0 and can be written as

φ(λ) = bλ+

∫
(0,∞)

(
1− e−λt

)
m(dt), λ > 0,

where b≥ 0 and m is a measure on (0,∞) satisfying
∫
(0,∞)

(1 ∧ t)m(dt)<∞.

m is called the Lévy measure of φ. In this paper, we will assume that b > 0 in
order to have a nontrivial diffusion part for subordinate Brownian motions.
Without loss of generality we assume b= 1.

Suppose that W = (Wt : t ≥ 0) is a d-dimensional Brownian motion and
S = (St : t≥ 0) is a subordinator with Laplace exponent φ, which is indepen-
dent of W . The process X = (Xt : t ≥ 0) defined by Xt = W (St) is called
a subordinate Brownian motion and its infinitesimal generator is given by
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φ(Δ) := −φ(−Δ), which can be constructed via Bochner’s functional calcu-
lus. On C2

b (R
d) (the collection of C2 functions in Rd which, along with partial

derivatives up to order 2, are bounded), φ(Δ) is an integro-differential oper-
ator of the type

Δf(x) +

∫
Rd

(
f(x+ y)− f(x)−∇f(x) · y1{|y|≤1}

)
J(dy),

where the measure J has the form J(dy) = j(|y|)dy with j : (0,∞)→ (0,∞)
given by

j(r) =

∫ ∞

0

(4πt)−d/2e−r2/(4t)m(dt).

Throughout this paper, we will impose two conditions on φ and m.

Condition 2.1.

1. The Laplace exponent φ of S is a completely Bernstein function. That
is, the Lévy measure m has a completely monotone density (i.e., m(dt) =
m(t)dt and (−1)nDnm≥ 0 for every non-negative integer n).

2. For any K > 0, there exists c= c(K)> 1 such that

m(r)≤ cm(2r) for r ∈ (0,K).

Note that Condition 2.1 is the main assumption imposed in [20].
There are many important subordinators that satisfy Condition 2.1 and we

list some of most important examples.

Example 2.2.

1. A function 	(x) is slowly varying at ∞ if limx→∞
�(λx)
�(x) = 1 for all λ > 0.

Let φ(λ) be a complete Bernstein function which satisfies

λ+ c1λ
α/2	(λ)≤ φ(λ)≤ λ+ c2λ

α/2	(λ),

for some constants 0< c1 ≤ c2 <∞, 0<α< 2, and 	(λ) is slowly varying at
∞. It follows from [19, Theorem 2.10] that Conditions 2.1 are satisfied for
those processes. In particular, these classes contain the sum of Brownian
motions and symmetric stable processes, relativistic stable processes with
mass m, and mixed stable processes and the corresponding φ(λ) are given
by φ(λ) = λ+λα/2, φ(λ) = λ+((m2/α+λ)α/2−m), φ(λ) = λ+λα/2+λβ/2,
0< β < α< 2, respectively.

2. Geometric stable subordinator
Let φ(λ) = λ+ ln(1 + λα/2), 0 < α ≤ 2. From [26, Theorem 2.4] Con-

ditions 2.1 are satisfied. Note that when α= 2 it corresponds to the sum
of Brownian motions and Gamma processes and the corresponding Lévy

density is given by m(t) = e−t

t .
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For any open set D ⊂ Rd, τD := inf{t > 0 :Xt /∈D} denotes the first exit
time from D by X . We will use XD to denote the process defined by XD

t (ω) =
Xt(ω) if t < τD(ω) and XD

t (ω) = ∂ if t≥ τD(ω), where ∂ is a cemetery point.
It is well known that XD is a strong Markov process with state space D ∪
{∂}. For any function u(x) defined on D, we extend it to D ∪ {∂} by letting
u(∂) = 0. It follows from [7, Chapter 6] that the process X has a transition
density p(t, x, y) which is jointly continuous. Using this and the strong Markov
property, one can easily check that

pD(t, x, y) := p(t, x, y)−Ex

[
p(t− τD,XτD , y); t > τD

]
, x, y ∈D

is continuous and is a transition density of XD. For any bounded open set
D ⊂Rd, we will use GD(x, y) to denote the Green function of XD, i.e.,

GD(x, y) :=

∫ ∞

0

pD(t, x, y)dt, x, y ∈D.

Note that GD(x, y) is continuous on {(x, y) ∈D×D : x �= y}.
The Lévy density is given by J(x, y) = j(|x−y|), x, y ∈Rd and it determines

the Lévy system for X , which describes the jumps of the process X : For any
nonnegative measurable function F on R+ ×Rd ×Rd with F (s,x,x) = 0 for
all s > 0 and x ∈Rd, and stopping time T with respect to {Ft : t≥ 0},

Ex

[∑
s≤T

F (s,Xs−,Xs)

]
= Ex

[∫ T

0

(∫
Rd

F (s,Xs, y)J(Xs, y)dy

)
ds

]
.

Using the Lévy system, we know that for any nonnegative function f ≥ 0 and
every bounded open set D we have
(2.1)

Ex

[
f(XτD ),XτD− �=XτD

]
=

∫
D

c

∫
D

GD(x, y)J(y, z)dyf(z)dz, x ∈D.

We define KD(x, z) =
∫
D
GD(x, y)J(y, z)dy and (2.1) can be written as

(2.2) Ex

[
f(XτD),XτD− �=XτD

]
=

∫
D

c
KD(x, z)f(z)dz, x ∈D.

Now we state the definition of harmonic functions.

Definition 2.3.

1. A function u : Rd → [0,∞) is said to be harmonic in an open set D ⊂ Rd

with respect to X if for every open set B whose closure is a compact subset
of D,

u(x) = Ex

[
u(XτB )

]
for every x ∈B.

2. A function u :Rd → [0,∞) is said to be regular harmonic in D with respect
to X if

u(x) = Ex

[
u(XτD )

]
for every x ∈D.



766 H. PARK

3. A function u :Rd → [0,∞) is said to be harmonic with respect to XD if for
every open set B whose closure is a compact subset of D,

u(x) = Ex

[
u
(
XD

τB

)]
= Ex

[
u(XτB ), τB < τD

]
for every x ∈B.

Note that it follows from strong Markov property that every regular har-
monic function is harmonic.

The following Harnack principle is proved in [20, Proposition 2.2].

Proposition 2.4. There exists a constant c > 0 such that for any r ∈ (0,1],
x0 ∈ Rd and any function f which is nonnegative in Rd and harmonic in
B(x0, r) with respect to X we have

f(x)≤ cf(y) for all x, y ∈B(x0, r/2).

Recall that an open set D in Rd is said to be a (uniform) C1,1 open set
if there are (localization radius) R0 > 0 and Λ0 such that for every z ∈ ∂D
there exist a C1,1 function ψ = ψz :Rd →R satisfying ψ(0, . . . ,0) = 0, ∇ψ(0) =
(0, . . . ,0), |∇ψ(x)−∇ψ(y)| ≤ Λ0|x−y|, and an orthonormal coordinate system
CSz : y = (y1, . . . , yd−1, yd) := (ỹ, yd) with its origin at z such that B(z,R0)∩
D = {y = (ỹ, yd) ∈B(0,R0) in CSz : yd >ψ(ỹ)}. In this paper we will call the
pair (R0,Λ0) the characteristics of the C1,1 open set D.

We state the result about the Martin boundary of a bounded C1,1 open
set D with respect to XD. For the definition and its basic properties of the
Martin boundary, we refer readers to [21]. Fix x0 ∈D and define

MD(x, y) :=
GD(x, y)

GD(x0, y)
, x, y ∈D,y �= x,x0.

A positive harmonic function f with respect to XD is called minimal if, when-
ever g is a positive harmonic function with respect to XD with g ≤ f , one
must have f = cg for some positive constant c. Now we recall the identifi-
cation of the Martin boundary of bounded C1,1 open sets D with respect to
killed processes XD with the Euclidean boundary in [20].

Theorem 2.5 ([20, Theorem 1.5]). Suppose that D is a bounded C1,1 open
set in Rd. For every z ∈ ∂D, there exists MD(x, z) := limy→z MD(x, y). Fur-
thermore, for every z ∈ ∂D, MD(·, z) is a minimal harmonic function with
respect to XD and MD(·, z1) �=MD(·, z2) for z1, z2 ∈ ∂D, z1 �= z2. Thus the
minimal Martin boundary of D can be identified with the Euclidean boundary.

Thus by the general theory of Martin boundary representation in [21] and
Theorem 2.5, we conclude that for every harmonic function u≥ 0 with respect
to XD, there exists a unique finite measure μ supported on ∂D such that
u(x) =

∫
∂D

MD(x, z)μ(dz). μ is called the Martin measure of u.
Finally, we observe that the Martin kernel MD(x, z) has the following two-

sided estimates. Let δD(x) = inf{|x−z| : z ∈Dc} be the distance of x fromDc.
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Proposition 2.6. Suppose that D is a bounded C1,1 open set in Rd, d≥ 2.
Then there exist constants c1 = c1(d,D,φ) and c2 = c2(d,D,φ) such that

(2.3) c1
δD(x)

|x− z|d ≤MD(x, z)≤ c2
δD(x)

|x− z|d , x ∈D,z ∈ ∂D.

Proof. Let

gD(x, y) :=

{
1

|x−y|d−2 (1∧ δD(x)δD(y)
|x−y|2 ) when d≥ 3,

log(1 + δD(x)δD(y)
|x−y|2 ) when d= 2.

Then it follows from [20, Theorem 1.4] there exists c1 = c1(d,D,φ) and c2 =
c2(d,D,φ) such that

(2.4) c1gD(x, y)≤GD(x, y)≤ c2gD(x, y).

From Theorem 2.5 the martin kernel MD(x, z) can be obtained by MD(x, z) =

limy→z
GD(x,y)
GD(x0,z)

. Now from (2.4) we immediately get the assertion of the

proposition. �

3. Relative Fatou theorem for harmonic functions
with respect to XD

Throughout this section we assume that D is a bounded C1,1 open set in
Rd, d≥ 2 with the characteristics (R0,Λ0). In this section we prove relative
Fatou’s theorem for nonnegative harmonic functions u and v with respect to
XD. For any finite and nonnegative measure μ supported on ∂D we define

MDμ(x) :=

∫
∂D

MD(x, z)μ(dz), x ∈D.

Since MD(·, z) is harmonic with respect to XD for z ∈ ∂D (see Theorem 2.5),
it is easy to see that MDμ(x) is nonnegative and harmonic with respect to
XD.

Now we define Stolz open sets. For z ∈ ∂D and β > 1, let

Aβ
z =

{
x ∈D : δD(x)<R0 and |x− z|< βδD(x)

}
.

We say x approaches z nontangentially if x→ z and x ∈Aβ
z for some β > 1.

It is well known that C1,1 open sets satisfy uniform interior and exterior
ball property with some radius of R (see [2, Lemma 2.2]). By decreasing R0

in the definition of C1,1 open sets if necessary, we may assume R = R0. In
particular C1,1 open sets are κ-fat open sets with κ = R0

2 (see [18] for the
definition of κ-fat open set). It follows from [18, Lemma 3.9] that for any
z ∈ ∂D and β > 1−κ

κ Aβ
z �= ∅ and there exists a sequence {yk} ⊂Aβ

z such that
limk→∞ yk = z. From now on, we will always assume this condition for β so
that Aβ

z �= ∅ for all z ∈ ∂D.
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Recall the following property of the surface measure σ, called Ahlfors reg-
ular condition (see [23, page 992]): there exist constants R1 = R1(D,d),
C1 =C1(D,d) and C2 =C2(D,d) such that for every z ∈ ∂D and r ≤R1

C1r
d−1 ≤ C1σ

(
∂D ∩

(
B(z, r) \B(z, r/2)

))
≤ σ

(
∂D ∩B(z, r)

)
(3.1)

≤ C2σ
(
∂D ∩

(
B(z, r) \B(z, r/2)

))
≤C2r

d−1.

The next lemma is similar to [23, Lemma 4.4]. Since we are working on C1,1

open sets, the proof is simpler.

Lemma 3.1. Let v(x) =MDν(x), where ν is a finite and nonnegative mea-
sure on ∂D. For ν-almost every point z ∈ ∂D, we have

lim inf
Aβ

z�x→z∈∂D
v(x)> 0.

In particular ν-almost every point z ∈ ∂D, we have

(3.2) lim
Aβ

z�x→z

δD(x)

v(x)
= 0.

Proof. If x→ z ∈ ∂D nontangentially, there exists a constant β > 0 such
that

δD(x)≤ |x− z| ≤ βδD(x).

Take x ∈ D such that |x − z| < R1 and take w ∈ B(z, |x − z|) ∩ ∂D. Then
|x−w| ≤ |x− z|+ |z−w| ≤ 2|x− z| so that we obtain MD(x,w)≥ c1MD(x, z)
by (2.3). This implies

v(x) ≥
∫
∂D∩B(z,|x−z|)

MD(x,w)ν(dw)≥ c1MD(x, z)ν
(
B
(
z, |x− z|

)
∩ ∂D

)
≥ c2

δD(x)

|x− z|d ν
(
B
(
z, |x− z|

)
∩ ∂D

)
≥ c3

ν(B(z, |x− z|)∩ ∂D)

|x− z|d−1
.

By (3.1) we have σ(B(z, |x − z| ∩ ∂D)) ≥ c4|x − z|d−1 for some constant
c4(D,d). Hence, we have

σ(B(z, |x− z|)∩ ∂D)

ν(B(z, |x− z|)∩ ∂D)
≥ c5

1

v(x)
,

and by [6, Theorem 5] the symmetric derivative

limsup
x→z

σ(B(z, |x− z|)∩ ∂D)

ν(B(z, |x− z|)∩ ∂D)

is finite ν-almost every point z ∈ ∂D. �

The next lemma is an analogue of [23, Lemma 4.3].
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Lemma 3.2. Let z ∈ ∂D and v be a nonnegative harmonic function with
respect to XD with Martin measure ν. Suppose that μ is a nonnegative finite

measure on ∂D. If limx→z
δD(x)
v(x) = 0, then for every η > 0 we have

lim
x→z

∫
∂D∩{|z−w|≥η}MD(x,w)μ(dw)

v(x)
= 0.

If we assume limx→z
δD(x)
v(x) = 0 nontangentially, then the above limit also need

be taken nontangentially.

Proof. If |z − w| ≥ η and |x − z| ≤ η/2, then |x − w| ≥ η/2. Thus, from
(2.3) we have∫

∂D∩{|z−w|≥η}
MD(x,w)μ(dw) ≤ c

∫
∂D∩{|z−w|≥η}

δD(x)

|x−w|dμ(dw)

≤ cη−dδD(x)μ(∂D).

Hence, we have∫
∂D∩{|z−w|≥η}MD(x,w)μ(dw)

v(x)
≤ c

μ(∂D)

ηd
δD(x)

v(x)
→ 0

as x→ z. �

Remark 3.3. Note that the condition limx→z
δD(x)
v(x) = 0 cannot be omit-

ted. To see this, take any points z,Q ∈ ∂D with z �= Q. Let μ = ν =
δ{z} be Dirac measures at z ∈ ∂D, v(x) = MDν(x) = MD(x, z), and η =

|z − Q|/2. Then from (2.3), lim infx→Q
δD(x)
v(x) ≥ c|z − Q|d > 0. Clearly∫

∂D∩{|Q−w|≥η} MD(x,w)μ(dw)

v(x) = 1 for any x ∈D.

Suppose that μ and ν are two measures supported on ∂D. It follows from
the Lebesgue–Radon–Nikodym theorem ([16, Theorem 3.8]) there exists μs

singular to ν and f ∈ L1(∂D,ν) such that dμ= f dν + dμs. Such a decompo-
sition is called the Lebesgue decomposition. Consider all points z ∈ ∂D for
which

(3.3) lim
r→0

∫
B(z,r)∩∂D

(|f(w)− f(z)|ν(dw) + μs(dw))

ν(B(z, r)∩ ∂D)
= 0.

It is well known that ν-a.e. z ∈ ∂D (3.3) holds true (for example, see [16,
Theorems 3.20 and 3.22]).

The next lemma is the nontangential maximal inequality that is analogous
to [23, Lemma 4.5].

Lemma 3.4. Suppose that μ and ν are nonnegative finite measure on ∂D.
For any x ∈ D and z ∈ ∂D such that |x − z| ≤ tδD(x) there exist constants
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c1 = c1(d,D,φ, t) and c2 = c2(d,D,φ, t) such that

c1 inf
r>0

μ(B(z, r)∩ ∂D)

ν(B(z, r)∩ ∂D)
≤

∫
∂D

MD(x,w)μ(dw)∫
∂D

MD(x,w)ν(dw)
≤ c2 sup

r>0

μ(B(z, r)∩ ∂D)

ν(B(z, r)∩ ∂D)
.

Proof. The proof is similar to [23, Lemma 4.5] but we provide the details
for the reader’s convenience. Define Bn = B(z,2n|x − z|) ∩ ∂D for n ≥ 0
and A0 := B0 and An = Bn \ Bn−1 for n ≥ 1. Suppose that w ∈ B1. Then

|x− w| ≤ |x− z|+ |z − w| ≤ 3|x− z| and |x− w| ≥ δD(x) ≥ |x−z|
t . Hence, it

follows from (2.3) there exist c3(d,D,φ) and c4(d,D,φ) such that

MD(x,w)≥ c3
δD(x)

|x−w|d ≥ c3
δD(x)

3d|x− z|d ,

and

MD(x,w)≤ c4
δD(x)

|x−w|d ≤ c4
tdδD(x)

|x− z|d .

Hence, for any w,w′ ∈B1 we have

MD(x,w)≤ c4t
d δD(x)

|x− z|d =
c43

dtd

c3

c3δD(x)

3d|x− z|d ≤ c43
dtd

c3
MD

(
x,w′).

Suppose that w ∈An, n≥ 2. Then |x−w| ≤ |x−z|+ |z−w| ≤ (2n+1)|x−z| ≤
2n+1|x− z| and |x−w| ≥ |w − z| − |x− z| ≥ (2n−1 − 1)|x− z| ≥ 2n−2|x− z|.
Hence from (2.3), we have

MD(x,w)≥ c3
δD(x)

|x−w|d ≥ c3δD(x)

(2n+1)d|x− z|d ,

and

MD(x,w)≤ c4
δD(x)

|x−w|d ≤ c4δD(x)

(2n−2)d|x− z|d .

Hence for w,w′ ∈An, n≥ 2, we have

MD(x,w)≤ c4δD(x)

(2n−2)d|x− z|d =
c42

3d

c3

c3δD(x)

(2n+1)d|x− z|d ≤ c42
3d

c3
MD

(
x,w′).

Set c5 := max( c43
dtd

c3
, c42

3d

c3
). Then we have for any w,w′ ∈An, n≥ 0

(3.4) MD(x,w)≤ c5MD

(
x,w′).

Set an := supw∈An
MD(x,w) and bn := supk≥n ak for n≥ 0. Clearly bn ≥ an

for n≥ 0. Suppose that w ∈An and w′ ∈Ak with k ≥ n+ 1. Then |x−w| ≤
2n|x− z| ≤ 2k−1|x− z| ≤ |x− w′|. Hence from (2.3), there exists a constant
c6 = c6(d,D,φ)> 1 such that

MD

(
x,w′)≤ c4

δD(x)

|x−w′|d ≤ c4
δD(x)

|x−w|d ≤ c6MD(x,w).

Hence, we have bn ≤ c6an for all n≥ 0.
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Since D is bounded there exists k0 ∈N such that ∂D ⊂
⋃k0

n=0An. Hence it
follows from (3.4) and from the fact that bn ≤ c6an we have∫

∂D

MD(x,w)μ(dw)

=

k0∑
n=0

∫
An

MD(x,w)μ(dw)

≤
k0∑
n=0

anμ(An)≤
k0∑
n=0

bnμ(An)

≤ b0μ(B0) +

k0∑
n=1

bn
(
μ(Bn)− μ(Bn−1)

)

≤
k0−1∑
n=0

(bn − bn+1)μ(Bn) + bk0μ(Bk0)

≤
k0−1∑
n=0

(bn − bn+1)
μ(Bn)

ν(Bn)
ν(Bn) + bk0

μ(Bk0)

ν(Bk0)
ν(Bk0)

≤ sup
r>0

μ(B(z, r)∩ ∂D)

ν(B(z, r)∩ ∂D)

(
k0−1∑
n=0

(bn − bn+1)ν(Bn) + bk0ν(Bk0)

)

= sup
r>0

μ(B(z, r)∩ ∂D)

ν(B(z, r)∩ ∂D)

k0∑
n=0

bnν(An)

≤ c6 sup
r>0

μ(B(z, r)∩ ∂D)

ν(B(z, r)∩ ∂D)

k0∑
n=0

anν(An)

≤ c5c6 sup
r>0

μ(B(z, r)∩ ∂D)

ν(B(z, r)∩ ∂D)

k0∑
n=0

∫
An

MD(x,w)ν(dw)

= c5c6 sup
r>0

μ(B(z, r)∩ ∂D)

ν(B(z, r)∩ ∂D)

∫
∂D

MD(x,w)ν(dw).

Now set c2 := c5c6. The opposite inequality can be proved in a similar way
and this proves the assertion of the lemma. �

Now we state the main theorem of this section.

Theorem 3.5. Let u, v be nonnegative and harmonic functions with re-
spect to XD. Let u(x) =

∫
∂D

MD(x,w)μ(dw) and v(x) =
∫
∂D

MD(x,w)ν(dw),
where μ and ν are nonnegative and finite measures on ∂D. Let dμ= f dν+dμs

be Lebesgue decomposition of μ with respect to ν. Then for ν-almost every
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point z ∈ ∂D we have

lim
x→z

u(x)

v(x)
= f(z)

as x → z nontangentially. More precisely, the convergence holds for every

z ∈ ∂D satisfying (3.3) and limx→z
δD(x)
v(x) = 0 as x→ z nontangentially.

Proof. The proof is similar to [23, Theorem 4.2] but we provide the details
for the reader’s convenience. Fix a point z ∈ ∂D that satisfies (3.2) and (3.3).
Define dμ̃= |f(·)− f(z)|dν + dμs. Then given ε > 0 we have∣∣∣∣u(x)v(x)

− f(z)

∣∣∣∣
=

∣∣∣∣ 1

v(x)

(∫
∂D

MD(x,w)
(
f(w)− f(z)

)
ν(dw) +

∫
∂D

MD(x,w)μs(dw)

)∣∣∣∣
≤

∫
∂D

MD(x,w)μ̃(dw)

v(x)

=

∫
∂D∩{|w−z|≥η}MD(x,w)μ̃(dw)

v(x)
+

∫
∂D

MD(x,w)μ̃|B(z,η)(dw)

v(x)
,

where μ̃|B(z,η) is the truncation of μ̃ to B(z, η) ∩ ∂D and η > 0 is a constant
which will be determined later. Applying Lemma 3.4 to the measures μ̃|B(z,η)

and ν, we get∫
∂D

MD(x,w)μ̃|B(z,η)(dw)

v(x)
(3.5)

≤ c1 sup
r>0

μ̃|B(z,η)(B(z, r)∩ ∂D)

ν(B(z, r)∩ ∂D)

= c1 sup
r≤η

∫
∂D∩B(z,r)

(|f(w)− f(z)|ν(dw) + μs(dw))

ν(B(z, r)∩ ∂D)
.

Using (3.3), choose η so that (3.5)≤ ε/2. Since |f(·)−f(z)| ∈ L1(dν), for this
η it follows from Lemma 3.2 we can take δ such that∣∣∣∣

∫
∂D∩{|w−z|≥η}MD(x,w)μ̃(dw)

v(x)

∣∣∣∣< ε/2,

for all x ∈Aβ
z with |x− z|< δ. �

4. Harmonic measure and Fatou theorem

In this section, we study the harmonic measure that is supported on ∂D.
The main result is to show that the harmonic measure supported on ∂D is
absolutely continuous with respect to the surface measure of C1,1 open sets
D and to find the Radon–Nikodym derivative.
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For any Borel subset A of Rd, we use TA := inf{t > 0 :Xt ∈ A} to denote
the first hitting time of A. The next proposition is an analogue of [18, Propo-
sition 3.1], which was stated only for x0 but we remove this restriction and
prove the result to hold for all x ∈D.

Proposition 4.1. For any λ ∈ (0,1/2), there exists c = c(D,d,φ,λ) > 0
such that for any x, y ∈D satisfying |y− x|> 2δD(y) we have

Px(TBλ
y
< τD)≥ cGD(x, y)δD(y)d−2,

where Bλ
y :=B(y,λδD(y)).

Proof. The proof in the case of d≥ 3 is almost identical to that of [18, Pro-
postion 3.1]. We only give the proof in the case d= 2. Since x /∈B(y,2δD(y)),
GD(x, ·) is harmonic in B(y,2λδD(y)). Define GD1Bλ

y
(x) :=

∫
Bλ

y
GD(x, z)dz =

Ex[
∫ τD
0

1Bλ
y
(Xs)ds]. By Proposition 2.4, there exists a constant c1 > 0 such

that

(4.1) GD1Bλ
y
(x)≥ c1GD(x, y)δD(y)2.

It follows from the strong Markov property that

(4.2) GD1Bλ
y
(x)≤ Px(TBλ

y
< τD) sup

w∈Bλ
y

Ew

∫ τD

0

1Bλ
y
(Xs)ds.

It follows from [20, Theorem 1.4] that for any w ∈Bλ
y ,

(4.3) Ew

∫ τD

0

1Bλ
y
(Xs)ds=

∫
Bλ

y

GD(w,v)dv

≤ c2

∫
Bλ

y

ln

(
1 +

δD(w)δD(v)

|w− v|2
)
dv.

Note that for w ∈Bλ
y , δD(w)≤ |w−y|+ δD(y)≤ (1+λ)δD(y). Hence, using a

polar coordinate system centered at w and integration by parts with du= r dr,

v = ln(1 + (1+λ)2δD(y)2

r2 ), we see that (4.3) is bounded above by

c2

∫
Bλ

y

ln

(
1 +

(1 + λ)2δD(y)2

|w− v|2
)
dv

≤ c2

∫
B(w,2λδD(y))

ln

(
1 +

(1 + λ)2δD(y)2

|w− v|2
)
dv

≤ c2

∫ 2π

0

∫ 2λδD(y)

0

r ln

(
1 +

(1 + λ)2δD(y)2

r2

)
dr dθ

≤ c2

(
2π

[
r2

2
ln

(
1 +

(1 + λ)2δD(y)2

r2

)]2λδD(y)

0
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+ 2π

∫ 2λδD(y)

0

r(1 + λ)2δD(y)2

r2 + (1+ λ)2δD(y)2
dr

)

≤ c2

(
2π

(2λδD(y))2

2
ln

(
1 +

(1 + λ)2

4λ2

)

+ 2π

[
1

2
(1 + λ)2δD(y)2 ln

(
r2 + (1+ λ)2δD(y)2

)]2λδD(y)

0

)

≤ c2δD(y)2
(
4πλ2 ln

(
1 +

(1 + λ)2

4λ2

)
+ π(1 + λ)2 ln

(
4λ2 + (1+ λ)2

(1 + λ)2

))
≤ c3δD(y)2.

Combining (4.1)–(4.2) with the display above, we immediately get the asser-
tion of the proposition. �

For any positive harmonic function h with respect to XD, we use (Ph
x,X

h
t )

to denote the h-transform of (Px,X
D
t ). That is,

Ph
x(A) := Ex

[
h(XD

t )

h(x)
;A

]
, A ∈ Ft.

In case h(·) =MD(·, z) for some z ∈ ∂D, (Ph
x,X

h
t ) will be denoted by (Pz

x,X
z
t ).

Now we prove a proposition that is an analogue of [18, Proposition 3.10], which
was stated only for x0 but we remove this restriction.

Proposition 4.2. Suppose that λ ∈ (0,1/2). For any z ∈ ∂D and β > 1,
there exists c = c(D,d,φ,λ,x,β) > 0 such that if y ∈ Aβ

z satisfies 2δD(y) <
|x− y|, then

Pz
x

(
T z
Bλ

y
< τzD

)
> c,

where Bλ
y =B(y,λδD(y)) and T z

Bλ
y
:= inf{t > 0 :Xz

t ∈Bλ
y }.

Proof. We only give the proof in the case of d = 2, the proof in the case
d ≥ 3 is similar. Fix z ∈ ∂D and β > 1. Since B(y,2λδD(y)) ⊂D, MD(·, z)
is harmonic in B(y,2λδD(y)). By the Harnack principle (Proposition 2.4),
we have MD(XT

Bλ
y
, z)≥ c1MD(y, z) for some constant c1 > 0. Now it follows

from Proposition 4.1 that

Pz
x

(
T z
Bλ

y
< τzD

)
=

1

MD(x, z)
Ex

[
MD(XT

Bλ
y
, z), TBλ

y
< τD

]
≥ c1

MD(y, z)

MD(x, z)
Px(TBλ

y
< τD)

≥ c2
GD(x, y)MD(y, z)

MD(x, z)
.
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It follows from [20, Theorem 1.4] that

GD(x, y)≥ c3 ln

(
1 +

δD(x)δD(y)

|x− y|2
)
.

Let diamD := sup{|x− y| : x, y ∈D} be the diameter of a set D. Since y ∈
Aβ

z , |y − z| < βδD(y), |x − y| ≤ diamD, and |x − z| ≥ δD(x). Hence from
Proposition 2.6, we have

Pz
x

(
T z
Bλ

y
< τzD

)
≥ c4

δD(y)2

|y− z|2
|x− z|2
|x− y|2 ≥ c5

δD(x)2

β2(diamD)2
. �

Recall that A ∈ FτD is said to be shift-invariant if whenever T < τD is a
stopping time, 1A ◦ θT = 1A Px-a.s. for every x ∈ D. The next proposition
is an analogue of [18, Proposition 3.7]. The proof is identical to that of [18,
Proposition 3.7] (see also [3, p. 196]) so we omit the proof.

Proposition 4.3. If A is shift-invariant, then x → Pz
x(A) is a constant

function which is either 0 or 1.

Proposition 4.4. For any z ∈ ∂D, we have

Pz
x

(
τzD <∞

)
= 1, x ∈D,

and

Pz
x

(
lim
t↑τz

D

Xz
t = z, τzD <∞

)
= 1, x ∈D.

Proof. The proof in the case of d≥ 3 is similar to that of [18, Theorem 3.3].
We only give the proof in the case of d= 2. First note that by [20, Theorem
1.4] and Theorem 2.5 and a similar argument as in [14, Corollary 6.25] we
have

GD(x, y)MD(y, z)

MD(x, z)
≤ c1

((
1∨ ln

(
|x− y|−1

))
+
(
1∨ ln

(
|y− z|−1

)))
.

Hence, we have

Ez
x

[
τzD

]
= Ez

x

∫ ∞

0

1{t<τz
D} dt

=
1

MD(x, z)

∫ ∞

0

Ex

[
MD

(
XD

t , z
)
; t < τD

]
dt

=

∫
D

GD(x, y)MD(y, z)

MD(x, z)
dy

≤ c1

∫
D

((
1∨ ln

(
|x− y|−1

))
+
(
1∨ ln

(
|y− z|−1

)))
dy <∞,

which implies that Pz
x(τ

z
D <∞) = 1.

Now we claim that Pz
x(limt↑τz

D
Xz

t = z) = 1. Note that the Lévy process
X satisfies the (ACP) condition in [25, Definition 41.11]. It follows from [25,
Theorem 43.9] that any single point is polar, hence Py(T{x} <∞) = 0 for every
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x, y ∈Rd. Now the rest of the proof is the same as that of [18, Theorem 3.3],
[14, Theorem 5.9], or [13, Theorem 3.17]. �

The theorem above implies that P·
x(limt↑τD Xt ∈K) = 1K(·) for every x ∈D

and Borel subset K ⊂ ∂D. Hence the next theorem, which is an analogue of
[18, Theorem 3.4], follows easily.

Proposition 4.5. Let ν be a finite measure on ∂D. Define

h(x) :=

∫
∂D

MD(x,w)ν(dw), x ∈D.

Then for any x ∈D and Borel subset K of ∂D,

Ph
x

(
lim
t↑τh

D

Xh
t ∈K

)
=

1

h(x)

∫
K

MD(x,w)ν(dw).

Now the next proposition, which is an analogue of [18, Proposition 3.5],
follows easily from Proposition 4.5. The proof is almost identical to that of
[18, Proposition 3.5] so we omit the proof.

Proposition 4.6. Let ν be a finite measure on ∂D and h(x) =∫
∂D

MD(x, z)ν(dz). If A ∈ FτD , then for any Borel subset K of ∂D,

Ph
x

(
A∩

{
lim
t↑τh

D

Xh
t ∈K

})
=

1

h(x)

∫
K

Pz
x(A)MD(x, z)ν(dz).

Now we state a proposition which will play an important role later.

Proposition 4.7. Let u,h be nonnegative harmonic functions with respect
to XD and μ and ν be their Martin measures, respectively. Let dμ= f dν+dμs

be Lebesgue decomposition of μ with respect to ν. Then for every β > 1, x ∈D,
and ν-almost every z ∈ ∂D we have

(4.4) Pz
x

(
lim

Aβ
z�x→z

u(x)

h(x)
= lim

t↑τz
D

u(Xz
t )

h(Xz
t )

)
= 1.

Proof. Since u is a nonnegative harmonic function with respect to XD, u
is excessive with respect to XD. Hence, we have Ex[u(X

D
t )]≤ u(x) for every

x ∈D. So by the Markov property for the conditioned process, we have for
every t, s > 0

Eh
x

[
u(Xh

t+s)

h(Xh
t+s)

∣∣∣Fs

]
= Eh

Xh
s

[
u(Xh

t )

h(Xh
t )

]
=

1

h(Xh
s )

EXh
s

[
u
(
XD

t

)]
≤ u(Xh

s )

h(Xh
s )

.

Therefore, u(Xh
t )/h(X

h
t ) is a nonnegative supermartingale with respect to Ph

x

and so by the martingale convergence theorem we have that

lim
t↑τh

D

u(Xh
t )

h(Xh
t )

exists and is finite Ph
x-a.s.
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By Proposition 4.6, we have that

1 = Ph
x

(
lim
t↑τh

D

u(Xh
t )

h(Xh
t )

exists and is finite

)

=
1

h(x)

∫
∂D

Pz
x

(
lim
t↑τz

D

u(Xz
t )

h(Xz
t )

exists and is finite

)
MD(x, z)ν(dz).

Since Pz
x(limt↑τz

D

u(Xz
t )

h(Xz
t )

exists and is finite) ≤ 1 and h(x) =
∫
∂D

MD(x, z)×
ν(dz), we must have

(4.5) Pz
x

(
lim
t↑τz

D

u(Xz
t )

h(Xz
t )

exists and is finite

)
= 1,

for ν-a.e. z ∈ ∂D.
We will show that (4.4) holds for z ∈ ∂D satisfying (3.2), (3.3), and (4.5).

For any β > 1, choose a sequence yk ∈ Aβ
z such that yk → z. It follows from

Proposition 4.2 that for any λ ∈ (0,1/2),

Pz
x

(
T z
Bλ

yk

< τzD i.o.
)
≥ lim inf

k→∞
Pz
x

(
T z
Bλ

yk

< τzD
)
≥ c > 0.

Since {T z
Bλ

yk

< τzD i.o.} is shift-invariant, by Proposition 4.3 we have

Pz
x

(
Xz

t hits infinitely many Bλ
yk

)
= Pz

x

(
T z
Bλ

yk

< τzD i.o.
)
= 1.

Suppose that {tk, k ∈ N} is an increasing sequence of nonnegative numbers
such that Xtk ∈ Bλ

yk
under Pz

x. By Proposition 4.4, we have limt↑τz
D
Xz

t = z

under Pz
x. Let β

′ = (λ+ β)/(1− λ). Then it is easy to check that Xz
tk
∈Aβ′

z .
Since Pz

x(limk→∞Xz
tk
= z) = 1 it follows from Theorem 3.5

Pz
x

(
lim
k→∞

u(Xz
tk
)

h(Xz
tk
)
= lim

Aβ
z�x→z

u(x)

h(x)

)
= 1.

Since the limit limt↑τz
D

u(Xz
t )

h(Xz
t )

exists under Pz
x, it must be the same as the limit

via tk. Thus, for any β > 1,

Pz
x

(
lim
t↑τz

D

u(Xz
t )

h(Xz
t )

= lim
k→∞

u(Xz
tk
)

h(Xz
tk
)
= lim

Aβ
z�x→z

u(x)

h(x)

)
= 1. �

Now we state the main theorem of this section, which is an analogue of
[18, Theorem 3.18]. The proof is almost the same with [18, Thoerem 3.18].
Let u,h be positive harmonic functions with respect to XD and μ and ν
be their Martin measures, respectively. Let dμ = f dν + dμs be Lebesgue
decomposition of μ with respect to ν. Note that it follows from Theorem 3.5
that for any β > 1,

su,h(z) := lim
Aβ

z�x→z

u(x)

h(x)

is well defined for ν-a.e. z ∈ ∂D.
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Proposition 4.8. Suppose that u,h are positive harmonic functions with
respect to XD and that u/h is bounded. Let ν be the Martin measure of h.
For every x ∈D, we have

u(x) =

∫
∂D

MD(x, z)su,h(z)ν(dz).

Equivalently, su,h(z) is the Radon–Nikodym derivative of the Martin measure
of u with respect to ν.

Proof. It follows from Proposition 4.7 that for every x ∈ D and ν-a.e.
z ∈ ∂D and β > 1,

Pz
x

(
lim

Aβ
z�x→z

u(x)

h(x)
= lim

t↑τz
D

u(Xz
t )

h(Xz
t )

)
= 1.

Now take an increasing sequence of smooth open sets {Dn}n≥1 such that

Dn ⊂Dn+1 and
⋃∞

n=1Dn =D. Then we have

1 = Pz
x

(
lim

n→∞

(
u

h

)(
Xz

τz
n

)
= lim

t↑τz
D

u(Xz
t )

h(Xz
t )

= lim
Aβ

z�x→z

u(x)

h(x)

)

= Pz
x

(
lim

n→∞

(
u

h

)(
Xz

τz
n

)
= su,h(z), lim

t↑τz
D

Xz
t = z

)

= Pz
x

(
lim

n→∞

(
u

h

)(
Xz

τz
n

)
= su,h

(
lim
t↑τz

D

Xz
t

))

for ν-a.e. z ∈ ∂D. By Propositions 4.3 and 4.6 we have

1 =
1

h(x)

∫
∂D

Pz
x

(
lim
n→∞

(
u

h

)(
Xz

τz
n

)
= su,h

(
lim
t↑τz

D

Xz
t

))
MD(x, z)ν(dz)

= Ph
x

(
lim

n→∞

(
u

h

)(
Xh

τh
Dn

)
= su,h

(
lim
t↑τh

D

Xh
t

))
.

Therefore, by the bounded convergence theorem and the harmonicity of u/h
with respect to Ph

x, we have

u(x)

h(x)
= lim

n→∞
Eh
x

[(
u

h

)(
Xh

τh
n

)]
= Eh

x

[
lim
n→∞

(
u

h

)(
Xh

τh
n

)]
= Eh

x

[
su,h

(
lim
t↑τh

D

Xh
t

)]
for every x ∈D. By Proposition 4.5 we have

(4.6) Eh
x

[
1K

(
lim
t↑τh

D

Xh
t

)]
=

1

h(x)

∫
∂D

MD(x,w)1K(w)ν(dw).

Clearly (4.6) remains true if 1K(w) is replaced by simple functions of the
form

∑n
i=1 ai1Ai(w) where ai ≥ 0 and Ai ⊂ ∂D are disjoint Borel subsets of

∂D. Since su,h is bounded, there exists a sequence of bounded simple func-
tions fn(w) ≤ su,h(w) converging to su,h(w). Then it follows from bounded
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convergence theorem that

u(x)

h(x)
= Eh

x

[
su,h

(
lim
t↑τh

D

Xh
t

)]
= lim

n→∞
Eh
x

[
fn

(
lim
t↑τh

D

Xh
t

)]

= lim
n→∞

1

h(x)

∫
∂D

MD(x,w)fn(w)ν(dw)

=
1

h(x)

∫
∂D

MD(x,w)su,h(w)ν(dw).

Now the proof is complete. �

In order to study the harmonic measure supported on ∂D, we need auxiliary
functions. Let

F (x) := Px(XτD ∈ ∂D), x ∈D,

and

G(x) =

∫
∂D

MD(x, z)σ(dz), x ∈D,

where σ is the surface measure of ∂D. It is easy to see that F (x) and G(x)
are harmonic with respect to XD. Now we prove that G(x) is bounded on D.

Lemma 4.9. There exist constants C3,C4 depending only on D,d,φ,x0 such
that

0<C3 ≤G(x)≤C4 <∞.

Proof. Recall that D satisfies the Ahlfors regular condition (3.1). First sup-
pose that δD(x)≥R1. Then we have diamD ≥ |x− z| ≥ δD(x)≥R1 for any

z ∈ ∂D. Hence it follows from Proposition 2.6, we have MD(x, z)≥ c1
δD(x)
|x−z|d ≥

c1
R1

(diamD)d
and MD(x, z)≤ c2

δD(x)
|x−z|d ≤ c2δD(x)1−d ≤ c2R

1−d
1 . Hence, we have

G(x) =

∫
∂D

MD(x, z)σ(dz)≥ c1
R1

(diamD)d
σ(∂D),

and

G(x) =

∫
∂D

MD(x, z)σ(dz)≤ c2σ(∂D)R1−d
1 .

Now suppose that δD(x) < R1. For each x ∈ D let P = P (x) ∈ ∂D be a
point such that |x− P |= δD(x). Let An = An(x) = {z ∈ ∂D : 2n−1|x− P | ≤
|x − z| < 2n|x − P |}, n ∈ N. Since D is bounded, there exists N = N(x)

such that ∂D ⊂
⋃N

n=1An. Note that {z ∈ ∂D : |z−P |< |x−P |} ⊂A1 since if
|z−P |< |x−P | then |x−z| ≤ |x−P |+ |P −z|< 2|x−P | and |x−z| ≥ |x−P |
for any z ∈ ∂D. Since δD(x) = |x− P |<R1 it follows from (3.1)

G(x) =

∫
∂D

MD(x, z)σ(dz)≥
∫
A1

MD(x, z)σ(dz)

≥ c3

∫
A1

δD(x)

|x− z|d σ(dz)≥ c4

∫
A1

δD(x)

2d|x− P |dσ(dz)
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≥ c4

∫
{z∈∂D:|z−P |<|x−P |}

δD(x)

2d|x− P |dσ(dz)

≥ c4
δD(x)

2d|x− P |dσ
({

z ∈ ∂D : |z − P |< |x− P |
})

≥ c5
δD(x)

2d|x− P |d |x− P |d−1

≥ c5
2d

.

Now we prove an upper bound. Notice that for any 0< r < diamD there
exists a constant c6 such that σ(∂D ∩ B(z, r)) ≤ c6r

d−1. If r < R1 this is

just (3.1). If r ≥R1, then σ(∂D∩B(z, r))≤ σ(∂D) = c6R
d−1
1 ≤ c6r

d−1, where

c6 := σ(∂D)

Rd−1
1

. Since An ⊂ {z ∈ ∂D : |z − P | ≤ (2n + 1)|x − P |} ⊂ {z ∈ ∂D :

|z − P | ≤ 2n+1|x− P |}.

G(x) =

∫
∂D

MD(x, z)σ(dz)≤
N∑

n=1

∫
An

MD(x, z)σ(dz)

≤ c7

N∑
n=1

∫
An

δD(x)

|x− z|d σ(dz)≤ c7

N∑
n=1

∫
An

δD(x)
(
2n−1|x− P |

)−d
σ(dz)

≤ c7δD(x)1−d
N∑

n=1

2−d(n−1)σ(An)

≤ c7δD(x)1−d
N∑

n=1

2−d(n−1)σ
({

z ∈ ∂D : |z − P | ≤ 2n+1|x− P |
})

≤ c8δD(x)1−d
N∑

n=1

2−d(n−1)
(
2n+1|x− P |

)d−1

≤ c82
2d−1

N∑
n=1

2−n ≤ c82
2d−1

∞∑
n=1

2−n = c82
2d−1.

Now set C3 := c1
R1

(diamD)d
σ(∂D)∧ c5

2d
and C4 := c2R

1−d
1 ∨ c82

2d−1. �

It follows from Lemma 4.9 that F (x)
G(x) is bounded in D. Thus it follows from

Proposition 4.8 that, for any β > 1, the limit

(4.7) sF,G(z) = lim
Aβ

z�x→z

F (x)

G(x)

exists σ-a.e. z ∈ ∂D and F can be written as

F (x) =

∫
∂D

MD(x,w)sF,G(w)σ(dw), x ∈D.
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Next proposition says as the starting point x approaches ∂D, the prob-
ability that subordinate Brownian motions with Gaussian components exit
the domain through the boundary of the domain ∂D converges to 1. It was
proved in a more general setting in [24, Theorem 3.2] and we record the fact
here for the reader’s convenience.

Proposition 4.10. Let D be a C1,1 open set in Rd, d≥ 2. Then for every
point z ∈ ∂D

lim
D�x→z∈∂D

Px(XτD ∈ ∂D) = 1.

Proof. Subordinate Brownian motions are isotropic processes hence they
satisfy conditions (H1;Rd, α) and (H2;Rd, α) in [24] and all points of D are
possible (see [24] for details). Hence, it follows from the remark (c) under [24,
Theorem 3.2] limx→z∈∂D Px(XτD ∈ ∂D) = 1. �

Now the next result follows immediately from Proposition 4.8.

Theorem 4.11. For any β > 1, the limit

sF,G(z) = lim
Aβ

z�x→z∈∂D

F (x)

G(x)
= lim

Aβ
z�x→z∈∂D

1

G(x)

exists σ-a.e. z ∈ ∂D and 0<C3 ≤ sF,G(z)≤C4 <∞. Furthermore, F (x) can
be written as

F (x) =

∫
∂D

MD(x,w)sF,G(w)σ(dw), x ∈D.

As a corollary of Proposition 4.10, Theorems 4.11 and 3.5 we can prove
Fatou’s theorem for nonnegative harmonic functions with respect to XD.

Corollary 4.12. Let u(x) be nonnegative and harmonic with respect to
XD on D. Then for any β > 1 the nontangential limit

lim
Aβ

z�x→z
u(x)

exists for σ-a.e. z ∈ ∂D.

Proof. From Theorem 4.11, we have F (x) =
∫
∂D

MD(x,w)sF,G(w)σ(dw),

x ∈D. It follows from Theorems 3.5 and 4.11 limAβ
z�x→z

u(x)
F (x) exists σ-a.e.

z ∈ ∂D. From Proposition 4.10, we have limx→z F (x) = 1. Hence

lim
Aβ

z�x→z
u(x) exists σ-a.e. z ∈ ∂D. �

Now we show that

(4.8) PD(x, z) :=MD(x, z)sF,G(z), z ∈ ∂D

is the Radon–Nikodym derivative of the restriction of harmonic measure
Px(XτD ∈ ·) to ∂D with respect to the surface measure σ on ∂D. In or-
der to do this, we need a few lemmas. For any z ∈ ∂D, we let φz be the
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C1,1 function associated with z in the definition of C1,1 open set. For any
x ∈ {y = (ỹ, yd) ∈ B(z,R0) : yd > φz(ỹ)} we put ρz(x) := xd − φz(x̃). For
r1, r2 > 0, we define

Dz(r1, r2) :=
{
y ∈D : r1 > ρz(y)> 0, |ỹ|< r2

}
.

Let R2 :=R0/4(
√
1 + (1 +Λ0)2). The following result is [20, Lemma 4.3].

Lemma 4.13 ([20, Lemma 4.3]). There exist constants λ0 > 2R−1
2 ,

κ0 ∈ (0,1) and c = c(R0,Λ0) such that for every λ ≥ λ0, z ∈ ∂D and x ∈
Dz(2

−1(1 +Λ0)
−1κ0λ

−1, κ0λ
−1) with x̃= 0,

Px(XτDz(κ0λ−1,λ−1)
∈D)≤ cλδD(x).

Lemma 4.14. For any r < R0 and z ∈ ∂D we have

lim
x→z

Px

(
XτD /∈B(z, r),XτD ∈ ∂D

)
= 0.

That is, for any ε > 0 there exists a constant δ = δ(ε) > 0 such that for any
x ∈D with |x− z|< δ Px(XτD /∈B(z, r),XτD ∈ ∂D)< ε.

Proof. For any r < R0, we take a large enough λ so that Dz(κ0λ
−1, λ−1)⊂

B(z, r). Then,{
XτD /∈B(z, r),XτD ∈ ∂D

}
⊂ {XτDz(κ0λ−1,λ−1)

∈D}.

It follows from Lemma 4.13 that

Px

(
XτD /∈B(z, r),XτD ∈ ∂D

)
≤ Px(XτDz(κ0λ−1,λ−1)

∈D)

≤ cλδD(x)≤ cλ|x− z|.
By taking δ = ε/cλ, we arrive at the desired assertion. �

Lemma 4.15. For any continuous function g on ∂D, define

ug(x) := Ex

[
g(XτD ),XτD ∈ ∂D

]
, x ∈D.

Then for any z ∈ ∂D,

lim
x→z∈∂D

ug(x) = g(z).

Furthermore ug(x) is given by

ug(x) =

∫
∂D

MD(x,w)sF,G(w)g(w)σ(dw), x ∈D.

Proof. For any ε > 0, let δ1 = δ1(ε)> 0 be such that

(4.9)
∣∣g(y)− g(z)

∣∣< ε whenever |y− z| ≤ δ1.

Without loss of generality, we may assume δ1 <R0. Let δ be the constant in
Lemma 4.14 so that

(4.10) Px

(
XτD /∈B(z, δ1),XτD ∈ ∂D

)
< ε
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for |x− z|< δ. It follows from Proposition 4.10 that there exists δ2 > 0 such
that

(4.11) Px(XτD /∈ ∂D)< ε

for |x − z| < δ2. Combining (4.9)–(4.11) we get that, for any x satisfying
|x− z|< δ ∧ δ2,∣∣ug(x)− g(z)

∣∣
=
∣∣Ex

[
g(XτD),XτD ∈ ∂D

]
− g(z)

∣∣
=
∣∣Ex

[
g(XτD),XτD ∈B(z, δ1),XτD ∈ ∂D

]
+Ex

[
g(XτD ),XτD /∈B(z, δ1),XτD ∈ ∂D

]
− g(z)Px

(
XτD ∈B(z, δ1),XτD ∈ ∂D

)
− g(z)Px

(
XτD /∈B(z, δ1),XτD ∈ ∂D

)
− g(z)Px(XτD /∈ ∂D)

∣∣
≤ 2‖g‖∞Px

(
XτD /∈B(z, δ1),XτD ∈ ∂D

)
+ ‖g‖∞Px(XτD /∈ ∂D)

+Ex

[∣∣g(XτD )− g(z)
∣∣,XτD ∈ ∂D,XτD ∈B(z, δ1)

]
≤ 4ε‖g‖∞.

It follows from (4.7) limx→z∈∂D
ug(x)
G(x) = g(z)sF,G(z) for σ-a.e. z ∈ ∂D. Since

D is bounded ∂D is compact and ug(x) is bounded. Hence from Proposi-
tion 4.8, we have

ug(x) =

∫
∂D

MD(x,w)sF,G(w)g(w)σ(dw), x ∈D. �

Theorem 4.16. For any (Lebesgue) measurable set A ∈ ∂D

Px(XτD ∈A) =

∫
A

MD(x,w)sF,G(w)σ(dw), x ∈D.

Proof. Let A be a (Lebesgue) measurable set in ∂D. Choose bounded
and continuous functions fn(x) converging to 1A(x). Then it follows from
Lemma 4.15 and the dominated convergence theorem

Px(XτD ∈A) = Ex

(
1A(XτD )

)
= Ex

(
lim

n→∞
fn(XτD )

)
= lim

n→∞
Ex

(
fn(XτD )

)
= lim

n→∞

∫
∂D

MD(x,w)sF,G(w)fn(w)σ(dw)

=

∫
∂D

MD(x,w)sF,G(w)1A(w)σ(dw). �

Combining this with the two-sided estimates on MD(x, z), we have the
following theorem.
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Theorem 4.17. The function PD defined in (4.8) is the Radon–Nikodym
derivative of the restriction of the harmonic measure Px(XτD ∈ ·) to ∂D with
respect to the surface measure σ on ∂D. Furthermore, there exist positive
constants C3(D,d,φ,x0)<C4(D,d,φ,x0) such that

C3
δD(x)

|x− z|d ≤ PD(x, z)≤C4
δD(x)

|x− z|d , (x, z) ∈D× ∂D.

Therefore, the harmonic measure restricted to ∂D is mutually absolutely con-
tinuous with respect to the surface measure σ on ∂D.

5. Integral representation of harmonic functions with respect to X

In this section, we investigate the integral representation of nonnegative
harmonic functions with respect to X and show that tangential convergence
of harmonic functions with respect to XD can fail.

Let D be a bounded C1,1 open set in Rd, d≥ 2. Take a sequence of smooth
open sets {Dn}, Dn ⊂Dn ⊂Dn+1,

⋃∞
n=1Dn =D. Let τn := τDn be the first

exit time of Dn. We will define some auxiliary sets A,B,C,D ⊂Ω. Let

A= {w ∈Ω :Xτ−
D
�=XτD}, B =Ω \A,

C = {ω ∈Ω : τn = τD for some n ∈N}, and D =Ω \ C.

Since XτD ∈Dc and Xτ−
D
∈D for x ∈D we have Px-almost surely

A=
{
ω ∈Ω :XτD ∈D

c}
= {w ∈Ω :XτD /∈ ∂D}.

Suppose that ω ∈A \ C. Then τn(ω)< τD(ω) for all n ∈N. By the quasi-left
continuity of Lévy processes, we have limτn↑τD Xτn(ω) = XτD (ω). But this

implies XτD(ω) ∈Dc ∩D = ∂D, which is a contradiction. Hence, A\C = ∅ or
A⊂ C. By taking complement we also have D ⊂B.

Finally, consider C \ A = {ω ∈ Ω : τn = τD for some n and XτD ∈ ∂D}.
Clearly C \ A ⊂ {Xτn ∈ ∂D for some n}. Note that {Xτn ∈ ∂D} = {Xτn ∈
∂D and Xτ−

n
�=Xτn} since Dn ⊂D. Since |∂D|= 0 for any C1,1 open set D,

it follows from (2.2) we have

Px(Xτn ∈ ∂D) = Px(Xτn ∈ ∂D,Xτ−
n
�=Xτn) =

∫
∂D

KDn(x, z)dz = 0.

Hence, we conclude that under Px, x ∈D

Px(C \A) = 0.

Hence from now on, we will identify all these sets to be equal under Px. That
is we let

{w ∈Ω :Xτ−
D
�=XτD}=

{
ω ∈Ω :XτD ∈D

c}
= {ω ∈Ω : τn = τD for some n},

{w ∈Ω :Xτ−
D
=XτD}= {ω ∈Ω :XτD ∈ ∂D}= {ω ∈Ω : τn �= τD for all n}.
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Let J be

J = {τn = τD for some n}=
{
XτD ∈D

c}
= {Xτ−

D
�=XτD}.

Lemma 5.1. Let u be a nonnegative function defined on D. For any open
set B ⊂B ⊂D, we have

Ex

[
u(XτD ),J

]
= Ex

[
u(XτB ), τB = τD

]
+Ex

[
EXτB

(
u(XτD),J

)
, τB < τD

]
.

Proof. Take an increasing sequence of smooth opens sets {Dn} as in the
beginning of the chapter. For any open set B ⊂B ⊂D, we can take an open
set Dk such that B ⊂ Dk. Then τB ≤ τDk

. Hence, we have {τB = τD} ⊂
{τDk

= τD} ⊂ J . Hence, it suffices to show

Ex

[
u(XτD ),J \ {τB = τD}

]
= Ex

[
EXτB

(
u(XτD ),J

)
, τB < τD

]
.

From the strong Markov property of X , we have

Ex

[
u(XτD ),J \ {τB = τD}

]
= Ex

[
u(XτD ),J ∩ {τB < τD}

]
= Ex

[
E
[
u(XτD ),J ∩ {τB < τD}|FτB

]]
= Ex

[
E
[
u(XτD ),J |FτB

]
, τB < τD

]
= Ex

[
EXτB

(
u(XτD ),J

)
, τB < τD

]
. �

Lemma 5.2. Let u be a harmonic function on D with respect to X . Let
v(x) := u(x)− Ex[u(XτD),J ]. Then v(x) is nonnegative and harmonic with
respect to XD on D.

Proof. Take Dn ⊂Dn ⊂Dn+1 ↑D. Since u is harmonic with respect to X ,
we have

u(x) = Ex

[
u(Xτn)

]
≥ Ex

[
u(XτD), τn = τD

]
.

As n→∞ we have {τn = τD} ↑ J . By the monotone convergence theorem,
we have

u(x)≥ Ex

[
u(XτD ),J

]
.

From the harmonicity of u and Lemma 5.1, for any open set B ⊂D whose
closure is compact in D, we have

Ex

[
v
(
XD

τB

)]
= Ex

[
u
(
XD

τB

)]
−Ex

[
EXD

τB

[
u(XτD ),J

]]
= Ex

[
u(XτB ), τB < τD

]
−Ex

[
EXτB

[
u(XτD ),J

]
, τB < τD

]
= Ex

[
u(XτB )

]
−Ex

[
u(XτB ), τB = τD

]
−Ex

[
EXτB

[
u(XτD ),J

]
, τB < τD

]
= u(x)−Ex

[
u(XτD ),J

]
+Ex

[
u(XτD ),J

]
−Ex

[
u(XτB ), τB = τD

]
−Ex

[
EXτB

[
u(XτD ),J

]
, τB < τD

]
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= v(x) +Ex

[
u(XτD),J

]
−Ex

[
u(XτB ), τB = τD

]
−Ex

[
EXτB

[
u(XτD),J

]
, τB < τD

]
= v(x). �

Theorem 5.3. Let u be nonnegative and harmonic on D with respect to X .
Then there exists a unique measure μu supported in ∂D so that u(x) can be
written as

u(x) =

∫
D

c
u(y)KD(x, y)dy+

∫
∂D

MD(x, z)μu(dz).

Proof. It follows from Theorem 2.5 and Lemma 5.2 there exists a unique
measure μu supported on ∂D such that

u(x)−Ex

[
u(XτD ),J

]
=

∫
∂D

MD(x, z)μu(dz).

Now it follows from (2.2) that we have

u(x) =

∫
D

c
u(y)KD(x, y)dy+

∫
∂D

MD(x, z)μu(dz). �

In [22] it is proved that there exists a bounded (classical) harmonic function
on the unit disk in R2 that fails to have tangential limits for a.e. θ ∈ [0,2π].
Using the similar method, in [17], [18] the author showed that the Stolz open
sets are best possible sets for Fatou’s theorem and relative Fatou’s theorem
for transient censored stable processes and stable processes, respectively for
d= 2 and D =B(0,1).

A curve C0 is called a tangential curve in B(0,1) if C0 ∩ ∂B(0,1) = {w} ∈
∂B(0,1), C0 \ {w} ⊂ B(0,1), and for any r > 0 and β > 1 C0 ∩ B(w,r) �
Aβ

w ∩ B(w,r). Let Cθ be a rotated curve C0 about the origin through an
angle θ. We will adapt arguments in [17], [18], [22] to prove that the Stolz
open sets are best possible sets for Fatou’s theorem for X by showing that
there exists bounded harmonic function u(x) with respect to XB(0,1) such that
the tangential limit limx∈Cθ,x→z u(x) does not exist, where Cθ is a tangential
curve inside B(0,1).

We start with a simple lemma that is analogue to [22, Lemma 2] (see also
[17, Lemma 3.19] and [18, Lemma 3.22]). Let D =B(0,1) ∈R2, x0 = 0, and σ1

be the normalized surface measure of ∂B(0,1). Define h1(x) := P(XτB(0,1)
∈

∂B(0,1)) and h2(x) :=
∫
∂B(0,1)

MB(0,1)(x, z)σ1(dz). It follows from Theo-

rem 4.11

H(z) = lim
Aβ

z�x→z∈∂B(0,1)

h1(x)

h2(x)

exists, 0< c1 ≤H(z)≤ c2 <∞ for some constants c1, c2 > 0, and

h1(x) =

∫
∂B(0,1)

MB(0,1)(x, z)H(z)σ1(dz).



FATOU’S THEOREM FOR SUBORDINATE BROWNIAN MOTIONS 787

Lemma 5.4. Let h1(x) =
∫
∂B(0,1)

MB(0,1)(x, z)H(z)σ1(dz) and U(z) be a

nonnegative and measurable function on ∂B(0,1), and 0 ≤ U(eiθ) ≤ 1, θ ∈
[0,2π]. Suppose that U(eiθ) = 1 for θ0 − λ ≤ θ ≤ θ0 + λ for some 0< λ < π.
Let u(x) =

∫
∂B(0,1)

MB(0,1)(x, z)U(z)H(z)σ1(dz), x ∈ B(0,1). Then for any

ε > 0 there exists δ = δ(ε,φ), independent of λ, such that

1− ε≤ u(ρeiθ0)

h1(ρeiθ0)
≤ 1 if ρ > 1− λδ.

Proof. Since 0≤ U(z)≤ 1 we have

0 ≤ u(x)

h1(x)
=

1

h1(x)

∫
∂B(0,1)

MB(0,1)(x, z)U(z)H(z)σ1(dz)

≤ 1

h1(x)

∫
∂B(0,1)

MB(0,1)(x, z)H(z)σ1(dz) = 1.

Let V (z) := 1−U(z)
2 so that 0≤ V (z)≤ 1

2 and V (eiθ) = 0 for θ0−λ≤ θ ≤ θ0+λ.

By the triangular inequality, we have |eiθ0 −eiθ| ≤ |eiθ0 −ρeiθ0 |+ |ρeiθ0 −eiθ|=
(1− ρ) + |ρeiθ0 − eiθ|. Hence,∣∣ρeiθ0 − eiθ

∣∣ ≥ ∣∣eiθ0 − eiθ
∣∣− (1− ρ)

≥ 2

∣∣∣∣sin
(
θ0 − θ

2

)∣∣∣∣− δ|θ0 − θ|

≥ 2

π
|θ0 − θ| − δ|θ0 − θ|

=

(
2

π
− δ

)
|θ0 − θ|

for |θ0 − θ|> λ. Hence from (2.3) we have for ρ > 1− λδ

∫ 2π

0

MB(0,1)

(
ρeiθ0 , eiθ

)
V
(
eiθ

)
dθ

≤ c1(1− ρ)

∫ 2π

0

V (eiθ)

|ρeiθ0 − eiθ|2 dθ

≤ c1(1− ρ)

(
2

π
− δ

)−2 ∫
|θ−θ0|>λ

dθ

|θ0 − θ|2

≤ c1
1− ρ

λ

(
2

π
− δ

)−2

≤ c1
δ

( 2π − δ)2
.
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From Theorem 4.11 H(eiθ)≤ c2 for some constant c2 > 0. Hence, if δ ≤ 1
π we

have

u(ρeiθ0)

h1(ρeiθ0)
=

1

h1(ρeiθ0)

1

2π

∫ 2π

0

MB(0,1)

(
ρeiθ0 , eiθ

)(
1− 2V

(
eiθ

))
H
(
eiθ

)
dθ

≥ 1

h1(ρeiθ0)

(
h1

(
ρeiθ0

)
− 2c1c2

δ

( 2π − δ)2

)
≥ 1− c3δ.

Now for given ε take δ = 1
π ∧ ε

c3
and we reach the conclusion of the lemma. �

Once we have Lemma 5.4 by adapting the argument in [22], we have the
following theorem.

Theorem 5.5. There exists a bounded and nonnegative harmonic func-
tion u(x) with respect to XB(0,1) such that for a.e. θ ∈ [0,2π] with respect to
Lebesgue measure,

lim
|x|→1,x∈Cθ

u(x) does not exist.

Proof. Let h1(x) = Px(XτB(0,1)
∈ ∂B(0,1)) as in Lemma 5.4. By following

the argument in [22] there exist nonnegative harmonic functions uk(x) with
respect to XB(0,1) defined on some E∗

k such that

lim
x→w∈∂B(0,1)

uk(x)

h1(x)
= 0 radially and

limsup
x→w∈∂B(0,1)

uk(x)

h1(x)
= 2−k along one branch of Cθ.

Let u(x) =
∑∞

k=1 uk(x). For this u(x) by following the argument in [22] with
Lemma 5.4 (see also [18, Theorem 3.23]), we have

lim
|x|→1,x∈Cθ

u(x)

h1(x)
does not exist for a.e. θ ∈ [0,2π].

It follows from Proposition 4.10 limx→z∈∂B(0,1) h1(x) = 1. Hence, we have

lim
|x|→1,x∈Cθ

u(x) does not exist for a.e. θ ∈ [0,2π]. �

Acknowledgments. The author thanks Renming Song for very helpful com-
ments and suggestions while this work was under progress and Yunju Lee
whose suggestion improved many arguments in Section 3. The author also
thanks the anonymous referee for the careful reading of the first version of
this paper whose suggestions improved the quality of the paper.



FATOU’S THEOREM FOR SUBORDINATE BROWNIAN MOTIONS 789

References

[1] H. Aikawa, Boundary Harnack principle and Martin boundary for a uniform domain,

J. Math. Soc. Japan 53 (2001), no. 1, 119–145. MR 1800526
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