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A REFINEMENT OF ANALYTIC CHARACTERIZATIONS
OF GAUGEABILITY FOR GENERALIZED
FEYNMAN-KAC FUNCTIONALS

DAEHONG KIM, MILA KURNIAWATY AND KAZUHIRO KUWAE

ABSTRACT. We relax the conditions for measures in our previous
paper [Analytic characterizations of gaugeability for generalized
Feynman—Kac functionals (2016) Preprint] on analytic character-
izations of (conditional) gaugeability for generalized Feynman—
Kac functionals in the framework of symmetric Markov processes.
The analytic characterization is also equivalent to the maximum
principle for generalized Feynman-Kac semigroups, extending
the result by Takeda [The bottom of the spectrum of time-
changed processes and the maximum principle of Schrodinger
operators (2015) Preprint).

1. Introduction

In this paper, we relax the conditions for measures in [26, Theorems 1.1
and 1.2] on analytic characterizations of gaugeability or conditional gaugeabil-
ity for generalized Feynman—Kac functionals in the framework of symmetric
Markov processes. For this, let us state the framework of this paper. Let F
be a locally compact separable metric space and m a positive Radon measure
on E with full topological support. Let X = (Q,F»,Ft, Xt, Ps,x € Eg) be an
m-symmetric transient Hunt process on E with lifetime ¢ := inf{¢ > 0| X, = 0}.
We assume that X satisfies the irreducibility condition (I) and the abso-
lute continuity condition (AC) (see Section 2 for the definitions). Then
we can consider the Green function R(z,y) of X defined on E x E. We
set d:={(z,y) € E x E|R(x,y) =0 or oo} the diagonal set with respect
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to X and E* :={y € E|(z,y) € (E x E)\ d}. Given an additive functional
A of X, the expectation ga(x):=E;[ea(¢)] (resp. conditional expectation
g% () :=E¥[ea(¢Y)]) of the Feynman-Kac transform e 4 (t) := exp(A) is called
the gauge function (resp. the conditional gauge function, where P¥Y denotes
the probability of Doob’s R(-,y)-transformed process starting from x € F).

In a series of papers, Chen and Song [9], [10] and Chen [4] have made re-
markable progress in establishing the gauge and conditional gauge theorems
for A under quite general hypotheses on X and A (in their papers, X is not
necessarily symmetric). The gauge theorem asserts that under suitable con-
ditions on X and A, the gauge function g4 is either identically infinite or
bounded on E. If the latter happens, (X, A) is said to be gaugeable. It is
known that the conditional gauge theorem is related to the gauge theorem
but is much deeper. The conditional gauge theorem asserts that under suit-
able conditions on X and A, the conditional gauge function (z,y) — ¢%(z)
is either identically infinite or bounded between two positive constants. If
the latter happens, (X, A) is said to be conditionally gaugeable and in this
case, the Green function R“(z,y) of the Feynman-Kac transformed process
XA of X by e4(t) and R(x,y) are comparable. So the infinitesimal genera-
tors of X4 and X share many potential theoretic properties. In this sense,
it is important to know when (X, A) is conditionally gaugeable. Chen [4]
introduced new classes of Kato class measures as genuine extensions of the
Green-tight measure introduced by Zhao [45] and established various equiva-
lent conditions for gaugeability and conditional gaugeability for a large class
of processes and additive functionals related to possibly singular measures.
In [26], the first and third authors introduced more natural (extended) Kato
classes of (semi-)Green-tight measures including the (semi-)Green-tight mea-
sures of (extended) Kato class introduced by Chen [4]. These classes are
stable under Girsanov transforms in some sense, which enables us to prove
[26, Theorem 1.1]. In this paper, we also prove that the new class of Green-
tight measures of Kato class coincides with the class given by Chen [4] under
the doubly resolvent Feller property (see Proposition 4.1).

Analytic characterizations of the gaugeability and conditional gaugeability
for (X, A) have been studied by several authors. In the case of Brownian
motion in R?, Zhao [45] introduced a so-called shuttle operator and showed
that (X, A) is conditionally gaugeable if and only if the spectral bound of
the shuttle operator is less than one. For more general symmetric Markov
processes, Takeda [37] (resp. Chen [4]) gave an analytic characterization for
a positive continuous additive functional (resp. a continuous additive func-
tional) A associated with a positive smooth measure (resp. a signed smooth
measure) by using the LP-independence of the spectral bound of X based on
a large deviation principle (resp. a conditional gauge theorem) and later, this
characterization was extended to non-local cases by Chen [5]. These analytic
characterizations are not only useful in confirming whether (X, A) is gaugeable
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or conditionally gaugeable in many concrete cases, they are also applicable in
studying subcriticality of Schrédinger operators, differentiability of spectral
functions, stability of heat kernels under Feynman-Kac perturbations and
certain penalization problems (see [37], [38], [40], [39], [43], [44]).

Now we give a detailed description of the results with necessary notations.
Let pq (resp. pz2) be smooth measures in the strict sense corresponding to a
positive continuous additive functional A#* (resp. A*2) in the strict sense with
respect to X and let p:= 1 — po be the signed smooth measure in the strict
sense. We denote A by A*:= A¥1 — AF2 to emphasize the correspondence
between p and A. Let (£,F) be the Dirichlet form of X on L?(E;m). For
a bounded finely continuous (nearly) Borel function w on E which is strictly
E-quasi-continuous on Fy and locally in F, let N* be the continuous additive
functional of zero quadratic variation appeared in the Fukushima decomposi-
tion of u(X;) —u(Xo) (see (2.2)). Note that N* is not necessarily of bounded
variation in general. Let F}, F5 be non-negative bounded functions on E x Ejy
which are symmetric on F x E. F; and F5 are extended to Fy x Eg by setting
F;(0,z) = Fi(x,0) = Fi(z,2) =0 for z € Ey for each i = 1,2 (actually there is
no need to define the value F;(0,z) for x € E, i =1,2). We set F:=F, — F5.
Then Af =3, F(Xs—,X;) (whenever it is summable) is an additive
functional of X. It is natural to consider the following generalized non-local
Feynman-Kac transforms by the additive functionals A := N* 4+ A* + AF of
the form
(1.1) ea(t) :=exp(A), t>0,
because the process X admits many continuous additive functionals which
do not have bounded variations, and many discontinuous additive function-
als. The purpose of this paper is to give analytic characterizations of the
gaugeability and (semi-)conditional gaugeability for the generalized Feynman—
Kac transforms (1.1) which extend almost all the results in [5], [37], [44]. In
particular, our result improves the previous work due to Chen [5] even if
we restrict ourselves to deal with only non-local perturbations. More pre-

cisely, let Q be the quadratic form associated with the symmetric semigroup
PAf(z) :==E.[ea(t)f(X;)] (see [13]), which is defined by

where

E(u, fg): /fd:u(ug /gdﬂ<uf>

/ F()g(@)u(da) + / / F(@)g(y) (@ — 1) Nz, dy)us (da).

Q(f,g) is well-defined for f,g € F provided 1 + N (F1)pm + i) € SH(X) and
po + N(Fy)pum € ShH(X) and is bounded from below on L?(E;m) provided
p + N = D € Sir(X), sy € Sk(X) and po + N(Fp)pun € Sp(X).
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Here Sty (X) (resp. Si(X)) denotes the class of smooth measures in the
strict sense of extended Kato class (resp. Kato class) with respect to X.

For a positive Radon measure 7 on E, let A2(n) be the bottom of the
spectrum for Q on L?(E;n) defined by

(1.3 ae=nt{orrnfrec. [ Pan=1},

where C is the special standard core of (£,F) (see [19]). Let Sty (X)
(resp. S\, (X)) be the family of natural Green-tight measures of Kato class
(resp. natural semi-Green-tight measures of extended Kato class) with re-
spect to X and 51130 (X) the family of Green-bounded smooth measures with
respect to X (see Section 4 for the definitions of these families). Let (N, H)
be the Lévy system of X. We set i1 := puq1 + N(eF“ —F*—14+F)ug+ %u?w
and fif ==y + N(ef' —F* =1+ F))ug + %“?u}? where F*(z,y) := F(z,y) +
U(z,y), Fi*(z,y) = Fi(z,y) + U(z,y) and U(z,y) = u(z) —u(y) for z,y € Es,
and u?u) is the continuous part of the energy measure of u.
The first main result of this paper is the following:

THEOREM 1.1. Suppose that jif € Skg, (X), pwy € Sxx_(X) and pg +
N(Fy)pug € Sp,(X) hold. Then AC(fi1) > 0 if and only if the functional (1.1)
is gaugeable, i.e., sup,cp Ezlea(()] < co.

REMARK 1.1. Note that the condition i} € Sy, (X) is equivalent to py +
N(eY (e —1))un € Sik, (X) under pi(y € Sik_ (X). In [26, Theorem 1.1],
we obtain the same conclusion of our Theorem 1.1 under the conditions p; €
Skic, (X): 1y + N(F)pn € Sk (X) and iz + N(E)pus € Shy (X). Our
conditions for measures in Theorem 1.1 are milder than them.

Let us denote by Sty (X) (resp. Stk (X)) the family of Green-tight
measures of Kato class (resp. semi-Green-tight measures of extended Kato
class) in the sense of [4] with respect to X. Since Sty (X) C Syk_ (X) and
Stk, (X) € Sk, (X) (see the remark after Definition 4.2 below), Theorem 1.1
extends [37, Theorem 2.4] (resp. [4, Theorem 5.2] and [5, Theorem 3.4]), in
which the case u=0on F and F =0 on E x E (resp. « =0 on E) was treated.

As an application of Theorem 1.1, we prove that the analytic characteriza-
tion of gaugeability is equivalent to the maximum principle for the generalized
Feynman-Kac semigroup under suitable conditions for measures in the frame-
work of resolvent strong Feller symmetric Hunt processes (see Theorems 7.2
and 7.1).

Now let us state the second main result. Let Stg (X) (resp. S¢g, (X))
be the family of conditionally Green-tight measures of Kato class (resp. con-
ditionally semi-Green-tight measures of extended Kato class) in the sense
of [4] with respect to X, Shg (X) (resp. Apg, (X)) the family of condition-
ally Green-bounded smooth measures in the sense of [4] with respect to X
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(resp. the family of conditionally Green-bounded jump functions with respect
to X), Bhg,(X) := Spg, (X) x Ahg, (X) the family of the pairs of elements
in Shg, (X) and Afg (X), and Blig_(X) (resp. Big, (X)) the family of the
pairs of conditionally Green-tight measures of Kato class and conditionally
Green-tight jump functions (resp. the family of the pair of conditionally semi-
Green-tight measures of extended Kato class and conditionally semi-Green-
tight jump functions) with respect to X (see Section 6 for the deﬁnitions)
Let R“(z,y) be the Green kernel of P/ defined by R*(z,y) fo (x,y)dt,
where PA(x,y) is the integral kernel of PA.
The second main result of this paper is the following theorem.

THEOREM 1.2. Assume [ij € Sig (X), puy € Sts_(X) and pa +
N(F) g € Sphg, (X). Then the following are equivalent:
(1) The functional (1.1) is semi-conditionally gaugeable, that is, for each
yek

sup EY[eA(¢Y)] < oo.
zeEY

(2) For each x € E, R*(x,y) < 0o for m-a.e. y € E*.

(3) RA(z,y) < oo for any (z,y) € (E x E)\ d.

(4) For each y € E, there exists C >0 depending only on y such that for any
r € EY C7'R(x,y) < R*(z,y) < CR(x,y).

(5) A9(f1) > 0.

(6) The functional (1.1) is gaugeable, that is, sup,cp Ezlea({)] < oo.

Furthermore, if w=0 and (p1,e™ — 1) € Bg (X), or (p1 + puy, F1) €
Blg_(X) and there exists C >0 such that
(1.4) C7'R(z,y) < RY(x,y) < CR(x,y) for all (z,y) € (E x E)\d,

then (1)—(6) are equivalent to (7):
(7) The functional (1.1) is conditionally gaugeable, that is,

sup EY [eA(Cy)] < o0
(z,y)e(ExE)\d

Suppose further (ua, Fy) € Bhg (X). Moreover, if u=0 and (p1,e* —1) €
Blg, (X), or (1 + puy, F1) € Big_ (X) with (1.4) holding for some C >0,
then (1)—~(7) are equivalent to (8):

(8) There exists C >0 independent of z,y such that

(1.5) C™'R(z,y) < RY(z,y) < CR(x,y)
holds for all (x,y) € (E x E)\ d.

Here RY(x,y) is the Green kernel of the Girsanov transformed process by a
multiplicative functional Uy defined in (3.5) below.
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REMARK 1.2. Note that the condition i} € Stg, (X) is equivalent to p1 +
N(eV (e —1))ug € Stg, (X) under puiyy € Sgg_(X). In [26, Theorem 1.2],
we obtain the same conclusion of our Theorem 1.2 under the conditions p; €
Sts, (X), py + N(Fi)pum € S (X) and py + N(Fo)pm € Shg, (X). Our
conditions in Theorem 1.2 are milder than them.

Ifu=0o0n F and F; =0 on E x E, then (1.4) is satisfied with RY (z,y) =
R(z,y) for z,y € E and (p1,e' — 1) € Blg, (X) (resp. (p1,F1) € Big_ (X))
for py € Stg, (X) (resp. 1 € S&g_(X)). Thus, Theorem 1.2 covers [4, Theo-
rem 5.3] and [37, Theorem 3.9]. If u=0 on E and F} € Agg_(X) (see Def-
inition 6.2 below for the definition on Alg (X), and Proposition 6.1), then
(1, — 1) € Bg, (X) for puy € Stg, (X). So Theorem 1.2 under u =0 with
(n1,e™ —1) € Big, (X) extends [4, Theorem 3.10] and [5, Theorems 2.1(3)
and 3.4]. For general bounded w and F satisfying the conditions in Theo-
rem 1.2, (1.4) is satisfied provided X is a symmetric diffusion process on R?
with uniform elliptic condition, symmetric stable-like process, or symmetric
relativistic stable-like process.

We emphasize that the relaxation of the conditions for measures of the non-
local part in the creation is significant even in the case w = 0. This relaxation
has not been treated in the previous literature. Theorem 1.1 will be applied
to prove the stability of heat kernel estimates for generalized Feynman—Kac
semigroup in [25, Theorem 1.1]. The relaxation of the conditions for measures
of the non-local part in the creation in Theorem 1.1 is effectively used in the
proof of [25, Theorem 1.1(1)].

The basic strategy in obtaining Theorem 1.1 is to decompose the proce-
dure into several steps which is similar to the proof of [26, Theorem 1.1].
However, due to the relaxed conditions for measures, we need to modify the
proof of [26, Theorem 1.1]: First, we extend the results on the analytic char-
acterization for local Feynman-Kac transforms developed by [4], [37] in terms
of natural Green-tight measures of Kato class and natural semi-Green-tight
measures of extended Kato class introduced in Definition 4.2 extending the
notion introduced by Chen [4] (Lemmas 4.2, 4.3 and Theorem 4.2). We con-
sider a Girsanov transformed process U originally introduced by [12] and
the analytic characterization for Feynman-Kac functional over the Girsanov
transformed process extending [4]. We prove that our analytic characteriza-
tion implies the gaugeability for (1.1) (Proposition 5.1). Here we use that any
v e Sk, (XW) implies e "v € Sk (UMW), where XM (resp. UMW) is the
1-subprocess of X (resp. U) (see Lemma 4.1(7) below). This plays a crucial
role in our arguments, because 5(1:K1 (X), the family of semi-Green-tight mea-
sures of extended Kato class in the sense of [4], may not be stable under the
Girsanov transform even if we consider the 1-subprocess of the transformed
process. As a consequence of Proposition 5.1, we have a super gauge theorem
for our Feynman—Kac functional (Proposition 5.2), which yields the stability
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of natural (semi-)Green-tightness of (extended) Kato class under the Girsanov
transform (Lemma 5.2 and Corollary 5.1). Second, using Corollary 5.1, we
prove the assertion of Theorem 1.1

As a consequence of Theorem 1.1, we can obtain the equivalence among
gaugeability, semi-conditional gaugeability and subcriticality (the first part of
Theorem 1.2). The equivalence between gaugeability and subcriticality has
been shown to hold by way of the conditional gaugeability of Feynman—Kac
functionals. The first part of Theorem 1.2 shows that there is no need to use
the conditional gaugeability to deduce the subcriticality. We also give the
equivalence among gaugeability, conditional gaugeability and comparison of
Green kernel under (1.4) (the second part of Theorem 1.2). Theorems 1.1
and 1.2 generalize most of the previous known results developed by Chen—
Song [9], [10], Chen [4], [5] and Takeda [37] for symmetric Markov processes.
We remark that the result in [24] together with Theorems 1.1 and 1.2 com-
pletely generalizes their results in the framework of symmetric Markov pro-
cesses.

The remainder of the paper is organized as follows. In Section 2, we ex-
plain some basic assumptions on X and give the definitions of Dynkin and
(extended) Kato classes, including a review of several facts from [4], [9], [10],
[44]. In Section 3, we study the Girsanov transform induced by the Doléans-
Dade exponential martingale relative to w and F, and identify the Dirichlet
form associated with the transformed process. In Section 4, we give the defini-
tions of Green-bounded measures, (semi-)Green-tight measures of (extended)
Kato class in the sense of [4] and the classes of smooth measures of natural
(semi-)Green-tight measures of (extended) Kato class and review several re-
sults from [26]. We prove that the family of Green-tight measures of Kato class
in the sense of [4] coincides with the family of natural Green-tight measures
of Kato class under the doubly Feller property of resolvent (Proposition 4.1).
For later use in Section 7, we prove that several preliminary results for gauge-
ability in [4, Lemmas 2.7, 2.14, Theorems 2.8, 2.15, Corollaries 2.9, 2.16 and
Theorems 2.10, 2.11] can be extended under more relaxed conditions for mea-
sures when u = 0. In Section 5, we prove Theorem 1.1. In Section 6, we
give the definitions of semi-conditionally Green-bounded measures and semi-
conditionally (semi-)Green-tight measures of (extended) Kato class and prove
Theorem 1.2, the equivalence among gaugeability, semi-conditional (or con-
ditional) gaugeability and subcriticality under the conditional (semi-)Green-
tightness of the related measures with some condition. In Section 7, we prove
that the analytic characterization of gaugeability is equivalent to the maxi-
mum principle for the generalized Feynman—Kac functional under mild condi-
tions for measures and the resolvent strong Feller property, in particular, the
analytic characterization of gaugeability yields the Liouville property (Theo-
rem 7.1 and Corollary 7.1). Moreover, under the transience of X, the same
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assertion remains valid (Theorem 7.2 and Corollary 7.2). These generalize the
recent results by Takeda [42].

We use the following notations: For a,b € R, aVb:=max{a,b}, a Ab:=
min{a, b}.

2. Preliminary

Let F be a locally compact separable metric space and m a positive Radon
measure on F with full topological support. Let d be a point added to E so
that Ey:= FU{0} is the one-point compactification of E. The point 9 also
serves as the cemetery point for E. Let X = (Q, Foo, Ft, Xi, Py € Eg) be an
m-symmetric transient Hunt process on E with lifetime ¢ := inf{t > 0|X; =
0} and (€,F) the associated symmetric Dirichlet form which is regular on
L?*(E;m). We say that (€, F) (or X) is irreducible ((I) in abbreviation) if
any (T})>o-invariant set B satisfies m(B) =0 or m(B°¢) =0. Here (T)>0 is
the strongly continuous semigroup on L?(E;m) associated with (£, F). The
transition kernel of X is denoted by Pi(z,dy), ¢t > 0. The correspondence
between X and (€, F) is given by

Tif (x) =B, [f(Xy) 1t < (] ::/Ef(y)Pt(Jc,dy) m-a.e. x € £t > 0.

(Here and in the sequel, unless mentioned otherwise, we use the convention
that a function defined on E takes the value 0 at d.) The process X is
said to satisfy the absolute continuity condition with respect to m ((AC) in
abbreviation) if for any x € E and ¢t > 0, m(A) = 0 implies P(z, A) =0 for all
A € B(E). Throughout this paper, X is assumed to satisfy both (I) and (AC).
For o > 0, there exists an a-order resolvent kernel R, (z,y) which is defined
for all z,y € E (see Lemma 4.2.4 in [19]). Since a— R, (x,y) is decreasing for
each x,y € E, we can define the 0-order resolvent kernel R(z,y) := Ro(x,y) :=
limy 0 Ro(z,y). R(z,y)is called the Green function of X. For a non-negative
Borel measure v, we wrlte Rov(z):= [, R v(dy) and Rv(x) := Rov(x).
Note that R, f(x ) R, (fm)(x) for any f € B+( ) or f € By(E). The space of
bounded continuous functions on E will be denoted as Cy,(E). The process X
is said to satisfy the resolvent strong Feller property ((RSF) in abbreviation)
if Ry (Byp(E)) C Cp(E) for any > 0.

Let S1(X) be the family of positive smooth measures in the strict sense [19].
A measure v € 51(X) is said to be in the Dynkin class (resp. Green-bounded)
of X if sup, ¢y Rav(x) < 0o for some o > 0 (resp. sup,cp Rv(z) < 00). A mea-
sure v € S1(X) is said to be in the Kato class (resp. extended Kato class) with
respect to X if limg o0 SUp,e g Rav(x) =0 (resp. <1). A measure v € S;(X)
is said to be in the local Kato class if for any compact subset K of | 1xv is of
Kato class. Denote by S7,(X) (resp. S, (X)) the family of measures of Dynkin
class (resp. Green-bounded), and by Sk (X) (resp. Stk (X), Stk (X)) the fam-
ily of measures of Kato class (resp. extended Kato class, local Kato class).
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Clearly, i (X) C Sgk (X) € SH(X), Sk (X) € S{k(X) and S}, (X) € Sp(X).
In view of Theorem 3.1 in [36], any v € S},(X), in particular any v € S}, (X)),
is a Radon measure on E, because of the regularity of the Dirichlet form. We
say that a positive continuous additive functional (PCAF in abbreviation) in
the strict sense A” of X and a positive measure v € S1(X) are in the Revuz
correspondence if they satisfy for any ¢ >0, f € B, (E),

/f v(dr) =t lim - LN Uf dA”}

It is known that the family of equ1valence classes of the set of PCAFs in the

strict sense and the family of positive measures belonging to S;(X) are in one

to one correspondence under the Revuz correspondence ([19, Theorem 5.1.4]).
An increasing sequence {Fy} of closed sets is said to be an £-nest if

P, (kli\rgan\Fk > C) =1 m-ae zxz€F.

A function f on F is said to be £-quasi-continuous if there exists an F-nest
such that f|g, is continuous for each k € N. Let (£,F.) be the extended
Dirichlet space of (€,F) (see [19] for the definition). Any element f € F,
admits an £-quasi-continuous m-version f (see [19]). Throughout this paper,
we always take an £-quasi-continuous m-version of the element of F., that
is, we omit tilde from f for f € F.. Let (N(z,dy), Ht) be a Lévy system
for X, that is, N(x,dy) is a kernel on (Ey,B(Ep)) and H; is a PCAF with
bounded 1-potential such that for any nonnegative Borel function ¢ on Ejy x
FEy vanishing on the diagonal and any x € Fy, nonnegative Borel function g
on [0,00[ and (F:)-stopping time T,

E{Zg(s) (X, ,X] [/ [E Xouy) N (X, dy) dH,

s<T

(see [7, A.3.33]). To simplify notation, we will write

No(x):= [ ¢(z,y)N(z,dy).

Es
Let pg be the Revuz measure of the PCAF H. Then the jumping measure
J and the killing measure k of X are given by

J(dxdy) = %N(z,dy)u;j(dz) and  k(dz) = N(z,{0})pp(dz).

These measures feature in the Beurling-Deny decomposition of &£:

E(f,9) = E(fg) + /(E o UG = 10) (o)~ ) ()

4 /E f(@)g(a)n(dz)

for f,g € Fe. Here £°¢ is the strongly local part of £.
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A function f on E is said to be locally in F in the broad sense if there
exists a nest {Gy} of finely open (nearly) Borel sets and a sequence {f,}
of elements in F such that f = f,, m-a.e. on G,,. Let Fioe be the family of
functions on E locally in F in the broad sense. It is known that any f € ].-"10C
admits £-quasi-continuous m-version.

An increasing sequence {Fj} of closed sets is said to be a strict E-nest
if P,(limg 00 0p\p, =00) =1 m-a.e. € E. A function f defined on Ep
is said to be strictly €-quasi-continuous if there exists a strict E-nest {Fj}
of closed sets such that f|g, g9y is continuous for each k& € N. Denote by
QC(Epy) the totality of strictly £-quasi-continuous functions on Ey. To the
end of this section, we consider a bounded finely continuous (nearly) Borel
function u € Fioc N QC/(Ep) satisfying p1(,y € Sh(X). In [27, Theorem 6.2(2)],
we proved that the additive functional u(X;) — u(Xo) admits the following
strict decomposition:

(2.2) w(Xy) —u(Xo) = M + N, t€[0,00[ Py-a.s. for all z € E,

where M™ is a square integrable martingale additive functional in the strict
sense, and N* is a continuous additive functional (CAF in abbreviation) in
the strict sense which is locally of zero energy. M™ can be decomposed as

(2.3) M = M + M + M"",

where M7, M®"" and M;" are the jumping, killing and continuous part
of M*, respectively. Those are defined P,-a.s. for all z € E by [27, Theo-
rem 6.2(2)]. The strict decompositions (2.2) and (2.3) on [0, co[ guarantee the
extension of the supermartingale multiplicative functional Y; on [0, ([ up to
[0, 00] (see Proposition 3.1 below). Let iy, iy u{m and 7, be the smooth
Revuz measures in the strict sense associated with the quadratic variational
processes (or the sharp bracket PCAFs in the strict sense) (M), (M™°),
(M™J) and (M™"), respectively. Then

Py (da) = 6y (d2) + o, (da) + il (da).

Note that E(f, f) = %I/<f> (E) with vgy := u?ﬁ +/ﬂ<f> + 207y provided f € Fe.

Let 14 (resp. v2) be a positive (resp. signed) Radon measure on E. Let
(A, D(A)) be a lower bounded closed symmetric form on L?(E;m) having core
C satisfying (C,1), (C,2) in [19] such that the perturbed form (A"2,C) defined
by A”(f,g) = A(f.9) + [, fgdira, f,g €C is also lower bounded. We set

Ava, 1) ::inf{A”Q(ﬁf)’fEC,/Edeul :1}.

Then we have the following lemma due to Takeda—Uemura [44].
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LEMMA 2.1 (cf. Lemma 3.1 in [44]). Let v be another positive Radon mea-
sure on E. Then A(ve + v,v1 +v) > 1 implies A(va,v1) > 1. Suppose that
Ava,v) > 0. Then the converse assertion holds.

REMARK 2.1. Lemma 3.1 in [44] is stated in the framework of rotationally
symmetric a-stable processes, and v, = p— and vy = 4 are the negative and
positive parts in the Jordan—Hahn decomposition of the signed smooth Radon
measure p. However, its proof remains valid in this generality.

3. Girsanov transforms

Let F' be a bounded symmetric function on F x E, which is extended to a
function F' defined on Fy X Ey by setting F(x,0) = F(0,z) = F(x,x2) =0 for
x € Ey (actually there is no need to define the value F(9,y) for y € E). Set
F,:=Fv0and F_:=(—F)Vv0. We say that F':=F, — F_ is in the class
J1(X) (resp. J}(X) and Jp, (X)) if N(|F|)ps belongs to S1(X) (resp. Sp(X)
and Sp, (X)), where |F| = F; + F_. Any such an F has an expression of
the form F = Fy — Fy, where each F; (i =1,2) is a symmetric nonnegative
bounded function on Ey x Ey vanishing on the diagonal set of Ey x Ejp.
Indeed, for any nonnegative symmetric bounded ¢ having the same property
as F, Iy :=F, 4+ ¢ and Fy:= F_ 4 ¢ have these properties. Note that if
Fy + Fy € J1(X) (resp. J5(X) and Jp, (X)), then F € Ji(X) (resp. Jp(X)
and J}, (X)). In this case, the following A¥ can be defined as an additive
functional in the strict sense:

A=Al - AP Al =) R(X, X)) (i=1,2).
0<s<t
Note that A" =37, 1s<c} F(Xo, Xs), since F(z,9) =0 for x € Ep. For
a bounded finely continuous (nearly) Borel function u € Fioc N QC(Ep) satis-
fying gy € S1(X) and such I’ € J;(X), we set
F'(z,y) = F(a,y) + {~u(y) — (-u(@))} = F(z,y) + u(z) — u(y)

and G* = ef™" — 1 with identifying F* = F and G° =G := e’ — 1. Since

w 2 2
(3.1) [F" (2,9)|” < 2] Flloc |F(2,9)] +2(ule) — uly))”,

one can see that the relation N(|F“|*)up < 2||F||ooN(|F|)pm + ft(u) implies
(F“)? € J1(X). So there exists a purely discontinuous locally square inte-
grable local martingale additive functional M*" on [0, ¢[ such that AMF" =
FY“(X,—,Xy), t €[0,(] Pg-a.s. for all x € E (see the proof of Lemma 3.2(i)
n [13]). Moreover, M} is given by

(3.2) M =MF + M 4 M,
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where

Mi= Y F(XS_,XS)/tN(F)(XS)dHS, t<C.
0

0<s<t

On the other hand, since |e* — z — 1| < Zel*l[z|?, the relations

(33) G 9) — F ()| < 5ol | o)
and
Fu| el F @)l 2
el < (P ] + o)
u 1E* ]l o 2
< (%—I—l) |F“(5r:,y)|2

imply G* — F* € J1(X) and (G%)? € J1(X) respectively, because (F“)? €
J1(X). Similarly, we have G — F € J;1(X) and G? € J;(X). Therefore, there
also exists a purely discontinuous locally square integrable local martingale
additive functional M¢" such that AME" = G*(X;_, X;), t € [0,([ Py-a.s. for
all z€ B. ME" is given by

ME =M+ (G - F) (X, X,)

0<s<t

t
—/ N(G* = F")(X,)dH,, t<(.
0

Put M; := ME" + M " and let
Yy :=Exp(M);, t<(
be the solution of the SDE

t
Yt=1+/ Y,_dM,, t<(,P-as.
0

Note that Y; is positive and a local martingale on [[0,([[. Therefore it is a
supermartingale on [0,¢[. In particular, ¥;1r.¢) is a supermartingale with
E.[Yi1p<] <1forall z € E. It is inconvenient to treat additive functionals
on [0,¢] for our purpose. We need a sufficient condition for Y; to be defined
for all ¢ € [0, 00].

PROPOSITION 3.1 (Proposition 3.1 in [26]). Assume that F € J5(X) and
u € Floe N QC(Ey) is a bounded finely continuous (nearly) Borel function sat-
isfying piuy € SL(X). Then Y, can be regarded to be a supermartingale mul-
tiplicative functional defined for all t € [0,00[ Py-a.s. for all x € E.
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Let Y = (Q,,’;”OO, f;"t,)?t, PY () be the transformed process of X by Y;. The
transition semigroup {P} };>o of Y is defined by
PY f(z):=EY [f(X0)] = B.[Yof (X))

THEOREM 3.1 (Theorem 3.1 in [26]). Assume that F € J;(X) and u €

Floc N QC(Ey) is a bounded finely continuous (nearly) Borel function satisfy-
ing pey € S1(X). Then the following hold.

(1) Y: can be represented as follows:

t
(3.4) Y; = exp (MtF“ + M — / N(G* - F*)(X,)dH,
0

1 u,c
- §<M ’ >t) , t< C
(2) Y is an e”?“m-symmetric Hunt process on E.

When Fy = 0, we write the Girsanov transformed process Y*! by Y;! instead
of Y. When F; = F», we write the Girsanov transformed process U by

(3.5) Up = Exp(M 1 4 M),

instead of Y. Let Z = (£, g"oo,g"t,)?t,Pf,C) be the transformed process of X
by the supermartingale multiplicative functional

(3.6) Zy =Y, exp(—A?)

and (£Z,F7%) the Dirichlet form on L?(E;e~2"m) associated with Z. In a
similar way as in the proof of Theorem 3.1(1), we see that

37)  Zi=Yiexp (— /Ot N(GY — G¥)(X,) dHS), te[0,00].

THEOREM 3.2 (Theorem 3.2 in [26]). Suppose F' € J1(X) and u is a bounded
strictly €-quasi-continuous function defined on Ey such that u € Fioe admits
Fukushima’s decomposition holding up to infinity under P-a.s. for q.e. start-
ing point x € E. Let (€Y, FY) be the Dirichlet form of Y on L?*(E;e”?"m).
Then F =FY and

1

1) =5 [ gy )

2 r,Yy)—ulxr)—u
4 / (F(2) — f()) eF @ 2@ =u) 1 (dz dy)
(Ex E)\diag

—l—e_“(a)/ f(z)%e™ @ k(dx)
E

for any f € F¥. In particular, we have F) = F. and there is C = C(u, F) >0
such that C’fluff) < ,u?;? < C’u‘gﬁ for all feF, CTLJ<JY <CJ on
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(E x E)\ diag and C~'x < kY < Ck, hence (£Y,FY) is a transient Dirich-
let form on L*(E;e~%“m). Here ﬂz/fi(dx) = e‘2u($)u?f> (dz), JY (dzdy) :=
eF'@y)—u@)—ul) J(dzdy) and &Y (dz) = e @)~ k(dz).  Moreover, if
k=0, then the conclusion remains valid under that Fukushima’s decompo-
sition holds up to ( under P, for q.e. x € E.

We need the coincidence of the fine topologies of Y and X:

LEMMA 3.1. Let u € Fioc N QC(FEy) be a bounded finely continuous (nearly)
Borel function satisfying p(,) € SL(X) and assume F € J5(X). Then the fine
topology of Y equals that of X.

Proof. By Proposition 3.1, (Y})¢e[0,400 i & Py-supermartingale multiplica-
tive functional on [0,+oo[ for all x € E. It suffices to prove that the family
of all finely open Borel sets for Y coincides with that for X, because any
a-excessive functions of X (also of Y) is Borel measurable under (AC). Let
f be a finely continuous Borel function with respect to X. First, we prove
the fine continuity of f with respect to Y. It is known that the fine conti-
nuity of f is equivalent to the right continuity of [0,4+00[> s+ f(X) under
P, for all z € E and the right continuity of s +— f(X,) at s =0 under P,
implies the fine continuity of f with respect to X (see [3, the proof of (4.8)
Theorem], [19, Theorem A.2.7]). The event A :={w € Q|s+— f(X,) is right
continuous at s =0} belongs to F9 :=0{X, :s <t} CF; for any t > 0. So we
have PY (A¢) = PY (A°n{t >} +PY(An{t<(}) <PY(t > () +E.[Yilac:
t<(]=PY(t>()—0ast—0. Therefore, f is finely continuous with re-
spect to Y. Conversely suppose that f is a finely continuous Borel function
with respect to Y. Then the event A := {w € Qs — f(X;) is right contin-
uous at s =0} also belongs to F} for ¢ >0 and it satisfies PY (A°¢) =0 for
all z € E. Then E,[Y;1ac:t<(]=PY(A°n{t<¢})=0 for all t>0 and
x € E. Thus P,(A°N{t<(})=0 for all t >0 and = € E, because P,(Y; >0
fort € [0,¢[)=1for all z € E. Letting t — 0, we have P,(A)=1for allz € E.
Therefore, we obtain the fine continuity of f with respect to X. O

4. (Semi-)Green-tight measures of (extended) Kato classes
and gaugeability

Let p= p1 — po be a signed smooth measure in the strict sense whose
associated CAF of X is A* := A#1 — A#2. Here A" and A*? are the PCAFs
of X with Revuz measures p; € S1(X) and pg € S1(X), respectively. Now we
start with the notion of Green-tight measures of (extended) Kato class in the
strict sense given in [4, Definition 2.2].

DEFINITION 4.1 (Green-tight Kato class measures). Let v € 57(X) and
a>0.
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(1) vissaid to be an a-order Green-tight measure of Kato class with respect to
X if v € SL(X) and for any £ > 0 there exists a compact subset K = K (¢)
of E such that

sup R (1gev)(z) = sup/ Ry (z,y)v(dy) <e.
z€E z€EE c
(2) v issaid to be an a-order semi-Green-tight measure of extended Kato class
with respect to X if v € S (X) and there exists a compact subset K of
E such that

sup Ry (1gev)(z) = Sup/ R (z,y)v(dy) < 1.
el zel c

(3) v is said to be an a-order Green-tight measure of Kato class with respect

to X in the sense of Chen if for any € > 0 there exist a Borel subset

K =K(e) of E with v(K) < oo and a constant ¢ > 0 such that for all
v-measurable set B C K with v(B) <,

(4.1) sup Ry (1pukev)(z) = sup/ Ry (z,y)v(dy) <e.
2€E z€E JBUK®
(4) v issaid to be an a-order semi-Green-tight measure of extended Kato class
with respect to X in the sense of Chen if there exist a Borel subset K of
E with v(K) < oo and a constant § > 0 such that for all v-measurable set
B C K with v(B) <4,

(4.2) sup Ry (1pukev)(z) = Sup/ R, (z,y)v(dy) < 1.
z€E z€E JBUK®

In view of the resolvent equation, for positive «, the a-order Green-
tightness of Kato class is independent of the choice of o > 0. Let us denote
by 511(; (X) (resp. SéKIo (X)) the family of positive order Green-tight mea-
sures of Kato class (resp. the family of positive order Green-tight measures
of Kato class in the sense of Chen) with respect to X. The class Sg_(X)
(resp. Sk (X)) is then used to denote the family of 0-order Green-tight mea-
sures of Kato class (resp. 0-order semi-Green-tight measures of extended Kato
class), and the class St (X) (resp. St (X)) is then used to denote the fam-
ily of 0-order Green-tight measures of Kato class in the sense of Chen (resp. the
family of 0-order semi-Green-tight measures of extended Kato class in the
sense of Chen) with respect to X. Note that since a Green kernel is invariant
under time change by the PCAF associated to a non-negative smooth measure
with full quasi support, the definitions of Sty (X) and Sty (X) are invariant
under such time change in contrast to the Kato class Sk (X). It is proved in
[4] that Stk (X) C Sik, (X) € Sp, (X) N Sk (X), S(llK;g (X) c SL(X) and
Stk (X) € Sk (X). Since any measure v in Definition 4.1 belongs to S, (X),
it is a Radon measure. The Borel set K in Definition 4.1(3), (4) can be taken
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to be a closed set or an open set (see [4, remark after Definition 2.2]). More-
over, such closed set K can be taken to be compact, in particular, we always
have Sé}ﬁ (X) c Sl ( ), Sclem (X)c S}(@o (X) and S(lel (X)c S}ﬁ (X). In-
deed, take v € SCK+( ), € >0, and a closed set K such that (4.1) holds.
Then there exists a compact subset C' C K with v(K \ C’) < ¢ for a given
6 >0, because v € S, (X) is a Radon measure. Since v € St (X), we have
sup,ep Ralcev(z) =sup,cp Ralgeum\oyv(z) <e.

Let v € 51(X) and denote by A} PCAF in the strict sense associated to
v in Revuz correspondence. Denote by SY the support of A” defined by
SY :={z € E|P,(R=0) =1}, where R(w) :=inf{t > 0|AY(w) > 0}. SV is
nothing but the fine support of v, i.e., the topological support of v with
respect to the fine topology of X. Let (X,v) be the time changed process of
X by AY and (£,F) the associated Dirichlet form on L?(S¥;v), where S¥ is
the support of v. It is known that (5’ JF ) is a regular Dirichlet form having
C|sv as its core and S” \ SY is E-polar, that is, 1-capacity 0 set with respect
o (£,F). The life time of (X,v) is given by AY. Let C”:2¥ — [0,400] be
the weighted 1-capacity with respect to (S JF ), that is, for an open subset G
of E, we define

C¥(G) :=inf{&(f, f)|f € F.f > Rip v-ae. on G}

CKZL

and for arbitrary subset A of
C"(A) mf{C’” )JA C G,G is an open subset of E},

where Ryp(z fo ©(Xt)dAY] is the 1-order resolvent of a v-a.e.
strictly posmve bounded function ¢ € L'(F;v) under (X,v) and & (f, f) :=
Ef, f)+ I f2dv. We emphasize that CV is defined to be an outer capacity
on E. By definition, C¥(E \ S¥) = 0. Note that C¥(FE) < & (Rip, Rip) =
[pe(@)Rip(z)v(dz) < oo always holds and C” is tight in the sense that
there exists an increasing sequence { K, } of compact subsets of S such that
lim, CY(S¥\ K,,) =0 equivalently lim,,_,., C*(E \ K,)=0. Hence, any
quasi closed set with respect to C” is quasi compact in the sense of Fuglede
(18, Lemma 2.2]. By [18, Theorem 2.10], any decreasing sequence {A,} of
quasi closed subsets of E with respect to C” satisfies

(4.3) c ( nDl An> = inf C"(An).
Now we introduce some new classes of (semi-)Green-tight measures of (ex-

tended) Kato class:

DEFINITION 4.2 (Natural (semi-)Green-tight measures of (extended) Kato
class). Let a >0 and v € S1(X).



ANALYTIC CHARACTERIZATIONS OF GAUGEABILITY 733

(1) v is said to be an a-order natural Green-tight measure of Kato class with
respect to X if v € SH(X) (v € Sp, (X) for a =0) and for any € > 0 there
exist a closed subset K = K(¢) of E and a constant ¢ > 0 such that for
all v-measurable subset B C K with C¥(B) <6,

TBUK®
sup E,. [/ e ot dAf] <e
zel 0

(2) v is said to be a 0-order natural semi-Green-tight measure of extended
Kato class with respect to X if v € S, (X) and there exist a closed subset
K of E and a constant § > 0 such that for all v-measurable subset B C K
with C¥(B) < 6,
sup E, [AZBUKC] <1
zEE

In view of the resolvent equation, for positive a, the a-order natural Green-
tightness is independent of the choice of a > 0. Let us denote by 5111K+ (X)
the family of positive order natural Green-tight measures of Kato class with
respect to X. The class Sty (X) (resp. S\, (X)) is then used to denote
the family of 0-order natural Green-tight measures of Kato class (resp. the
family of 0-order natural semi-Green-tight measures of extended Kato class)
with respect to X. Similarly, as we remarked after Definition 4.1, the closed
set K appeared in Definition 4.2 can be taken to be compact, because the
weighted 1-capacity C" is tight.

Since [, gdv < C¥(B) holds for the v-a.e. strictly positive bounded func-
tion g:= (Rip)? € L'(E;v), by [26, Lemma 4.2], we have Sty (X) C
Sk (X) and Sk, (X) € Sk, (X), hence Sk, (X) € L. (X).

X is said to be a Feller process or to have the Feller property if
Pi(Cx(E)) C Coo(E) for each t >0 and limy_o |Pf — flloo =0 for f €
Cw(E). The next proposition asserts that Siy_(X) is not so wide.

PROPOSITION 4.1. Suppose that (RSF) and the Feller property hold for X.
Then we have Sk (X) = Stk _(X) = S{k_ (X) and S;( (X) = Sé}d (X)=

Sy (X).

Proof. By [26, Lemma 4.1}, we know Si_(X) = Stk (X), so it suffices
to prove Sk (X) C Sk _(X) (S§K+ (X)C S}(;ro (X) can be similarly proved
without transience). Since X is transient, there exists an m-a.e. strictly pos-
itive bounded ¢ € Ll(E m) such that Rg € By(E). Let X9 be the sub-
process killed by exp(— fo s)ds). Then X9 enjoys (RSF) and it is
a transient Feller process by Corollary 5.1 in [28], that is, RI™f € C(F)
for a >0 and f € Co(F). Let ||RI™||L(c..(r)) be the operator norm for
RI™: Cxo(F) = Coo(E) defined by

RI™ = sup sup| Rg™ f ().
L PRI L
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Then one can prove ||aR™||(c..(p)) <1 as in the proof of [28, Theorem 7.1],
which implies

R™g =Y (aRy™)"RIMk € Cu(E).
n=0
Let [|[R9™ o g||1(c.(g)) be the operator norm of RI™ o g: Co(E) = Coo(E)
defined by (RI™ o g)(f) := RI™(gf) for f € Coo(E). Then

1B7™ 0 gl o (i) = sup sup|RI™g f («)|

F€Cx(E),|fllo=12€E
> t
<supE, {/ e~ o g(Xs)dsg(Xt)dt
zel 0
=1—inf E, [e*fooo Q(Xs)ds} <1—_e lRgle o 1
zelE —

where we use Jensen’s inequality. Consequently
Rlg =Y (R™o0g)"R™™1x € Cs(E)
n=0

holds in view of the following resolvent equation
Rlg(z)=R™1k(x)+ RI™(gR1k)(x),

which is a special case of [30, Lemma 4.1.1]. By [1, Proposition 3.4], under
Rli € Coo(E), we can obtain

(4.4) lh% P.(ox <o0)=0 for any compact subset K of E.
r—

Though the underlying process in [1] is assumed to be a diffusion, the proof for
(4.4) in [1] remains valid for general Feller processes. Suppose v € Sy (X).
Let € > 0 and take a closed set K with
(4.5) sup E,[AY | <e.

rel
We may assume that K is compact by taking a smaller compact subset in a
similar way to the last remark after Definition 4.1. By definition, v € S}, (X)
and v € Si (X) by [26, Lemma 4.3], in particular 1xv € S (X). Owing to
(RSF) of X, we can get R1gv € C(E) by [17, Lemma 2.3(5)]. Note that
the assertion of [17, Lemma 2.3(5)] remains valid under (RSF) and the Feller
property of X. From this and (4.5),

lim Ry(x) = lim Rlg.v(x)
x—0 z—0
= ;ll—{%(Ew [AZKC] +E, [Rchy(X(,K) o < oo})

<e+ ||Rv|oo im Py(og < o0) =¢.
r—0

Since € > 0 is arbitrary, we obtain Rv € Co(E). Therefore, we have v €
S}(OC (X). O
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Recall that SY is the fine support of AY for a smooth measure v € S;(X).
As a special case of Lemma 4.5 in [26], we have the following lemma.

LEMMA 4.1 (cf. [26, Lemma 4.5]). Assume pu,y € Sk (X). Then the fol-
lowing hold:
1) For ve SH(X), e 2*v e SL(U).
) For ve Sk(X), e ?*v e Sk(U).
) For v e St (X), e ?"v e Sh (U).
) Forve S;(;ro (X), e 2v e S;(;ro (U).
) Forve Sh, (X), e ?ve S, (U).

c U_U—1)u
) Assume iy € Sk (X). Suppose that S} D S’§<“>+N(e UmDRE o there
exists a measure 1 € S, (X) such that supp[A"] = E. Then, for v e
SﬁIK; (X) we have e~y € SI{IK; (U).
(7) Assume py € Sy _(X). Then, for ve SI{IKI(X(U) we have e~y €
Sy, (UD),

Proof. We only prove (7), because an extra assumption is imposed in [26,
Lemma 4.5(7)] as for (6). Since X is transient, there exists a strictly pos-
itive bounded g € L'(E;m) such that gm € S}, (X) by [21]. Suppose v €
Sk, (X)), By taking small 8> 0, we see n =v + gm € S{i (X)), whose

L . Gy PN =U-D)pun . .
fine support coincides with E. Then S D Sg< (e Jrt is automatically

satisfied. Thus we have e=2"n € Sy (UMW), hence e=2"v € Sk (UW). O

Let pu be a signed measure such that p =y — pe with py € Sig (X) and
po € S1(X). Note that for such g = p; — ps we know py € 51(X) and p_ €
S1(X), because of i < g and p— < ps. Let 74 be the right continuous
inverse of A}', 7, :=inf{s > 0|A¥* > ¢} with the convention that inf () = cc.
Let F1, F> be nonnegative bounded symmetric functions on E x E described
as in Section 1 satisfying N(F} + Fo)ug € S1(X). We set F := F; — Fy and
Af =3 ., F(X,s_,X;), the purely discontinuous additive functional with
jump AAF = F(X,_, Xy), t €[0,00].

For an AF A, we say that (X, A) is gaugeable if

sup E; [exp(A¢)] < o0.

zeE
Let X* = (Q,X,P¥) be the subprocess killed by e~ A=A for Lo +
N(Fy)pm € S1(X). By [33, Section 62], we have that for any stopping time T,
(4.6) E:[eAr'+AT']

T
—E, {/ AL +AT (767145’271452)+6A‘}1+A§17A’;27A;‘2
0
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T
E, { / AL TAT o AT ATR g (_ gmie AiFQl)} + B, [N AT
0

T
e[ o o ] e
0

>E, [eA;+A$]'

Note here that for any stopping time T, T A ( is the reduced time for
F
e~ A" =A% in the sense of [33, Section 62]. The following gauge theorem

can be similarly proved in this generality (see Theorem 5.1 below).

THEOREM 4.1 (Gauge Theorem). Suppose that u; + N(ef™ — )uy €
SYk, (X) and py + N(Fz)up € S1(X) hold. Then the following are equiva-
lent.

(1) (X, A* + AF) is gaugeable.
(2) Eglexp(Af + A)] < oo for some x € E.

Proof. 1t suffices to prove that g(v) := Eg[exp(Af + Af)] satisfies
Sup,ecp g(x) < oo or g=o00. The proof is quite similar with the proofs of
[4, Theorem 2.13], [10, Theorem 2.6]. The fine continuity of z +— g(x) and
the absorbing property of the set O :={g < oo} under P, can be proved in a
similar way as in [4], [10]. So, it suffices to confirm that there are N >0 and
C > 0 such that

(4.7 O={g<oo}={g<C(1+N)}.

Then O is finely open and finely closed. Since E is connected with respect
to the fine topology under (I) and (AC), we have O = E or O = (), which
means the assertion. From now on, we prove (4.7) for some C, N. Since n; :=
p1+N(e™ =1 g € Sk, (X), there exist a closed subset K of S™ and § > 0
such that for any subset B C K with C"™(B) <4, sup,cp E.[A7L J<1l-c
for some ¢ €]0,1[. Here C™ is the weighted 1-capacity with respect to the
Dirichlet form (£, F) associated to the time changed process (X,7;) from X
and S™ is the topological support of n;. Note that any finely closed subset of
S™ is quasi closed with respect to C". By applying [18, Theorem 2.10] to the
decreasing sequence {B,} of quasi closed sets defined by B,, :={z € K|n <
g(x) < o0}, we can take large N € N so that C™(By) < 6. Khasminskii’s
lemma tells us that

C:=supE, [exp(A“1 + AL )]

2CE TByUK®© TBNyUK®
— M1 6F171
= gsclelg E, [Exp (A +A )TBNUKC]
1 1

)

> <
1- SUPzecp E. [AQ}IB’NUKC] ¢
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where 7p :=inf{t > 0| X, ¢ B}. By the formula

g(z) = Eglexp(AY, | +AT, ..):TByure =(]
+E; [eXp(AﬁfB UKe® + AfBNuKC)g(XTBNuKC) CTByUKe < C]v

we have g(z) < C+ CN for x€ ON By in view of X, .. €ON(K\ By)
P.-a.s. on {1y uke < (} for z € O, where we use the absorbing property of O.
Moreover, g(z) < N for x € O\ By. Thus we obtain (4.7). d

Let 1 be a signed measure such that g =y — ps with pq, ue € 51(X) and
let Fi,F5 be a function on F x E vanishing on the diagonal diag satisfy-
ing N(Fy + Fo)pmg € S1(X). The following lemmas and theorem are modi-
fications of Lemmas 2.7, 2.14, Theorems 2.8, 2.15, Corollaries 2.9, 2.16 and
Theorems 2.10, 2.11 in [4]. The proofs are quite similar to those in [4].

LEMMA 4.2 (cf. [4, Lemmas 2.7, 2.14, Theorems 2.8, 2.15, Corollaries 2.9,
2.16 and Theorem 2.10]). Set A:= A* + A and ea(t) := exp(A;). Suppose
that py + N(ef' = 1)y € Sk, (X) and py + N(Fo)pup € Sp,(X) hold. Then
we have the following:

(1) If (X, A) is gaugeable, then for any d > 0 there is a constant c¢(d) > 0 such
that

lgalls ga(z <ZE eA(Tns) i Tns < (] < c(6) <oo  for all x € E.
n=0

Here 7 := inf{s > 0|A” >t} is the right continuous inverse of Aj with
n=p1+ N(F1)pg and ga(x) :=E[ea(Q)] is the gauge function for A=
Ar+ AT

(2) The following are equivalent:

(a) (X, A) is gaugeable

(b) E fo ea(t)d(A + A < oo for some z € E.

(c) supmeEE fo ea(t)d(AL" +Afl)] < 00.

(d) Eg[supyep¢jea(t)] <oo for some x € E.

(€) sup,cp Eafsupc(o,¢ealt)] <oc.

(f)

f) (X*, A + AT s gaugeable. Here X* is the killed process of X by
A“z AF2
e .

Proof. (1): The proof is similar to the proofs of [4, Lemma 2.14, Theo-
rem 2.15 and Corollary 2.16] with some modifications under the conditions.
We provide the proof for readers’ convenience. Since the proof is the same for
any 6 >0, we take d = 1. Since p1 + N(ef* —1)py € S, (X), there is p > 1
such that puy + N(ePFt — 1) py € Sy, (X). Indeed, let {D,} be a decreasing

F-
sequence such that P,(lim,, o 0p, >()=1E&-q.e. z € S(p Dpn 4N (e = DHH
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Fr_
which is equivalent to &-qe. z € SPTNET DRI Hocause Shrthz = Gk
Stz and Fy <eft — 1< Frelfill~ and pFy < Pt — 1 < pFiePllPille imply
SéV(Fl)MH _ Sé\f(eFl—l)MH _ Sf)V(EPFl_l)HH. Since

p,u1—|—N(epF1 —l)pH—,ul —N(eF1 —l)luH
- (p — I)Ml + N((e(pil)Fl — 1)6F1>,uH
<(p-Dm+(p- 1)6(p_1)”F1H°°N(F1)MH,
we have

. pF _
lim sup E, [Af’”"'N(e 1)“H]
n—oo zcE Dn

< lim sup B, [(p— 1)A# + (p— 1)e@DIFrlle AN =)

TDpn
’I‘L*)OOmeE n

+ lim supE, [A¢E1)+N(EF1 _1)‘”1]
N0 el "

< (p _ 1) (sup E, [A;Cn} + e(P—l)HFﬂIOQ sup E. I:Aév(eFl—l)l"H])
z€E zeE

+ lim sup E, [Aéfgi‘N(eFl—l)/LH] <1

n—o0 reE

for p sufficiently close to 1. For such p > 1 satisfying pu; + N (Pt — 1)ug €
Sk, (X), there exist a Borel set K7 and a constant § > 0 such that

sup sup E,. [pA“1 1+ AN *1)’”’} =0 <1

BcKl,CWl*N(epFl*l)HH (B)<5IEE TBUKY TBUKY
Since (X, A) is gaugeable, ga(x) :=E,[e4(()] is bounded and so
lim E, [eA(C) T < C] =0 forzekFE.
n—oo

Thus for any given small £ > 0 one can find an integer NV large enough and a
closed subset K C K such that

sup E, [6A(C) (TN < C] <e,
TEK

and CPm+N (e —Dun (K1 \ K) < 4. Using Khasminskii’s lemma,

sup E,, [eAMJFAFl (O’K)p] <supE, [exp (pAg}( +pA5}()]
zEE el

— sup B, [Exp (47 + 47" 1) ]
el TK
1
= PH1 ePf1—1
]. 7Supz€E ET[AG'K +A(;'K ]

é (1 - 51)71,
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where o is the first hitting time of K under X. Now
E$[6A(() ZT2N<O'K}
<E, [eA(C) (TN < JK} +E,; [eA(C) tog < TN < Ton < C]
<|l9allcEz[ea(or) : Tn < ok ]
+ E, [6A(O'K)EXUK [eA(() TN < d o < C]
=I14+1L

Denote by P;’ the probability law for tbe time-changed process (X, 7n) and let
&% be the first hitting time of K by (X,n). Then

B o A Y] =B, (4]

O'K]'
By (4.6), we have
E, [eA(UK)p] =E,; [epA (UK)} <E, [eAmq L APF1 (JK)] =E,; [eAm 4+ AF1 (UK)p]

for each x € E. Let ¢ > 1 be such that % + % =1 and use Holder’s inequality,

1< [[gllso (Ba [eam 4 am (05)7]) "Pol(rn <)

1 . ok
<(1=81) "7 llgallPR(N <% )"
. - 1 1
_ NgalloB2log AC7 _ llgallooBalAR J7 _ l9allcBalAY)
(1—-B)»Nv  — (1-B)rNv ~ (1—B)rNa
So I — 0 uniformly as N — oo. On the set {ox < (}, X, € K and so
II<eE, [eA(aK) o < C] <eE, [eA(UK)]
€
1 —sup,cp B [A4L + A5 7Y

<eEg[eam yam (0k)] <

€
S
1—=p
where we use (4.6). Thus for large N, sup,cpEzlea(() : v < (] is small.

By Jensen’s inequality, the gauge function g4 is bounded below by a positive

_ M2 Fa
constant cp ;= e~ SWPeer B[AZ+AS] g,

E,lea(rn) v <(] < i 'E, lea(Tn)ga(Xry) i 7 < (]
<ci'Egfea(() v <(].
Therefore, when N is large enough,

supEg[ea(mn) i 7 < (] i=A< L.
zeE

By the strong Markov property of X,

sup E, [GA(TkN) TN < C] =\ for k>0.
xEE
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By Schwarz inequality

E, [eA(Tj) 17 < d <E, [eAM1+AF1 (Tj) 17y < C]

<E, {eXp(QA’T? + Q/Tj N(Fl)(Xs)st) Ty < C}
0

< B, [exp(QAfjl 72/ ’ N(Fl)(XS)stﬂ
’ 0
<é,

where we use A% + f " N(F1)(X,)dH, = j and the supermartingale property
of

t
t > exp <2Afl — 2/ N(Fl)(Xs)st>
0
under P,. Then for 0<j < N,

Ez[eA(Tj+kN):Tj+kN<<:| ZE [eA(Tj)EX [eA(TkN)ZTkN<<] :Tj<C]
<\ max E.[ea(rj):mj <] < AN

0<5<
All these inequalities lead to
oo oo N-1
ZEI[GA(Tn T < (] ZZEI ea(Tjsrn) : Tiprn <]
n=0 k=0 j=0
= NelV- 1i)ﬁ Ne 1<oo.

=0

Finally, we have, by the strong Markov property of X,

=Y E,lea(Q) 17 < ¢ <t

<Y Elealrn)ga(Xs,):m <(]

(o)
< [lgalle ZEJ [eA(Tn) "o < C]
k=0
(2): The proof for the equivalences among (a)—(e) of (2) through (1) is quite
similar to the proof of [4, Theorem 2.15 and Corollary 2.16]. We only prove
the equivalence (¢)<=-(f). By [33, Section 62], we have

(18) B[/ =B, [ | e raTt g (emate-ath)| 4 g, AT,
0
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Using It6’s formula for semimartingale, we see

t t
Iz F K1 Fy _AH2 _ AF2 _AH2 _AF2 K1 Fy
pAL+A] _1:/ ALHAT (AL AT )+/ A=A (AL AT
0 0

I A AT g AT
s<t

t t
Bl F1 _AM2 _ pAF2 _AMH2 _ pAF2 151 Fy
:/ eAS +Ag d(e Ab2— A7 )+/ e Ab2 A7 d(eAS +A; )
0 0

+ ZeAi (eFl(XS,,XS) _ 1) (6—F2(Xs—;Xs) _ 1)
s<t

t t
Bl Fy _AM2 _ AF2 _AH2 _ AF2 I Fy
S/ e AT g (e A A )+/ e~ AT AT g AT,
0 0

From (4.8), we have

¢
E;[6A2‘1+Af1] <E, [/ efA‘SQfAfz d(eAg1+A§1)} 1
0

¢
=14+E, |:/ BA(S)d(Ag‘l _|_Ai—eF1):|
0

<1+E, [/(feA(s)d(Agl +Afl)}.

If (X,A) is gaugeable, then (X*, A*1 + A1) is gaugeable by (c), and the
converse is clear from (4.8). O

REMARK 4.1. If m € Sp, (X), under the same condition as in Lemma 4.2,
without using time change, we have the following: Suppose that (X, A) is
gaugeable with A = A* + AF and e4(t) := exp(A;). Then, for any § > 0,
there is a constant ¢(d) > 0 such that

lgallsga(z) < ZEQ; [ea(nd):né < (] <c(d) <oo forallzek.

n=0
The proof is very similar to the proof of Lemma 4.2(1) by changing 7
to k and replacing the estimate maxo<;<n Ezlea(r;): 7 < (] <eN~1 with
maxo<j<n Exzlea(d) 1 j < (] < supyep Ealsup,epo ea(t)] < oo (cf. the proof
of Lemma 9 in [16]).

By Remark 4.1, we can prove the following lemma.

LEMMA 4.3 (cf. [4, Theorem 2.11], [16, Lemma 9]). Suppose m € S}, (X),
p1+ N(ef = 1)py € Sik, (X) and ps + N(Fy)py € Sp,(X). Set A:= Ar +
AF and ea(t) := exp(A;). Then the following are equivalent:



742 D. KIM, M. KURNITAWATY AND K. KUWAE

(1) (X,A) is gaugeable.
(2) For some 6 >0 and some x € E,

(4.9) Z E, [ea(nd) :néd < (] < oo.
n=0
3) For all 5 >0 and all x € E, (4.9) is true.

For some x € E, E,| fOeA )dt] < oco.

)

)

) supep Esp fo ea(t)dt] < co.

) There exists some t >0 such that sup,cp Ezlea(t) :t < (] < oo.

) There are constants C >0 and b >0 such that sup,cp Ezlea(t) :t < (] <
Ce™" for all t > 0.

Proof. We only show that under the gaugeability of (X, A) there exists
C > 0 such that

E, [/OceA(t)dt} gCéiEz[eA(né) né < (].

n=0

Note that the gaugeability (X, A) is equivalent to

C:= supEy[ sup eA(t)] <00
yeE t€[0,(]

by Lemma 4.2(2). Then

E. [ /04 ea(t) dt] ~E, i /,:Zlmc " dt]
i { / T ) dting < g}
i @ |:€A (nd)Ex, [/06/\( ea(t) dt] :nd < (}

C5ZEI lea(nd) :nd < (].

n=0

O

Recall that the quadratic form (Q,F) defined in (1.2). We write the qua-
dratic form Q by Q* for the case u =0. Using Lemma 4.3, we can prove the
following theorem, whose proof is similar to that in [4, Theorem 2.12].

THEOREM 4.2 (cf. [4, Theorem 2.12]). Suppose that m € Sp, (X) and
m(E) < oo. Assume py + N(ef' — )pg € Ski, (X) and pz + N(Fo)puy €
Sh,(X). Set A:= At 4+ AF and ex(t) := exp(A;). Then (X, A) is gaugeable
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if and only if
A2 (m) :_inf{Q*(f,f)‘f € C,/ fPdm= 1} > 0.
E

Consider the non-local Feynman—Kac transforms by the additive function-
als A:=N"+ A* + AF of the form (1.1). Moreover, by (3.4), we see for all
t €[0,00],

BA(t) _ Uteu(Xt)*u(Xo) exp(Af + Af)’

where v =1y — Uy and 7y := g + N(eU —U-1)pg + %MEM and U = s.
Hence for x € E and f € By (E),

(4.10)  E.lea(t)f(Xy)] = e “@EY [exp(AY + AF) (e £) (X)].
LEMMA 4.4 (cf. Lemma 4.9 in [26]). Suppose that i, € 51130 (X). Then

(4.11) EY [exp(AZ + Af)] = e"@E, [e X De4(0)].
Proof. The proof is quite similar to that of [26, Lemma 4.9]. We omit the
detail. 0

5. Analytic characterizations for gaugeability

In this section, we give several analytic characterizations of gaugeability
for our generalized Feynman-Kac transforms e (t).

Define the signed measure fi:= i1 — iz by
1
2
for the nonnegative function V(z,y) := (G* — F* + F1)(z,y). Similarly, define
the signed measure p* := gy — i3 by

i =NV )pm + p1 + 540 fi2 := N(F)pm + po

— % * 1 c — %
=NV )pm + 4 GuGy,  Bzi=p

for V*(z,y) := Vi p, (z,y), that is, V*(x,y) = (GY — F{* + F1)(z,y). Then we
see i=NV —F)ug +p+ %u?w, =NV )+ p+ %ufw and V* -V =
G} — G* — Fy, and thus g* — i = N(GY — G*)ug > 0. Note that f; = pf =,
(1=1,2) and V =V™* for the case F} = F =0.

Note that if v € S}, (X) (vesp. v € S}, (X)), then [, f2dv < ||Ryv||&1(f, f)
for f e F (vesp. [, f2dv < ||Rv||E(f.f) for f € F.), hence F C L*(E;v)
(resp. F. C L?(E;v)) from [36, Theorem 3.1]. The quadratic form Q on F
defined in (1.2) is extended to F, x F. with the same expression (1.2) pro-
vided p1 + N(F1)pw + pguy € Sp,(X) and pp + N(Fo)pg € Sp,(X). In view
of (3.7), we have

E7(fet, fe) = €Y (fe*, fev) + /E PN(GY — G*) dyugr.
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It follows from (3.4), Theorem 3.2 and the Feynman-Kac formula that for
feFnCy(E), we have

EY (fe', fe") = O(f, ) + / f2d<1u?u> + u) n / PNV~ Fy)dun
E
—Q(/. ) / £ da,

hence

EZ(fe", fe*) = Q(f. f) +/ f2dﬂ+/ fPN(GY — G") dpn
E
=9(f.f) /fzdu

Since X is transient, there exists an m-a.e. strictly positive bounded mea-
surable function g satisfying gm € ST, (X) (see Getoor [21]). We fix such a
gme Sp (X ) Let {r/™}:>0 be the right continuous inverse of the PCAF
AJ™ = fo o) ds, that is, 77™ :=inf{s > 0|A9™ > t}. Let (X,gm) be the
time changed process of X by A{™. Then (X,gm) is gm-symmetric Hunt
process on E satisfying (I) and (AC) (see [35, Theorems 8.2 and 8.5] for the
stability of (I)).

LEMMA 5.1. We have the following:

(1) Any v e Sig_(X) (resp. v € Sik, (X)) satisfies v € Shy_ (X, gm)
(resp. v € S\, (X,gm)). Any v e Sh,(X) satisfies v € Sp, (X, gm).
(2) The gauge function ga(x) = E.[ea(C)] is invariant under the time changed
process (X, gm) in the sense that
E; [ea(Q)] = Eafea o (A77)]-
Here ATfm = Aigm + Aftgm + thgm 1s the AF under (X,gm).

Proof. (2) is a trivial observation. So it suffices to prove (1). We prove only
v € S\k_ (X) implies v € Sy (X, gm). Let us denote by R(x,y) the 0-order
resolvent kernel with respect to (X,gm). Then we see R(x,y) = R(z,y) for
gm-a.e. y € E. Moreover, we have R(z,y) = R(z,y) for z,y € E because
R(z,-) and R(z,-) are finely continuous with respect to (X, gm). Take any

€ >0 and any closed set K. If v € SI{IKOO (X), then there exist § >0 and any
Borel set B C K with C”(B) < § we have

sup E, [AV ] <e,

TBUK®
zelE

which implies v € SﬁIKOO(X,gm) where we use that the PCAF associated
to v under (X,gm) is given by A”qm ([30, Theorem 4.3.3]), the first exit
Lo ker and Tyom = t/}(. In
particular, we have gm € 51130 (X, gm), p1 4+ N(e' — Duy € Sl{lKl (X, gm),
fi(uy € Sk, (X, gm) and ps + N(F2)um € Sp, (X, gm). O

time from B U K¢ under (X,gm) is given by AI™
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For n € S5(X), we set A<(n) as defined in (1.3).

PROPOSITION 5.1. Suppose that i € S&KI(X), Piuy € SI{IKOQ (X) and po +
N(Fy)puw € Sh,(X). Then A2 (fi1) > 0 implies that (1.1) is gaugeable.

Proof. Tt is proved in [26, Lemma 5.1] that A<(ji;) > 0 is equivalent to
AL (ff) > 0. So it suffices to prove that A2(fi}) > 0 implies the gaugeability
of (1.1). Moreover, we may assume m € Sp, (X) and m(E) < oo in view of
Lemma 5.1. Recall 7y := pu1 +N(eV —U — 1) g + %,u?w and Uy := po. Then we
easily see i + N(eV(ef" —1))up € Sik, (X) and vy + N (eV Fy)py € Sp, (X).
By assumption m € Sbo (X), we see that Ssup,cpE.[¢] <1 for small >0,
hence not only 7y = fm + 1 € Sy (X) (resp. 1y = fm + vy € Sp, (X)) but
also 1 + N(eV (e — 1))juy € Skyc, (X) (resp. 12 + N(eV Fy)jun € S, (X))
holds for such B > 0. We have that e~ 2%n + e “N(e %(ef — 1))ug €
Sk, (UB) and e~ + e “N(e “Fo)uy € Sb, (U®) hold by Lemma 4.1,
because ny + N(eV(ef" — 1)) un € Skk, (X), n2 + N(eV Fo)un € Sp, (X) and
m has full fine support. Since e~ *“m € SL(U) = Sp, (UM) by Lemma 4.1(1)
and e~ 2“m(E) < 0o, we can apply Theorem 4.2 to U®), By (4.11), the gauge-
ability sup, ¢ Ex[ea(C)] < oo is equivalent to sup, ¢ 5 EY [eAlZJ“A?] < 00, which
follows from
(5.1) supEV"” [654+AZ+A5] < 00.

reE

Indeed, [33, Section 62, (62.13)] with the uniform integrability of {U;}+e(0,00]
yields

(5.2) EU [ACracHAl]

¢ ) ]
— gV [ / PITATHAL (=P8 4 (PCHATHAL =6

0
¢ _
— GEV [ [ e ds} T EY [exp(AZ + AD)].
0
Then, applying Theorem 4.2 to (EU(M , ]-'U(B)) with e=2%n; +e " “N (e “(efr —

Vg € SﬁIKl(U(ﬁ)) and e 2%ny + e “N(e “Fy)uy € S}DO(U(ﬁ)), (5.1) is
equivalent to

A2 (m)
::inf{gU‘“ (fe*, fe*) —/ £2d(Bm + v)
E

_ /E /E F(@) £ ) (" — 1) N dy)pan (an)| F € C, /E P dm:l}

inf{Q(f,f)‘fGC,/Efzdm1}>0.
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The proof of A2(fi}) >0 <= A2(m) > 0 is the same as in the proof of [26

Propoition 5.1]. We omit it here. O
For p>1, put F ( )'—pF G( yi=e F&y —1 and Vip :zG( ) F(p) + pky.
Define p? := i — jih by
2
_ p _
i =NV o + iy, Ay = NpF2)um +ppe.
Set

A2 (@ )—mf{ P>ff\fe<J/f2du1—1}

where Q®) is the quadratic form defined for pu,pu and pF as well as Q is
defined for u,p and F.

PROPOSITION 5.2 (Super Gauge theorem). Suppose that i} € Sy (X),
fiquy € Sk (X) and pa+ N(Fp)pg € Sp(X) hold. Assume A\°(fi1) > 0. Then
there exists a py > 1 sufficiently close to 1 such that A" (@}) >0 for any

p € [1,p0], hence we have sup,cp Ez[ea(()?] < oo for any p € [1,po] provided
p2 + N(Fo)pg € Sp, (X).

Proof. We may assume m € Sp, (X) and m(E) < oo in view of Lemma 5.1.
Note that, for any p sufﬁciently close to 1, pu1 + N(ePTt —pF¥ —1+pFy) g +
2 .
%,ufw € Sk, (X), PP iy € Sk (X) and p(us + N(F2)pw) € Sp(X) as in

the same way of the proof of Lemma 4.2(1). The rest of the proof is the same
as in the proof of [26, Proposition 5.2]. We omit it. O

LEMMA 5.2. Suppose that i, € SI{IK (X) holds. Then there exists pg > 1
sufficiently close to 1 such that supweEE [Uf] < oo for any p € [1, o).

Proof. We may assume m € Sp, (X) and m(E) < oo in view of Lemma 5.1.
We observe the expression

Uy = Exp(M 1 4 M),

o (M [ N —u 1)) am - Y,

U_U— 1,c
:eu(Xo)—u(Xt)eXp(_AiV( U—1)pu+35 10, +Ntu).

N(Y-U-1 s
The quadratic form Q associated to A; := —A, (¢ k3 + N is
given by

Of.9) = E(f.9)+ (fg)+ [ faN(eV U =1)dun + 5 [ fadui,
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for f,g € F. Note here that N (eV U—1)uH+2u € Stk (X) c Sp, (X).
One can see that Q(f,g) =&Y (fe*, ge*) for f,gef Then, we have

A2 (m) = inf{gU(fe“,fe“) dm = 1}

dm:l}

f{ (f
_e—2|u|°°inf{g(f7f) fe]_"/ f2e—2udm:1}
E
{ (f f)fE]-',62|“|°°/f2dm:1}
E
_64'“'”inf{5(f,f) fef,/ fzdm:1}>@>o.
E

1721l

One can confirm A\9(i;) >0 for i} := N(eV — U — V)ug + %u?w as shown
in the proof of Proposition 5.1. Then we obtain the assertion in view of
Proposition 5.2. U

> e vl iy

eu,feu)

> e 2l jnfl &

COROLLARY 5.1. Suppose that juiy € Sk (X) holds. Then the following
hold:
(1) ForveSh (X), e ?*veSp, (U).
(2) ForveSj (X), 6_2“V € Sl _(U).
(3) Forve Stk (X), e *ve SCK (U).
(4)

N(e¥-U-1
4) Suppose that SY D SM<">+ (" Jt or there exists a measure 1 €

S\k_ (X) such that supp[A"] = E. Then, for v e Six (X) we have
e v e Sk _(U).
(5) Forve Syk, (X) we have e=*"v € Sy, (U).
Proof. As we proved in the previous lemma, there exists py > 1 sufficiently
close to 1 such that a(p) :=sup,cp E,[Uf] < oo for any p € [1,po]. Put ¢:=

p/(p—1) and C(q) :=q(g—1)---(¢—[q ] +1) with [g] := sup{z € N|z < ¢}.
Then, by Hoélder’s inequality and Lemma 2.2 in [17],

RY(e7"v)(z) =EY [AY] = E,[UcAY] < a(p)'/*C(q)"/1 sup E, [A7].
This implies the assertions of (1), (2) and (3). Next, we prove (4) and (5).
To prove them, we emphasize that (1) is needed. If sup, .z E.[4Y ] <1, then
there exists g €]1,2[ sufficiently close to 1 with sup,c E,[AY ] < 1/¢"/4.
Applying Holder’s inequality again

U v L v \49 %
E; [A7] =B [Unp A7 ] < B, (UL, ] EL [(47,)"]
1

<E, [Up] q SupE [A ]
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The rest of the proof is the same as in the proof of Lemma 4.1(6), (7). O

Proof of Theorem 1.1. We may assume m € S;, (X) and m(E) < oo in view
of Lemma 5.1. The gaugeability sup,cz Ez[ea(¢)] < co is equivalent to

U F
sup EY [€A< A | <o
zeE

by (4.11). It suffices to prove that this is equivalent to (5.1). It is

c eU_ _
easy to see SU' D SZ<“>+N( U, By Corollary 5.1(1), (5), we have

e?m e Sp (U), e (i + N(eY(e™ — 1))un) € Sk, (U) and e (i, +
N(eVFy)pg) € Sp,(U). Then we can apply Lemma 4.3(1) <= (4) so that

C U F
EY {/ eAa A ds} <00
0

holds for some z € E. The identity (5.2) with Theorem 4.1 for the function

P (1) = E‘,CU(m [exp(B¢+ Af 4+ AL)] under U®) yields the desired equiv-

alence. The rest of the proof is the same as in the proof of Proposition 5.1. [

REMARK 5.1.

(1) The quadratic form (Q, F) on L?(F;gm) obtained from the Dirichlet form
(€,F) on L?(E;gm) associated to (X,gm) by perturbations is given by
Qo) = E(p, ) + E(w,09) = [PV dn =2 [ o, py\aing ¥ © P(€7 — 1) AT
The Feynman—Kac semigroup (Q¢):>0 associated with (Q,F) is given by

Qif (x) =By [ea(t) f(X1)] =By [ea(r) f(X7,)]

for x € E,f € By(F). Then the gauge function for the Feynman-Kac
transform €4 (¢) obtained from (Q)¢>o is given by

E.[64(0)] =E, [eA(TAgm)] =E.,[ea(()], z€E,

because T49m =t A (. Now, applying Theorem 1.1 to (X, gm), we see that

A2 (i) = A2 (i7) ¢—inf{Q(s0,<p)‘<p€C,/Es02dﬁT = 1} >0

is equivalent to sup,c g Ez[ea(¢)] < oo.

(2) In view of [26, Lemma 4.1](2), if (RSF) is satisfied for X, the conclusion
of Theorem 1.1 holds provided ji(yy + p1 + N(Fi)pu € Sk (X), p2 +
N(Fo)purr € Sh, (X).

The following corollary is an easy consequence of Theorem 1.1 through the
same procedure as in the proof of Proposition 5.2.

COROLLARY 5.2 (Super Gauge Theorem). We have the following.
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(1) Suppose that ij € Siy,(X), pwy € S\ (X) and po + N(Fo)up €
Sh,(X) hold. If sup,cpEelea(C)] < oo, then there exists a po > 1 suf-
ficiently close to 1 such that sup,cp Ez[ea({)?] < oo for any p € [1,po].

(2) Suppose that N(eV(e™ — 1))un € Skk, (X), pw € Sik_(X) and
N(Fy)pr € Sp,(X) hold. Then there exists a po > 1 sufficiently close
to 1 such that sup,cp B, [(Y})P] < oo for any p € [1,po]. In particular,
the assertions in Corollary 5.1 remain valid by replacing the transformed
process U by Y or Z.

Proof. (1): By Theorem 1.1, the gaugeability sup,cpE.[ea(¢)] < oo is
equivalent to A9 (ji;) > 0 without assuming m € S}, (X) and m(E) < co. In
the same way of the proof of Proposition 5.2, we have that there exists a
po €1, 00| sufficiently close to 1 such that A (ﬁ?’)) > 0 for any p € [1,po],
equivalently sup,cp Ez[ea({)?] < co holds for any p € [1,pg] by Theorem 1.1.

(2): The proof of (2) is easy in view of the following expressions for V!
and Z;:

V= a0,

7, = eu(Xo)—u(Xt)eA_Aﬂ* (t) O

COROLLARY 5.3. Suppose that ji} € Sy (X), puy € Sy (X) and ps +
N(Fy)ug € 51130 (X) hold. Then inf,cgE;[ea(¢)] >0 holds.

Proof. Note that e=2", € S}, (U) and e ?“N(eV Fo)uy € S}, (U) in view
of Corollary 5.1(1). Then by Jensen’s inequality, we have

inf B [exp(A¢ + AL)] > inf EY [exp(—AZ — AL?)]
> —supEY[A% + A2 0.
> exp(-sup B [P+ 477]) >

Applying (4.11), we now obtain
. : U v F\1 ,—2llulleo
IlreleEz [ea(Q)] = IllélgEz [exp(AC + A¢ )]e llullee > . 0
THEOREM 5.1 (Gauge theorem). Assume i} € Syg, (X), piqu) € Skk_ (X)
and p2+ N(Fo)pmg € S1(X). Then the following are equivalent to each other.
(1) There ezists x € E such that Eglea ()] < 00.
(2) sup,ep Ezlea(()] <oo.

Proof. The proof is quite similar to the proofs of [4, Theorem 2.13], [10,
Theorem 2.6]. By (4.11), we see

e 2lull= gl [exp (A7 + Ag)] < galx) < Plll=gY [exp (A7 + A?)]

So it suffices to prove gV (x) := EV [exp(AZ + A?)] satisfies sup,¢ p gV (z) < 0o
or gV =oco. The fine continuity of x ++ g¥(x) and the absorbing property of
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the set O :={g¥ < oo} can be proved in a similar way as in [4], [10]. So, it
suffices to confirm that there are N >0 and C' > 0 such that

0= {4 <oo} = {s" <C+ M},
Then O is finely open and finely closed. Since F is connected with respect to
the fine topology under (I) and (AC), we have O = F or O = (), which means
the assertion. Next, we prove e 2%y + e “N(e (e — 1))ug € Sk, (U).
We know 1+ N (eV (et —1))upy € Sk, (X) for vy := puy + N(e¥ —U - 1)y +
%,u?m. Since 7; + N(eV(eft — 1)) ug > %ufw + N(eV —U — 1)ug, we have

14N (eU (eF1 1 LpS +N (U —U=1)uy #ouy+N (e ~U=Dun
gt N(eT (e —D)un - g2k =S, . We can

apply Corollary 5.1(5) so that ey + e “N(e “(ef" — 1))un € Sk, (U).
The proof of e 2%y + e~ “N (e “Fy)uy € S1(U) is easy. The rest of the proof
is the same as in the proof of Theorem 4.1. O

REMARK 5.2. Theorem 5.1 is not covered by [22, (4.5) Theorem| due to
the existence of u.

In the rest of this paper, we use the notation 7p as the first exit time of X
out of D in FE, that is, 7p =inf{t >0: X; ¢ D}.
The following is a trivial consequence of Theorem 1.1.

COROLLARY 5.4. Let X be an m-symmetric (not necessarily irreducible)
Feller process on E. Let D be a connected open subset of E and Xp the
part process of X on D. Assume that (RSF) is satisfied for X and take
u € (Fp)oe NC(Dp). Then A (jiy) >0 if and only if sup,c p Exlea(mp)] < 0o
provided i} € S(lel(XD)7 Puy € S}(m (Xp) and pg + N(Fo)ug € S}JO(XD).
Here A3 (fix) :=inf{Q(f. ))If €Cp. [, f* djin = 1}.

Proof. Under the condition, X p satisfies (RSF) by [26, Lemma 5.3], hence
Stk (Xp) =Sk _(Xp) from [26, Lemma 4.1]. Moreover, (I) holds for Xp
because of the connectedness of D. O

6. Semi-conditional gaugeability and subcriticality

The following definitions of Green-tight measures of Kato class are due to
Chen [4]. Let d:={(z,2) € E X E|R(z,2) =0 or oo} and E* :={z € F|0 <
R(z,z) < co}.

First, we show the following lemma, which was not stated in [26].

LEMMA 6.1. Under the conditions (I) and (AC), R(x,y) > 0 holds for any
x,y € E, in particular, d = {(z,y) € E X E|R(z,y) = co}.

Proof. We may assume E # (). Otherwise, the statement is true. Fix
x € E. First we note that aRy(R(x,-))(y) < R(z,y) and a— aR(R(z,"))(y)
is increasing for y € E. We set R(x,y) = limy_00 aRo(R(2,))(y) < R(x,y)
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and D, := {y € E|R(z,y) > 0}. Note that R(z,y) = R(x,y) m-a.e. y € E.
Then 1p, is an excessive function of X. Indeed,

lim aR,1p,(y)= lim lim aR,(nR(z,-)A1)(y)

a—00 a—00 N—00

= lim lim aR,(nR(z,) A1)(y)

n—oo x—r oo

= lim (nR(z,-) A1)(y) =1p, (y)-

Thus, we have that D, is Borel measurable, and finely open and finely closed.
Under (I) and (AC), the fine topology of X is connected. Then we obtain
D,=0or D,=E. The case D, = yields R(z,y) =0 for all 2,y € E, which
implies Rf(z) = [ R(z,y)f(y)m(dy) = [ R(z,y)f(y)m(dy) =0 for any f €
L?(E;m). Consequently L?(E;m) = {0}, hence Co(E) = {0}. Thus, we get
E =0 contradicting FE # (). Therefore, we obtain D, = E, hence R(z,y) >

R(z,y) >0 for all z,y € E. O

DEFINITION 6.1 (Semi-conditionally Green-bounded, semi-conditionally
Green tight Kato class measures in the sense of Chen). Let v € §1(X) and
denote by RZ(x,y) the a-order Green function of Doob’s R(:, z)-transformed
process X* of X for a > 0 defined by

Ra(z,y)R(y, 2)

R(x,z)
where d := {(z,y)|R(z,y) =0 or +oo} and E? :={z € E|(z,z) € (E x E)\ d}.
We write R*(x,y) := R§(x,y) for a =0.

(1) v is said to be semi-conditionally Green-bounded if v € (), Sp, (X*). v
is said to be conditionally Green-bounded if

R (z,y) = x,y € E* with (z,y) € (E x E)\ d,

sup / R?(z,y)v(dy) < oo.
(z,2)E(EXE)\dJ E=

(2) v is said to be a semi-conditionally Green-tight measure of Kato class in
the sense of Chen if v € (e Sék_ (X#). v is said to be a conditionally
Green-tight measure of Kato class in the sense of Chen if for any € >0
there exist a Borel set K = K(¢) C E of finite v-measure and a constant
0 > 0 such that for all v-measurable set B C K with v(B) <9,

sup / R*(z,y)v(dy) <e.
(z,z)E(ExE)\dJ BUK¢®

(3) v is said to be a semi-conditionally semi-Green-tight measure of extended
Kato class in the sense of Chen if v € (,cpStk, (X?). v is said to be

a conditionally semi-Green-tight measure of extended Kato class in the
sense of Chen if there exist a Borel set K C E of finite v-measure and a
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constant ¢ > 0 such that for all v-measurable set B C K with v(B) <4,

sup / R*(z,y)v(dy) < 1.
(z,2)E(ExXE)\dJ BUK¢®

Let us denote by Sty (X) (resp. Stg, (X), Shg, (X)) the family of condi-
tionally Green-tight measures of Kato class in the sense of Chen (resp. the fam-
ily of conditionally semi-Green-tight measures of extended Kato class in the
sense of Chen, the family of conditionally Green-bounded measures) and semi-
Sts. (X) :=N.ep Sék_ (X7) (resp. semi-Sig (X) :=(,cp Stk (X*), semi-
Shs,(X) :=.cr Sp, (X?)) the family of semi-conditionally Green-tight mea-
sures of Kato class in the sense of Chen (resp. the family of semi-conditionally
semi-Green-tight measures of extended Kato class in the sense of Chen, the
family of semi-conditionally Green-bounded measures). Clearly, Stg (X) C
Sts, (X) C Spg, (X), Sts(X) Csemi-Stg_(X), Sg, (X) C semi-Stg, (X)
and Sig (X) C semi-Shyg (X).

It is known Sig_(X) C Sgk_ (X) and Skg (X) C Stk (X) ([4, the remark
after Definition 3.1] and [9, Proposition 3.1 and Corollary 3.1]) and Sfg (X) C
51130 (X) can be similarly proved along the proof of [9, Proposition 3.1 and
Corollary 3.1]. The converse inclusions Sty (X) C Stg_ (X), 2 Stk (X) C
Sts, (X) and Sh,(X) < Sphg,(X), hence Stk (X) =
Sks.. (X), & - Sby, (X) C Sks, (X) € Sy, (X) and S, (X) = She (X) hold
under the 3G-inequality: R*(z,y) < ¢(R(z,y)+ R(y, z)). Here 5-- Sty (X) :=
{5v|v € Sk, (X)}. Moreover, Stg (X) C Shs,(X) holds by [4, Proposi-
tion 3.2]. Note that the Borel set K of finite measure appeared in Defini-
tion 6.1 can be taken to be compact (cf. the argument after Definition 4.1).

DEFINITION 6.2. Let F' be a symmetric bounded function on E x E vanish-
ing on the diagonal set such that F' can be extended to (E x {9})U ({0} x {9})
with F(z,0)=F(0,0)=0 for x € E.

(1) F is said to be in the class Jpg (X) if N(|F|)um € Shg, (X). F is said to
be in the class Afg (X) if

wp [ REDIPIR)
(x,2)E(EXEN\dJExE R(z,z)

(2) F is said to be in the class Jix (X) (resp. Jbg (X)) if N(|F|)pu €

Stk (X) (vesp. N(|F|)pm € Sts_(X)). F is said to be in the class

Agg_(X) if for any € > 0, there exist a Borel set K = K(g) C E of finite

N(|F|)pr-measure and a constant 6 > 0 such that for all measurable set
B C K with [, N(|F|)dpu <9,

sup / R(z,y)|F(y, w)|R(w, 2)
(z,2)€(Ex E)\dJ {(K\B)x (K\B)}* R(z,2)

N(y,dw)pp (dy) < oo.

N(y,dw)pup(dy) <e.
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(3) F is said to be in the class J&g (X) (resp. J&g (X)) if N(|F|)pn €
Stk, (X) (resp. N(|F|)un € Stg,(X)). F is said to be in the class
Agg, (X) if there exist a Borel set K C E of finite N(|F|)uq-measure
and a constant § > 0 such that for all measurable set B C K with
S N(|F|)dpg <6,

sup R(z,y)|F(y,w)|R(w, 2)

N(y,dw)ppn(dy) <1
(2,2)E(ExE)\d /{(K\B)X(K\B)}C R(z,z)

By a similar proof as that for [10, Corollary 3.2], we have Alg (X) C
Jok_(X), Alg, (X) C Jik, (X) and Apg (X) € Jp, (X). Moreover, according
to the same way of the proof of Proposition 3.2 in [4], we see Agg (X) C
Ags, (X) € Apg, (X).

REMARK 6.1. The definition for A (X) in [10, Definition 3.2] is incorrect.
We follow the definition as in [4, Definition 3.4]. So [26, Definition 6.2(2)(3)]
should be corrected as in Definition 6.2(2), (3) above.

DEFINITION 6.3. Let F' be a symmetric bounded function on E x E noted
in Definition 6.2 above and v € S;(X).
(1) (v, F)is said to be in the class Bfyg (X) if v € Siyg (X) and F € Afg (X).
(2) (v, F) is said to be in the class Big (X) if v € Sig_(X) and F €
Ags, (X)-
(3) (v, F) is said to be in the class Blg, (X) if there exist a Borel set K C E
of finite v + N(|F|),uH-measure and a constant ¢ > 0 such that for all
measurable set B C K with v(B) + [, N(|F|)dpg <9,

61)  sup ( | meya
(z,2)€(ExXE)\d \J BUK¢

+/ R(z,y)|F(y,w)|R(w, z)
{(K\B)x(K\B)}* R(z,2)

Clearly, (v, F) € Big, (X) implies v € Sig, (X) and F € Afg (X). In par-
ticular, we have Blg (X) C Bgg, (X) C Bpyg, (X).

Note that the Borel set K of finite measure appeared in Definitions 6.2
and 6.3 can be taken to be compact (cf. the argument after Definition 4.1).

The following lemma is needed in the proof of Theorem 6.1.

N(y,dw)uH(dy)> <1

LEMMA 6.2. Take v € S1(X) and F € J1(X). Let g€ L'(E;v+ N(|F|)um)
be a (v+ N(|F|)pm)-a.e. strictly positive bounded function. Then the following
are equivalent each other.

(1) The following are equivalent.
(a) (v, F) € Bgs_ (X).
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(b) (v,F) € Bpg, (X) and for every decreasing sequence of Borel sets
{D,} with empty intersection

lim sup (/ R*(x,y)v(dy)

N=0 (g,2)e(ExE)\d \J D,,

) R |F (v, w) R, )
(D x E)U(EXD,,) R(z,2)

(¢) For any € >0 there exist a Borel subset K = K(¢) of E and a con-
stant § >0 such that for all measurable set B C K with [, gd(v +
N(|F)pr) <,

02 sw ([ wpuw)
BUKe®

(z,z)E(EXE)\d

N(pduyuan)) =0,

+/ R(z,y)|F(y, w)|[R(w, 2)
{(K\B)x (K\B)}* R(z,z)
(2) The following are equivalent.
(a) (v,F) € Bgg, (X).
v F) e and for every decreasing sequence of Borel sets
b F) € Bhg (X d f d ; f Borel
{Dy} with empty intersection

lim sup ( / ) R*(z,y)v(dy)

N=0 (g2)e(ExE)\d

N(pduyuan)) =0,

+/ R(z,y)|F(y,w)|R(w, 2)
(Dpx E)U(EXD,,) R(z,2)

(¢) There exist a Borel subset K of E and a constant 6 > 0 such that for
all measurable set B C K with [, gd(v+ N(|F|)ur) <4, (6.1) holds.

N(y,dme(dy)) <1

Proof. The proof of Lemma 6.2 is similar to the proof of [26, Lemma 4.2]
(see also [4, Propositions 2.2 and 2.4]). So we omit the detail. O

Let i} € Six(X), p € Sk(X) and pp + N(Fp)ug € S1(X). In the
same way of Lemma 4.1 in [19], for o > 0, we can construct a symmetric
a-order resolvent kernel RA(z,y) of the Feynman-Kac semigroup PA f(x) :=
E.lea(t)f(X¢)], which is defined for all z,y € E (possibly infinite), a-excessive
with respect to (P/);>0 in « (and in y), and satisfies a resolvent equation like
as in [19, (4.2.12)].

We need the following lemmas:

LEMMA 6.3 (cf. [26, Lemma 6.1]). Suppose that i € St (X), fiuy €
SL(X) and pa + N(Fy)ug € S1(X) hold. Then for a >0 and = € E,
Y RA(x,y) is finely continuous with respect to X.

Proof. The proof is the quite same as that of [26, Lemma 6.1] under the
condition above. So we omit it. (|
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LEMMA 6.4 (cf. [26, Lemma 6.2]). Assume that i} € semi-S¢g, (X)), piuy €
semi-Stg_(X) and pg + N(Fo)up € semi-Shg (X). Then for each y € E,
EY >z EY[ea(CY)] is finely lower semi continuous with respect to XV.

Proof. The proof is the quite same as that of [26, Lemma 6.2] under the
condition above. So we omit it. U

The following theorems and lemma can be proved with slight modifications
as those in [4].

THEOREM 6.1 (Conditional Gauge Theorem I, cf. [4, Theorem 3.8], [10,
Theorem 3.5]). Suppose (v1,e™ — 1) € Bég (X) and vo + N (Fa)up € S1(X).
Let A= A" + A If E¥[ea(CY)] is finite for some (z,w) € (E x E)\d, then
it is bounded on (E x E)\ d.

Proof. The proof is similar to that of [4, Theorem 3.8], [10, Theo-
rem 3.5]. We provide the proof for reader’s convenience. We let u(x,y) :=
EY[ea(¢Y)]. By symmetricity (see [10, (3.7)]), u(x,y) = u(y,x) for (z,y) €
(Ex E)\d. Set O:={(z,2) € (E x E) \ dlu(z,z) < oo} and suppose
O # 0. Take (x9,y0) € O. The condition (v1,ef —1) € Blg (X) yields vy +
N#(ef' —1)up € Stk (X7) C Sik, (X?) for each z € E. Here N*(y,dw) :=
1;((7; ‘ZZ)) N(y,dw) is the Lévy kernel of X? (see [10, Proposition 3.3]). We will
confirm it. Since (v1,e — 1) € Blg (X) C Bhg, (X) = Shg, (X) x Abg (X)),
we see v + N*(ef* —1)upy € S}, (X?) for any z € E. Applying [4, Proposi-
tion 2.4(2)] to X7, it suffices to show that for each z € E' and any decreasing
sequence {D,,} of Borel subsets of E* with empty intersection,

(6.3) lim sup / R*(z,y)(v1 + N* (eF1 —Dpg)(dy) <1

n—oo rxeE*

By Lemma 6.2(2), we have

lim / R y, Rl y) Ry, z) v1(dy)
oo (g, z)e E><E)\d R(z,z)

R(z,y)R(w,2) -~
+/ —elym))_lNy,dU)M dy <1
(Do xE)U(ExXDy) R(z,2) ( )N ( Ve (dy)

Hence,

lim sup/ R*(x, y)(l/lJer( —1)pp)(dy)

’I’L*)OOIGEz
= lim sup </ Rla,y)Rly, z) v1(dy)
N—00 pc Bz Jf Z

/ / R(x, ym Zy, )( Fi(yw) _ )Nz(y,dw),uH(dy)>
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< lim sup < / ) wm(dy)

T n—oo (z,z)€(EXE)\d R(.’E7Z)

+/ w(eﬂ(y,w) _ l)N(y,dw)uH(dy)) <1.
{D.xEYU{ExD,} R(z,2)

Thus, we have (6.3). One can apply Theorem 5.1 to X% so that

sup u(z,y0) = sup u(yo,x) < 0o.

zeEYo reEY0

Applying Theorem 5.1 to X* again that for any = € F,
(6.4) sup u(z,z) = sup u(z,z) < co.

zeE" z€E®
Recall the condition (v1,eft — 1) € Blg (X). There exists a Borel subset K
of finite (v; + N(ef* — 1)ug)-measure such that there exists § >0 with

8= sup sup <Rlechl/1(I)
BCK, (z,z)E(EXE)\d
(i+N(eF1 =D pn)(B)<s

+ R, y)le™ ) —1|R(w,2)
{(K\B)X (K\B)} Rz, 2)

Note that u(x,y) is B(E x E)-measurable if we set u(z,y) =1 for (x,y) € d.
Hence, {z € K|sup,cpu(z,z) > n} is B(E)-measurable as it is the z-pro-
jection of the set {(z,2) € K x Elu(z,z) > n}. As (o_,{z € K|n <
sup,epu(z,2)} =0 from (6.4), we can choose N large enough so that the
set By :={z € K|N <sup,cpu(x,2)} has (11 + N(ef' — 1)up)-measure less
than §. Applying Khasinskii’s Lemma to X?, we have

C:= sup EZ [exp(A”1 + AR

(z,2)e(EXE)\d TBNUK® TBNch)]

z v ef1_1
= sup E? [Exp(A" + A
(z,2)e(ExE)\d x[ ( )TBNUKC]
< 1 U S
- v oF1 _ S .
L= sup(, yemxpnd B2 (AT yoke + ATBINJKC] 1-7

Nl dulpn(dy) ) <1

By the formula

u(z,z) =EZ [exp(A?BNUKC + Aanch) :Tyure = (7]
+ Eﬂzv [eXp(A:BNuKC + AfBNch )U(X"'BNUKC ’ z) " TBNUK® < <Z]

for (z,z) € (E x E)\ d, we have u(z,z) <C + CN for (z,2) cON(By x E)
in view of X, .. €0°N(K\ By) Pi-as. on {rpyure <(*} for x € O%,
where we use the absorbing property of O% := {z € El|u(z, z) < co} under X*
for each z € E. Moreover, u(z,z) <N for (z,z) € O N (B§ x E). Thus, we
obtain O ={(z,2) € (F x E)\d|u(z,z) <C+CN} for some C >0 and N € N
under O # (), which implies the assertion. (]
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LEMMA 6.5 (cf. [4, Lemmas 3.5 and 3.9]). Suppose that v1 + N(Fy)up €
Sl(X), Vo + N(FQ)/J/H S Sl(X) and Huy € SlD(X) Let A= A" + AF + N%.
Then the following hold:

(1) For every Borel function f >0,

B [ ea x| = [ RaBea(@)] fmian).

(2) For any positive measure p € Sp,_(X),

(oo}
E, U eA(t)dAé‘} Z/ER(w y)EY [ea(¢?)]p(dy).
0
Here A" is the PCAF of X in the strict sense with Revuz measure [i.

Proof. The proof is similar to that of [4, Lemmas 3.5 and 3.9]. We provide
it for completeness. It suffices to prove (1). The proof for (2) is similar. Fix
a bounded Borel measurable function fo € L?(E;m) being strictly positive m-
a.e. on F such that h:= Rfy is bounded on E. The existence of such fy is
proved in Getoor [21]. As in the proof of [4, Lemma 3.5],

My := h(X:) — h(Xo) / fo(X

is a square integrable martingale under P, with

(6.5) sup E,[M7] < oo
t€[0,00[

for all z € E. By [20, Proposition 5.3], for any bounded F,,-measurable A

(6.6) [E R, y)BY[A] fo (y)m(dy) = h(z)E[A].

Applying the bounded Foo-measurable A =e4(c0) Ak to (6.6),

[E R(z, 1) B [e (CY) A K] foly)m(dy) = h(x)E" [ea(¢") A K]

By way of the argument in Sharpe [33, Section 62], we have

[ BB lealc) AR folymicy) = B, [ [ (eatiy Aot a
E 0

as in the proof of [4, Lemma 3.5]. Letting k — oo, we obtain the assertion for
f = fo. The rest of the proof is similar to that of [4, Lemma 3.5]. O

THEOREM 6.2 (cf. [4, Theorem 3.10]). Suppose that (v1,e™ —1) € Big (X),
vo + N(Fo)pup € SY(X). Let A= A" + AY'. Then the following are equiva-
lent:

(1) (X,A) is gaugeable.
(2) (X, A) is conditionally gaugeable.
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Proof. The proof is similar to that of [4, Theorem 3.10] with [4, Lemma 3.9]
by use of Lemmas 4.2(2), 6.5(3), (4) and Theorem 6.1. We omit it. O

We also obtain the existence of a-order resolvent kernel RJ7 T (x,y) of
the Feynman—Kac semigroup PtU’”+F defined by

PP f(x) o= BY [exp (A7 + A]) f(X0)].

RYPTE(z,y) is defined for all 2,y € E (but possibly infinite) and for each
v € E, y— RUPHE (2 y) is finely continuous with respect to U by apply-
ing Lemma 6.3 to U, because e~ 2%(v; + N(eV(ef' — 1))un) € Six(U) and
e 2 (g + N(eY Fo)uy) € S1(U) hold by Lemma 4.1. By (4.10), we have the
relation

(6.7) RA(z,y) = RV (1, y)e (@) —ul)

holds for m-a.e. y € F and all z € E. Applying Lemma 3.1 to U, (6.7) holds
for all z,y € E.

Proof of Theorem 1.2. The equivalence (1) <= (5) also follows from The-
orem 1.1 and

3) =int{ QRC L RE RS <C. [ PRE0P dm=1].

It suffices to prove the equivalence (1) < (2) < (3) < (4). By
Lemma 6.5, we see that

(6.8) R*(z,y) = R(z,y)EY[ea(¢)] for mae. y€ E.

The implications (4) = (3) = (2) are trivial. Suppose (2). Owing to
the symmetricity R4 (x,y) = R*(y, ), this is equivalent to that for each

y € E, R*x,y) < oo for m-a.e. 2 € EY. Then EY[ea(¢Y)] = R&g;’g) < 00
for m-a.e. x € EY for each y € E. Here we use R(z,y) >0 for z,y € E
in view of Lemma 6.1. Applying Theorem 5.1 to XY, we have from
i € S, (X) Csemi-Stg (X), gy € Sy (X) C semi-Stg (X)) and po +
N(Fo)pp € Shg, (X) Csemi-Sfg (X) that

sup EY [eA(Cy)] < 0.
x€eEY

Consequently (1) holds from (6.8). Conversely suppose (1). Note that
a:lenEf” EYlea(¢”)] >0

always holds under the present conditions in view of Corollary 5.3. Then there
exists C' > 0 depending only on y € E such that C'R(z,y) < R4(z,y) <
CR(z,y) m-a.e. x € EY. Noting the fine continuity of z — RA(x,y) by
Lemma 6.3, we obtain (4). The equivalence (6) <= (5) under i € Stg, (X)),
fiuy € St (X) and pig + N (Fa)pg € Spg, (X) follows from Theorem 1.1, be-
cause Sk, (X) C S¢k, (X) and Shg (X) C Sp, (X). Next, we prove (6) =
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(8) = (7) = (1) under (1.4) with (u1,Fy) € Bésm(X), (12, Fs) € B}DSO (X)
and puy € S&g_ (X). The proof for (6) = (8) == (7) == (1) under u =0,
(p1,e™ — 1) € Big,(X) and (p2,F2) € Bhg (X) is simpler than it. The
proof for (6) = (7) => (1) under u =0 with (u1,e" — 1) € Bg (X) with-
out (p2,F2) € Bhg, (X) is also similar. Suppose (6). As we proved in
Theorem 1.1 with (4.11), the condition (5) is equivalent to the gaugeabil-
ity sup,cp EY [exp(AY + Af)] < oco. Recall 71 := 1 + N(e¥ = U — V)upm +
%,u?u) and vy := 2. Note that (e=2'py,e @~ W F(2,y)) € Blg_(U) and
(™2 g, e~ @) —uW) By (7)) € Blyg, (U) hold under (1.4). From these facts
with Theorem 6.2, we see that sup,e, EJ[exp(Af + Af)] < 0o is equivalent
to the following conditional gaugeability:
(6.9) sup (EIU)y [exp (A% + Agy)] < 00,
(z,y)e(ExE)\d
where (EV)Y stands for the expectation of Doob’s RY (-, y)-transformed pro-
cess UY of U starting from z € EY. Since (e™2%uy, e @)W Fy(x,y)) €
B, (U) under (1.4)
inf EJ)? [exp(AZ, + AL,
() (4 + A5)]
Zexp(— sup (Eg)y[Agﬁ +A5§]) > 0.
(z,y)e(ExXE)\d

Moreover, by virtue of Lemma 6.5(1)

RYPHE (2 ) = RY (x,y) (EzU)y [exp( &+ A?y)] for m-a.e. y € E¥.
Therefore, there exists C' > 0 such that
(6.10) C™'RY(z,y) < RY"*F(2,y) <CRY(2,y) w-ae. yc E”.

Applying Lemma 6.3 to U, (6.10) holds for all y € E*, because the under-
lying symmetric measure e~2“m has always full fine support under (AC).
Now, by using the relation (6.7) with the boundedness of u, we obtain (8).
Next suppose (8). Then by (6.8), we have that there exists C' > 0 indepen-
dent of z,y € E such that C~! <E¥[es(¢¥)] < C m-a.e. x € EY. Applying
Lemma 6.4, E¥[e4(¢Y)] < C holds for all x € EY and y € E, which implies (7).
The implication (7) => (1) is trivial. O

Finally, we give a criterion for (1.4). The next theorem is a slight extension
of [4, Theorem 3.8].

THEOREM 6.3 (Conditional Gauge Theorem II, [26, Theorem 6.3]). Sup-
pose pfyy = pi,y =0, p=p1 — pz € Stg, (X) = Spg,(X) and F =Fy — F
with Fy + Uy € Agg _(X) and Fy+U_ € Apg, (X). Here Ux(z,y) := (u(x) —
u(y))®, x,y € E. Then the following are equivalent to each other.

(1) There ezists (x,y) € (E x E)\ d such that E¥[e4(CY)] < 0.
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(2) SUD(z,y)e(Ex E)\d EZ[ea(¢¥)] < oo.

PROPOSITION 6.1. Suppose pf,, = pig,, =0, Uy € Abs (X)NJhg, (X) and
U_ € Apg (X) N JLg, (X). Then there exists C >0 such that (1.4) holds.

Proof. The proof is similar to the proof of [26, Proposition 6.1] by replacing
Y with Uy. So we omit it. O

EXAMPLE 6.1 (Symmetric Relativistic a-stable Process). Take 0 < o < 2
and m > 0. Let X = (Q, X¢,P,) be a Lévy process on R? with

Eo[eV TEX0] = exp(—t{(|€]2 + m¥/*)** —m}).

If m >0, it is called the relativistic a-stable process with mass m (see [31]).
In particular, if « =1 and m > 0, it is called the relativistic free Hamiltonian
process (see [23]). When m =0, X is nothing but the usual (rotationally)
symmetric a-stable process. It is known that X is transient if and only if
d > 2under m > 0 or d > o under m =0, and X is a doubly Feller conservative
process.

Let (£,F) be the Dirichlet form on L?(R%) associated with X. Using
Fourier transform f(z) := wa e @) f(y)dy, it follows from Exam-
ple 1.4.1 of [19] that

Fim {22 [ O (e + m¥e)" - m)a <o),
()= [ HORO (e +m**)"* —m)de tor fge 7.

It is shown in [11] that the corresponding jumping measure satisfies
U(m'/ |z —y))

J(dzdy) = Jn(x,y)dedy  with J,(z,y) = A(d, —«) |z — y[dte

)

a2d+ar( dta )
where A(d, —@) = sarrarri=g)

, and ¥(r):=1I(r)/I1(0), where

dta_| _s

oo 7‘2
I(r) ::/ s 2 e 4+ sds
0

is a function satisfying W(r) =< e~"(1 4+ r(@*t*=1/2) near r = oo, and ¥(r) =
1+ 9"(0)r?/2 + o(r?) near r = 0. In particular,

F{rer@)| [ |5 1Pt dey <o),

efa)i=5 [ (@)= F) (6(0) = 9) In(og)dady for g7,

Let p;(x,y) be the heat kernel of X. The following global heat kernel estimates
were proved in [15, Theorem 2.1]: There exists C7,Cy > 0 such that

(611) C;l@?}cl (t,l’,y) Spt(xay) S CQ 2}1 (taxay)7
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where

t= Nt T (z,y), t€]0,1/m],

e (t =
c(tx,y) {md/a—d/Qt—d/Qe(—Cl(ml/ax—y|/\m2/al_m_f,yQ))’ te]l/m,oo|.

For a signed Borel measure p on R?, y is said to be of Kato class with
respect to X if and only if

limsup/ |,u|(4dy):0 for d > a,
|

=0 R z—y|<r |$ - y|d_a

lim sup / (log|z —y| ") |pul(dy) =0 for d=a(=1),
le—y|<r

T_)OIERd
sup / |ul(dy) < oo for a>d(=1).
z€R? J|z—y|<1

Denote by Kq , the family of nonnegative measures of Kato class with respect
to X. Then we have K4, = SL(X) by [29].

From now on, we assume the transience of X. Using (6.11), we see the
following Green kernel estimate by [15, Theorem 1.3]: For each fixed M > 0,
there exists C' = C(d, o, M) > 1 such that for any m €]0, M|, x,y € R?

1+m* s |z —y|?—@

|z =yl

o

C*l
|z —yld=e

<R(z,y)<C

From this, we can obtain that 3G-inequality holds. Owing to this 3G-inequali-
ty, we have Sty (X) = Sgg_(X) and Sp, (X) = Shg, (X).

From [31, Lemma 3] or (6.11), for m > 0, there exists C1(d,m,a) >0 de-
pending only on m, d and « such that
(6.12) sup pi(z,y) < Ci(d,m,a)t=%? for any t > 1.

z,y€R
We can apply [17, Lemma 5.1(2)] to X for &1 := C1 ¥y, Oy(s) := % and
®5(s) :==C(d,m,a) with to =1, d* =d and §* =2 > =« provided m > 0,
and for @1 = 01\1/2, @2 = @; = 02\112 with \IIQ(S) = 1/(1 + S)d+o¢7 d=d* and
B* = B =« provided m = 0. Hence every p € K4, = Sk(X) with u(R?) < oo
belongs to S}{; (X) (to Sk (X) if X is transient).

We show that there exists a positive Radon measure v € Sp, (X) \ Sk (X)
under the transience of X. More concretely, in [8, Example 4.2] for m =0
and in [26, Example 4.2] for m > 0, we construct a nonnegative function
¢ € LY(R?) such that ¢(z)dz ¢ Sk (X) and | R(®)¢|o < co. Here R p(z) :=
Jra ‘xf‘(lyd)_a dy is the Riesz potential of (.

Take u € F.NCoo (R?) with ([gu(u(z) —u(y))?Jm(z,y) dy) dz € Kq 4. Since
this energy measure has finite total mass, it also belongs to S}(oo (X). We
know the existence of the limit N¥ :=lim;,., N Py-a.s. under the tran-
sience and the doubly Feller property of X. Indeed, there exists a strictly
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positive bounded Borel function g on R? such Rg is bounded by [21]. More-
over, Rg € Cy(R?) in view of the doubly Feller property of X. Let {K,} be
an increasing sequence of compact subsets of R? with RY = U,iil K,. Then
cn = infrek, Rg(x) >0 and pg, (v) =P, (0K, < 00) <Ey[Rg(Xo, )]/cn <
Rg(x)/cn < 0. Then Pipg, (v) < PRg(x)/c, = 0 as t — oo, and conse-
quently,

PI(m A]) = lim PI(AJ):O for Aj = {0’[(”09j <OO}.
Jj=1

j—o0

Hence, P, (N2, Uj2 {0k, 00; = o0}) =P, (N2, Uj2, Af) = 1. In particu-
lar,

Px<ﬁ D{XteE\Kn for allt>j}> =1

n=1j=1

for x € R, That is P,(limy e |X¢| = +00) =1 for € R From this,
P, (lim; o u(X;) =0) =1 for 2 € RZ. On the other hand,

sup B, [(M)"] S Bo [(MY) ] < o0

implies the uniform integrability of (M;")¢c(o,00[, Which yields the existence of
the limit lim; o, M# under P, for all x € R%.

Take vy, 15 € Sp, (X) \ Sk (X) and bounded symmetric functions ¢;, ¢ on
R? x R? vanishing on the diagonal. Suppose ¢1, ¢y € J}DO (X). We set

1 141
H=5e L+ [[R(v1 + N(¢1)p)lloo’
1 pre” Y >
Fi=logl1l+ —- )
1 g( 2¢ 1+ ||R(v1 + N(d1)pm)lloo
_ 1 V2
M2 5 T+ [R(va + N($2)im)lloo”
1 -U
7 pae

T2 TR+ N(b2)r )’
where c is the constant appeared in the 3G-inequality. Then we see
_ 1 v+ N(¢1)pn

2¢ 1+ || R(v1 + N(o1)pr) oo
€ 8¢s, (X)\ Sk (X)

M1 +N(6U(6F1 - 1))#}1

and

1 va + N(¢2)pim

+ N(eVF =—.
oo N (P = 30 TRy + Nido i)

€ Sps, (X) \ S (X).
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Consider the following Feynman—Kac semigroup
PtAf(CC) =K, [eN;‘-i'A’t"-i-Af f(Xt)} )

The associated quadratic form Q is given by

l9)= /Rd @ = 7)) (9@) ~9(y)) T (. y) drdy
+ /]Rdx]Rd (fg(x) = fa(v)) (u(z) — w(y))Jm(z,y) dzdy
- | f(@)g(x)v(dz)
R4

- / F@)g(w) (7 EY) — 1) Ty () derdy
R xRd

for f,g € D(Q) N L®(R%),

D(Q):=F.

In view of [14, Theorem 1.2], the heat kernel pY (z,y) of the time changed
process (U,dx) obtained from the Girsanov transformed process U by U; =
Exp(M eu’l)t has the same global estimates as for the relativistic symmetric
a-stable process (symmetric a-stable process if m =0). Note that the con-
dition UJS in [14] is satisfied for (relativistic) symmetric a-stable process
(see [14, Example 2.3]). Then the Green kernel RV of U, which coincides
with the Green kernel RV of (U, dz), satisfies (1.4) for some C > 0. Then by
Theorem 1.2, the following are equivalent:

(1) sup,ecpa Eq [eNo%TA%+AL] < co.
(2) For each y € RY, sup, cga 1,y EY[exp(Ng, + Afy + Af))] < 0.

(3) R“’“’F(:L’ y) < oo for all z,y € R? with x # y

(4) Mu,p, F 1nf{Q(f f)|f € C§°(RY), [oa f(2)*fir(dz) =1} > 0.

Here fiy(dz) :== (fpa V Im(z,y) dy)(dx) + Vl(da:) with V(z,y) := (G* —
F+ Fy)(x, y) and R* “ F (as y) is the Green kernel of the Feynman—Kac semi-
group by N + A} + Af. If u=0, uy € Si_(X) and eF1 -1 EACSI( )
(resp. 1 € S (X) and Fy € Agg_ (X)), then we see (p1,e* —1) € Big, (X)
(resp. (p1,F1) € Bg_ (X)). In this case, (1)-(4) are equivalent to

Ny +Agy +Agy ] < 0.

(5) SUPg yeRe,m£y Eg: [6
If further m > 0 and (ua, F>) € Bhg, (X), (1)-(5) are equivalent to
(6) There exists C' > 0 such that

1 1 1 1
C—l <Ru,/L,F <C
(|x T e y) SR ey < (|x —ye e y|d2>
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for all z,y € R* with x # y. If further m =0 and (p2, F2) € Bhg, (X), (1)(5)
are equivalent to

(7) There exists C' > 0 such that

c-1 . c ,
WSR ’M’F($7y)gm for all x,yéRd with ZL’#y

7. Maximum principle of generalized Feynman—Kac semigroups

In this section, we apply Theorem 1.1 to prove the maximum principle
of generalized Feynman-Kac semigroup extending the recent result [42] by
Takeda. Throughout this section, we assume that E is a locally compact
separable metric space, m is a positive Radon measure with full topological
support and X is an m-symmetric process associated to a regular Dirich-
let form (£,F) on L?(E;m) enjoying (AC) and (I). Let u,u,F be as in
the previous section and consider the generalized Feynman—Kac semigroup
PAf(x) = Eglea(t) f(X,)] with ea(t) :== exp(N}* + A + AF). Let SH"(Q)
be the family of upper bounded submedian function with respect to (P/),
that is,

SH"™(Q) := {h € B(E)|h is upper bounded, h < P/*h on E for all t >0}
and define the maximum principle by

(MP) If h e SH"™(Q), then h(z) <0 for all z € E.

Recall that X* is the subprocess of X killed by e A —AR o +
N(Fy)pg € S1(X) is non-trivial, then X* is always transient under (I).

THEOREM 7.1. Suppose that pe + N(Fp)ug € S1(X) is non-trivial, i €
Sk, (X*) and iy € SH(X) N Sk (X*) hold. Assume
(A) E, [e—Agg—Afg :(=o00] =0.
Then X2 (ji1) > 0 implies (MP). Conversely, (MP) implies A2(fi1) > 0 pro-

vided X enjoys (RSF), and py + N(F\)pum + py € Sk (X*) and py +
N(FQ)MH € S}((X) hold.

Let us introduce the space H"(Q) of (P/!)-invariant bounded functions:
HP(Q) :={h € By(E)|h =P h on E for all t >0}
and define the Liouville property by
(L) If h € HP(Q), then h(z) =0 for all z € E.
Then we have the following.

COROLLARY 7.1. Suppose that po + N (Fo)ug € S1(X) is non-trivial, i €
Sk, (X*) and iy € SH(X)NSkk_ (X*) hold. Assume (A). Then X (jiy) >
0 implies (L).



ANALYTIC CHARACTERIZATIONS OF GAUGEABILITY 765

When X is transient, the special cases of Theorem 7.1 and Corollary 7.1
are the following:

THEOREM 7.2. Suppose that X is transient, G} € SﬁKl(X), Peuy €
SYk . (X) and py + N (Fz)up € Sp, (X) hold. Assume (A). Then AL(fi1) >0
implies (MP). Conversely, (MP) implies A2 (ji1) > 0 provided X enjoys
(RSF), and p1 + N(F1)pm + piy € Sk (X) and pz + N(Fe)un € Sk (X)
hold.

COROLLARY 7.2. Suppose that X is transient, ij € S\k (X), p) €
Stk (X), and po + N(Fy)up € Sh,(X) hold. Assume (A). Then X9 (fiy) >0
implies (L).

Note that under the conditions for measures in this section there exist
positive constants C, g > 0 such that sup, ¢ p PA1(2) =sup,cp Exlea(t) : t <
(] < Ceot,

To prove Theorem 7.1, we need the following lemma.

LEMMA 7.1. Suppose that po + N(Fo)pg € S1(X) is non-trivial and ji(,) €
S1(X) NS\ (X*) holds. Then (U)o, is a uniformly integrable martin-
gale under P} for all z € E.

Proof. Recall that M; := MfU_l + M; " is a locally square integrable
local P,-martingale for all z € E under p,, € S1(X). By Ito formula for

semimartingales, we see M? = 2f0t M,_ dM,+[M];, where [M], = (M~"°), +
[MeU*l]t =(M—"°), + ngt(eU(XS*’X“) —1)2. We then have

(7.1) supE;[[M]w] =supE} {(M“’C>w+ ST (VXD _1)? <00
RIS D) zelE 0<t<oo

under /11,y € Skk_ (X*) € S}, (X*), because (eV —1)% < U2e?IUll= . From this
t
(7.2) Ei[M?] =E, [/ e AAZ N dMs] +E;[[M];] =E;[[M]] < <.
0

Let {T},} be a increasing sequence of stopping times such that (Miar, )ie[o,00]
is a P -martingale. Then

tAT), “ s
E:[Mr,] =E, [/ e~ A2 A2 dMS} =0.
0

This implies that M; is also a square integrable martingale under P} for
all z € E. Combining (7.1) and (7.2), we have the uniform integrability of
(M)te[0,00] under P for all z € E and the limit My := limy o M; exists
Pi-a.s. and in LY(PZ) for all z € E, consequently E*[M]=0. Applying [6,
Theorem 3.2] to the square integrable Pj-martingale (M;);cjo,00[ and U; =
Exp(M); with AM; > e~2I*l~ — 1, we obtain the assertion. O
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Proof of Theorem 7.1. Let U* be the transformed process by Upe=A¢° —Ap?
Then U* is also a transient e 2“m-symmetric process. Under My €
Sy (X*), any v € S{g, (X*) implies e *“v € Sty (U*) by Corollary 5.1.
From this, af = 11 + N(eV(e"' — 1)ug € Sk, (X*) yields
e vy 4+ e “N(e “(e" — 1))un € Skk,(U*).  Consequently, e "1y +
e “N(e (e *2 (e —1)))pun € Sk, (U*). Owing to the expression

o(f,9)
:€U(fe“,ge“)—/ fgdﬂ—/E Ef(ﬂ?)g(y)(eF(‘”’y)fl)N(z,dy)uH(dx)

€U (fe, ge) /fgdvl

—/ F(@)g(y) (e —1)e” = EDN (2, dy) g (da),

ExXE

we can deduce that A2(i}) > 0 implies sup,.pEY” [6A21+A<Fl] < oo by ap-
plying Theorem 1.1 to U* under e 2%v; + e “N(e “(e 2 (et — 1)))uy €
SYk, (U*). Suppose h € SH"(Q) and A2(fi1) > 0. Then we have

(7.3) h(z) < PAh(z) = e OBY [ATHAT (e4h) (X,)]
O} [6A51+Afl( “h)(X,)]
< 2l ||pt]|_BYT [eA AT e < ().

Under g4,y € SL(X), (Ut)tejo,00[ is @ non-negative P,-supermartingale for all
x € E. Then there exists a limit U s := lim;_ oo Uy Py-a.s. On the other hand,
Lemma 7.1 tells us that the convergence U := lim;_, o Uy holds PZ-as. and
in L!(P?) for all z € E. Then we have

. U* T * . T[T =
(7.4) Jim PY" (£ < () = lim B (U, £ < (] = B [Toe : ( = o]
= B, [Uaoe 2481 y] =0,

because e~A% AF21{< o) =€ —AS— AF21{< ~} =0 Pg-as. for all € E
by (A). Here we use PZ < P, on F,, with dP}/dP, = exp(—A#2 — AL2)
by [34, Theorem 1] (cf. [2, Lemma 1(1)] and [32, Lemma 2.3(a)]). Letting
t — oo in (7.3) with (7.4), we obtain h(x) <0 for all x € E. This yields
(MP).

Next, we prove the converse assertion. Note that X* enjoys (RSF) and
Sk (X) =Sk (X*) under ps + N(Fo)un € Si(X). Indeed,

F: .
lsg sup B [l 74 — 1] < Jig sup B [47° + 47%]

pa2 N(F2)pmy _
—}g%zlelgE [At + A, ]—O
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implies the (RSF) of W by [28, Corollary 5.1], and the estimate

t
E, [Aty} =E, {/ eA52+A52 e_Agz_ASFz dAZ}
0

t
K2 Fa _AMl2 _ AF2
<E, [eAt ek / e At dA:]
0

t 29\ 1/2
(agme 1) sym( [ an)])
zeE z€E 0

1
<V2supE, [62'4?2 +2Af2] 2 sup E;[AY]
z€E zeE

yields the inclusion Sk (X*) C Sk (X), where we use

sup E, [62‘4?2 +2Af2] = sup E, [Exp (A2p2 4 A€2F2,1)]
Ay zeFE
1
< - <0
1 —sup,ep B [Afw + AEQFZ _1]

for small ¢ > 0 under ps + N(Fo)uy € Sk(X). Set W; := Zie= A0 =
Ytle_AiQ_AtF2 and let W be the transformed process by W;. It is easy to
see that W also enjoys (RSF) under N(Fy)pm + piquy € Sk (X*) C S (X*)
and pg + N(Fo)pm € Sk(X). Indeed, applying [8, Lemma 3.2(iii)] with
N(Fy)pw + pguy € Sk (X*), we have

- |31

Jim sup E [|v;' —1]] =o0.
This implies the (RSF) of W by [28, Corollary 5.1]. Moreover, we see that any
v e Si(X*) (resp. v € S _(X*)) satisfies v € S (W) (resp. v € S (W)).
Indeed, for v € Sk (X*) ans its PCAF AY, we have the following estimate
based on the martingale property of Y;! := Exp(MeFﬁU_1 + M~*°), with
respect to X under N(Fy)um + piuy € Sk (X*) C Sk (X*) = Sg(X) with
[17, Lemma 2.2]:

¢
BY [47] =B, | [ vl 4 ]
—E, [Yg / pmatz-al dA;’}
0
1 t u
<E, [(Ytl)Z] 2 \/§sup E, [/ e~ AL -AR dAt"}
0

yeE

<supE, [(Ytl)Q] 22 sup E;[A}].
zck yck
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Since sup,cp Eq[(Y;')?] = 1 as t — 0 under N(F1)pn + puy € Sk (X*) C
SL(X*) = 5% (X), we have sup, .z EW[AY] — 0 as t — 0. Slmllarly

t
EY [1xe x AY] = E, [ / Yie A A% . (Xs)dAZ}
0
=E, [Yl/ _A52_A521Kc(Xs)dA4
0
<E,[(v})’]*V2supE, [/ ‘Agz_AleKc(Xs)dAt”}

yEE

<supE, [( )] \/_supE [1;«*14”]
zeE yeE Y

implies e~y € S (W) for v € S (X*). Let (EW,F") be the Dirichet
form on L?(E;m) associated to W. Then we see

(7.5) A8 () = inf{SW(f,f) - 1’f eFn CO(E),/Ef2 it = 1}.
Applying Stollmann-Voigt’s inequality to (£, F%), we get

AQ(,:L;)H:mf{gZ(er,er)+/ f2du2]fefmco(E),/ f2dpq:1}
E E
1

U S}
IRZ (e=241a7) [l oo

Then one can get
1nf{EZ(fe  fe¥) /deug‘fe]—'ﬂCo /f2du1—1}

where \* := A2(f%) + 1. Under A\2(7i}) <0, we have 0 < \* < 1. Since
p1 + N(Fo) g + puy € Sk (X*), we have if € Sk (X*), hence e 2"} €
Sk_(W). By [41, Theorem 2.1], we can get the existence of the unique min-
imizer v of (7.5). Set

h(z):=EV [/Ogv(Xs)dAﬁ*“I}

As in [42, Section 5], we can deduce the strict positivity, boundedness and
fine continuity of h with respect to W. Moreover, for each ¢ > 0 we have

h(z) = PtW’)‘*ﬁ{h(x) for q.e. z € E. Hence, PSWA ’Llh( ) = PtWA ’Llh( )
for all z € E and t,s > 0. Letting s — 0, we have h(x) = PtWA ”lh(z)
for all z € FE, because of the boundedness and fine continuity of A under
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and sup, s BY [eA%"] < sup,ep BZ [0 ] = sup, e p e PAc () <

Ce®% under A\2(fz3) < 0. Thus, A2(z}) <0 yields

h(z) = PN F(z) < PP h(e) = By [ZieA h(X,)]

=E, I:eA(t)eu(XO)_u(Xt)h(Xt)] ;

hence

he "(z) < P (he™)(z),

that is, e “h is a positive element of SH"?(Q). Therefore, (MP) does not
hold under A< () <0. O
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