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A RANDOM POINTWISE ERGODIC THEOREM WITH
HARDY FIELD WEIGHTS

BEN KRAUSE AND PAVEL ZORIN-KRANICH

Abstract. Let an be the random increasing sequence of natural
numbers which takes each value independently with probability

n−a, 0< a< 1/2, and let p(n) = n1+ε, 0< ε< 1. We prove that,

almost surely, for every measure-preserving system (X,T ) and

every f ∈ L1(X) the modulated, random averages

1

N

N∑
n=1

e
(
p(n)

)
T an(ω)f

converge to 0 pointwise almost everywhere.

1. Introduction

A sequence of integers {nk} ⊂ Z is said to be universally Lp-good if for every
measure-preserving system (X,μ,T ) and every f ∈ Lp(X) the subsequence
averages

A
{nk}
N f :=

1

N

N∑
k=1

Tnkf

converge pointwise almost everywhere. In this language, Birkhoff’s classical
pointwise ergodic theorem [Bir31] states that the full sequence of integers is
universally L1-good.

Obtaining pointwise convergence results for rougher, sparser sequences is
much more challenging. For instance, Bourgain’s Polynomial Ergodic Theo-
rem [Bou89] states that the sequence {P (n)}, P integer polynomial, is uni-
versally Lp-good for each p > 1. Note that {P (n)} are zero-Banach-density
subsequences of the integers; in fact, Bourgain used a probabilistic method
to find extremely sparse universally good sequences. From now on, {Xn} will
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denote a sequence of independent {0,1} valued random variables (on a prob-
ability space Ω) with expectations σn. The counting function an(ω) is the
smallest integer subject to the constraint

X1(ω) + · · ·+Xan(ω)(ω) = n.

Theorem 1.1 ([Bou88, Proposition 8.2]). Suppose

σn =
(log logn)Bp

n
, Bp >

1

p− 1
,1< p≤ 2.

Then, almost surely, {an} is universally Lp-good.

In the years to follow random sequences became a widely used model for
pointwise ergodic theorems. One indication at their amenability to analysis
is LaVictoire’s L1 random ergodic theorem.

Theorem 1.2 ([LaV09]). Suppose σn = n−a with 0 < a < 1/2. Then, al-
most surely, {an} is universally L1-good.

Here, by the strong law of large numbers, almost surely

an(ω)/n
1

1−a

converges to a non-zero number. For comparison, it is known that the se-
quences of dth powers, d > 1 integer, are universally L1 bad [BM07], [LaV11].

Random sequences have also been used as a model for multiple ergodic
averages. Frantzikinakis, Lesigne, and Wierdl recently showed the following.

Theorem 1.3 ([FLW12, Theorem 1.1]). Suppose σn = n−a, 0< a < 1/14.
Then, almost surely, (an)n has the following property: for every pair of mea-
sure preserving transformations T,S on a probability space X and any func-
tions f, g ∈ L∞(X) the averages

N∑
n=1

g
(
Snx

)
f
(
T anx

)
converge pointwise almost everywhere.

It is noted in their paper that the linear sequence of powers Sn can likely
be replaced by other deterministic sequences, but their method of proof did
not seem to allow this. In this article, we prove a related result in which
we are able to replace the linear sequence of powers by a sequence drawn
from a more general class at the cost of weakening the result in several other
respects. More precisely, with 0< ε< 1 arbitrary but fixed, suppose p :R→R

is a logarithmico-exponential function which satisfies

(1) the second-order difference relationship

p(x+ y+ z)− p(x+ y)− p(x+ z) + p(x) =O
(
xε−1yz

)
for x, y, z > 0 (“big-O” notation is recalled in the section on notation
below); and
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(2) for all a(x) ∈C ·Q[x], the set of real constant multiples of rational poly-

nomials, |a(x)−p(x)|
logx →∞.

Good examples of such functions are p(x) = x1+ε. We refer the reader to
[B+05] for a more complete discussion of logarithmico-exponential functions;
informally, these are all the functions one can get by combining real constants,
the variable x, and the symbols exp, log, ·, and + (e.g., x1/2 = exp(1/2 · logx)
and xπ/ log logx are both logarithmico-exponential).

Our main result is the following theorem.

Theorem 1.4. Suppose σn = n−a, 0< a < 1/2, and p is as above. Then,
almost surely, the following holds:

For each measure-preserving system (X,μ,T ) and each f ∈ L1(X) the av-
erages

1

N

N∑
n=1

e
(
p(n)

)
T an(ω)f

converge to zero pointwise almost everywhere (here and later e(t) := e2πit).

Pointwise ergodic theorems with exponential polynomial weights are col-
lectively known as Wiener–Wintner type theorems, see, for example, [Ass03]
for linear polynomials and [Les93] for general polynomials. If the random se-
quence {an} is replaced by the linear sequence {n} in Theorem 1.4, the result
follows from the Wiener–Wintner theorem for Hardy field functions due to
Eisner and the first author [EK15]. However, note that the full measure sets
in our result depend on the choice of p. It would be interesting to remove this
dependence. Also, the second order difference relation in the hypothesis of
Theorem 1.4 can likely be replaced by a polynomial growth assumption; this
would require an inductive application of van der Corput’s inequality.

The structure of this paper is as follows: In Section 2, we introduce a
few preliminary tools, discuss our proof strategy, and reduce our theorem to
proving Proposition 2.11; and in Section 3, we prove Proposition 2.11, thereby
completing the proof of Theorem 1.4.

2. Preliminaries

2.1. Notation and tools. With Xn, σn as above, we let Yn :=Xn − σn.
We will be dealing with sums of random variables, so we introduce the

following compact notation:

SN =

N∑
n=1

XN and SM,N =

N∑
n=M

Xn.

We also let

WN :=

N∑
n=1

σn,

so that WN grows as N1−a.
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We will make use of the modified Vinogradov notation. We use X � Y ,
or Y �X to denote the estimate X ≤ CY for an absolute constant C. If we
need C to depend on a parameter, we shall indicate this by subscripts, thus
for instance X �ω Y denotes the estimate X ≤ CωY for some Cω depending
on ω.

We also make use of big-O notation: we let O(Y ) denote a quantity that
is �Y , and similarly Oω(Y ) a quantity that is �ωY .

The main probabilistic input in our argument is the following special case
of Chernoff’s inequality.

Lemma 2.1 (See, e.g., [TV10]). Let {Xn}, {σn} be as above. There exists
an absolute constant c > 0 so that for each A> 0,

P
(
|SN −WN | ≥A

)
�max

{
exp

(
−c

A2

WN

)
, exp(−cA)

}
.

Consequently,

P

(
|SN −WN | ≥ 1

2
WN

)
� exp(−cWN )� exp

(
−cN1−a

)
.

This also implies the following version of the law of large numbers:

(2.2) SN/WN → 1 almost surely.

We will also need the Hilbert space van der Corput inequality.

Lemma 2.3 (See, e.g., [FLW12]). Let {vn} be a sequence in a Hilbert space
H and 1≤M ≤N . Then

(2.4)

∥∥∥∥∥
N∑

n=1

vn

∥∥∥∥∥
2

≤ 2
N

M

N∑
n=1

‖vn‖2 + 4
N

M

M∑
m=1

∣∣∣∣∣
N−m∑
n=1

〈vn+m, vn〉
∣∣∣∣∣.

2.2. Strategy. In proving his Random Ergodic theorem, LaVictoire showed
that on a set of full probability, Ω′ ⊂Ω, the maximal function

f �→ sup
N

1

N

N∑
n=1

T an(ω)|f |,

is weakly bounded on L1(X) [LaV09]. In particular, for ω ∈ Ω′ the set of
f ∈ L1(X) for which the averages

1

N

N∑
n=1

e
(
p(n)

)
T an(ω)f

tend to zero pointwise a.e. is closed in L1. Hence it will be enough to
prove pointwise convergence for f ∈ L∞(X). Now, as observed in [RW95],
for bounded functions it is enough to prove convergence along every lacunary
sequence �ρN= (�ρk, k ∈N), where ρ > 1 is taken from a countable sequence
converging to 1.
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We will fix some ρ > 1 throughout, and the averaging parameters N are
assumed to belong to �ρN unless mentioned otherwise.

We follow a similar plan to [FLW12]. We will prove Theorem 1.4 by showing
that almost surely, for every measure-preserving system (X,μ,T ) and every
f ∈ L∞(X), the following chain of asymptotic equivalences holds μ-almost
everywhere:

1

N

N∑
n=1

e
(
p(n)

)
T anf ≈ 1

SN

N∑
n=1

Xn(ω)e
(
p(Sn)

)
Tnf(2.5)

≈ 1

WN

N∑
n=1

Xn(ω)e
(
p(Sn)

)
Tnf(2.6)

≈ 1

WN

N∑
n=1

σne
(
p(Sn)

)
Tnf(2.7)

≈ f̄ · 1

WN

N∑
n=1

σne
(
p(Sn)

)
(2.8)

≈ f̄ · 1

N

N∑
n=1

e
(
p(n)

)
(2.9)

≈ 0.(2.10)

Here, the symbol ≈ means that the difference converges to 0 as N →∞ and

f̄ := limN
1
N

∑N
n=1 T

nf is the projection of f onto the invariant factor of T .
Let us now list the ingredients used to establish the above asymptotic

equivalences.

(2.5) holds because the right-hand side equals the left-hand side with N
replaced by SN .

(2.6) holds by (2.2).
(2.7) is the key to our argument. We isolate this crucial step in the following

Proposition 2.11. In the setting of Theorem 1.4, almost surely
the following holds: for each measure-preserving system (X,μ,T ), and
each f ∈ L2(X), the sequence∥∥∥∥∥ 1

WN

N∑
n=1

Yn(ω)e
(
p(Sn)

)
Tnf

∥∥∥∥∥
2

L2(X)

is summable over lacunary N , and in particular

1

WN

N∑
n=1

Yn(ω)e
(
p(Sn)

)
Tnf → 0 μ-a.e.
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(2.8) for averages with weights σn follows by the partial summation formula

1

WN

N∑
n=1

σnan =
NσN

WN
AN +

N−1∑
M=1

M(σM − σM+1)

WN
AM , AN =

1

N

N∑
n=1

an,

from the following result on unweighted averages with G= e ◦ p:

Lemma 2.12. Suppose 0 < a < 1. Then, almost surely, for every
measure-preserving system (X,μ,T ) and every f ∈ L1(X,μ) pointwise
μ-a.e. we have

1

N

N∑
n=1

G(Sn)T
nf ≈ f̄ · 1

N

N∑
n=1

G(Sn)

for every bounded function G :N→R as N →∞.

This is a slight abstraction from [FLW12, Lemma 2.2], where a
different function G was specified (but its special form not used in the
proof). For completeness, the proof is reproduced below.

(2.9) follows by applying the above steps in reverse order, with f = 1X ; and
(2.10) reduces to a statement about trigonometric sums, namely

1

N

N∑
n=1

e
(
p(n)

)
→ 0,

which was proved in [Bos94, Theorem 1.3].

Proof of Lemma 2.12. By the usual maximal ergodic theorem, for each
fixed ω the set of f for which asymptotic equivalence holds a.e. is closed
in L1(X). Since the equivalence is clear in the case f = f̄ and in view of the

splitting L2(X) = {f = f̄} ⊕ {Th− h,h ∈ L∞(X)}, it suffices to consider the
case when f = Th− h, h ∈ L∞, is a coboundary, so that in particular f̄ = 0.
Since f ∈ L∞ in this case, it suffices to obtain equivalence for N ∈ �ρN with
ρ > 1 fixed but arbitrary.

Summation by parts gives

1

N

N∑
n=1

G(Sn)T
n(h− Th) =O

(
‖G‖∞/N

)
+

1

N

N−1∑
n=1

(
G(Sn)−G(Sn+1)

)
Tnh.

The first summand is deterministic and converges to 0. The second summand
is μ-a.e. bounded by

2‖G‖∞‖h‖∞
1

N

N−1∑
n=1

Xn+1 ≤ 2‖G‖∞‖h‖∞
SN

N
,

and this converges to 0 almost surely in view of (2.2). �

With this reduction complete, we now turn to the proof of Proposition 2.11.
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3. Proof of Proposition 2.11

Throughout this section, we will view 0 < δ � 1 as a (small) float-
ing parameter, whose precise value will be fixed at the end of the proof;
0< ν = ν(δ) =O(δ) will be used to denote (possibly different) parameters (all
of which grow linearly in δ); 0< κ=O(δ) will be used similarly.

We begin with a criterion that guarantees that a bounded sequence {cn} is
a good sequence of weights for a pointwise ergodic theorem along a lacunary
sequence.

Lemma 3.1. Let 0< a< b < 1 and fix ρ > 1. Let {cn} be a bounded sequence
such that the following holds:

N∑
n=1

|cn|�N1−a, N ∈
⌊
ρN

⌋
, and(3.2)

∑
N∈�ρN�

N2a−1−b
Nb∑
m=1

∣∣∣∣∣
N−m∑

n=N1−δ

cn+mc̄n

∣∣∣∣∣<∞.(3.3)

Then for every measure-preserving system (X,μ,T ) and f ∈ L2(X) we have

∑
N∈�ρN�

∥∥∥∥∥ 1

N1−a

N∑
n=1

cnT
nf

∥∥∥∥∥
2

L2(X)

<∞.

Proof. Note that (3.2) with N ∈ �ρN implies (3.2) with N ∈ N, and we
obtain ∥∥∥∥∥ 1

N1−a

N1−δ∑
n=1

cnT
nf

∥∥∥∥∥
L2(X)

≤ 1

N1−a

N1−δ∑
n=1

|cn|‖f‖L2(X)

� 1

N1−a
N (1−δ)(1−a)‖f‖L2(X)

=N−δ(1−a)‖f‖L2(X),

so we may replace the sum in the conclusion of the lemma by
∑N

n=N1−δ .
Using van der Corput inequality (2.4) on the Hilbert space H = L2(X)

with M =N b, estimate∥∥∥∥∥ 1

N1−a

N∑
n=N1−δ

cnT
nf

∥∥∥∥∥
2

L2(X)

(3.4)

�N2a−2 N

N b

N∑
n=N1−δ

∥∥cnTnf
∥∥2
L2(X)

+N2a−2 N

N b

Nb∑
m=1

∣∣∣∣∣
N−m∑

n=N1−δ

∫
X

cn+mTn+mf c̄nT
nf̄

∣∣∣∣∣.
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The first term in (3.4) is bounded by

N2a−2 N

N b

N∑
n=N1−δ

|cn|2‖f‖2L2(X),

and by the assumption (3.2) and boundedness of (cn) this is O(Na−b). By
precomposing with T−n, the second term in (3.4) is bounded by

N2a−1−b
Nb∑
m=1

∣∣∣∣∣
N−m∑

n=N1−δ

cn+mc̄n

∣∣∣∣∣∣∣〈Tmf, f
〉
L2(X)

∣∣,
and this is summable by the assumption (3.3). �

Proposition 3.5. Let p :R→R be a function such that

(3.6) p(x+ y+ z)− p(x+ y) = p(x+ z)− p(x) +O
(
xε−1yz

)
for x, y, z > 0. Let also 0< a< 1/2 and fix ρ > 1. Then there exists b ∈ (a,1/2)
such that, almost surely, the sequence cn = Yne(p(Sn)) satisfies (3.3).

Proof. By Fubini’s theorem, it suffices to show that the expectation

N2a−1−b
Nb∑
m=1

E

∣∣∣∣∣
N−m∑

n=N1−δ

Yn+me
(
p(Sn+m)

)
Yne

(
−p(Sn)

)∣∣∣∣∣︸ ︷︷ ︸
=:I(m)

is summable along the lacunary sequence N ∈ �ρN. By Cauchy–Schwarz, we
have

(3.7) I(m)2 ≤ E

∣∣∣∣∣
N−m∑

n=N1−δ

YnYn+me
(
p(Sn+m)− p(Sn)

)∣∣∣∣∣
2

.

Using the van der Corput inequality (2.4) with values in the Hilbert space
H = L2(Ω) and R=N c, 0< c < 1 to be chosen later, we obtain the estimate

I(m)2 ≤ I1(m)2 + I2(m)2 + I3(m)2

:=
N −m

R

N−m∑
n=N1−δ

∥∥YnYn+me
(
p(Sn+m)− p(Sn)

)∥∥2
L2(Ω)

+
N −m

R

∣∣∣∣∣E
N−2m∑
n=N1−δ

Yn+2mYn+mYn+mYn

· e
(
p(Sn+2m)− p(Sn+m)− p(Sn+m) + p(Sn)

)∣∣∣∣∣
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+
N −m

R

R∑
r=1,r �=m

∣∣∣∣∣E
N−m−r∑
n=N1−δ

Yn+rYn+r+mYnYn+m

· e
(
p(Sn+r+m)− p(Sn+r)− p(Sn+m) + p(Sn)

)∣∣∣∣∣.
The task is now to show that, uniformly in m≤N b, we have

Ij(m)2 �N2−4a−κ for each j = 1,2,3,

for some κ= κ(δ, a, b, c)> 0.
To this end, we estimate the first term, I1(m)2, by

N

R

N−m∑
n=N1−δ

‖Yn‖2L2(Ω)‖Yn+m‖2L2(Ω)

by independence; this is bounded by

N

R

N−m∑
n=N1−δ

σnσn+m �N1−cN1−2a <N2−4a−κ

provided we take 2a < c < 1.
We next turn to I2(m)2, which contributes at most

N

R
E

N−2m∑
n=N1−δ

|Yn+mYn+2mYnYn+m|,

and by independence this is bounded by

N

R

N−2m∑
n=N1−δ

E|Yn+m|2 ·E|Yn+2m| ·E|Yn|�N1−c
N−2m∑
n=N1−δ

σnσn+mσn+2m

�N1−cN1−3a+ν

�N2−4a−κ,

provided c > 2a (from above) and ν = ν(δ) > 0 is taken sufficiently small.
(ν arises from the possibility that 3a > 1, in which case we may take e.g.
ν = (3a− 1)δ.)

The contribution of this term is also acceptable.
It remains to estimate I3(m)2, which we write in the form

I3(m)2 =
N −m

R

R∑
r=1,r �=m

∣∣∣∣∣E
N−m−r∑
n=N1−δ

Yn+rYn+r+mYnYn+m

· e
(
p(Sn+s+t)− p(Sn+t)− p(Sn+s) + p(Sn)

)∣∣∣∣∣,
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with s = min(r,m) and t = max(r,m). To recover independence, we apply
(3.6) with

x= Sn+t−1, y =Xn+t, z = Sn+t+1,n+t+s,

to the first two summands in the argument of e. This gives the estimate

N −m

R

R∑
r=1,r �=m

∣∣∣∣∣E
N−m−r∑
n=N1−δ

Yn+rYn+r+mYnYn+m

· e
(
p(Sn+t−1 + Sn+t+1,n+t+s)− p(Sn+t−1)− p(Sn+s) + p(Sn)

)∣∣∣∣∣
+

N −m

R

R∑
r=1,r �=m

E

N−m−r∑
n=N1−δ

∣∣Yn+rYn+r+mYnYn+m

·min
(
O
(
Sε−1
n+t−1Xn+tSn+t+1,n+t+s

)
,1
)∣∣.

The main feature of this splitting is that the exponential in the first term does
not depend on Xn+t, so Yn+t is independent from all other terms. Therefore,
the first term vanishes identically. The second term is estimated by

N

R

R∑
r=1,r �=m

N−m−r∑
n=N1−δ

E
(
|Yn+rYn+r+mYnYn+m| ·min

(
Sε−1
n+t−1Sn+t+1,n+t+s,1

))

≤ N

R

R∑
r=1,r �=m

N−m−r∑
n=N1−δ

E

(
|Yn+rYn+r+mYnYn+m|

·min
(
Sε−1
n+t−1(Sn+t+1,n+t+s−1 + 1),1

))
.

By Lemma 2.1, this is bounded by

N

R

R∑
r=1,r �=m

N−m−r∑
n=N1−δ

E

(
|Yn+rYn+r+mYnYn+m|

·min
(
W ε−1

n+t−1(Sn+t+1,n+t+s−1 + 1),1En+t−1

))
,

where En is an exceptional set of measure � exp(−cn1−a). At this point, we
estimate the minimum by a sum. We consider first the non-exceptional part.
All remaining random variables are independent, so we get the estimate

N

R

R∑
r=1,r �=m

N−m−r∑
n=N1−δ

σn+rσn+r+mσnσn+m(n+ t− 1)(1−a)(ε−1)

(
n+t+s−1∑
j=n+t+1

σj + 1

)

≤ N

R

R∑
r=1,r �=m

N−m−r∑
n=N1−δ

n−4an(1−a)(ε−1)
(
n−aN b + 1

)
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� N

R

R∑
r=1,r �=m

N b
N−m−r∑
n=N1−δ

n−4an(1−a)(ε−1)n−a

�N2−4a+(b−a+ν)+(1−a)(ε−1)

�N2−4a−κ,

provided that b is taken sufficiently close to a and δ is sufficiently small, since
(1− a)(ε− 1)< 0.

Finally, for the exceptional part we have superpolynomial decay in N . �

Thus, we have verified that the assumption (3.3) of Lemma 3.1 holds almost
surely in the setting of Proposition 2.11. The missing assumption (3.2) also
holds almost surely because

N∑
n=1

|Yn| ≤ SN +WN

and in view of (2.2). This completes the proof of Proposition 2.11 and hence
of Theorem 1.4.
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