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NOTES ON THE LINEARITY DEFECT AND APPLICATIONS

HOP D. NGUYEN

Abstract. The linearity defect, introduced by Herzog and Iyen-
gar, is a numerical measure for the complexity of minimal free

resolutions. Employing a characterization of the linearity defect

due to Şega, we study the behavior of linearity defect along short

exact sequences. We point out two classes of short exact se-
quences involving Koszul modules, along which linearity defect

behaves nicely. We also generalize the notion of Koszul filtrations

from the graded case to the local setting. Among the applica-
tions, we prove that if R→ S is a surjection of noetherian local

rings such that S is a Koszul R-module, and N is a finitely gen-
erated S-module, then the linearity defect of N as an R-module

is the same as its linearity defect as an S-module. In particular,

we confirm that specializations of absolutely Koszul algebras are

again absolutely Koszul, answering positively a question due to
Conca, Iyengar, Nguyen and Römer.

1. Introduction

The linearity defect, introduced by Herzog and Iyengar [19], measures how
far a module is from having a linear free resolution. The notion was inspired
by work of Eisenbud, Fløystad and Schreyer [13] on free resolutions over the
exterior algebra. Let us recall what this invariant is. Throughout, we will only
work with a noetherian local ring (R,m, k) with the unique maximal ideal m
and the residue field k =R/m, but with appropriate changes what we say will
also cover the graded situation where (R,m, k) is a standard graded k-algebra
with the graded maximal ideal m. Sometimes, we omit k and write simply
(R,m). Let M denote a finitely generated R-module. Let the minimal free
resolution of M over R be

F : · · · −→ Fi
∂−−→ Fi−1

∂−−→ · · · −→ F1
∂−−→ F0 −→ 0.
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By definition, the differential maps Fi into mFi−1. Then F has a filtration
G.F given by (GnF )i =mn−iFi for all n, i (where mj =R if j ≤ 0), for which
the map (

GnF
)
i
=mn−iFi −→

(
GnF

)
i−1

=mn−i+1Fi−1

is induced by the differential ∂. The associated graded complex induced by
the filtration G.F , denoted by linRF , is called the linear part of F . We define
the linearity defect of M as the number

ldRM = sup
{
i :Hi

(
linR F

)
�= 0

}
.

By convention, the trivial module is set to have linearity defect 0. We say
that M is a Koszul module if ldRM = 0. Furthermore, R is called a Koszul
ring if ldR k = 0. In the graded case, R is a Koszul algebra (i.e., k has a
linear free resolution as an R-module) if and only if R is a Koszul ring, or
equivalently, if and only if ldR k <∞ [19]. This is reminiscent of the result due
to Avramov–Eisenbud and Avramov–Peeva [4], [6] saying that R is a Koszul
algebra if and only if k has finite Castelnuovo–Mumford regularity regR k. It
is not clear whether the analogous statement for local rings, that ldR k <∞
implies R is Koszul, holds true; see [2], [30] for the recent progress on this
question, and [1], [13], [25], [28], [32], [33] for some other directions of study.
For recent surveys related to free resolutions and Koszul algebras, we refer to
[8] and [27].

The linearity defect has some connections with the other invariants coming
from minimal free resolutions. It is clear from the definition that ldRM ≤
pdRM , where pdRM denotes the projective dimension of M . Moreover,
in the graded case, if ldRM is finite, then so is the Castelnuovo–Mumford
regularity regRM ([19, Proposition 1.12]). Nevertheless, compared with the
projective dimension or the regularity, the linearity defect behaves much worse
along short exact sequences.

One of the main purposes of this paper is to analyze the behavior of linearity
defect along short exact sequences. In commutative algebra, one usually uses
short exact sequences to bound or compute numerical invariants of ideals
and modules. Except for the componentwise linear modules (in the sense of
Herzog and Hibi [17]) which have linearity defect 0, not much is known about
modules with larger linearity defect, even if the base ring is a polynomial
ring. Looking from these perspectives, we hope that the main theorems of
this paper (Proposition 2.5, Theorems 3.1 and 3.5) would be useful for future
research on such modules.

Şega [30, Theorem 2.2] proved the following characterization of the linearity
defect. Denoting by τs the canonical surjection R/ms+1 −→ R/ms for each
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s≥ 0, then

ldRM = inf

⎧⎨
⎩t : TorRi (R/ms+1,M)

TorRi (τs,M)−−−−−−−−→TorRi (R/ms,M)

is the zero map for all i > t and all s≥ 0

⎫⎬
⎭ .

Using Şega’s theorem, in Section 2, we establish general bounds on linearity
defects of modules in a short exact sequence. The main technical result of
the section as well as of this paper is Proposition 2.5. The bounds in Propo-
sition 2.5 involve correcting terms that might appear unnatural at first sight,
but they are not dispensable (see Example 2.9).

In Section 3, we describe two kinds of short exact sequence involving Koszul
modules along which the linearity defect behaves well (Theorems 3.1 and 3.5).
The main results of Section 3 will be employed to study specializations of ab-
solutely Koszul rings (Corollary 5.6), modules with linear quotients (Propo-
sition 5.11), and intersection of three linear ideals (Theorem 5.14).

An efficient method to establish Koszulness of graded algebras is construct-
ing Koszul filtrations [11]; see also, for example, [7], [10], [18]. In Section 4,
we generalize this method from the graded case to the local setting.

Section 5 is devoted to applications of the main technical results. In the
first part of this section, we prove the following (at least to us) unexpected
result.

Theorem 5.2. Let (R,m)→ (S,n) be a surjection of local rings such that
ldR S = 0. Then for any finitely generated S-module N , there is an equality
ldRN = ldS N .

Following [21], R is said to be absolutely Koszul if every finitely gener-
ated R-module has a finite linearity defect. For instance, if Q is a complete
intersection of quadrics and Q→ R is a Golod surjective map of graded k-
algebras (i.e., either Q= R or regQR = 1), then R is absolutely Koszul (see
[19, Proposition 5.8, Theorem 5.9]). The reader may consult [9], [21] for more
examples and questions concerning absolutely Koszul rings. As a corollary of
Theorem 5.2, we show that absolutely Koszul algebras are stable under spe-
cialization. This answers in the positive a question raised in [9, Remark 3.10].

In the second part of Section 5, we introduce a local version of modules
with linear quotients [20], and prove that it enjoys the same property as in the
graded case. This is a simple application of Theorem 3.1 (strictly speaking,
we only need a special case proved in [16, Proposition 5.3]). In contrast to
the belief expressed in [5, page 461, lines 6–8] that the filtration method
neither “covers the local situation, nor gives information on the homological
properties of finite R-modules other than k”, we recover (partly) the results
from [5] using filtration arguments (see Proposition 5.12). On the other hand,
the method of [5] does give stronger statements and the reader is encouraged
to consult that paper.
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In the last part of Section 5, we give another application of the main the-
orems of Section 3. We prove that any intersection of three linear ideals has
linearity defect zero (Theorem 5.14). Note that Francisco and Van Tuyl [15,
Theorem 4.3] prove a similar statement but their method only works for mono-
mial ideals and does not cover our situation. We hope to show in future work
how the theory of linearity defect may yield interesting information on com-
ponentwise linear ideals, for example, via recovering the result of Francisco
and Van Tuyl.

2. General bounds

Notation and background. Let (S,n) be a standard graded algebra over
a field k. Let N be a finitely generated graded S-module. The Castelnuovo–
Mumford regularity of N over S is

regS N =max
{
j − i : TorSi (k,N)j �= 0

}
.

We say that N has a linear resolution over S if there exists some integer d
such that TorSi (k,N)j = 0 for all i, j such that j − i �= d. In that case, clearly
regS N = d, and we also say that N has d-linear resolution over S.

We say that S is a Koszul algebra, if k = S/n has 0-linear resolution over S.
The standard graded polynomial ring k[x1, . . . , xn] (where n≥ 1) is a Koszul
algebra: k is resolved by the Koszul complex, which is a linear resolution.

Let M be a finitely generated (graded) R-module, where (R,m) is our local
ring (or standard graded k-algebra). The associated graded module of M with
respect to the m-adic filtration is

grmM =

∞⊕
i=0

miM

mi+1M
.

It is a graded module over the associated graded ring grmR, with generators
in degree 0. Recall that Koszul modules are related to linear free resolutions
by the following result; we refer the reader to [23, Theorem 2.5] and [19,
Proposition 1.5].

Proposition 2.1. Let M �= 0 be a finitely generated R-module. The fol-
lowing are equivalent:

(i) M is a Koszul R-module, that is, ldRM = 0.
(ii) The graded grmR-module grmM has 0-linear free resolution.

Definition 2.2. We say that R is a Koszul ring if the residue field k =R/m
is a Koszul module.

For example, any regular local ring is Koszul, since grmR is isomorphic to
a standard graded polynomial ring over k.
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For the convenience of our arguments, sometimes we work with the invari-
ant

gl ldR= sup
{
ldRM :M is a finitely generated (graded) R-module

}
,

which is called the global linearity defect of R.

Lemma 2.3 (Conca, Iyengar, Nguyen and Römer [9, Corollary 6.4]). Let
f �= 0 be a quadratic form in the polynomial ring k[x1, . . . , xn] (where n≥ 1).
Then gl ld(k[x1, . . . , xn]/(f)) = n− 1.

For more detailed discussions of the theory of free resolutions, we refer to
Avramov’s monograph [3] and the book of Peeva [26].

Bounding the linearity defect. The starting point for our investigation is
the following result due to Şega. It was stated for the local case but taking
advantage of the grading, the proof works equally well in the graded case.

Theorem 2.4 (Şega [30, Theorem 2.2]). For any non-trivial finitely gen-
erated R-module M , the following are equivalent:

(i) ldRM ≤ t;

(ii) for all i > t and all s ≥ 0, the morphism TorRi (R/ms+1,M) −→
TorRi (R/ms,M) induced by the canonical surjection R/ms+1 → R/ms is
zero.

The main result of this section is the following proposition.

Proposition 2.5. Let 0 −→ M
φ−−→ P

λ−−→ N −→ 0 be a short exact se-
quence of non-trivial finitely generated R-modules. Define the (possibly infi-
nite) numbers:

dM = inf

{
m≥ 0 :

the connecting map TorRi+1(k,N)−→TorRi (k,M)

is zero for all i≥m

}
,

dP = inf

⎧⎨
⎩m≥ 0 : the natural map TorRi (k,M)

TorRi (k,φ)−−−−−−→TorRi (k,P )

is zero for all i≥m

⎫⎬
⎭ ,

dN = inf

⎧⎨
⎩m≥ 0 : the natural map TorRi (k,P )

TorRi (k,λ)−−−−−−→TorRi (k,N)

is zero for all i≥m

⎫⎬
⎭ .

Then there are inequalities

(i) ldRN ≤max{min{dP , dM + 1}, ldR P, ldRM + 1},
(ii) ldR P ≤max{min{dM , dN}, ldRM, ldRN},
(iii) ldRM ≤max{min{dN − 1, dP }, ldRN − 1, ldR P}.

Several comments are in order.
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Remark 2.6. (i) In general, we have the following inequalities:

dM ≤min{pdRM + 1,pdRN},
dP ≤min{pdRM + 1,pdR P + 1},
dN ≤min{pdR P + 1,pdRN + 1}.

Hence if P is a free module, then dP , dN ≤ 1. Similar things happen if M or
N is a free module.

(ii) Since TorRi (k,M) −→ TorRi (k,P ) −→ TorRi (k,N) −→ TorRi−1(k,M) is
an exact sequence for all i, we also have other interpretations for the numbers
dM , dN , dP . For example,

dM = inf

⎧⎨
⎩m≥ 0 : the map TorRi (k,M)

TorRi (k,φ)−−−−−−→TorRi (k,P )

is injective for all i≥m

⎫⎬
⎭ .

Therefore, the two numbers dP and dM are not simultaneously finite unless
pdRM <∞. Similar statements hold for the pairs dP and dN , dM and dN .

(iii) The above interpretation of dM indicates that the first inequality
of (2.5) relates ldRN with asymptotic properties of the map

TorRi (k,M)
TorRi (k,φ)−−−−−−→ TorRi (k,P ). Similar comments apply to the inequal-

ities for linearity defects of M and P .

Example 2.7. In general, none of the numbers dM , dN , dP is finite, even
if R is Koszul and M,N,P are Koszul modules. For example, take R =
k[x, y]/(xy). Consider the exact sequence with natural maps

0−→
(
x3, y2

) φ−−→
(
x2, y2

) λ−−→ (x2, y2)

(x3, y2)
−→ 0.

The (2-periodic) minimal free resolution of k over R is given by

F : · · · −→R2

(
y 0
0 x

)
−−−−→R2

(
x 0
0 y

)
−−−−→R2

(
y 0
0 x

)
−−−−→R2 (x y )−−−→R−→ 0.

Let P = (x2, y2), we want to compute TorRi (k,P ). Note that P ⊗RFi = P ⊕P
for i≥ 1. Fix i≥ 2, the map P ⊗R F2i −→ P ⊗R F2i−1 is given by

(a, b) 	→ (ya,xb)

and the map P ⊗R F2i+1 −→ P ⊗R F2i is given by

(u, v) 	→ (xu, yv).

Let ∂ be the differential of P ⊗R F , then

Ker∂2i =
(
x2

)
⊕
(
y2
)
,

Im∂2i+1 =
(
x3

)
⊕
(
y3
)
.
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Therefore, TorR2i(k,P ) ∼= ((x2)/(x3)) ⊕ ((y2)/(y3)). Similarly, setting M =

(x3, y2), then it holds that TorR2i(k,M)∼= ((x3)/(x4))⊕ ((y2)/(y3)). In partic-
ular,

Ker
(
TorR2i(k,φ)

)
=
((
x3

)
/
(
x4

))
,

Im
(
TorR2i(k,φ)

)
=
((
y2
)
/
(
y3
))
.

This implies that dP =∞. Denote N = P/M , then from the exact sequence
of Tor, we also infer that dM = dN = ∞. Note that N ∼= R/(x, y) = k, so
ldRN = 0. One can check that M,P are Koszul modules: By Lemma 2.3,
ldRR/U ≤ 1 for any ideal U ⊆m. Hence ldRU = 0.

Now we are going to prove Proposition 2.5. First, we have several simple
but very useful observations.

Lemma 2.8. Let M
φ−−→ P be an R-linear map between finitely generated

R-modules.

(i) If for certain number � ≥ ldRM + 1, the map TorR�−1(k,M)
TorR�−1(k,φ)−−−−−−−−→

TorR�−1(k,P ) is injective, then the map

TorRi
(
R/ms,M

) TorRi (R/ms,φ)−−−−−−−−−→TorRi
(
R/ms, P

)
is injective for all i≥ � and all s≥ 0.

(ii) If for certain number � ≥ ldR P + 1, the map TorR�−1(k,M)
TorR�−1(k,φ)−−−−−−−−→

TorR�−1(k,P ) is zero, then the map

TorRi
(
R/ms,M

) TorRi (R/ms,φ)−−−−−−−−−→TorRi
(
R/ms, P

)
is zero for all i≥ � and all s≥ 0.

Proof. Consider the following commutative diagram, where ρ,ψi−1 are in-
duced by φ, and αi

M , αi
P are connecting maps:

TorRi
(
R/ms,M

)
ρ

αi
M

TorRi−1

(
ms/ms+1,M

)
ψi−1

TorRi
(
R/ms, P

) αi
P

TorRi−1

(
ms/ms+1, P

)
.

(i) By induction on i and using the above diagram for s= 1, we see that

TorRi (k,M)
TorRi (k,φ)−−−−−−→ TorRi (k,P ) is injective for all i ≥ � − 1. Note that as

i ≥ ldRM + 1, by Theorem 2.4, the map αi
M is injective. Next, let s ≥ 0

be arbitrary, again using the diagram and the fact that ms/ms+1 is either 0
(equivalently, ms = 0) or isomorphic to a direct sum of copies of k, we deduce

that ρ=TorRi (R/ms, φ) is also injective.
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(ii) Similarly, by induction on i and using the diagram for s = 1,

TorRi (k,M)
TorRi (k,φ)−−−−−−→ TorRi (k,P ) is the zero map for all i ≥ � − 1. Note

that since i≥ ldR P + 1, αi
P is injective. Then for arbitrary s≥ 0, using the

diagram, we see that ρ=TorRi (R/ms, φ) is the zero map as well. �

Proof of Proposition 2.5. Below, we omit the superscript R in the notation
of Tor modules for simplicity.

(i) For the proof of the inequality ldRN ≤max{dP , ldR P, ldRM + 1}, we
may assume that � =max{dP , ldR P, ldRM + 1} <∞. For each i > �, s ≥ 0,
from the exact sequence

0−→ms/ms+1 −→R/ms+1 −→R/ms −→ 0,

we get the following commutative diagram with exact rows and columns

Tori
(
R/ms,M

) αi
M

Tori−1

(
ms/ms+1,M

)
ψi−1

Tori−1

(
R/ms+1,M

)
κ

0 Tori
(
R/ms, P

)
π

αi
P

Tori−1

(
ms/ms+1, P

)
π

Tori−1

(
R/ms+1, P

)

Tori
(
R/ms,N

)
γ

αi
N

Tori−1

(
ms/ms+1,N

)
γ

0 Tori−1

(
R/ms,M

) αi−1
M

Tori−2

(
ms/ms+1,M

)
.

By Şega’s Theorem 2.4 and the fact that i ≥ max{ldR P + 1, ldRM + 2},
we have αi

P , α
i−1
M are injective. Note that ms/ms+1 is either zero if ms = 0

or otherwise a direct sum of copies of k, therefore by hypothesis, we have
ψi−1 = 0. Now we need to show that αi

N is also injective. This is a simple
diagram chasing. Hence, ldRN ≤ �.

Next, we want to show that ldRN ≤ max{dM + 1, ldR P, ldRM + 1}.
We lose nothing by assuming that the right-hand side is finite. Take i ≥
max{dM + 1, ldR P, ldRM + 1}+ 1. Look at the exact sequence

Tori−1(k,N)−→Tori−2(k,M)
Tori−2(k,φ)−−−−−−−−→Tori−2(k,P ).

Since i− 2 ≥ dM , the first map is zero. Hence, the second map is injective.
Now i− 1≥ ldRM + 1, hence by Lemma 2.8(i), κ is injective. Therefore by
diagram chasing, again ldRN < i.

(ii), (iii): The proofs are similar to part (i). �

We give various instances to show that none of the inequalities of Proposi-
tion 2.5 is true without the correcting terms dM , dN and dP . In fact, we will
exhibit examples of exact sequences 0→M → P →N → 0 where one of the
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modules has infinite linearity defect and the other two have small linearity
defect.

Example 2.9. Let R= k[x, y, z, t]/((x, y)2+(z, t)2), m its graded maximal
ideal. Observe that m3 = 0. By result of Roos [29, Theorem 2.4], there
exists a graded R-module with infinite linearity defect. Explicitly, by [29,
Formula (5.2)] and [19, Proposition 1.8], the cokernel of the map R(−1)3 −→
R2 given by the matrix (

y x+ 3t t
z −t x+ t

)
is such a module. Let F = R(−1)3,G = R2,M = Ker(F → G) and N =
Im(F → G). Note that F is the projective cover of N . Since N ⊆ mG, we
have m2N = 0 (recall that m3 = 0). Clearly ldRN = ldRM =∞.

(i) The R-module N is an extension of Koszul R-modules. Indeed, we have
an exact sequence

0−→mN −→N −→N/mN −→ 0.

Now mN and N/mN are both annihilated by m, so they are Koszul modules.
So there is an extension of Koszul R-modules which has infinite linearity
defect.

(ii) Since M ⊆mF , we also have an exact sequence

0−→M −→mF −→mN −→ 0.

Now mF is a Koszul module and mN is also Koszul as noted above. So the
kernel of a surjection of Koszul modules may have infinite linearity defect.

(iii) Now N is an (R/m2)-module so we can take the beginning of the
minimal graded (R/m2)-free resolution of N , say (without grading notation)

0−→D −→
(
R/m2

)r −→N −→ 0.

So D is annihilated by m, hence D is a Koszul R-module. Also ldR(R/m2) = 1
but ldRN =∞.

We do not know if there exists a short exact sequence in which the first
two modules are Koszul but the cokernel has infinite linearity defect.

We record a few consequences of Proposition 2.5. Interestingly, we can
extract information about the linearity defect from any (minimal or not) free
resolution of a module: If P. is a free resolution of N , then ldRN = r ≥ 1 if
and only if r is the minimal number i such that Ωi(N) = Im(Pi −→ Pi−1) is
Koszul. If N is a Koszul module then so is Ωi(N) for every i≥ 1.

Corollary 2.10. Let 0−→M
φ−−→ P

λ−−→N −→ 0 be an exact sequence of
non-trivial finitely generated R-modules. Then

(i) ldRN ≤min{max{pdR P + 1, ldRM + 1},max{ldR P,pdRM + 1}},
(ii) ldR P ≤min{max{pdRM + 1, ldRN},max{ldRM,pdRN}},
(iii) ldRM ≤min{max{ldRN − 1,pdR P},max{pdRN, ldR P}}.
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In particular, we have:

(a) If P is free, then ldRM = ldRN−1 if ldRN ≥ 1 and ldRM = 0 otherwise.
(b) If one of the modules has finite projective dimension, then the other two

have both finite or both infinite linearity defects.

Proof. For (i): using Proposition 2.5, we get

ldRN ≤max{dP , ldR P, ldRM + 1}.
Since dP ≤ max{pdR P + 1,pdRM + 1} by Remark 2.6(i), and ldRM ≤
pdRM , the desired inequalities follow. Similar arguments work for (ii)
and (iii).

For (a): since pdR P = 0, from (i) and (iii), we get the inequalities

ldRN ≤ ldRM + 1,

ldRM ≤max{ldRN − 1,0}.
This yields the conclusion of (a). The remaining assertion is a consequence of
(i)–(iii). �

3. Short exact sequences involving Koszul modules

We describe the behavior of linearity defect for some short exact sequences
involving Koszul modules without any assumption on the ground ring. First,
using results in Section 2, we can control the linearity defect for certain “pure”
extensions of a Koszul module. The first main result of this section is as
follows.

Theorem 3.1. Let 0−→M ′ φ′

−−→ P ′ λ′
−−→N ′ −→ 0 be a short exact sequence

of non-zero finitely generated R-modules where

(i) M ′ is a Koszul module;
(ii) M ′ ∩mP ′ =mM ′.

Then there are inequalities ldR P ′ ≤ ldRN ′ ≤max{ldR P ′,1}. In particular,
ldRN ′ = ldR P ′ if ldR P ′ ≥ 1 and ldRN ′ ≤ 1 if ldR P ′ = 0.

Moreover (see Green and Mart́ınez-Villa [16, Propositions 5.2 and 5.3]),
ldRN ′ = 0 if and only if P ′ is a Koszul module and M ′ ∩msP ′ = msM ′ for
all s≥ 1.

Proof. We will show that dM ′ = 0, or equivalently, TorRi (k,M
′)

TorRi (k,φ′)−−−−−−−→
TorRi (k,P

′) is injective for each i≥ 0.
This is clear for i= 0 thanks to the equality M ′ ∩mP ′ =mM ′. Now using

Lemma 2.8(i) where ldRM ′ = 0, �= 1, we get the desired claim.
Next, using Proposition 2.5 where dM ′ = 0 and ldRM ′ = 0, we obtain that

ldRN ′ ≤max
{
1, ldR P ′},

and that
ldR P ′ ≤ ldRN ′.
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The first part of the result is already proved. Next, we give a new proof for
the result of Green and Mart́ınez-Villa.

Now assume that P ′ is a Koszul module and M ′ ∩ msP ′ = msM ′ for all
s≥ 1. We show that ldRN ′ = 0. Consider the diagram with obvious connect-
ing and induced maps

0 Tor1
(
R/ms,M ′) αM′

Tor0
(
ms/ms+1,M ′)

ψ

Tor0
(
R/ms+1,M ′)

κ

0 Tor1
(
R/ms, P ′)

π

αP ′
Tor0

(
ms/ms+1, P ′) Tor0

(
R/ms+1, P ′)

Tor1
(
R/ms,N ′)

γ

αN′
Tor0

(
ms/ms+1,N ′)

Tor0
(
R/ms,M ′) 0.

We know that ldRN ′ ≤ 1 by the preceding part, so by Theorem 2.4, it is
enough to show that Tor1(R/ms,N ′) −→ Tor0(m

s/ms+1,N ′) is injective for
all s ≥ 1. Clearly Imγ = (M ′ ∩ msP ′)/msM ′ = 0, so π is surjective. Ac-
cording to the hypothesis, ψ is injective. By the snake lemma, KerαP ′ −→
KerαN ′ −→ CokerαM ′ −→ CokerαP ′ is exact. But KerαP ′ = 0 = Kerκ,
hence KerαN ′ = 0.

Finally, assume that ldRN ′ = 0, then by the first part, ldR P ′ ≤ ldRN ′ = 0.
Assume that on the contrary, M ′/ms+1M ′ −→ P ′/ms+1P ′ is not injective
for some s ≥ 1. Choose s minimal with this property, we will show that
ldRN ′ ≥ 1. Again in the above diagram, Imγ = 0 by the choice of s. Us-
ing the snake lemma, we get KerαN ′ ∼= Kerκ �= 0. Therefore ldRN ′ ≥ 1, a
contradiction. The proof of the theorem is completed. �

Remark 3.2. (i) The conclusion of the theorem is not true if M ′ is not a
Koszul module or M ′ ∩mP ′ �=mM ′. First, consider the exact sequence

0−→
(
x2, y2

)
−→

(
x2, y2, xz

)
−→ (x2, y2, xz)

(x2, y2)
−→ 0

over R = k[x, y, z]. Denote by M ′, P ′,N ′ the modules (x2, y2), (x2, y2, xz),
(x2, y2, xz)/(x2, y2). Then N ′ ∼= R/(x), so ldRN ′ = 0. It is clear that M ′ ∩
mP ′ =mM ′, M ′ is not Koszul, and ldR P ′ = 1> ldRN ′.

Second, consider the exact sequence

0−→D −→
(
R/m2

)r −→N −→ 0
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in Example 2.9(iii). Note that D is Koszul, and D ⊆ m(R/m2)r, hence the
condition (ii) of Theorem 3.1 is not satisfied. In this case, we also have
ldRN =∞>max{1, ldR(R/m2)r}= 1.

(ii) In the situation of Theorem 3.1, it may happen that ldRP ′ = 0 but
ldRN ′ = 1. Consider the exact sequence of (R=) k[x, y]-modules

0−→
(
x2

)
−→

(
x2, y

)
−→

(
x2, y

)
/
(
x2

)
−→ 0.

Clearly ldR(x
2) = ldR(x

2, y) = 0, while N ′ = (x2, y)/(x2) ∼= R/(x2), so
ldRN ′ = 1.

Remark 3.3. The fact that TorR
′

i (k,M ′)
TorRi (k,φ′)−−−−−−−→TorR

′

i (k,P ′) is always
injective for all i≥ 0 was shown by Mart́ınez-Villa and Zacharia [23, Proposi-
tion 3.2] by different means. Note that therein, it is not necessary to assume
that R is a Koszul ring. A similar remark applies when comparing Corol-
lary 3.4 below with [23, Corollary 3.3].

We also obtain interesting information about behavior of projective dimen-
sion and regularity for sequences satisfying the hypothesis of Theorem 3.1.

Corollary 3.4 (See [23, Corollary 3.3]). With the hypotheses of Theo-
rem 3.1, there is an equality

pdR P ′ =max{pdRM ′,pdRN ′}.
If R is a standard graded algebra and M ′, P ′,N ′ are finitely generated

graded modules, then

regR P ′ =max
{
regRM ′, regRN ′}.

Proof. For each i≥ 0, we have an exact sequence

0−→TorRi
(
k,M ′)−→TorRi

(
k,P ′)−→TorRi

(
k,N ′)−→ 0.

This clearly implies our desired equalities. �
We also have the control over linearity defect for “small inclusion” in a

Koszul module. The next result demonstrates that if N is any finitely gen-
erated R-module and P is any Koszul module which surjects onto N in such
a way that M =Ker(P →N)⊆mP , the module M behaves as if it was the
first syzygy module of N . See Corollary 3.7 for another result of this type.

Theorem 3.5. Let 0−→M
φ−−→ P

λ−−→N −→ 0 be a short exact sequence
of non-zero finitely generated R-modules where

(i) P is a Koszul module;
(ii) M ⊆mP .

Then there are inequalities ldRN − 1≤ ldRM ≤max{0, ldRN − 1}. In par-
ticular, ldRN = ldRM + 1 if ldRM ≥ 1 and ldRN ≤ 1 if ldRM = 0.

Furthermore, ldRN = 0 if and only if M is a Koszul module and M ∩
ms+1P =msM for all s≥ 0.
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Remark 3.6. The conclusion of the above result is false in general if P is
not Koszul or M �mP .

(i) First, look at the sequence

0−→D −→
(
R/m2

)r −→N −→ 0

in Example 2.9(iii). It is easy to verify that D ⊆ m(R/m2)r but
ldR(R/m2)r = 1, and ldRD = 0 while ldRN =∞> ldRD+ 1= 1.

(ii) Second, look at the sequence

0−→M −→mF −→mN −→ 0

in Example 2.9(ii). We know that mF is Koszul, but M � m2F . Indeed,
otherwise mM = 0 and thus M would be Koszul, while in fact ldRM =∞.
We also know that max{0, ldR(mN)− 1}= 0< ldRM =∞.

Proof of Theorem 3.5. For the first part: Observe that dP = 0, that is, the

map TorRi (k,M)
TorRi (k,φ)−−−−−−→ TorRi (k,P ) is zero for each i ≥ 0. Indeed, this

follows Lemma 2.8(ii) since ldR P = 0 and TorR0 (k,M)−→ TorR0 (k,P ) is the
zero map.

Now using Proposition 2.5 where dP = 0 and the fact that P is Koszul, we
see that

ldRN ≤max{0,0, ldRM + 1}= ldRM + 1,

and

ldRM ≤max{0, ldRN − 1,0}=max{0, ldRN − 1}.
This gives the first part of the result.

For the second part: first assume that M is a Koszul module and M ∩
ms+1P =msM for all s≥ 0. Since M ⊆mP , there is an exact sequence

0−→M −→mP −→mN −→ 0.

We show that the induced sequence of graded grmR-modules

(3.1) 0−→ (grmM)(−1)−→ grmP −→ grmN −→ 0

is exact. Indeed, since M ⊆ mP , we have 0 −→ P/mP −→ N/mN −→ 0 is
exact. For each s≥ 1, we prove that the sequence below is exact

0−→ ms−1M

msM
−→ msP

ms+1P

λ−−→ msN

ms+1N
−→ 0.

Let x̄ ∈Kerλ where x ∈msP . Then λ(x) ∈ms+1N , and as λ is surjective, we
see that λ(x−y) = 0 for some y ∈ms+1P . This implies that x−y ∈M∩msP =
ms−1M ; the last equality holds by the hypothesis. Now y ∈ms+1P , therefore

x̄ ∈ ms−1M

msM
,

as desired. The exactness on the left follows from the equality M ∩ms+1P =
msM . So the sequence (3.1) is exact.
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Denote A= grmR. Now the first two modules in (3.1) have linear A-free
resolutions, moreover regA(grmM)(−1) = 1 and regA grmP = 0. Therefore,
grmN also has 0-linear A-free resolution. So N is a Koszul R-module by
Proposition 2.1.

Conversely, assume that ldRN = 0. From the first part, we already know
that M must be Koszul.

Since M ⊆mP , we have the following commutative diagram in which the
rows are exact and the vertical maps are natural inclusions

0 M

=

mP mN 0

0 M P N 0.

This induces the following commutative diagram of homology for each s≥ 0

Tor1
(
R/ms,mN

)
α

β
Tor0

(
R/ms,M

) γ

=

Tor0
(
R/ms,mP

)

Tor1
(
R/ms,N

)
Tor0

(
R/ms,M

)
Tor0

(
R/ms, P

)
.

Thanks to the fact that N is Koszul and Lemma 2.8, α is the zero map. Hence
from the commutativity of the left square, we get that β is also the zero map.
In particular, Kerγ = 0, which is equivalent to the fact that M ∩ ms+1P =
msM for all s≥ 0. The proof of the theorem is completed. �

Corollary 3.7. With the hypothesis of Theorem 3.5, there is an equality

pdRN =max{pdRM + 1,pdR P}.
If R is a standard graded algebra and M,P,N are finitely generated graded

modules, then

regRN =max{regRM − 1, regR P}.

Proof. As noted in the proof of Theorem 3.5, for each i ≥ 0, the map

TorRi (k,M)
TorRi (k,φ)−−−−−−→TorRi (k,P ) is trivial. Hence for each such i, we have a

short exact sequence

0−→TorRi (k,P )−→TorRi (k,N)−→TorRi−1(k,M)−→ 0.

This desired conclusion follows. �

We also recover the following result of Green and Mart́ınez-Villa [16, Propo-
sition 5.5].

Corollary 3.8. Let R be a Koszul local ring. Let M �= 0 be a Koszul
R-module. Then miM is also a Koszul module for all i≥ 1.
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Proof. It is enough to consider the case i= 1. Look at the exact sequence

0−→mM −→M −→M/mM −→ 0.

Note thatM/mM is an R/m-module, so as R is a Koszul ring, ldRM/mM = 0.
Using the first part of Theorem 3.5, we get ldR(mM) = 0 as well. �

4. Koszul filtrations

In the graded setting, the notion of Koszul filtration in [11] has proved to
be useful to detect Koszul property of algebras. We extend this notion to the
local setting in the present section.

Definition 4.1. Let (R,m, k) be a local ring. Let F be a collection of
ideals. We say that F is aKoszul filtration of R if the following simultaneously
hold:

(F1) (0),m ∈ F ,
(F2) for every ideal I ∈ F and all s≥ 1, we have I ∩ms+1 =msI ,
(F3) for every ideal I �= (0) of F , there exist a finite filtration (0) = I0 ⊂ I1 ⊂

· · · ⊂ In = I and elements xj ∈m, such that for each j = 1, . . . , n, Ij ∈ F ,
Ij = Ij−1 + (xj) and Ij−1 : xj ∈ F .

Remark 4.2. (i) It is straightforward to check that the usual notion of
Koszul filtration for standard graded algebras satisfies the conditions of Defi-
nition 4.1.

(ii) Condition (F3) in our definition of Koszul filtration is more involved
than the corresponding condition in [11, Definition 1.1]; the reason behind is
to make the induction process in the proof of Theorem 4.3 below to work. In
the case of graded Koszul filtrations, the condition is automatically satisfied.

The following theorem extends a well-known result about algebras with
Koszul filtration [11].

Theorem 4.3. Let (R,m, k) be a local ring with a Koszul filtration F .
Then:

(i) For any ideal I ∈ F , R/I is a Koszul R-module.
(ii) R is a Koszul ring.
(iii) R/I is a Koszul ring for any I ∈ F .

Proof. (i) We may assume that m �= (0), otherwise R is a field and F =
{(0)}. We prove by induction on i≥ 1 that for every ideal I ∈ F and for every
s≥ 0, the map

TorRi
(
R/ms,R/I

)
−→TorRi−1

(
ms/ms+1,R/I

)
is injective.

First, assume that i= 1. Since TorR1 (R/ms,R/I) = (I ∩ms)/msI , the nat-
ural map

TorR1
(
R/ms+1,R/I

)
−→TorR1

(
R/ms,R/I

)
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is zero by condition (F2) for Koszul filtrations. Hence, the connecting map is
injective.

Now assume that i≥ 2 and the desired statement already holds up to i−1.
It is harmless to assume that I �= (0). By condition (F2) for Koszul filtrations,
there exist a finite filtration (0) = I0 ⊂ I1 ⊂ · · · ⊂ In = I and elements xj ∈m

for j = 1, . . . , n such that for all 1≤ j ≤ n, Ij ∈ F , Ij = Ij−1 + (xj) and Ij−1 :
xj ∈ F . To our purpose, it suffices to prove by induction on j that for every
0≤ j ≤ n and for every s≥ 0, the map

TorRi
(
R/ms,R/Ij

)
−→TorRi−1

(
ms/ms+1,R/Ij

)
is injective.

Indeed, this is true if j = 0 since I0 = (0). Assume that 1≤ j ≤ n and the
statement is true up to j − 1.

Denote x= xj ,L= Ij−1 so that Ij = L+ (x). We have an exact sequence

0−→R/(L : x)
·x−−→R/L−→R/Ij −→ 0.

We have m/m2 ∼= kt for some t≥ 1. Consider the commutative diagram with
obvious connecting and induced maps

TorR�
(
R/m,R/(L : x)

) ρ�
TorR� (R/m,R/L)

τ�

TorR�−1

(
m/m2,R/(L : x)

) ρt
�−1

TorR�−1

(
m/m2,R/L

)
.

We prove by induction on � that ρ� is the zero map for all 0≤ �≤ i. Indeed,
the case � = 0 follows since R/(L : x) ⊆ x(R/L). Assume that 1 ≤ � ≤ i and
ρj is the trivial map for all j ≤ � − 1. Observe that τ� is injective: if � < i
then this follows from the induction on i, while if � = i then, recalling that
L = Ij−1, this follows from the induction on j. Since ρ�−1 is the zero map,
from the diagram, so is ρ�. This finishes the induction on �.

Now consider the diagram with obvious connecting and induced maps

Tori−1

(
ms/ms+1,R/(L : x)

)
ρi−1

0 Tori
(
R/ms,R/L

) αi
2

Tori−1

(
ms/ms+1,R/L

)

Tori
(
R/ms,R/Ij

) αi
3

Tori−1

(
ms/ms+1,R/Ij

)

0 Tori−1

(
R/ms,R/(L : x)

) αi−1
1

Tori−2

(
ms/ms+1,R/(L : x)

)
.
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By the hypothesis of the induction on j (respectively, on i), the map αi
2 (resp.

αi−1
1 ) are injective. We know from the previous paragraph that ρi−1 is the

zero map. Hence by a snake lemma argument, αi
3 is also injective. This

finishes the induction on j, and also the proof of part (i).
(ii) From (i), taking I = m, we get that ldR k = 0. This shows that R is

Koszul.
(iii) Since R/I is a Koszul R-module, the module grm(R/I) has linear

resolution over grmR. This shows that

reggrm(R/I) k = reggrm R k = 0,

where the first equality follows from Proposition 5.1(iii), and the second from
part (ii). Therefore, grm(R/I) is a Koszul algebra, equivalently, R/I is a
Koszul ring. �

5. Applications

Change of rings. Recall the following well-known change of rings statement
concerning regularity (see, for example, [8, Proposition 3.3]).

Proposition 5.1. Let R→ S be a surjection of standard graded k-algebras.
Let N be a finitely generated graded S-module. Then:

(i) It always holds that regRN ≤ regR S + regS N .
(ii) If regR S ≤ 1 then regS N ≤ regRN .
(iii) In particular, if regR S = 0 then regRN = regS N .

Now we deduce from Theorem 3.5 the following analog of Proposi-
tion 5.1(iii). Recall from [21] that R is called absolutely Koszul if every finitely
generated R-module M has finite linearity defect.

Theorem 5.2. Let (R,m)→ (S,n) be a surjection of local rings such that
ldR S = 0. Then for any finitely generated S-module N , there is an equality

ldRN = ldS N.

In particular, gl ldS ≤ gl ldR. If R is absolutely Koszul then so is S.

Proof. We claim that ldRN = 0 if and only if ldS N = 0. Denote A =
grmR,B = grm S,U = grmN we get regAB = 0 by hypothesis. Hence applying
Proposition 5.1, we get that regB U = regAU . The claim then follows from
the last equality.

To prove that ldRN = ldS N , first consider the case ldRN = � <∞. We
prove by induction on �. The case �= 0 was treated above.

Assume that � ≥ 1, then by the claim, it follows that ldS N ≥ 1. Let
0 → M → P → N → 0 be the beginning of the minimal S-free resolution
of N . Since M ⊆mP and ldR P = ldR S = 0, we get from Theorem 3.5 that
ldRM = �−1. Since ldS N ≥ 1, we also have ldS M = ldS N −1. By induction
hypothesis, ldRM = ldS M , thus ldRN = ldS N .
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Now consider the case ldRN =∞ and by way of contradiction, assume that
ldS N <∞. Again looking at the syzygy modules of N as an S-module and
using Theorem 3.5, we reduce the general situation to the case ldRN = ∞
and ldS N = 0. The last two equalities contradict the claim above. So in any
case ldRN = ldS N .

The remaining assertions are obvious. �

Example 5.3. The following example shows that in Theorem 5.2, one
cannot weaken the hypothesis that R→ S is surjective to “R→ S is a finite
morphism”. Take R= k and S = k[x, y]/(x2, y2). Then S is a finite, free R-
module so ldR S = 0. On the other hand, by [19, Theorem 6.7], gl ldS =∞ and
gl ldR= 0. Hence, the conclusion of Theorem 5.2 does not hold for R→ S.

Remark 5.4. The analog of Proposition 5.1(i) for linearity defect is false:
even if R→ S is a Golod map of Koszul algebras (hence ldR S = 1), it is pos-
sible for some Koszul S-module N to have infinite linearity defect over R. For
example, take R = k[x, y, z, t]/((x, y)2 + (z, t)2) as in Example 2.9. Consider
the map R → R/m2. Since R is Koszul, R → S is a Golod map. Consider
the R-module N in Example 2.9. Recall that N is also an S-module, and of
course ldS N = 0. On the other hand, we know that ldRN =∞.

This example also shows that the conclusion of Theorem 5.2 does not hold
if ldR S ≥ 1.

Remark 5.5. In view of Proposition 5.1(ii), we can ask:
Let R→ S be a surjection of local rings such that ldR S ≤ 1. Is it true that

ldS N ≤ ldRN for any finitely generated S-module N?
But the answer is no, even if R and S are Koszul. Indeed, take R =

k[x, y]/(x2) and S =R/(y2), then ldR S = 1 and from Lemma 2.3, gl ldR= 1.
However as noted above, gl ldS = ∞. Hence, the question has a negative
answer. If we do not insist that S is Koszul, we can take R = k[x, y] and
S = k[x, y]/(x3). Then ldR S = 1, ldS k =∞ while ldR k = 0.

As a corollary to Theorem 5.2, we prove that specializations of absolutely
Koszul algebras are again absolutely Koszul. There are many open ques-
tions concerning absolutely Koszul rings; see [9, Remark 3.10]. By [21, Theo-
rem 2.11], if R is a graded absolutely Koszul algebra and x ∈R1 an R-regular
linear form such that R/(x) is absolutely Koszul, then so is R. The converse
is given by the following corollary.

Corollary 5.6. Let (R,m) be an absolutely Koszul local ring and x ∈
m \m2 be such that x ∈m/m2 is grmR-regular. Then R/(x) is also absolutely
Koszul.

Proof. Since x is grmR-regular, we get that ldRR/(x) = 0. The result
follows from Theorem 5.2. �
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Example 5.7. Let (R,m) → (S,n) be a finite, flat morphism of local
rings. One may ask whether for any finitely generated S-module N such
that ldS N = 0, we also have ldRN = 0? This is true if pdS N = 0: in that
case pdRN = 0. But in general, this is far from the truth. For any n ≥ 1,
take R = k[x1, . . . , xn] and S = k[x1, . . . , xn, y1, . . . , yn]/(y

2
1 , . . . , y

2
n). We have

a surjection S −→ k[x1, . . . , xn]/(x
2
1, . . . , x

2
n) given by

xi 	→ xi,

yi 	→ xi,

for 1≤ i≤ n. The kernel is (x1 − y1, . . . , xn − yn). Since x1 − y1, . . . , xn − yn
is an S-regular sequence, we see that ldS k[x1, . . . , xn]/(x

2
1, . . . , x

2
n) = 0. On

the other hand, direct computations with the Koszul complex show that
ldR k[x1, . . . , xn]/(x

2
1, . . . , x

2
n) = n.

Modules with linear quotients. Recall the following notion due to Herzog
and Hibi.

Definition 5.8 (Componentwise linear modules). Let R be a standard
graded k-algebra. Let M be a finitely generated graded R-module. Then M
is said to be componentwise linear if for every d ∈ Z, the submodule M〈d〉 =
(m ∈M : degm= d)⊆M has d-linear resolution as an R-module.

Römer proved in his thesis [28] the following characterization of componen-
twise linear modules over Koszul algebras; see, for example, [21, Theorem 5.6]
for a proof.

Theorem 5.9 (Römer). Assume that R is a Koszul algebra. Then for any
finitely generated graded R-module M , the following are equivalent:

(i) M is componentwise linear;
(ii) M is a Koszul module over R.

We will give a criterion for Koszul modules over a local ring R. First, we
introduce the following generalization of ideals with linear quotients [20, Sec-
tion 1]. The later are an ideal-theoretic analog of rings with Koszul filtrations.

Definition 5.10 (Modules with linear quotients). Let M �= 0 be a finitely
generated R-module with a minimal system of generators m1, . . . ,mt. Let
Ii = (m1, . . . ,mi−1) :R mi. We say that M has linear quotients if for each
i= 1, . . . , t, the cyclic module R/Ii is a Koszul module.

In view of Römer’s Theorem 5.9, the following result is a generalization of
[22, Theorem 3.7], [31, Corollaries 2.4, 2.7], [24, Proposition 3.7]. A notable
feature is that no assumption on the ring is needed, while in the three results
just cited, R has to be at least a Koszul algebra.

Proposition 5.11. Let M �= 0 be a module with linear quotients with a
minimal system of generators m1, . . . ,mt as in Definition 5.10. Then each



656 H. D. NGUYEN

of the submodule (m1, . . . ,mi) of M is a Koszul module for 1 ≤ i ≤ t. In
particular, M is a Koszul module.

Moreover, we have

βs(M) =

t∑
i=1

βs(R/Ii) for all s≥ 0,

pdRM = max
1≤i≤t

{
pdR(R/Ii)

}
.

If R is a graded algebra, M a graded module, degmi = di for 1≤ i≤ t, then
we also have

βs,j(M) =

t∑
i=1

βs,j−di(R/Ii) for all s, j ≥ 0,

regRM = max
1≤i≤t

{
regR(R/Ii) + di

}
.

Proof. Denote Mi = (m1, . . . ,mi). Observe that (mi)/((mi) ∩ Mi−1) =
(mi)/Iimi

∼= R/Ii for each 1 ≤ i ≤ t. In fact, this follows since if xmi ∈
Iimi ⊆ (m1, . . . ,mi−1) then x ∈ (m1, . . . ,mi−1) :R mi = Ii. Since m1, . . . ,mt

are a minimal system of generators, we have Mi−1∩mMi =mMi−1. Therefore
using induction on i, the short exact sequence

0→Mi−1 →Mi →R/Ii → 0,

and Theorem 3.1, we conclude that Mi is a Koszul module for every 1≤ i≤ t.
For the remaining statements, we note that from the proof of Corollary 3.4,

the induced sequence

0−→TorRs (k,Mi−1)−→TorRs (k,Mi)−→TorRs (k,R/Ii)−→ 0

is exact for every i and every s. In the graded case, we use the corresponding
facts for the exact sequence

0→Mi−1 →Mi → (R/Ii)(−di)→ 0.

The proof is finished. �

To illustrate the filtration techniques of Theorem 4.3 and Proposition 5.11,
we present a slight improvement of a result due to Avramov, Iyengar and
Şega (which in the notation of the next result corresponds to the case q is a
principal ideal).

Proposition 5.12 (See [5, Theorems 1.1, 3.2]). Let (R,m, k) be a local
ring. Let q⊆m be an ideal such that m2 = qm and q2 = 0. Let y1, . . . , ye be a
minimal generating set of q where yi ∈m. Then the collection of ideals

F =
{
0, (y1), (y1, y2), . . . , (y1, . . . , ye−1)

}
∪ {I ⊆m : I contains q}

is a Koszul filtration for R. Moreover, any non-trivial finitely generated R-
module M that satisfies the condition qM = 0 is a Koszul module.
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Proof. The case q= (0) is trivial as the reader may check, so we assume that
q �= 0. Clearly, F contains (0) and m. We begin by checking the condition (F2)
for Koszul filtrations. First, consider the case I �= (0) is an ideal containing q.
As m3 = (0), the condition is trivial for s ≥ 2. For s = 1, m2 ⊆ q ⊆ I , hence
m2 ∩ I = m2 =mq⊆mI ⊆ m2 ∩ I . In particular, all containments in the last
string are in fact equalities.

Next, consider the case I = (y1, . . . , yi) where 1 ≤ i ≤ e− 1. Take x ∈ I ∩
m2 = I ∩qm, then x= r1y1+ · · ·+ riyi = s1y1+ · · ·+seye where ri ∈R,si ∈m.
Then we have (r1 − s1)y1 + · · ·+ (ri − si)yi − si+1yi+1 − · · · − seye = 0. But
y1, . . . , ye are linearly independent modulo mq, therefore rj − sj ∈ m for all
1≤ j ≤ i. Hence, rj ∈m for all 1≤ j ≤ i, and so x ∈mI , as desired.

Now we verify condition (F3). Let I ⊆ m be an ideal of R contain-
ing q. Let z1, . . . , zn be an irredundant set of elements of I such that I =
q+ (z1, . . . , zn). Define I0 = (0), I1 = (y1), I2 = (y1, y2), . . . , Ie = (y1, . . . , ye) =
q, Ie+1 = q + (z1), . . . , Ie+n = q + (z1, . . . , zn) = I . Observe that Ij : yj+1 are
proper ideals containing q for 0≤ j ≤ e and Ie+t−1 : zt =m for 1≤ t≤ n. This
argument also implies that the condition (F3) holds if I is among ideals of
the type (y1, . . . , yi) where 1≤ i≤ e− 1. Hence, F is a Koszul filtration of R.
In particular, R/I is a Koszul R-module if I ⊆m is an ideal containing q.

Let M be a finitely generated R-module with qM = 0. Let m1, . . . ,mt be a
minimal system of generators of M . Immediately, we get (m1, . . . ,mi−1) :mi

is a proper ideal containing q for each i= 1, . . . , t. Therefore by the first part
of the result, M has linear quotients. In particular, M is a Koszul module by
Proposition 5.11. �

Remark 5.13. Note that in the previous result, if q is a principal ideal,
using the machinery in [5] one obtains more information about modules over
the local ring R: every finitely generated R-module has a Koszul syzygy
module, that is, R is absolutely Koszul.

We have checked and would like to inform the reader that there are a
number of other results concerning Koszul rings and modules that can be
proved using filtration arguments, for example the main results of Ahangari
Maleki in [1] (except those concerning regularity). To keep the exposition
coherent, we decide to leave further details to the interested reader.

Intersection of three linear ideals. In this subsection, let R be a polyno-
mial ring over k. We say a homogeneous ideal of R is a linear ideal if it is
generated by linear forms. In general, an intersection of four linear ideals is
not Koszul:

(xy, zt) = (x, z)∩ (x, t)∩ (y, z)∩ (y, t).

The main theorems of Section 3 together with a result Derksen–Sidman [12]
give the following statement for the intersection of three linear ideals.
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Theorem 5.14. Let R= k[x1, . . . , xn] be a polynomial ring (where n≥ 0).
Let I, J,K be linear ideals of R. Then I ∩ J ∩K is a Koszul module.

Proof. Denote m the unique graded maximal ideal of R. Denote by μ(I) the
minimal number of generators of I . We use induction on μ(I) + μ(J) + μ(K)
and n= dimR.

If one of the numbers μ(I), μ(J), μ(K) is zero, then I ∩ J ∩K = (0). If
n= 0, then again I ∩ J ∩K = (0). Hence, we can now consider the case n≥ 1
and μ(I), μ(J), μ(K)≥ 1.

We claim that it is possible to reduce the general situation to the case
I ∩ J,J ∩K,K ∩ I ⊆m2.

First, if there exists a linear form 0 �= x ∈ I ∩ J ∩K, consider the exact
sequence

0−→ (x)−→ I ∩ J ∩K −→ I ∩ J ∩K

(x)
−→ 0.

Clearly (x) ∩ m(I ∩ J ∩ K) = m(x), hence using Theorem 3.1, there is an
inequality

ldR(I ∩ J ∩K)≤ ldR
I ∩ J ∩K

(x)
= ldR/(x)

I ∩ J ∩K

(x)
.

The second equality is due to Theorem 5.2. By induction on dimR, ldR/(x)(I∩
J ∩K)/(x) = 0. Hence, the conclusion is true in this case.

Therefore, it is harmless to assume that I ∩J ∩K contains no linear forms.
With this assumption, I ∩ J ∩ K ⊆ m2. Consider the case where one of
I ∩ J, I ∩K,J ∩K contains a linear forms, say 0 �= x ∈ J ∩K for x ∈R1.

Denote by (·) the residue class in R/(x). Look at the exact sequence

0−→ I ∩ J ∩K −→ I −→ I + J ∩K

J ∩K
−→ 0.

We have I ∩ J ∩K ⊆m2 ∩ I =mI , hence by Theorem 3.5, we get

ldR(I ∩ J ∩K)≤max

{
0, ldR

I + J ∩K

J ∩K
− 1

}

=max

{
0, ldR/(x)

I + (x) + J ∩K

J ∩K
− 1

}
.

The equality is due to Theorem 5.2. On the other hand, arguing similarly for
the following exact sequence in R/(x)

0−→ I + (x)∩ J ∩K −→ I + (x)−→ I + (x) + J ∩K

J ∩K
−→ 0,

we see that

ldR/(x)
I + (x) + J ∩K

J ∩K
≤ ldR/(x)

(
I + (x)∩ J ∩K

)
+ 1= 1,
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with the equality following from the induction hypothesis on dimR. There-
fore, ldR(I ∩ J ∩K) = 0 in this case as well. Summing up, we have reduced
the general situation to the case when I ∩ J, I ∩K,J ∩K are all contained
in m2.

For any 1 ≤ p ≤ n, let Span(x1, . . . , xp) be the k-vector subspace of R1

generated by x1, . . . , xp. By change of coordinates, we can assume that I, J,K
are minimally generated as follow

I = (x1, . . . , xp),

J = (y1, . . . , yq),

K = (z1, . . . , zr, a1 + b1, . . . , as + bs),

where ai ∈ Span(x1, . . . , xp), bi ∈ Span(y1, . . . , yq), and x1, . . . , xp, y1, . . . , yq ,
z1, . . . , zr are linearly independent.

Since (J ∩K)1 = 0, we get that a1, . . . , as linearly independent. Hence, by
change of coordinates, we can assume that ai = xi. Similarly, we can assume
that bi = yi. Hence, it remains to consider the case

I = (x1, . . . , xp),

J = (y1, . . . , yq),

K = (z1, . . . , zr, x1 + y1, . . . , xs + ys),

where s≤min{p, q}.
This is the content of Lemma 5.15 below. The proof of the theorem is

completed. �

The final difficulty in the proof of Theorem 5.14 is resolved by the following
lemma.

Lemma 5.15. Let R = k[x1, . . . , xp, y1, . . . , yq, z1, . . . , zr] be a polynomial
ring (where p, q, r ≥ 0). Then for any s≤min{p, q}, the ideal

(x1, . . . , xp)∩ (y1, . . . , yq)∩ (x1 + y1, . . . , xs + ys, z1, . . . , zr)

is a Koszul module.

Proof. Denote H = (x1, . . . , xp) ∩ (y1, . . . , yq) ∩ (x1 + y1, . . . , xs + ys,
z1, . . . , zr). By Theorem 5.9, we are left with proving that H〈c〉 = (a ∈ H :
dega= c) has c-linear resolution for all c ∈ Z.

Denote m = R+. By [12, Theorem 2.1], regH ≤ 3, so in particular H is
generated in degree 2 and 3. The last fact implies that H〈c〉 =mH〈c−1〉 for all
c≥ 4. Hence by Corollary 3.8, it is enough to show that H〈2〉 and H〈3〉 have
linear resolutions. Note that as regH ≤ 3,

H〈3〉 =H≥3 = (m ∈H : degm≥ 3)

has linear resolution by a well-known result of Eisenbud and Goto [14, Theo-
rem 1.2(1)]. Hence, we are left with H〈2〉.
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We will show that H〈2〉 equals L, the ideal of 2-minors of the following
generic matrix (

x1 x2 . . . xs

y1 y2 . . . ys

)
.

This implies the desired conclusion. Clearly L ⊆ H〈2〉, since for all 1 ≤ i <
j ≤ s, the following chain holds

xiyj − xjyi = (xi + yi)yj − (xj + yj)yi

∈ (x1, . . . , xs)∩ (y1, . . . , ys)∩ (x1 + y1, . . . , xs + ys)⊆H.

We will show that H〈2〉 ⊆ L.
Denote H ′ = (x1, . . . , xp)∩ (y1, . . . , yq)∩ (x1+ y1, . . . , xs+ ys) then H ′ ⊆H .

We claim thatH ′
〈2〉 =H〈2〉. The left-hand side is clearly contained in the right-

hand one. Note that H ⊆ (x1, . . . , xp)(y1, . . . , yq) so any minimal generator
f of H〈2〉 is a k-linear combination of x1y1, x1y2, . . . , x1yq, . . . , xpyq . Since
f ∈ (x1+y1, . . . , xs+ys, z1, . . . , zr), a Gröbner basis argument using a suitable
elimination order gives that f ∈H∩(x1+y1, . . . , xs+ys) =H ′. Hence, H ′

〈2〉 =

H〈2〉.
Repeating the same argument, we see that

H〈2〉 =
(
(x1, . . . , xs)∩ (y1, . . . , ys)∩ (x1 + y1, . . . , xs + ys)

)
〈2〉.

In other words, we can assume that p = q = s, r = 0. Equip the gradings
for the variables of R as follow: degxi = deg yi = (0, . . . ,0,1, . . . ,0), the ith
standard basis vector of Zs. Then H,L are Zs-graded with respect to this
grading, furthermore, the Zs-grading is compatible with the usual Z-grading.

Take a ∈H〈2〉 a Zs-graded element of degree 2. Then taking into account
the fact that

H ⊆ (x1, . . . , xs)∩ (y1, . . . , ys) = (x1, . . . , xs)(y1, . . . , ys),

a has the form αxiyj − βxjyi for some 1≤ i < j ≤ s and α,β ∈ k. As αxiyj −
βxjyi ∈ (x1 + y1, . . . , xs + ys), degree considerations yield that

αxiyj − βxjyi ∈ (xi + yi, xj + yj)

and by further simple calculations, we get α= β. Hence a= α(xiyj − xjyi) ∈
L, as desired. �
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