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WELL-POSEDNESS OF THE MARTINGALE PROBLEM FOR
SUPERPROCESS WITH INTERACTION

LEONID MYTNIK AND JIE XIONG

ABSTRACT. We consider the martingale problem for superpro-
cess with interactive immigration mechanism. The uniqueness of
the solution to this martingale problem is established using the
strong uniqueness of the solution to a corresponding SPDE, which
is obtained by an extended version of the Yamada—Watanabe ar-
gument.

1. Introduction

Let Mp(R) be the collection of all finite Borel measures on R. Let ¢ :
Mp(R) — Mp(R) be the interactive immigration measure. Here, the word
“interactive” means that the immigration measure ¢ depends on the measure-
valued process itself. Namely, we consider a continuous Mp(R)-valued process
(p) which solves the following martingale problem (MP): Vf € CZ(R), the
process

0 8 =)t = [ (o) + ). )

is a continuous martingale with quadratic variation process

(1.2) (M1, =~ / (s, 7 ds,

where the constant v > 0 is the branching rate, the notation Cf(R) (resp.
CE(R)) stands for the collection of all bounded (resp. compactly-supported)
continuous functions on R with bounded derivatives up to kth order, and
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the notation (u, f) denotes the integral of the function f with respect to the
measure p. Such a process (u;) is called a super-Brownian motion (SBM)
with interactive immigration. The aim of the present article is to prove the
uniqueness of the solution to the MP (1.1, 1.2) under some conditions on g.

This martingale problem is studied by Shiga [12], and Fu and Li [3] us-
ing an equation driven by a Poisson random measure. Its solution is also
constructed by Dawson and Li [1] using the excursion theory. They studied
various properties of the process while leaving the uniqueness of the solution
as an open problem.

In this paper, we prove the uniqueness of the solution to the MP under
suitable conditions. The main idea is to relate the MP to a stochastic partial
differential equation (SPDE), whose pathwise uniqueness of the solution can
be established, satisfied by the distribution valued process (us) correspond-
ing to the measure-valued process (us). Such a connection is first studied
by one of us [13] for the special case of ¢ =0. The proof of the pathwise
uniqueness in [13] is done by relating the SPDE to a backward stochastic
differential equation, while for the current setup the proof is done by an ex-
tended Yamada—Watanabe argument to SPDE which is inspired by Mytnik
and Perkins [8] and Mytnik et al. [9]. When the spatial motion is interactive,
that is, it is a diffusion process with diffusion and drift coefficients depending
on the superprocess itself, the well-posedness of the MP has been studied by
Donnelly and Kurtz [2] in their lookdown approach and thanks also to results
of Kurzt [5] on filtered martingale problem (see also Theorem V.5.1 in Perkins
[11]). Uniqueness for “historical” superprocesses with certain interactions was
investigated by Perkins in [10].

We now proceed to presenting the main result of this paper. We first
state the precise definition of the martingale problem. For v; € Mpr(R), let
vi(x) =v;((—o00,z]) for x € R and ¢ =1,2. Define distance p on Mp(R) by

p(v1,v2) z/Re_‘””l|v1(x) — va(z)| d.

It is easy to see that, under metric p, Mr(R) is a Polish space whose topology
coincides with that given by weak convergence of measures. Denote the collec-
tion of all continuous mappings from Ry to Mp(R) by X = C(R;, Mp(R)).
Throughout the paper we use K to denote a non-negative constant whose
value may change from line to line.

DEFINITION 1.1. A probability measure I' on X is a solution to MP
(1.1, 1.2) if there exists a continuous Mp(R)-valued process i on a stochas-
tic basis (€2, F,P, F;) such that T is the probability measure induced on X by
(1), and for any f € C2(R), the process M; given by (1.1) is a continuous
martingale with quadratic variation process given by (1.2).

MP (1.1, 1.2) is well-posed if it has a unique solution.
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For any z € R and v € Mp(R), we define

n(z,v) = q(u)((—oo,x}).
Here is the main result of this article.

THEOREM 1.2. (a) Assume the following conditions:
(1) Je(1+a?)po(dz) < oo;
(I12) There exists a constant K such that for any v € Mp(R), we have

/R(l +2%)q(v)(dz) < K.

Then, MP (1.1, 1.2) has a solution.
(b) In addition to (I1), (12), assume that 1 satisfies the following condition
(I3) There exists a constant K such that for any y € R, v1,v5 € Mp(R),
we have

(1.3) [0y, v1) —n(y,va)| < Kp(vi,1a),
Then, MP (1.1, 1.2) is well-posed.

This paper is organized as follows. In Section 2, we establish the equiva-
lency between the MP (1.1, 1.2) and a stochastic partial differential equation
(SPDE). Then, in Section 3, we prove the strong uniqueness of the SPDE by
a Yamada-Watanabe argument, which then gives the uniqueness to the MP
(1.1, 1.2).

2. A related SPDE

A relationship between a super-Brownian motion and the SPDE satisfied
by its corresponding distribution function valued process is established in
Xiong [13]. In this section, we extend that result to the case when the system
receives immigration with a rate depending on the current state of the system.
In fact, our result follows from a more general result to be given below for
a model with interactive location-dependent branching rate of the following
form

(21)  v(z,v)=X(v(—00,2]), VzeR,veMp(R),
where A is a bounded measurable function from Ry to Ry.

We do not know whether this change in branching rate has any significance
to applications and we put it just for the sake of completeness and with the
hope that somebody could be able to generalize it to more interesting cases.

From now on, we consider the following more general martingale problem
(GMP): Vf € C2(R), the process M given by (1.1) is a continuous martingale
with quadratic variation process

(2.2) <Mf>t :/0 <,us,7(-,,us)f2>ds,

where v is given by (2.1).
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DEFINITION 2.1. A probability measure I" on X is a solution to GMP (1.1,
2.2) if there exists a continuous My (R)-valued process i on a stochastic basis
(Q, F,P, F;) such that T is the probability measure induced on X by (u¢), and
for any f € CZ(R), the process Mtf given by (1.1) is a continuous martingale
with quadratic variation process given by (2.2). We also refer to (u;) as a
solution to the GMP.

GMP (1.1, 2.2) is well-posed if it has a unique solution.

Let W (dsda) be a space-time white noise on R} x R with intensity mea-
sure dsda. Consider the following SPDE on the space of nondecreasing (in
spatial variable) functions taking values in [0,00): For y € R,

28 ww=rw+ [ [ xewasan s [ (Eau) iawan) s

where A is the one-dimensional Laplacian and F(y) = po((—o0,9]).
Let Cpm(R) be the subset of Cy(R) consisting of nondecreasing bounded
continuous functions on R.

DEFINITION 2.2. The SPDE (2.3) has a weak solution if there exists a
continuous C} ., (R)-valued process u; on a stochastic basis such that for any
feC3(R) and t >0,

(wn ) = (F, ) + / / h / FOAG) Lacu. iy dyW (ds da)

" /Ot<<u5,%fu>+<77(-,us),f>> ds. as.
where (f, g) fR

Similar to Theorem 2.2 in Xiong [13], we have the following lemma.

LEMMA 2.3. {u:} is a solution to GMP (1.1, 2.2) if and only if {u:} defined
by
is a weak solution to SPDE (2.3).

Proof. Suppose that (u;) is a solution to SPDE (2.3). For a non-decreasing
continuous function g on R, we define its generalized inverse as

g '(a) =inf{z: g(z) >a}.
Then, for f € C3(R), we have
(e, ) = —<Ut7f/>

—(F.f") - /O t /0 N /IR F' W) lazu. () dyA(@)W (ds da)
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/< Aug,f>d8// 0y 1) F(y) dy ds
=u(f)+/0 (<u57;f”>+< (us),f>> ds
t [e%} .
+/0/0 f(ug (@) A(a)W (ds da).
Thus, Mtf is a martingale with quadratic variation process
(M7), = / / Ya))’ dads
// ug(x )2 dug(z) ds

7/0 15 (7 (-, ps) f2) ds.

Thus, (p¢) is a solution to GMP.
On the other hand suppose that () is a solution to GMP (1.1, 2.2). Let
fe€C3R) and g(y f f(x)dx. Then,

(2.5)  (un, f)= <ut,g>

= (ko,9) + /Ot(<,u37 %9"> + <Q(us),g>) ds + M}
=(F, f)+ /Ot <<us %f”> + <n(-7us)7f>> ds + M?.

Let 8'(R) be the space of Schwarz distributions and define the S’(R)-valued
process Ny by Ny(f) = M} for any f € C5°(R). Then, N; is an S’ (R)-valued
continuous square-integrable martingale with

/ / (Y, 15)9(y)* s (dy) ds

/ / N (s (1)) 9(y)* s (dy) ds

/ / Aa)g(u; () dads
- (Ma) /R 1a<us(y)f(y)dy)2dads.

Let G:Ry x Q— Loy (H, H) be defined as

G(s,w)f(a) = A(a) /R lo<u, () f(z)dz, YfeH,
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where H = L*(R) and L¢y)(H,H) is the space consisting of all Hilbert—
Schmidt operators on H. By Theorem 3.3.5 of Kallianpur and Xiong [4],
on an extension of the original stochastic basis, there exists an H-cylindric
Brownian motion B; such that

Ni(f) = [ (Gaw)faB.),

Let {h;} be a complete orthonormal system (CONS) of the Hilbert space H
and define random measure W on Ry X R as

o0

h:
W ([0,4] x A) = (1a,h;)B;".
j=1
It is easy to show that W is a Gaussian white noise random measure on Ry xR
with intensity dsda. Furthermore,

// /A La<u,(2)f(x) dzW (ds da).

Plugging back to (2.5) verifies that u; is a solution to (2.3). O

PRrROPOSITION 2.4. Assume (I1), (I2), (2.1). Then GMP (1.1, 2.2) has a
solution.

Proof. Let 17 = £ i=0,1,2,.... Let n"(s) =t! for s € [t?,t7,,). For
each m, let up be a solution to the approximating martingale problem:

Vf e C3(R),

t
n n n 1 n
(26) Mt i = <:u't 7f> - <M07f> - / <<:us ’ if//> + <q(u7r”(s))7f>> ds
0
is a continuous martingale with quadratic variation process

(27) <Mn7f>t :/0 </’L?7’7("u:"(s))f2>d8'

The existence of a solution in each subinterval [t} ¢}, ;] follows from classical
theory of superprocesses (cf. Corollary 7.15 in Li [6]).
Let T be fixed and ¢t <T'. Taking f =1 in (2.6), we get

t
(1) = G0 1) 5 [ alog) 1y s 21
Hence, by our assumptions on ¢ and v, we have
a”(t) = Esup(puy, 1>4
s<t

< Ky + KoE(M™)?

t
<16+ 5o ([ ) )

2
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t
n 4
§K1+K3/ E<‘u€71> ds
0

t
<K+ K3/ a”(s)ds.
0

By classical moment bounds for superprocesses, we can easily get that a™(t)
is finite for any n and ¢ > 0. Therefore, we can apply Gronwall’s inequality to
see that a™(t) < Kyef3! < K, uniformly on t € [0,T], and n > 1.

For any f € CZ(R) and s <, we then have

E|(up — 2, )|

t[(@&%ﬂ>+@W%m%ﬁ>m

<Kt —s|' + KoE((M™), — (M™) )?
< K|t —s|* + K|t — s|?
< Kalt — s,

4

<2'E +2'E| M — M|

It then follows from Kolmogorov’s criteria that {{u™,f):n > 1} is tight in

C([0,T],IR). This implies that {u" : n > 1} is tight in C([0,T], Mp(R)), where

R is the one-point compactification of R. Denote by (i) a limit point.
Taking f(z) =22 in (2.6), we get
t
B a®) = (posa®) +E [ ((2,1) + (alho ) a*)) dr < K.
0
where the last inequality follows by the assumptions (I1) and (I12). This implies

that y is supported on R and hence p € C([0,T], Mp(R)) a.s. Passing (2.6,
2.7) to the limit, it is standard to show that () is a solution to the GMP. O

REMARK 2.5. The above lemma finishes the proof of Theorem 1.2(a).

In the next section, we shall prove the uniqueness of the solution to SPDE
(2.3). To this end, we need the following lemma.

LEMMA 2.6. Let 19 € Mp(R), and suppose that Conditions (12), (2.1) hold.
Let {u:} be arbitrary solution to GMP (1.1, 2.2). Then, for any T >0, there
exists K1 = K1 (T) such that

(2.8) E[ggmt,lﬂ < K.

Proof. Fix arbitrary T > 0. Choosing f =1, using martingale inequalities
for the martingale at (1.1) and our conditions on ¢ and v, we get

Bl 1) = 0. 1) + B [ (e, 1) ds
S <‘LLO,].> +KTEK2,
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and
T
E[supmt,l)z} §3<,u0,1>2—|—3K2T—|—3K/ E{us,1)ds
t<T 0
< 3{up, 1)> + 3K*T + 3K K, T = K. O

3. Uniqueness for SPDE

This section is devoted to the proof of the pathwise uniqueness for the
solution to SPDE (2.3). By Lemma 2.3, the uniqueness for the solution to
the GMP is then a direct consequence, and thus Theorem 1.2(b) will fol-
low.

PROPOSITION 3.1. Assume (I1), (12), (I3) and (2.1). Then the pathwise
uniqueness holds for SPDE (2.3), namely, if (2.3) has two solutions defined on
the same stochastic basis with the same initial conditions, then the solutions
coincide a.s.

Proof. Let {u}(y)} and {u?(y)} be two solutions to SPDE (2.3) and v; =

uj —u?. Also let {u}},{u?} be corresponding solutions of the martingale

problem (1.1), (2.2), that is u!(z) = pi((—o0,x]),z € R,i=1,2.
For simplicity of notation, given functions G(-,-) on Ry x Ry and 7 on
Mp(R) x R, we write

Gs(a,y) = G(a,ug(y) — G(a,ui(y))
and

Ms(y) =n(y, 1t) = n(y, 12).

-/ t / Gulay)W(dsdo) + / t (éms@/) - m<y>) ds,

where G(a,u) = AM(a)lg<y. Let @ 6 C’O (R)* be such that supp(®) C (—1,1)
and the total integral is 1. Let ®,,(z) = m®(maz). Then,

(v, @y / /}M/G a,y) P (x —y) dyW (ds da)
+/0< A, (z — )>ds

t

— ; <77$,<I>,,L(x— )>ds

Then

)

Next, we apply a modified Yamada—Watanabe argument. We will follow
closely the argument from [9]. First, we define a sequence of functions ¢y, as
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follows. Let {a;} be a decreasing positive sequence defined recursively by
Ak —1
apg=1 and / 2 Y=k, k>1.

Let 1, be non-negative functions in C§°(R) such that supp(¢r) C (ak,ax—1)
and

/ak_l¢k(z)dz:1 and (z) <2(kz)”!, VzeR.

||
(2 / dy/ Y (z)dr, VzeR.

Then, ¢4(2) 1]| and |2|¢}(z) < 2k~1.
Applying 1t6’s formula, we get

or((vr, Pm(@ —-)))

:/0 01, ((vs, @ (2 —))) A Gs(a,y)®p (7 —y) dyW (ds da)

Ry

t , 1
+/0 ¢k(<vs,<1>m(sc~)>)<vs,§A(I>m(x~)>ds
fA¢u@m@4m~»xm@m@f»ws

Jr%/ot/R+ ¢g(<vs,q>m(x—-)>)‘AGs(a7y)©m(x—y)dy

Iw)= [ e Voe~y)
R
where g is the mollifier given by
o(w) = Kexp(=1/(1 = 2%))1jgj <1,

and K is a constant such that [, o(x)dz =1. Then, for any m € Z, there
are positive constants ¢, and C,, such that

Let

2
dads.

Let

(3.1) cme” 171 < |J(m)(£v)| <Cpe ol vreR,
(cf. Mitoma [7], (2.1)). Then

m ™m 1 m
(3.2) /([)k v, P (z = +)))J (@) dow = I} R 513 -
where

ek :E/Ot/R¢§€(<vs7<I>m(x—-)>)<vs,%A<I>m(x—-)>J(m)dxds,

wk_ g [ [ g v z— N7 z—-))J(z)dzds
4 =B [ [ (@ =) @na =) ) da s,
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5k = ///R+ (s, (2 —)))

2
X /Gs(my)@m(x—y)dy daJ(z)dzds.
R
Now we estimate I7" ok First, denote by A, the Laplacian acting with

respect to x. Since v,(+) is locally integrable and ®,, is smooth with compact
support we have, for all z € R,

/ 03(1) Dy By (2 — ) dy = / 0a(1) Dy @z — ) dy
R R

=, [ 0)@nle =) dy
= Ay ((vs, Pr(z —))), VYm>1.
Then by using ¢} = > 0, integration by parts and the chain rule, we have

QH,L,k:E/ /¢;€(<US7¢)m(x_.)>)A$(<vs,¢m(a§—.)>)J(x)dxd8

:—JE/ /wk Vg, By (2 — - )>)<%<vsv‘1’m(ﬂf—'>>>2

z)dxds

/ 0 )
_ IE/O /RQSk«Us,(I)m(x — ~)>)%(<vs,¢m(x — )>)J (z) da ds

_]E/o /R%(‘bk(@s’q’m(x—')>))J’<x)da:ds
:E/O /RW(%%(%—»)J () da:ds.

Use ¢r(2) < |z| to get

Ok ((vs, (@ = ))) < (v, Bn (@ = )] < ([0l (@ = ))-

Therefore,

and

¢
(3.3)  20™* §]E/ /<‘”Us|,¢‘m($f’)>|JH(SU)|d£CdS, Vk,m > 1.
o Jr

Since for each t, v:(-) is the difference of two non-decreasing functions,
we have that, almost surely, the number of discontinuities of v;() is at most
countable for any time ¢. Therefore, we get

(3.4) W}i_r>noo<vs, Py (z— 1)) = vs(2),

for Lebesgue-a.e. x,Vs > 0, almost surely,
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and
(3.5) W}EHOOQUSL(I)m(x - )> = !US(CU)

for Lebesgue-a.e. x,Vs > 0, almost surely.

This, almost sure boundedness of |vs ()], on (s, z) € [0,¢] xR, and integrability
of J”(-) implies, by the dominated convergence theorem, that

(3.6) lim | (|vs|, ®m(z —))|J" (x)|dz ds

m— oo 0

¢
:/ /|vs(w)| x |J"(z)|dzds, as.
o Jr

Moreover, by (2.8) we easily get that
(3.7) {|vs],®rm(z—)),m>1,2€R,s <t}
is uniformly integrable. This and (3.6) imply

t
(3.8) lim E/ ([vs|, @ (z = ))|J" (z)| dx ds
m— o0
_E/ /|vS x |J"(x)|dx ds.
(3.3) and (3.8) imply
t

(3.9) limsup 217" SIE/ /’vs(ac)‘ x |J" (z)| dz ds.

k,m—o0 0 JR

Now, by (3.1) we conclude that for some constant K,
t
(3.10) limsup I7™* SKIE/ /‘Us(x)’J(x)dxds.
m,k—o0 0 JR

It is easy to show that

I§"’“<E///IR+ (s, B(z —)))

x/(@ (a, y)) D, (x —y)dyda(z)dxds

<E///]R+ (00, Bon( — )))

X (aseuﬂg‘)\(a) /R|vs(y)|<1>m(x —y)dyJ(x)dxds.
Now use (3.4), (3.5), (3.7) to get

(3.11) limsup I3"" <KIE/ // i (vs(@)) |vs(2)|J (2) d ds
Ry

m— o0
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where the last inequality follows since k|z|¢”(z) is bounded. Also, using
|¢).(2)] <1, and (1.3) we easily get that there are non-negative constants
K4, K such that

t
(3.12) limsup|1’;n’k| SK/O Ep(ul, p2) ds

m,k— o0
¢
SKlE/ /|Us(x)’J(x)dxds,

where for the last inequality we applied (3.1). Use (3.4) and (3.7) to get

(3:13) lm E /R b1 (00, B (i — ) J (2) d = E / o1 (ve(2)) J () .

Since ¢x(z) 1 |z|, we obtain by the monotone convergence

(3.14) lim lim IE/R¢;€(<vt,<I>m(x—-)>)J(x)dx

k— o0 m—ro0

:]E/R‘vt(x)w(x) dz

Now, put together (3.2), (3.10), (3.11), (3.12), (3.14) to get

IE/R]vt(a:)‘J(a:)da:SKQ]E/Ot/R‘vs(x)]J(x)dxds

for some constant K5. Then the Gronwall lemma implies that

]E/R|vt(x)|J(m) dr =

and the uniqueness follows. O
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