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ON SOLVABLE SUBGROUPS OF THE CREMONA GROUP

JULIE DÉSERTI

Abstract. The Cremona group Bir(P2
C) is the group of birational

self-maps of P2
C. Using the action of Bir(P2

C) on the Picard-
Manin space of P2

C, we characterize its solvable subgroups. If

G⊂ Bir(P2
C) is solvable, nonvirtually Abelian, and infinite, then

up to finite index: either any element of G is of finite order or

conjugate to an automorphism of P2
C, or G preserves a unique

fibration that is rational or elliptic, or G is, up to conjugacy,

a subgroup of the group generated by one hyperbolic monomial
map and the diagonal automorphisms.

We also give some corollaries.

1. Introduction

We know properties on finite subgroups ([16]), finitely generated subgroups
([6]), uncountable maximal Abelian subgroups ([13]), nilpotent subgroups
([14]) of the Cremona group. In this article, we focus on solvable subgroups
of the Cremona group.

Let G be a group. Recall that [g,h] = ghg−1h−1 denotes the commutator
of g and h. If Γ1 and Γ2 are two subgroups of G, then [Γ1,Γ2] is the subgroup
of G generated by the elements of the form [g,h] with g ∈ Γ1 and h ∈ Γ2. We
define the derived series of G by setting

G(0) =G, G(n+1) =
[
G(n),G(n)

]
∀n≥ 0.

The soluble length �(G) of G is defined by

�(G) =min
{
k ∈N∪ {0}|G(k) = {id}

}
with the convention: min∅ = ∞. We say that G is solvable if �(G) < ∞.
The study of solvable groups started a long time ago, and any linear solvable
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subgroup is up to finite index triangularizable (Lie–Kolchin theorem, [23, The-
orem 21.1.5]). The assumption “up to finite index” is essential: for instance,
the subgroup of PGL(2,C) generated by

[
1 0
1 −1

]
and

[−1 1
0 1

]
is isomorphic to

S3 so is solvable but is not triangularizable.

Theorem A. Let G be an infinite, solvable, non virtually Abelian subgroup
of Bir(P2

C
). Then, up to finite index, one of the following holds:

(1) any element of G is either of finite order, or conjugate to an automor-
phism of P2

C
;

(2) G preserves a unique fibration that is rational, in particular G is, up
to conjugacy, a subgroup of PGL(2,C(y))�PGL(2,C);

(3) G preserves a unique fibration that is elliptic;
(4) G is, up to birational conjugacy, contained in the group generated by{(

xpyq, xrys
)
, (αx,βy)|α,β ∈C∗},

where M =
[
p q
r s

]
denotes an element of GL(2,Z) with spectral radius > 1.

The group G preserves the two holomorphic foliations defined by the 1-forms
α1xdy + β1ydx and α2xdy + β2ydx where (α1, β1) and (α2, β2) denote the
eigenvectors of tM .

Furthermore if G is uncountable, case 3. does not hold.

Examples. • Denote by S3 the group generated by
[
1 0
1 −1

]
and

[−1 1
0 1

]
. As

we recall before S3 �S3. Consider now the subgroup G of Bir(P2
C
) whose

elements are the monomial maps (xpyq, xrys) with
[
p q
r s

]
∈ S3. Then any

element of G has finite order, and G is solvable; it gives an example of
case 1.

• Other examples that illustrate case 1. are the following groups{
(αx+ βy+ γ, δy+ ε)|α, δ ∈C∗, β, γ, ε ∈C

}
⊂Aut

(
P2
C

)
,

and

E =
{(

αx+ P (y), βy + γ
)
|α,β ∈C∗, γ ∈C, P ∈C[y]

}
⊂Aut

(
C2

)
.

• The centralizer of a birational map of P2
C
that preserves a unique fibration

that is rational is virtually solvable ([9, Corollary C]); this example falls in
case 2 (see Section 3.2).

• In [10, Proposition 2.2] Cornulier proved that the group〈
(x+ 1, y), (x, y+ 1), (x,xy)

〉
is solvable of length 3, and is not linear over any field; this example falls in
case 2. The invariant fibration is given by x= cst.

Remark. In case 1 if there exists an integer d such that degφ ≤ d for
any φ in G, then there exist a smooth projective variety M and a birational
map ψ : M ��� P2

C
such that ψ−1Gψ is a solvable subgroup of Aut(M) (see

Section 3.3). But there is some solvable subgroups G with only elliptic ele-
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ments that do not satisfy this property: the group E introduced in Examples.
Let us mention an other example: Wright constructs Abelian subgroups H of
Aut(C2) such that any element of H is of finite order, H is unbounded and
does not preserve any fibration ([28]).

In Section 3, we prove Theorem A: we first assume that our solvable,
infinite and non virtually Abelian subgroup G contains a hyperbolic map,
then that it contains a twist and no hyperbolic map, and finally that all
elements of G are elliptic. In the last section (Section 4), we also

• recover the following fact: if G is an infinite nilpotent subgroup of Bir(P2
C
),

then G does not contain a hyperbolic map;
• remark that we can bound the soluble length of a nilpotent subgroup of
Bir(P2

C
) by the dimension of P2

C
as Epstein and Thurston did in the context

of Lie algebras of rational vector fields on a connected complex manifold;
• give a negative answer to the following question of Favre: does any solvable
and finitely generated subgroup G of Bir(P2

C
) contain a subgroup of finite

index whose commutator subgroup is nilpotent? if we assume that [G,G]
is not a torsion group;

• give a description of the embeddings of the solvable Baumslag–Solitar
groups into the Cremona group.

2. Some properties of the birational maps

First definitions. Let S be a projective surface. We will denote by Bir(S)
the group of birational self-maps of S ; in the particular case of the complex
projective plane the group Bir(P2

C
) is called Cremona group. Take φ in Bir(S),

we will denote by Indφ the set of points of indeterminacy of φ; the codimension
of Indφ is ≥ 2.

A birational map from P2
C
into itself can be written

(x : y : z) ���
(
φ0(x, y, z) : φ1(x, y, z) : φ2(x, y, z)

)
,

where the φi’s denote some homogeneous polynomials of the same degree and
without common factors of positive degree. The degree of φ is equal to the
degree of the φi’s. Let φ be a birational map of P2

C
. One can define the

dynamical degree of φ as

λ(φ) = lim
n→+∞

(
degφn

)1/n
.

More generally, let S be a projective surface, and φ : S ��� S be a birational
map. Take any norm ‖ · ‖ on the Néron–Severi real vector space N1(S). If φ∗

is the induced action by φ on N1(S), we can define

λ(φ) = lim
n→+∞

∥∥(
φn

)∗∥∥1/n
.

Remark that this quantity is a birational invariant: if ψ : S ��� S ′ is a bira-
tional map, then λ(ψφψ−1) = λ(φ).
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Classification of birational maps. The algebraic degree is not a birational
invariant, but the first dyna mical degree is; more precisely one has a classi-
fication of birational maps based on the degree growth. Before stating it, let
us first introduce the following definitions. Let φ be an element of Bir(P2

C
). If

• (degφn)n∈N is bounded, we say that φ is an elliptic map,
• (degφn)n∈N grows linearly, we say that φ is a Jonquières twist,
• (degφn)n∈N grows quadratically, we say that φ is a Halphen twist,
• (degφn)n∈N grows exponentially, we say that φ is a hyperbolic map.

Theorem 2.1 ([15], [20], [3]). Let φ be an element of Bir(P2
C
). Then one

and only one of the following cases holds

• φ is elliptic, furthermore if φ is of infinite order, then φ is up to birational
conjugacy an automorphism of P2

C
,

• φ is a Jonquières twist, φ preserves a unique fibration that is rational and
every conjugate of φ is not an automorphism of a projective surface,

• φ is a Halphen twist, φ preserves a unique fibration that is elliptic and φ is
conjugate to an automorphism of a projective surface,

• φ is a hyperbolic map.

In the three first cases, λ(φ) = 1, in the last one λ(φ)> 1.

The Picard–Manin and bubble spaces. Let S , and Si be complex pro-
jective surfaces. If π : S1 →S is a birational morphism, one gets π∗ : N1(S)→
N1(S1) an embedding of Néron–Severi groups. Take two birational morphisms
π1 : S1 →S and π2 : S2 →S ; the morphism π2 is above π1 if π−1

1 π2 is regular.
Starting with two birational morphisms one can always find a third one that
covers the two first. Therefore, the inductive limit of all groups N1(Si) for all
surfaces Si above S is well-defined; it is the Picard-Manin space ZS of S . For
any birational map π, π∗ preserves the intersection form and maps nef classes
to nef classes hence the limit space ZS is endowed with an intersection form
of signature (1,∞) and a nef cone.

Let S be a complex projective surface. Consider all complex and projective
surfaces Si above S , that is all birational morphisms πi : Si →S . If p (resp. q)
is a point of a complex projective surface S1 (resp. S2), and if π1 : S1 → S
(resp. π2 : S2 → S) is a birational morphism, then p is identified with q if
π−1
1 π2 is a local isomorphism in a neighborhood of q that maps q onto p. The

bubble space B(S) is the union of all points of all surfaces above S modulo
the equivalence relation induced by this identification. If p belongs to B(S)
represented by a point p on a surface Si →S , denote by Ep the exceptional
divisor of the blow-up of p and by ep its divisor class viewed as a point in ZS .
The following properties are satisfied{

ep · eq = 0 if p 
= q,

ep · ep =−1.
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Hyperbolic space HS . Embed N1(S) as a subgroup of ZS ; this finite di-
mensional lattice is orthogonal to ep for any p ∈ B(S), and

ZS =

{
D+

∑
p∈B(S)

apep

∣∣∣D ∈N1(S), ap ∈R

}
.

The completed Picard-Manin space ZS of S is the L2-completion of ZS ; in
other words

ZS =

{
D+

∑
p∈B(S)

apep

∣∣∣D ∈N1(S), ap ∈R,
∑

a2p <+∞
}
.

The intersection form extends as an intersection form with signature (1,∞)
on ZS . Let

Z+

S = {d ∈ ZS |d · c≥ 0 ∀c ∈ ZS}
be the nef cone of ZS and

LZS = {d ∈ ZS |d · d= 0}
be the light cone of ZS .

The hyperbolic space HS of S is then defined by

HS =
{
d ∈Z+

S |d · d= 1
}
.

Let us remark that HS is an infinite dimensional analogue of the classical
hyperbolic space Hn. The distance on HS is defined by

cosh
(
dist

(
d, d′

))
= d · d′ ∀d, d′ ∈HS .

The geodesics are intersections of HS with planes. The projection of HS onto
P(ZS) is one-to-one, and the boundary of its image is the projection of the
cone of isotropic vectors of ZS . Hence

∂HS =
{
R+d|d ∈Z+

S , d · d= 0
}
.

Isometries of HS . If π : S ′ →S is a birational morphism, we get a canonical
isometry π∗ (and not only an embedding) between HS and HS′ . This allows
to define an action of Bir(S) on HS . Consider a birational map φ on a complex
projective surface S . There exists a surface S ′, and π1 : S ′ →S , π2 : S ′ →S
two morphisms such that φ= π2π

−1
1 . One can define φ• by

φ• =
(
π∗
2

)−1
π∗
1 ;

in fact, one gets a faithful representation of Bir(S) into the group of isometries
of HS (see [6]).

The isometries of HS are classified in three types ([4], [19]). The translation
length of an isometry φ• of HS is defined by

L(φ•) = inf
{
dist

(
p,φ•(p)

)
|p ∈HS

}
.

If the infimum is a minimum, then
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— either it is equal to 0 and φ• has a fixed point in HS , φ• is thus elliptic,
— or it is positive and φ• is hyperbolic. Hence, the set of points p ∈HS such

that dist(p,φ•(p)) is equal to L(φ•) is a geodesic line Ax(φ•) ⊂ HS . Its
boundary points are represented by isotropic vectors ω(φ•) and α(φ•) in
ZS such that

φ•
(
ω(φ•)

)
= λ(φ)ω(φ•), φ•

(
α(φ•)

)
=

1

λ(φ)
α(φ•).

The axis Ax(φ•) of φ• is the intersection of HS with the plane containing
ω(φ•) and α(φ•); furthermore, φ• acts as a translation of length L(φ•) =
logλ(φ) along Ax(φ•) (see [8, Remark 4.5]). For all p in HS one has

lim
k→+∞

φ−k
• (p)

λ(φ)
= α(φ•), lim

k→+∞

φk
•(p)

λ(φ)
= ω(φ•).

When the infimum is not realized, L(φ•) = 0 and φ• is parabolic: φ• fixes
a unique line in LZS ; this line is fixed pointwise, and all orbits φn

• (p) in HS

accumulate to the corresponding boundary point when n goes to ±∞.
There is a strong relationship between this classification and the classifica-

tion of birational maps of the complex projective plane ([6, Theorem 3.6]): if
φ is an element of Bir(P2

C
), then

• φ• is an elliptic isometry if and only if φ is an elliptic map;
• φ• is a parabolic isometry if and only if φ is a twist;
• φ• is a hyperbolic isometry if and only if φ is a hyperbolic map.

Tits alternative. Cantat proved the Tits alternative for the Cremona group
([6, Theorem C]): let G be a finitely generated subgroup of Bir(P2

C
), then

• either G contains a free non-Abelian subgroup,
• or G contains a subgroup of finite index that is solvable.

As a consequence, he studied finitely generated and solvable subgroups of
Bir(P2

C
) without torsion ([6, Theorem 7.3]): let G be such a group, there exists

a subgroup G0 of G of finite index such that

• either G0 is Abelian,
• or G0 preserves a foliation.

3. Proof of Theorem A

3.1. Solvable groups of birational maps containing a hyperbolic
map. Let us recall the following criterion (for its proof see, for example, [11])
used on many occasions by Klein, and also by Tits ([26]) known as Ping-Pong
Lemma: let H be a group acting on a set X , let Γ1, Γ2 be two subgroups of H,
and let Γ be the subgroup generated by Γ1 and Γ2. Assume that Γ1 contains
at least three elements, and Γ2 at least two elements. Suppose that there exist
two non-empty subsets X1, X2 of X such that

X2 
⊂X1, γ(X2)⊂X1 ∀γ ∈ Γ1 \ {id}, γ′(X1)⊂X2 ∀γ′ ∈ Γ2 \ {id}.
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Then Γ is isomorphic to the free product Γ1 ∗ Γ2. The Ping-Pong argument
allows us to prove the following.

Lemma 3.1. A solvable, non-Abelian subgroup of Bir(P2
C
) cannot contain

two hyperbolic maps φ and ψ such that {ω(φ•), α(φ•)} 
= {ω(ψ•), α(ψ•)}.
Proof. Assume by contradiction that {ω(φ•), α(φ•)} 
= {ω(ψ•), α(ψ•)}.

Then the Ping-Pong argument implies that there exist two integers n and
m such that ψn and φm generate a subgroup of G isomorphic to the free
group F2 (see [6]). But 〈φ,ψ〉 is a solvable group: contradiction. �

Let G be an infinite solvable, non-virtually Abelian, subgroup of Bir(P2
C
).

Assume that G contains a hyperbolic map φ. Let α(φ•) and ω(φ•) be the
two fixed points of φ• on ∂HP2

C
, and Ax(φ•) be the geodesic passing through

these two points. As G is solvable there exists a subgroup of G of index ≤ 2
that preserves α(φ•), ω(φ•), and Ax(φ•) (see [6, Theorem 6.4]); let us still
denote by G this subgroup. Note that there is no twist in G since a parabolic
isometry has a unique fixed point on ∂HP2

C
. One has a morphism κ : G→R>0

such that
ψ•(�) = κ(ψ)�

for any � in ZP2
C
lying on Ax(φ•).

The kernel of κ is an infinite subgroup that contains only elliptic maps.
Indeed the set of elliptic elements of G coincides with kerκ; and [G,G]⊂ kerκ
so if kerκ is finite, G is Abelian up to finite index which is by assumption
impossible.

Gap property. If ψ is an hyperbolic birational map of G, then κ(ψ) = L(ψ•) =
logλ(ψ). Recall that λ(φ) is an algebraic integer with all Galois conjugates in
the unit disk, that is a Salem number, or a Pisot number. The smallest known
number is the Lehmer number λL � 1.176 which is a root of X10+X9−X7−
X6 −X5 −X4 −X3 +X + 1. Blanc and Cantat prove in [2, Corollary 2.7]
that there is a gap in the dynamical spectrum Λ= {λ(φ)|φ ∈Bir(P2

C
)}: there

is no dynamical degree in ]1, λL[.
The gap property implies that in fact κ is a morphism from G to a subgroup

of R>0 isomorphic to Z.

Elliptic subgroups of the Cremona group with a large normalizer. Consider
in P2

C
the complement of the union of the three lines {x = 0}, {y = 0} and

{z = 0}. Denote by U this open set isomorphic to C∗×C∗. One has an action
of C∗×C∗ on U by translation. Furthermore GL(2,Z) acts on U by monomial
maps [

p q
r s

]
�→

(
(x, y) �→

(
xpyq, xrys

))
.

One thus has an injective morphism from (C∗ ×C∗)�GL(2,Z) into Bir(P2
C
).

Let Gtoric be its image.
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One can now apply [12, Theorem 4] that says that if there exists a short
exact sequence

1−→A−→N−→B−→ 1,

where N⊂Bir(P2
C
) contains at least one hyperbolic element, and A⊂Bir(P2

C
)

is an infinite and elliptic1 group, then N is up to conjugacy a subgroup of
Gtoric. Hence, up to birational conjugacy G⊂Gtoric. Recall now that if ψ is
a hyperbolic map of the form (xayb, xcyd), then to preserve α(ψ•) and ω(ψ•)
is equivalent to preserve the eigenvectors of the matrix

[
a b
c d

]
. We can now

thus state:

Proposition 3.2. Let G be an infinite solvable, non-virtually Abelian, sub-
group of Bir(P2

C
). If G contains a hyperbolic birational map, then G is, up to

conjugacy and finite index, a subgroup of the group generated by{(
xpyq, xrys

)
, (αx,βy)|α,β ∈C∗},

where
[
p q
r s

]
denotes an element of GL(2,Z) with spectral radius > 1.

3.2. Solvable groups with a twist. Consider a solvable, non-Abelian
subgroup G of Bir(P2

C
). Let us assume that G contains a twist φ; the map φ

preserves a unique fibration F that is rational or elliptic. Let us prove that
any element of G preserves F . Denote by α(φ•) ∈ ∂HP2

C
the fixed point of φ•.

Take one element in LZP2
C
still denoted α(φ•) that represents α(φ•). Take

ϕ ∈ G such that ϕ(α(φ•)) 
= α(φ•). Then ψ = ϕφϕ−1 is parabolic and fixes
the unique element α(ψ•) of LZP2

C
proportional to ϕ(α(φ•)). Take ε > 0 such

that U(α(φ•), ε)∩ U(α(ψ•), ε) = ∅ where

U(α, ε) = {� ∈ LZP2
C
|α · � < ε}.

Since ψ• is parabolic, then for n large enough ψn
• (U(α(φ•), ε)) is included in a

U(α(ψ•), ε). For m sufficiently large φm
• ψn

• (U(α(φ•), ε)) ⊂ (U(α(φ•), ε/2))�
(U(α(φ•), ε)); hence φm

• ψn
• is hyperbolic. You can by this way build two hy-

perbolic maps whose sets of fixed points are distinct: this gives a contradiction
with Lemma 3.1. So for any ϕ ∈G one has: α(φ•) = α(ϕ•); one can thus state
the following result.

Proposition 3.3. Let G be a solvable, non-Abelian subgroup of Bir(P2
C
)

that contains a twist φ. Then

• if φ is a Jonquières twist, then G preserves a rational fibration, that is up
to birational conjugacy G is a subgroup of PGL(2,C(y))�PGL(2,C),

• if φ is a Halphen twist, then G preserves an elliptic fibration.

Remark 3.4. Both cases are mutually exclusive.

1 A subgroup of Bir(P2
C
) is elliptic if it fixes a point in H

P2
C

.
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Note that if G is a subgroup of Bir(P2
C
) that preserves an elliptic fibration,

then G is countable ([5]). Let us explain briefly why. A smooth rational
projective surface S is a Halphen surface if there exists an integer m> 0 such
that the linear system |−mKS | is of dimension 1, has no fixed component,
and has no base point. The smallest positive integer for which S satisfies
such a property is the index of S . If S is a Halphen surface of index m, then
K2

S = 0 and, by the genus formula, the linear system |−mKS | defines a genus
1 fibration S → P1

C
. This fibration is relatively minimal in the sense that there

is no (−1)-curve contained in a fiber. The following properties are equivalent:

• S is a Halphen surface of index m,
• there exists an irreducible pencil of curves of degree 3m with 9 base points
of multiplicity m in P2

C
such that S is the blow-up of the 9 base points

and |−mKS | is the proper transform of this pencil (the base points set may
contain infinitely near points).

As a corollary of the classification of relatively minimal elliptic surfaces the
relative minimal model of a rational elliptic surface is a Halphen surface of
index m ([22, Chapter 2, Section 10]). Up to conjugacy G is a subgroup of
Aut(S) where S denotes a Halphen surface of index m. The action of G on
NS(S) is almost faithful, and G is a discrete (it preserves the integral structure
of NS(S)) and virtually Abelian (it preserves the intersection form and the
class of the elliptic fibration) subgroup of Aut(S). So one has the following.

Corollary 3.5. If G is an uncountable, solvable, non-Abelian subgroup of
Bir(P2

C
), then G doesn’t contain a Halphen twist.

Example 3.6. Let us come back to the example given in Section 1. If
φ ∈Bir(P2

C
) preserves a unique fibration that is rational then one can assume

that up to birational conjugacy this fibration is given, in the affine chart z = 1,
by y = cst. If φ preserves y = cst fiberwise, then

• φ is contained in a maximal Abelian subgroup denoted Ab(φ) that preserves
y = cst fiberwise ([13]),

• the centralizer of φ is a finite extension of Ab(φ) (see [9, Theorem B]).

This allows us to establish that if φ preserves a fibration not fiberwise, then
the centralizer of φ is virtually solvable. For instance, if φ= (x+ a(y), y + 1)
(resp. (b(y)x,βy) or (x + a(y), βy) with β ∈ C∗ of infinite order) preserves
a unique fibration, then the centralizer of φ is solvable and metabelian ([9,
Propositions 5.1 and 5.2]).

3.3. Solvable groups with no hyperbolic map, and no twist. Let M
be a smooth, irreducible, complex, projective variety of dimension n. Fix a
Kähler form κ on M . If � is a positive integer, denote by πi : M

� →M the
projection onto the ith factor. The manifold M � is then endowed with the

Kähler form
∑�

i=1 π
∗
i κ which induces a Kähler metric. To any φ ∈ Bir(M)
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one can associate its graph Γφ ⊂M ×M defined as the Zariski closure of{(
z,φ(z)

)
∈M ×M |z ∈M \ Indφ

}
.

By construction Γφ is an irreducible subvariety of M ×M of dimension n.
Both projections π1, π2 : M × M → M restrict to a birational morphism
π1, π2 : Γφ →M .

The total degree tdegφ of φ ∈ Bir(M) is defined as the volume of Γφ with
respect to the fixed metric on M ×M :

tdegφ=

∫
Γφ

(
π∗
1κ+ π∗

2κ
)n

=

∫
M\Indφ

(
κ+ φ∗κ

)n
.

Let d≥ 1 be a natural integer, and set

Bird(M) =
{
φ ∈Bir(M)| tdegφ≤ d

}
.

A subgroup G of Bir(M) has bounded degree if it is contained in Bird(M) for
some d ∈N∗.

Any subgroup G of Bir(M) that has bounded degree can be regularized,
that is up to birational conjugacy all indeterminacy points of all elements of
G disappear simultaneously.

Theorem 3.7 ([27]). Let M be a complex projective variety, and let G be a
subgroup of Bir(M). If G has bounded degree, there exists a smooth, complex,
projective variety M ′, and a birational map ψ : M ′ ��� M such that ψ−1Gψ
is a subgroup of Aut(M ′).

The proof of this result can be found in [21], [29]; an heuristic idea appears
in [7].

4. Applications

4.1. Nilpotent subgroups of Bir(P2
C
). Let us recall that if G is a group,

the descending central series of G is defined by

C0G=G, Cn+1G=
[
G,CnG

]
∀n≥ 0.

We say that G is nilpotent if there exists j ≥ 0 such that CjG = {id}. If j
is the minimum non-negative number with such a property, we say that G
is of nilpotent class j. Nilpotent subgroups of the Cremona group have been
described:

Theorem 4.1 ([14]). Let G be a nilpotent subgroup of Bir(P2
C
). Then

• either G is up to finite index metabelian,
• or G is a torsion group.

We find an alternative proof of [14, Lemma 4.2] for G infinite:

Lemma 4.2. Let G be an infinite, nilpotent, non-virtually Abelian subgroup
of Bir(P2

C
). Then G does not contain a hyperbolic map.
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Proof. The group G is also solvable. Assume by contradiction that G
contains a hyperbolic map; then according to Theorem A up to birational
conjugacy and finite index there exists Υ ⊂ C∗ × C∗ infinite such that G is
generated by φ= (xpyq, xrys) and{

(αx,βy)|(α,β) ∈Υ
}
.

The group C1G contains{[
φ, (αx,βy)

]
|(α,β) ∈Υ

}
=

{(
αp−1βqx,αrβs−1y

)
|(α,β) ∈Υ

}
that is infinite since Υ is infinite. Suppose that CiG contains the infinite set{(

α�iβnix,αkiβmiy
)
|(α,β) ∈Υ

}
(�i, ni, ki and mi are some functions in p, q, r and s); then Ci+1G contains{(

α(p−1)�i+qmiβ(p−1)ki+qnix,αr�i+qmiβrki+(s−1)niy
)
|(α,β) ∈Υ

}
that is still infinite. �

So any nilpotent and infinite subgroup of Bir(P2
C
) falls in case (1), (2), (3)

of Theorem A. If it falls in case (2) or (3) then G is virtually metabelian ([14,
Proof of Theorem 1.1]). Finally if G falls in case (1), we can prove as in [14]
that either G is a torsion group, or G is virtually metabelian.

4.2. Soluble length of a nilpotent subgroup of Bir(P2
C
). Let us recall

the following statement due to Epstein and Thurston ([17]): let M be a
connected complex manifold. Let h be a nilpotent Lie subalgebra of the
complex vector space of rational vector fields on M . Then h(n) = {0} if n≥
dimM ; hence, the solvable length of h is bounded by the dimension of M .
We have a similar statement in the context of birational maps; indeed a direct
consequence of Theorem 4.1 is the following property: let G⊂ Bir(P2

C
) be a

nilpotent subgroup of Bir(P2
C
) that is not a torsion group, then the soluble

length of G is bounded by the dimension of P2
C
.

4.3. Favre’s question. In [18], Favre asked few questions; among them
there is the following: does any solvable, finitely generated subgroup G of
Bir(P2

C
) contain a subgroup H of finite index such that [H,H] is nilpotent?

We will prove that the answer is no if [G,G] is not a torsion group.
Take G a solvable and finitely generated subgroup of the Cremona group;

besides suppose that [G,G] is not a torsion group. Assume that the answer
of Favre’s question is yes. Up to finite index one can assume that [G,G]
is nilpotent. According to Theorem 4.1 the group G(1) = [G,G] is up to
finite index metabelian; in other words up to finite index G(2) = [G(1),G(1)]
is Abelian and so G(3) = [G(2),G(2)] = {id}, that is, the soluble length of G is
bounded by 3 up to finite index. Consider the subgroup〈(

x+ y2, y
)
,
(
x(1 + y), y

)
,

(
x,

y

1 + y

)
, (x,2y)

〉
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of Bir(P2
C
). It is solvable of length 4 (see [24]): contradiction.

4.4. Baumslag–Solitar groups. For any integers m, n such that mn 
= 0,
the Baumslag–Solitar group BS(m;n) is defined by the following presentation

BS(m;n) =
〈
r, s|rsmr−1 = sn

〉
.

In [3], we prove that there is no embedding of BS(m;n) into Bir(P2
C
) as soon

as |n|, |m|, and 1 are distinct; it corresponds exactly to the case BS(m;n) is
not solvable. Indeed BS(m;n) is solvable if and only if |m|= 1 or |n|= 1 (see
[25, Proposition A.6]).

Proposition 4.3. Let ρ be an embedding of BS(1;n) = 〈r, s|rsr−1 = sn〉,
with n 
= 1, into the Cremona group. Then

• the image of ρ doesn’t contain a hyperbolic map,
• and

ρ(s) = (x, y+ 1), ρ(r) =
(
ν(x), n

(
y+ a(x)

))
with ν ∈ PGL(2,C) and a ∈C(x).

Proof. According to [3, Proposition 6.2, Lemma 6.3] one gets that ρ(s) =
(x, y+1) and ρ(r) = (ν(x), n(y+a(x))) for some ν ∈ PGL(2,C) and a ∈C(x).

Furthermore, ρ(s) can neither be conjugate to an automorphism of the
form (αx,βy) (see [1]), nor to a hyperbolic birational map of the form
(γxpyq, δxrys) with

[
p q
r s

]
∈GL(2,Z) of spectral radius > 1. As a consequence,

Proposition 3.2 implies that ρ(BS(1;n)) does not contain a hyperbolic bira-
tional map. �
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vol. 269, Birkhäuser Boston, Inc., Boston, MA, 2009, pp. 443–548. MR 2641179

[17] D. B. A. Epstein and W. P. Thurston, Transformation groups and natural bundles,
Proc. Lond. Math. Soc. (3) 38 (1979), no. 2, 219–236. MR 0531161

[18] C. Favre, Le groupe de Cremona et ses sous-groupes de type fini, Astérisque 332
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