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JULIA’S EQUATION AND
DIFFERENTIAL TRANSCENDENCE

MATTHIAS ASCHENBRENNER AND WALTER BERGWEILER

Abstract. We show that the iterative logarithm of each non-
linear entire function is differentially transcendental over the ring

of entire functions, and we give a sufficient criterion for such an

iterative logarithm to be differentially transcendental over the

ring of convergent power series. Our results apply, in particular,

to the exponential generating function of a sequence arising from
work of Shadrin and Zvonkine on Hurwitz numbers.

1. Introduction and main results

In 1871, Schröder [34] suggested to study the iteration of a meromorphic
function f by using the functional equation

(1.1) φ(λz) = f
(
φ(z)

)
that now bears his name. If f satisfies this equation, then the compositional
iterates fn of f satisfy φ(λnz) = fn(φ(z)), so in principle we have an “ex-
plicit” expression for the iterates of f in terms of φ and its inverse function.
Schröder gave various examples, for instance, φ(z) = tanh z, λ= 2 and f(z) =
2z/(1 + z2), as well as Jacobian elliptic functions φ which satisfy (1.1) for
certain rational functions f .

Kœnigs [25] considered the case that f is holomorphic in a neighborhood
of a fixed point ξ and showed that if the multiplier λ= f ′(ξ) of f at ξ satisfies
λ �= 0 and |λ| �= 1, then (1.1) has a unique solution φ holomorphic in a neigh-
borhood of 0 such that φ(0) = ξ and φ′(0) = 1. Poincaré [31, p. 318] observed
that if |λ|> 1 and if f is rational, then φ extends to a function meromorphic
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in the plane, and if |λ| > 1 and f is entire, then φ is entire. Therefore the
solution φ of (1.1) for |λ|> 1 is also called the Poincaré function of f at ξ.

Schröder [34, p. 303] expressed the opinion that the functions f whose
iterates can be determined using (1.1) are of rather special type. One may
argue that the results of Kœnigs and Poincaré say the opposite, but support
for Schröder’s view is given by a result of Ritt [32] which implies that only
very few Poincaré functions are elementary functions. In order to state Ritt’s
result, we recall that a holomorphic function or, more generally, a formal
power series g, is said to be differentially algebraic if it satisfies an algebraic
differential equation; that is, an equation of the form

P
(
z, g(z), g′(z), . . . , g(n)(z)

)
= 0,

where P is a non-zero polynomial in 2 + n indeterminates (for some n) with
constant coefficients; if g is not differentially algebraic, then g is called differen-
tially transcendental. Ritt’s result says that a polynomial with a differentially
algebraic Poincaré function is conjugate to a monomial, a Chebychev polyno-
mial, or the negative of a Chebychev polynomial, the corresponding Poincaré
functions being the exponential or trigonometric functions. For rational func-
tions, there are additional cases arising from the multiplication theorems of
elliptic functions. Poincaré functions of transcendental entire functions are
always differentially transcendental [11].

A family of meromorphic functions is called coherent (or uniformly dif-
ferentially algebraic) if there exists an algebraic differential equation which is
satisfied by all functions in the family, and incoherent otherwise. Boshernitzan
and Rubel [14, Theorem 6.1] showed that a Poincaré function of a rational or
entire function f is differentially algebraic if and only if the family of iterates
of f is coherent. Thus, the above results about differential transcendence of
Poincaré functions can be rephrased as results about incoherence of iterates.

We now turn to the case where the multiplier λ = f ′(ξ) of f at its fixed
point ξ does not satisfy the conditions λ �= 0 and |λ| �= 1 required for Kœnigs’
theorem. If |λ|= 1, but λ is not a root of unity, Schröder’s equation still has
a formal power series solution. The question whether this series converges
is rather delicate and forms the subject matter of famous results of Siegel,
Brjuno and Yoccoz; see [30, Section 11] for a discussion. However, regardless of
whether the series converges or not, it is differentially transcendental whenever
f is a non-linear rational or entire function [8].

If λ= 0, then instead of Schröder’s equation one considers Böttcher’s equa-
tion. Again the solutions are differentially transcendental except in special
cases [8].

Suppose now that λ is a root of unity. In this case the fixed point ξ is
also called parabolic. Passing to an iterate of f we may assume that λ = 1.
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Assuming without loss of generality that ξ = 0, we then write f in the form

(1.2) f(z) = z +

∞∑
k=p

fkz
k (p≥ 2, fk ∈C for k ≥ 2, fp �= 0).

A basic result of complex dynamics, called the Leau–Fatou flower theorem
[21], [27], says that there are p− 1 domains L1, . . . ,Lp−1, called petals of f ,
such that f(Lj) ⊆ Lj and the restriction fn � Lj → 0 ∈ ∂Lj as n → ∞, for
j = 1, . . . , p−1. (See [30, Section 10].) Moreover, the Abel functional equation
φ(z+1) = f(φ(z)) has a holomorpHic solution φj mapping the right half-plane
to Lj . The functions φj are again differentially transcendental [8].

A way to describe the iteration of f not only in the petals but in a full
neighborhood of 0 is based on the functional equation

(1.3) φ
(
f(z)

)
= f ′(z)φ(z)

which is named after Julia (e.g., in [26, Sections 3.5B and 8.5A]) or Jabotinsky
(e.g., in [1]). It has a unique formal power series solution

(1.4) φ(z) = fpz
p +

∞∑
k=p+1

φkz
k (φk ∈C for k ≥ p+ 1),

which is called the iterative logarithm of f and denoted here by itlog(f).

The name iterative logarithm, introduced by Écalle (see [16, p. 8] or [17]), is
explained by the identity

itlog
(
fn

)
= n itlog(f) valid for all n ∈N.

The general solution of (1.3) is given by φ= α itlog(f) where α ∈C.
The series in (1.4) converges only in exceptional cases. For example, a

result of Erdős and Jabotinsky [19] in combination with results of Baker [4]
and Szekeres [39] shows that the only functions f meromorphic in C and of the
form (1.2) for which the series in (1.4) converges in some neighborhood of 0 are
the functions f(z) = z/(1−cz) where c ∈C, with itlog(f)(z) = cz2. (However,

Écalle [18] has shown that the iterative logarithm of a function f holomorphic
in a neighborhood of 0 satisfying (1.2) is always Borel summable.)

It follows from the results in [11], [14], [32] that the iterative logarithm
itlog(f) of a non-linear rational or entire function f is differentially tran-
scendental; cf. the remarks at the end of Section 2.2. This can be viewed
as an indication that the coefficient sequence (φk)k>p is very irregular: If a
formal power series y =

∑
k ykz

k ∈ C[[z]] is differentially algebraic, then the
coefficient sequence (yk) satisfies a certain (in general, non-linear) kind of
recurrence relation [29, pp. 186–194]. Of particular importance in combinato-
rial enumeration is the class of D-finite (also called holonomic) power series
[37, Chapter 6]. These are the formal power series whose coefficient sequence
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satisfies a homogeneous linear recurrence relation of finite degree with poly-
nomial coefficients; equivalently [37, Proposition 6.4.3] those which satisfy a
non-trivial linear differential equation over C[z].

In this paper, we show that for entire functions we have an even stronger
irregularity result. To formulate this result, we need some terminology: Given
a subring R of the ring C[[z]] of formal power series over C which is closed
under differentiation, we say that φ ∈ C[[z]] is differentially transcendental
over R if φ does not satisfy a non-trivial polynomial equation in φ and its
derivatives with coefficients from R. (Thus “differentially transcendental” is
synonymous with “differentially transcendental over C[z].”)

Theorem 1. Let f be a non-linear entire function of the form (1.2). Then
itlog(f) is differentially transcendental over the ring of entire functions.

Under an additional hypothesis, we can even show that itlog(f) is differen-
tially transcendental over the ring C{z} of power series with positive radius
of convergence. In order to state this hypothesis, for an entire function f we
denote by sing(f−1) the set of singularities of the inverse function of f ; see
[10, Section 4.3] for a discussion of their role in complex dynamics. The set
sing(f−1) coincides with the set of critical and (finite) asymptotic values of f .
Here a point w ∈ C is called a critical value if there exists ξ ∈ C such that
f ′(ξ) = 0 and f(ξ) =w while w is called an asymptotic value if there exists a
curve γ : [0,1)→ C such that γ(t)→∞ and f(γ(t))→ w as t→ 1. If f is a
polynomial, then we only have to consider critical values, since polynomials
have no finite asymptotic values.

The Speiser class S consists of all non-linear entire functions f for which
sing(f−1) is finite. It plays an important role in complex dynamics; cf. [10],
[20].

The maximal domains Uj (j = 1, . . . , p− 1) containing the petals Lj such
that f(Uj) ⊆ Uj and fn � Uj → 0 as n → ∞ are called Leau domains of f .
If z ∈ Uj , then fn(z) ∈ Lj for large n. A classical result of Fatou (see [10,
Theorem 7] or [30, Theorem 10.15]) says that Uj ∩ sing(f−1) �= ∅ for all j =
1, . . . , p− 1.

Theorem 2. Let f ∈ S be of the form (1.2). Denote by U1, . . . ,Up−1 the
associated Leau domains and suppose that

(1.5) sing
(
f−1

)
⊆ {0} ∪

p−1⋃
j=1

Uj .

Then itlog(f) is differentially transcendental over C{z}.
Examples to which Theorem 2 applies are f1(z) = z+z2 and f2(z) = ez−1.

The function f1 has only one critical point at −1/2 and f(−1/2) =−1/4 is the
corresponding critical value. The function f2 has the only asymptotic value
−1 and no critical values. Thus, sing(f−1

1 ) = {−1/4} and sing(f−1
2 ) = {−1}.
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It follows from the result of Fatou mentioned above, or by direct computation,
that f1 and f2 satisfy the hypothesis of Theorem 2.

Other examples are f3(z) = sinz with sing(f−1
3 ) = {1,−1} and two Leau

domains at 0, one containing 1 and one containing −1, and f4(z) = zez with
sing(f−1

4 ) = {0,−1/e}.
The results of [12], [15] imply that if Rea > 3/4, then both critical points

of f(z) = z + z2 + az3 are in the Leau domain at 0. Thus, f satisfies the
hypothesis of Theorem 2 if Rea > 3/4. In fact, this even holds [15, p. 277] if
Rea≥ 3/4− 1/(2 log 3).

Theorem 2 suggests the following open question.

Question. Let f be any transcendental entire function of the form (1.2).
Is itlog(f) differentially transcendental over C{z}?

The iterative logarithm

itlog
(
ez − 1

)
=

1

2
z2 − 1

12
z3 +

1

48
z4 − 1

180
z5 +

11

8640
z6 − 1

6720
z7 + · · ·

of f(z) = ez − 1 is of particular interest since it is the exponential generating
function (e.g.f.) of a sequence

0,0,1,−1

2
,
1

2
,−2

3
,
11

12
,−3

4
,−11

6
,
29

4
,
493

12
,−2711

6
,−12406

15
,
2636317

60
, . . .

of rational numbers which recently arose in a conjecture made by Shadrin
and Zvonkine [36] (and proved in [2]) in connection with a generating series
for Hurwitz numbers, and also in another context (ongoing joint work of the
first-named author with van den Dries and van der Hoeven on asymptotic
differential algebra [3]). By Theorem 2, its e.g.f. itlog(ez − 1) is differentially
transcendental over C{z}. We do not know whether the ordinary generating
function (o.g.f.) of this sequence is differentially transcendental over C[z], let
alone over C{z}. (See [24] for some differential transcendence results over
C{z} for o.g.f.’s of sequences of combinatorial origin.) We also do not know
whether the coefficients φk of the power series φ = itlog(ez − 1) ∈ Q[[z]] are
non-zero for all k ≥ 3. (A computation with MAPLE showed that φk �= 0 for
k = 3, . . . ,300.) Some general results about the coefficient sequence (φk) in
the case where φ= itlog(f) ∈C[[z]] \C{z} can be found in [23].

The idea of the proof of Theorem 1 is as follows. Assuming that
itlog(f) is differentially algebraic over C{z}, we start with a differen-
tial equation which is “minimal” in a certain sense; cf. Section 2.1.
We then use the functional equation of the iterative logarithm, that is,
equation (1.3), to obtain a differential equation with meromorphic coef-
ficients which is satisfied by f and all its iterates. This implies that
a Poincaré function ψ associated to f also satisfies such a differential
equation. Using a result of Steinmetz (Theorem 4 in Section 2.3), we
deduce that ψ actually satisfies an algebraic differential equation with
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constant coefficients. This contradicts results about differentially alge-
braic Poincaré functions due to Ritt and the second author; see Sec-
tion 2.2.

The idea of the proof of Theorem 2 is to assume that itlog(f) satisfies
a differential equation with coefficients analytic in a neighborhood of 0 and
then use inverse branches of f to continue these coefficients analytically to
the whole plane. The conclusion then follows from Theorem 1. Some fur-
ther remarks on the proof of Theorem 2 are made immediately after the
proof.

Conventions and notations. Throughout the paper, i, j, m, n, p range
over the set N= {0,1,2, . . .} of natural numbers.

2. Preliminaries

In this section, we first introduce some basic terminology concerning dif-
ferential polynomials used later. We then recall more basic facts on repelling
periodic points and Poincaré functions, in addition to the ones already ap-
pearing in the introduction. In the last part of this section, we state a theorem
of Steinmetz which is at the heart of the proof of Theorem 1.

2.1. Algebraic differential equations. Let R be a differential ring, that
is, a commutative ring (with 1) equipped with a derivation of R, that is, a
map f �→ f ′ : R→R which is additive and satisfies the Leibniz Rule:

(f + g)′ = f ′ + g′, (f · g)′ = f · g′ + f ′ · g for all f, g ∈R.

We let f �→ f (n) denote the nth compositional iterate of f �→ f ′. A subring
S of R which is closed under f �→ f ′ is called a differential subring of R, and
in this case R is called a differential ring extension of S. For any (r + 1)-
tuple i= (i0, . . . , ir) of natural numbers and an element y in a differential ring
extension of R, put

yi := yi0
(
y′

)i1 · · · (y(r))ir .
Let Y be a differential indeterminate over R. Then R{Y } denotes the ring of
differential polynomials in Y over R (not to be confused with the ring C{z}
of convergent power series with complex coefficients in the indeterminate z).
As ring, R{Y } is just the polynomial ring R[Y,Y ′, Y ′′, . . . ] in the distinct
indeterminates Y (n) over R, where as usual we write Y = Y (0), Y ′ = Y (1),
Y ′′ = Y (2), etc. We consider R{Y } as the differential ring whose derivation
extends the derivation of R and satisfies (Y (n))′ = Y (n+1) for every n. For
P (Y ) ∈ R{Y } and y an element of a differential ring extension of R, we let
P (y) be the element of that extension obtained by substituting y, y′, . . . for
Y,Y ′, . . . in P , respectively. We say that an element y of a differential ring
extension of R is differentially algebraic over R if there is some P ∈ R{Y },
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P �= 0, such that P (y) = 0, and if y is not differentially algebraic over R, then
y is said to be differentially transcendental over R.

For P ∈R{Y }, the smallest r ∈N such that P ∈R[Y,Y ′, . . . , Y (r)] is called
the order of the differential polynomial P . Let P ∈R{Y } have order r, and
let i = (i0, . . . , ir) range over N1+r. We call Y i a monomial, and denote by
Pi ∈R the coefficient of Y i in P . Thus P can be uniquely written as

P =
∑
i

PiY
i,

where the support of P , defined by

suppP := {i : Pi �= 0},
is finite. We say that a monomial Y i occurs in P if i ∈ suppP . We set

|i| := i0 + · · ·+ ir, ‖i‖ := i1 + 2i2 + · · ·+ rir.

For P �= 0, we call

deg(P ) = max
i∈suppP

|i|, wt(P ) = max
i∈suppP

‖i‖

the degree of P respectively the weight of P . We say that P �= 0 is homoge-
neous if |i|= deg(P ) for every i ∈ suppP and isobaric if ‖i‖=wt(P ) for every
i ∈ suppP .

For r, s ∈ N with r ≤ s we identify each i = (i0, . . . , ir) ∈ N1+r with the
tuple (i0, . . . , ir,0, . . . ,0) ∈ N1+s and thus view N1+r as a subset of N1+s.
We set N∗ :=

⋃
r∈N

N1+r and order N∗ anti-lexicographically; that is, for i=
(i0, i1, . . . ) and j = (j0, j1, . . . ) ∈N∗ we set

i < j :⇐⇒ there is some k ∈N with ik < jk and il = jl for l≥ k+ 1,

and we set i ≤ j :⇐⇒ i < j or i= j. It is easy to verify that ≤ is a well-
ordering of N∗, that is, ≤ is a linear ordering of N∗, and every non-empty
subset of N∗ has a smallest element with respect to ≤. For P �= 0 we let
the rank r = r(P ) of P be the largest element of suppP with respect to ≤.
Below i, j range over N∗. For i = (i0, i1, . . . ) and j = (j0, j1, . . . ) we put
i+ j = (i0 + j0, i1 + j1, . . . ).

We view the ring C[[z]] of formal power series over C as a differential ring in
the usual way (with derivation d

dz ), and we work with two differential subrings
of C[[z]]: the differential subring C{z} of C[[z]] consisting of the convergent
power series, and the smaller differential subring C{z}∞ of C[[z]] consisting of
the (Taylor series at 0 of) entire functions. Theorem 1 says that the iterative
logarithm of a non-linear entire function is differentially transcendental over
C{z}∞, while Theorem 2 says that—under the hypotheses made on f—the
iterative logarithm of f is differentially transcendental over C{z}.

A differential field is a differential ring whose underlying ring happens to
be a field. Sometimes we find it convenient to work in the differential field
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of meromorphic functions (which may be naturally identified with the frac-
tion field of C{z}∞, equipped with the unique derivation extending that of
C{z}∞). We note that a function is differentially algebraic over the field of
meromorphic functions if and only if it is differentially algebraic over the ring
of entire functions.

2.2. Repelling periodic points and Poincaré functions. Let f be a
non-linear entire (or rational) function. A point ξ ∈ C is called a periodic
point of f if there exists some p ≥ 1 such that fp(ξ) = ξ; the smallest such
p is called the period of ξ. One calls a periodic point ξ of f with period p
repelling if the multiplier λ= (fp)′(ξ) of f at ξ satisfies |λ|> 1.

The Julia set J(f) of f is the of all points in the plane (or Riemann sphere)
where the iterates of f do not form a normal family. A standard result of
complex dynamics says that J(f) is the closure of the set of repelling periodic
points of f . For rational functions this was already proved by Fatou and Julia,
by different methods (see [30, Section 14] for an exposition of both proofs),
for transcendental entire functions it is due to Baker [5] (see [6], [13], [35] for
simpler proofs). The Julia set of f is always non-empty (in fact, a perfect
set).

As mentioned in the introduction, results of Kœnigs and Poincaré say that
if ξ is a repelling periodic point of f with period p and multiplier λ, then there
exists a function ψ holomorphic in a neighborhood of 0 such that ψ(0) = ξ,
ψ′(0) = 1 and ψ(λz) = fp(ψ(z)), called the Poincaré function of f at ξ. If f is
rational, then ψ is meromorphic in the plane, and if f is entire, then so is ψ.
Moreover, ψ is given by (cf. [32, p. 670])

(2.1) ψ(z) = lim
n→∞

fnp
(
ξ + λ−nz

)
.

Differentiating (2.1) we also obtain

ψ(m)(z) = lim
n→∞

λ−mn
(
fnp

)(m)(
ξ + λ−nz

)
for each m,

hence

(2.2) ψi(z) = lim
n→∞

λ−‖i‖n(
fnp

)i(
ξ + λ−nz

)
for each i

and thus

(2.3)
(
ψ′)i(z) = lim

n→∞
λ−(|i|+‖i‖)n((

fnp
)′)i(

ξ + λ−nz
)

for each i.

As mentioned in the introduction, Ritt [32] determined all differentially alge-
braic Poincaré functions of rational functions. His result shows in particular
that rational functions with differentially algebraic Poincaré functions have no
parabolic fixed points, so there is no iterative logarithm associated to these
functions. Moreover, it was shown in [11] that Poincaré functions to transcen-
dental entire functions are differentially transcendental. Combining this with
Ritt’s result, we obtain the following.
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Theorem 3. Let f be a non-linear rational or entire function with a para-
bolic fixed point. Then the Poincaré functions associated to the repelling fixed
points of f are all differentially transcendental.

Together with the results of Boshernitzan and Rubel [14] quoted earlier
this implies the following result already mentioned in the introduction:

Corollary 1. Let f be a non-linear rational or entire function. Then
the iterative logarithm of f at each parabolic fixed point of f is differentially
transcendental.

Proof. Suppose 0 is a parabolic fixed point of f ; it is enough to show that
then itlog(f) is differentially transcendental. Assume otherwise. Then by
[14, Theorem 6.4] (see also [2, Corollary 6.3]) there is a nonzero differential
polynomial P ∈C[z]{Y } such that P (fn) = 0 for all n. Let ζ ∈C be a repelling
periodic point of f , with period p. Replacing f by fp we may assume that
p= 1, so f(ζ) = ζ. Let g(z) := f(z + ζ)− ζ; then 0 is a repelling fixed point
of g, and with Q := P (Y + ζ) we have Q(gn) = 0 for each n. Let ψ be
the Poincaré function of g at 0. By [14, Theorem 6.1], ψ−1 is differentially
algebraic, hence so is ψ, contradicting Theorem 3. �

2.3. A result of Steinmetz. The following result is due to Steinmetz [38,
Satz 1]. We denote by T (r, f) the Nevanlinna characteristic of a meromor-
phic function f , and as usual in Nevanlinna theory, S(r, f) denotes any term
satisfying S(r, f) = o(T (r, f)) as r→∞ outside some exceptional set of finite
measure. See [22] as a reference for Nevanlinna theory.

Theorem 4. Let F0, F1, . . . , Fm and h0, h1, . . . , hm be not identically van-
ishing meromorphic functions and let g be a nonconstant entire function such
that

F0(g)h0 + F1(g)h1 + · · ·+ Fm(g)hm = 0.

Suppose that there exists a positive K ∈R such that
m∑
j=0

T (r,hj)≤KT (r, g) + S(r, g).

Then there exist polynomials P0, P1, . . . , Pm with constant coefficients, not all
zero, such that

P0(g)h0 + P1(g)h1 + · · ·+ Pm(g)hm = 0.

3. Proof of Theorem 1

Let f be a non-linear entire function as in (1.2), with iterative logarithm
φ= itlog(f). Differentiation of (1.3) yields

(3.1) φ′(f) · f ′ = f ′′ · φ+ f ′ · φ′ =A01

(
f ′) · φ+A11

(
f ′) · φ′
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with A01(X) =X ′ and A11(X) =X . Differentiating this equation, multiply-
ing by f ′ and substituting (3.1), one obtains

φ′′(f) ·
(
f ′)3 = (

f ′′′f ′ −
(
f ′′)2) · φ+ f ′′f ′ · φ′ +

(
f ′)2 · φ′′

=A02

(
f ′) · φ+A12

(
f ′) · φ′ +A22

(
f ′) · φ′′

with A02(X) =X ′′X − (X ′)2, A12(X) =X ′X and A22(X) =X2. Induction
yields the existence of differential polynomials Aij ∈ Z{X} (i≤ j) in a differ-
ential indeterminate X , independent of f , such that

φ(j)(f) ·
(
f ′)2j−1

=

j∑
i=0

Aij

(
f ′) · φ(i).

Each Aij is homogeneous and isobaric, and if non-zero, of degree j and weight
j − i. (See [2, Section 6.5], where Hij(X) = Aij(X

′).) Moreover, Ajj =Xj

and the monomial of highest rank occurring in A0j is X(j)Xj−1. For j ∈ N∗

this yields

(3.2) φj(f) ·
(
f ′)2‖j‖−|j|

=
∑
i≤j

|i|=|j|

Bi,j

(
f ′) · φi

with differential polynomials Bi,j ∈ Z{X} (i≤ j, |i|= |j|), independent of f .
For j = (j0, . . . , jr) ∈N1+r, we have

Bj,j =

r∏
k=0

(Akk)
jk =X‖j‖

and

B(|j|),j =
r∏

k=0

(A0k)
jk ,

so B(|j|),j is homogeneous of degree ‖j‖ and isobaric of weight ‖j‖, and the

monomial of highest rank occurring in B(|j|),j is XjX‖j‖−|j|. Note that for

each n, (1.3) also holds with f replaced by the iterate F = fn of f , that is,

(3.3) φ
(
F (z)

)
= F ′(z)φ(z), where F = fn,

and so (3.2) also holds with f replaced by F .
Towards a contradiction assume now that φ= itlog(f) is differentially al-

gebraic over C{z}∞, that is, φ satisfies an equation

(3.4) P (φ) =
∑
i

Piφ
i = 0,

where P =
∑

iPiY
i is a non-zero differential polynomial with entire coeffi-

cients Pi = Pi(z). We assume that P is chosen so that its rank r = r(P ) is
minimal. Note that ‖r‖> 0, since otherwise (3.4) would show that φ is alge-
braic over C{z} and hence in C{z} (since C{z} is algebraically closed in C[[z]]
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by Puiseux’s theorem, see [33, Chapter III, Section 4]), contrary to the results
in [4], [19], [39] already quoted in the introduction, which say that the only
functions f meromorphic in C for which itlog(f) ∈C{z} are those of the form
f(z) = z/(1− cz). Allowing the coefficients Pi to be meromorphic, we may
also assume that Pr = 1.

It follows from (3.4) and (3.2) that

0 =
∑
j≤r

Pj(f) · φj(f) ·
(
f ′)2‖r‖−|r|

=
∑
j≤r

Pj(f) ·
(
f ′)2‖r‖−2‖j‖−|r|+|j| ∑

i≤j

|i|=|j|

Bi,j

(
f ′) · φi

so that

(3.5)
∑
i

( ∑
i≤j≤r

|i|=|j|

Pj(f) ·
(
f ′)2‖r‖−2‖j‖−|r|+|j| ·Bi,j

(
f ′))φi = 0.

It also follows from (3.4) that

(3.6)
∑
i

Pi ·
(
f ′)‖r‖ · φi = 0.

In the last two equations, the coefficient of φr is (f ′)‖r‖. By the minimality
of r the two equations are thus equal. (We note that the exponent of f ′

might actually be negative for some terms on the left-hand side of (3.5), but
this does not affect the argument, since we may multiply both equations by
a sufficiently high power of f ′. Similar adjustments are tacitly made in what
follows.)

Equating coefficients in (3.5) and (3.6) we obtain, for all i < r, a (possibly
trivial) differential equation for f with meromorphic coefficients. We shall
only consider the case that i= (|r|) and we shall see, that then the resulting
differential equation for f ′ is non-trivial. So we compare the coefficients of φi

in (3.5) and (3.6) for i= (|r|) and, putting a= P(|r|), we obtain

(3.7)
∑

(|r|)≤j≤r

|j|=|r|

Pj(f) ·
(
f ′)2‖r‖−2‖j‖ ·B(|j|),j

(
f ′) = a ·

(
f ′)‖r‖.

As noted before, X‖j‖−|j|Xj is the monomial of highest rank occurring in
B(|j|),j , and thus the monomial of highest rank in X2‖r‖−2‖j‖ · B(|j|),j is

X2‖r‖−‖j‖−|j|Xj . Hence among the monomials occurring in the differential
polynomials X2‖r‖−‖j‖B(|j|),j on the left-hand side of (3.7) the one of maximal
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rank given by X‖r‖−|r|Xr, and it is contributed only by the term correspond-
ing to j = r. Since Pr = 1 �= 0, we conclude that the differential equation (3.7)
is non-trivial.

Also, since B(|j|),j is homogeneous of degree ‖j‖ and isobaric of weight ‖j‖,
each i ∈ suppX2‖r‖−2‖j‖B(|j|),j satisfies |i|+ ‖i‖= 2‖r‖. Thus, incorporating
the terms X2‖r‖−2‖j‖ into the monomials occurring in B(|j|),j , equation (3.7)

takes the form

(3.8)
∑

i≤(‖r‖−|r|)+r
|i|+‖i‖=2‖r‖

bi(f) ·
(
f ′)i = a ·

(
f ′)‖r‖

with meromorphic functions bi, and b(‖r‖−|r|)+r = 1. Let

I =
{
i : i≤

(
‖r‖ − |r|

)
+ r, |i|+ ‖i‖= 2‖r‖

}
.

By the remarks following (3.2), equation (3.8) also holds for f replaced by
F = fn, for each n, so

(3.9)
∑
i∈I

bi
(
F (z)

)
·
(
F ′(z)

)i
= a ·

(
F ′(z)

)‖r‖
where F = fn.

As noted in Section 2.2, f has repelling periodic points. (Actually it was
shown in [9] that every iterate of f apart possibly from f itself has repelling
fixed points.) Replacing f by an iterate, we may in fact assume that f has a
repelling fixed point ξ. Moreover, we may assume that ξ is not a pole of a.
With λ = f ′(ξ) we define the Poincaré function ψ by (2.1). From (2.2) and
(2.3) recall that(

ψ′)k(z) = lim
n→∞

λ−kn
((
fn

)′)k(
ξ + λ−nz

)
,(

ψ′)i(z) = lim
n→∞

λ−(|i|+‖i‖)n((
fn

)′)i(
ξ + λ−nz

)
for each i.

We substitute ξ + λ−nz for z in (3.9), multiply both sides of the equation by
λ−2‖r‖n, take the limit as n→∞, and using ‖r‖> 0, obtain∑

i∈I

bi(ψ) ·
(
ψ′)i = 0.

It is a standard result of Nevanlinna theory [22, p. 56] that

T
(
r,ψ(k)

)
≤ T (r,ψ) + S(r,ψ)

for each k. This implies that∑
i∈I

T
(
r,

(
ψ′)i) ≤KT (r,ψ) + S(r,ψ)
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for some constant K ∈R. Theorem 4 now implies that there exist polynomials
Qi (i ∈ I) with constant coefficients, not all zero, such that∑

i∈I

Qi(ψ) ·
(
ψ′)i = 0.

Thus ψ satisfies an algebraic differential equation with constants coefficients,
contradicting Theorem 3.

4. Proof of Theorem 2

Suppose that φ= itlog(f) satisfies an equation of the form (3.4) whose co-
efficients Pi are in C{z}. Again we assume the rank r = r(P ) of P to be min-
imal. We choose ρ > 0 such that all Pi are holomorphic in Dρ = {z : |z|< ρ}.
Allowing the coefficients Pi to be meromorphic in Dρ we may assume that
Pr = 1. We want to show that the Pi are actually meromorphic in C, thereby
obtaining a contradiction to Theorem 1.

Let L1, . . . ,Lp−1 be petals of f associated to the fixed point 0 as stipulated
in the Leau–Fatou theorem. These petals Lj can be chosen arbitrarily small,
and thus we may assume that their closures are contained in Dρ. As f

′(0) = 1,
there exists a branch ψ of the inverse function of f defined in a neighborhood
of 0 such that ψ(0) = 0 and ψ′(0) = 1. The Leau–Fatou theorem may also be
applied to ψ. We denote by L′

1, . . . ,L
′
p−1 the petals for ψ. (These petals are

also called repelling petals for f .)
By (1.5) there exists n such that

(4.1) fn
(
sing

(
f−1

))
⊆ {0} ∪

p−1⋃
j=0

Lj ⊆Dρ

and thus

(4.2) fm
(
sing

(
f−1

))
⊆ {0} ∪

p−1⋃
j=0

Lj ⊆Dρ for all m≥ n.

Again we put F = fn and, proceeding as in the proof of Theorem 1, we find
that the equations (3.5) and (3.6) are equal. The coefficients of (3.6) are de-
fined in Dρ while the coefficients of (3.5), with f replaced by F , are defined in
the component of F−1(Dρ) that contains 0. We denote this component by V .
So the germs of the coefficients Pi at 0 can be continued meromorphically to
both Dρ and V .

Actually, by passing to slightly smaller domains Lj and Dρ if necessary, we
may assume that these germs can be continued meromorphically to a region
containing the closure V of V . Moreover, we may assume that fk(sing(f−1))∩
∂Dρ = ∅ for all k, which implies that ∂V consists of analytic curves.

By the choice of n, we have sing(f−1)⊆ V and in fact

(4.3) fm
(
sing

(
f−1

))
⊆ V for all m.
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Also, we may choose the petals Lj and L′
j so small that Lj ⊆ V and L′

j ⊆ V
for j = 1, . . . , p− 1.

As mentioned, we want to show that the germs of the coefficients Pi at 0 can
be continued to functions meromorphic in C. By the Monodromy theorem,
it suffices to show that the germs can be continued meromorphically along
any curve in C starting in 0. We may restrict here to curves which intersect
∂V only finitely often. For example, this follows since it suffices to consider
continuation along polygonal paths and since ∂V consists of analytic curves.

We now show that it suffices to consider continuation along those curves
γ : [0,1]→ C for which there exists t1 ∈ (0,1) such that γ([0, t1]) ⊆ V while
γ([t1,1]) ⊆ C \ V . In fact, suppose that continuation along such curves is
possible and let σ : [0,1]→C be a curve such that

σ
(
[0, s1]

)
⊆ V , σ

(
(s1, s2)

)
⊆C \ V ,

σ
(
[s2, s3]

)
⊆ V (0< s1 < s2 ≤ s3 ≤ 1).

Then there exists a curve τ : [s1, s2] → ∂V satisfying τ(s1) = σ(s1) and
τ(s2) = σ(s2) which is homotopic to σ � [s1, s2] in C \ V ; that is, there ex-
ists a continuous function Γ: [s1, s2]× [0,1]→ C \ V such that Γ(s,0) = σ(s)
and Γ(s,1) = τ(s) for all s ∈ [s1, s2] and Γ(s1, t) = σ(s1) and Γ(s2, t) = σ(s2)
for all t ∈ [0,1]. Let σ∗ : [0,1]→C be defined by

σ∗(t) =

{
σ(t) for t ∈ [0,1] \ [s1, s2],
τ(t) for t ∈ [s1, s2].

By our assumption, meromorphic continuation is possible along both σ � [0, s2]
and σ∗ � [0, s2]. Moreover, Γ yields a homotopy from σ � [0, s2] to σ∗ � [0, s2]
with the property that meromorphic continuation is possible along all curves in
the homotopy. Thus, by the Monodromy theorem, meromorphic continuation
along σ � [0, s2] and σ∗ � [0, s2] leads to the same result. Since σ � [s2, s3] = σ∗ �
[s2, s3], meromorphic continuation along σ � [0, s3] and σ∗ � [0, s3] also leads
to the same result.

Now σ∗ has the property that σ∗([0, s3]) ⊂ V . Starting with a path
σ : [0,1] → C which intersects ∂V in finitely many points σ(s1), . . . , σ(sn),
iteration of the above procedure yields a path γ : [0,1]→C such that continu-
ation along σ and γ leads to the same result, and γ has the additional property
that unless γ([0,1]) ⊆ V , there exists t1 ∈ (0,1) such that γ([0, t1]) ⊆ V and
γ([t1,1])⊆C\V . It thus suffices to consider curves γ : [0,1]→C with γ(0) = 0
for which such a t1 exists. We may also assume that γ � [0, t1] is injective.

Let now γ be such a curve. We have to show that the germs of the Pi at 0
can be continued meromorphically along γ. In order to do so, we may deform
the part of γ which is in V , as long as it stays in V . Thus, we may choose γ
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such that γ(t) ∈ L′
1 for t ∈ (0, t0] with some t0 ∈ (0, t1), but

(4.4) γ
(
[0,1]

)
∩

p−1⋃
j=0

Lj = ∅.

Using (4.2), (4.3) and (4.4) and noting that sing(f−1) is finite by hypothesis,
we may in fact assume that

(4.5) γ((0,1])∩
∞⋃
l=0

f l
(
sing

(
f−1

))
= ∅.

This implies that branches of the inverse functions of the iterates of f defined
in a neighborhood of 0 can be continued analytically along γ. In particular,
for each m we may continue along γ the branch ψm,0 of the inverse function
of fm, defined in some neighborhood U0 of 0, which is given by ψm,0(0) = 0.
Thus for each t ∈ (0,1], there exists a neighborhood Ut of γ(t), a holomorphic
function ψm,t : Ut →C and δ > 0 such that whenever |s− t|< δ, then γ(s) ∈ Ut

and ψm,s(z) = ψm,t(z) for all z in some neighborhood of γ(s). Moreover, while
U0 depends on m, it follows from (4.5) that the domains Ut may be chosen
independent of m for t ∈ (0,1]. For example, we may choose Ut as the largest

disk around γ(t) which does not intersect
⋃∞

l=0 f
l(sing(f−1)).

It also follows from (4.5) that there exists a simply connected domain Ω
containing γ((0, t0)) such that

Ω∩
∞⋃
l=0

f l
(
sing

(
f−1

))
= ∅.

Thus all ψm,0 may be continued to functions holomorphic in Ω and we may
in fact assume that Ω⊆ U0 for all m. By [7, Theorem 9.2.1] the ψm,0 form
a normal family in Ω. Since ψm,0 � (L′

1 ∩ Ω)→ 0 as m→∞ we deduce that
in fact ψm,0 � Ω→ 0 as m→∞. This implies that ψm,t → 0 as m→∞ for
all t ∈ (0,1], locally uniformly in the domains Ut where they are defined.
Altogether we see that if m is sufficiently large, then ψm,t(γ(t)) ∈Dρ for all
t ∈ [0,1]. For the curve σ : [0,1] → C defined by σ(t) = ψm,t(γ(t)) we thus
have σ([0,1])⊆Dρ.

Next, we note that (3.3) also holds for negative n, with a negative exponent
standing for the branch of the inverse function of the appropriate iterate of f
which fixes 0. Thus,

φ
(
ψm,0(z)

)
= ψ′

m,0(z)φ(z)

for z in a neighborhood of 0. Using this instead of (3.3), we obtain (3.5)
and (3.6) with f replaced by ψm,0. As before, we find that these equations
are equal. For the equation corresponding to (3.6) the coefficients are mero-
morphic in Dρ. In particular, since σ([0,1]) ⊆Dρ, the germs of the Pi at 0
can be continued meromorphically along σ. Noting that σ(t) = ψm,t(γ(t)),



292 M. ASCHENBRENNER AND W. BERGWEILER

we deduce that the germs of the functions Pi(ψm,0) at 0 can be continued
meromorphically along γ. Since the coefficients of the equation correspond-
ing to (3.5) are built from the Pi(ψm,0) and from differential polynomials in
ψm,0, these coefficients can also be continued meromorphically along γ. As
the equations corresponding to (3.5) and (3.6) are equal, we see that the Pi

can be continued meromorphically along γ.
The basic idea of the above proof appears in a paper of Lewin [28] who

proved that itlog(f) /∈ C{z} for f = ez − 1. Assuming that itlog(f) is holo-
morphic in Dρ but has a singularity ζ ∈ ∂Dρ, it is shown there by elementary
estimates that w1 = f(ζ) ∈Dρ or that there exists w2 ∈Dρ with f(w2) = ζ.
These points wj are also singularities of itlog(f), leading to a contradiction.
Note that w2 = ψ(ζ) for some branch ψ of the inverse of f . The proof of
Theorem 2 also uses the idea that given ζ ∈ ∂Dρ there exists m such that
fm(ζ) ∈Dρ or ψm(ζ) ∈Dρ for some branch ψm of the inverse function of fm.
However, in this more general setting we have to be careful about the domain
where this branch of the inverse can be defined.

Remark. The Eremenko–Lyubich class B is defined as the class of all non-
linear entire functions for which sing(f−1) is bounded. The proof of Theorem 2
shows that instead of demanding that f ∈ S it suffices to assume that f ∈ B
and that there exists n such that (4.1) holds. This is equivalent to saying
that on sing(f−1) the iterates of f converge uniformly to 0. An example of a
function to which this remark applies is given by f(z) = (sin2 z)/z.
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[14] M. Boshernitzan and L. A. Rubel, Coherent families of polynomials, Analysis 6 (1986),

339–389. MR 0877792
[15] X. Buff and A. L. Epstein, A parabolic Pommerenke–Levin–Yoccoz inequality, Fund.

Math. 172 (2002), 249–289. MR 1898687
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[20] A. É. Erëmenko and M. Y. Lyubich, Dynamical properties of some classes of entire

functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989–1020. MR 1196102
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Math. Z. 170 (1980), 169–180. MR 0562586
[39] G. Szekeres, Fractional iteration of entire and rational functions, J. Aust. Math. Soc.

4 (1964), 129–142. MR 0165079

Matthias Aschenbrenner, Department of Mathematics, University of Califor-

nia, Los Angeles, CA 90095-1555, USA

E-mail address: matthias@math.ucla.edu

Walter Bergweiler, Mathematisches Seminar, Christian-Albrechts-Universität

zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany

E-mail address: bergweiler@math.uni-kiel.de

http://www.ams.org/mathscinet-getitem?mr=1509704
http://www.ams.org/mathscinet-getitem?mr=1435565
http://www.ams.org/mathscinet-getitem?mr=2320181
http://www.ams.org/mathscinet-getitem?mr=1676282
http://www.ams.org/mathscinet-getitem?mr=0562586
http://www.ams.org/mathscinet-getitem?mr=0165079
mailto:matthias@math.ucla.edu
mailto:bergweiler@math.uni-kiel.de

	Introduction and main results
	Conventions and notations

	Preliminaries
	Algebraic differential equations
	Repelling periodic points and Poincaré functions
	A result of Steinmetz

	Proof of Theorem 1
	Proof of Theorem 2
	Acknowledgments
	References
	Author's Addresses

