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LONG RANGE CORRELATION INEQUALITIES FOR
MASSLESS EUCLIDEAN FIELDS

JOSEPH G. CONLON AND ARASH FAHIM

Abstract. In this paper, new correlation inequalities are ob-
tained for massless Euclidean fields on the d dimensional integer

lattice. Some of the inequalities have been obtained previously,

in the case where the Lagrangian is a very small perturbation of a

quadratic, using the renormalization group method. The results

of the present paper apply provided the Lagrangian is uniformly

convex. They therefore hold for the Coulomb dipole gas in which

particle density can be of order 1. The approach of the present

paper is based on the methodology of Naddaf–Spencer, which

relates second moment correlation functions for the Euclidean
field to expectations of Green’s functions for parabolic PDE with
random coefficients.

1. Introduction

In this paper, we shall prove some new correlation inequalities for certain
translation invariant probability measures on fields φ : Zd →R, where Zd is
the d dimensional integer lattice. These measures are determined by a C2

uniformly convex function V :Rd →R. They can be formally written as the
limit m→ 0 of the weighted Euclidean measure on R∞ given by

(1.1) exp

[
−

∑
x∈Zd

V
(
∇φ(x)

)
+m2φ(x)2/2

] ∏
x∈Zd

dφ(x)/normalization.

In (1.1), we take ∇ to be the discrete gradient operator defined by

(1.2) ∇φ(x) =
(
∇1φ(x), . . . ,∇dφ(x)

)
, ∇iφ(x) = φ(x+ ei)− φ(x),

where the vector ei ∈ Zd has 1 as the ith coordinate and 0 for the other
coordinates, 1≤ i≤ d. Here we shall always consider ∇ to be a d dimensional
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column operator, with adjoint ∇∗ which is a d dimensional row operator.
The existence of the massive measures (1.1) for m> 0, and limiting massless
measures as m→ 0, was established by Funaki and Spohn [20] for functions
V (·) which satisfy a quadratic form inequality λId ≤ V ′′(·) ≤ ΛId, where λ,
Λ are positive constants. The massless measure is a probability measure on
gradient fields ω : Zd → Rd, where formally ω(x) = ∇φ(x), x ∈ Zd. In the
case d= 1, the variables ω(x), x ∈Z, are independent identically distributed.
If d ≥ 3, the gradient field measure induces a measure on fields φ : Zd →R,
which is simply the limit of the massive measures (1.1) as m→ 0. For d= 1,2,
the m→ 0 limit of the measures (1.1) on fields φ :Zd →R does not exist.

The main technical tool in the existence proof for the measures (1.1) is
the Brascamp–Lieb inequality [4]. This inequality is a type of Poincaré in-
equality for probability measures on Rn with weight exp[−W (φ)]dφ, where
φ = [φ1, . . . , φn] and W :Rn →R is a C2 convex function. The Brascamp–
Lieb inequality gives a bound on the variance of a C1 function g :Rn →R
in terms of an expectation of its gradient, dg :Rn →Rn. Letting 〈·〉 denote
expectation and [·, ·] Euclidean inner product on Rn, then the inequality is
given by

(1.3) Var[g]≤
〈[
dg,W ′′(·)−1 dg

]〉
.

One can apply the inequality (1.3) to the measure (1.1). Letting [·, ·] now
denote the Euclidean inner product on functions f :Zd →R and Δ the lattice
Laplacian, one obtains [36] the inequality

(1.4)
〈
exp

{
[f,φ]

}〉
≤ exp

{
1

2

[
f,

(
−λΔ+m2

)−1
f
]}

.

It follows from (1.4) that for any x ∈Zd the expectation 〈φ(x)φ(0)〉 is finite for
m≥ 0 if d≥ 3, and for m> 0 if d= 2. Even in the Gaussian case when V (·) is
quadratic, the expectation 〈φ(x)φ(0)〉 does not exist if m= 0, d= 2. However,
(1.4) implies that if m= 0, d= 2 then both 〈φ(x)∇φ(0)〉 and 〈∇φ(x)∇φ(0)〉
are finite.

The massless m= 0 measures (1.1) occur in the study of Ginzburg–Landau
∇φ interface models [20] and in the study of the lattice Coulomb dipole gas
[5], [21]. In the case of the d dimensional dipole gas, the function V (·) is given
by

(1.5) V (z) = |z|2/2− a

d∑
j=1

coszj , z = [z1, . . . , zd] ∈Rd,

where a > 0 is the activity of the dipoles, corresponding to the density of
dipoles on a given bond. If ρi(x) is the charge density at x ∈ Zd for dipoles
on the bond x→ x+ ei, i = 1, . . . , d, then one can see that the expectation
〈ρi(x)ρj(y)〉dipole of the Gibbs ensemble for the lattice Coulomb dipole gas
is proportional to 〈sin[∇iφ(x)] sin[∇jφ(y)]〉 for the massless measure (1.1).
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A formal derivation of this is given in Appendix B. An important intuition
concerning Coulomb gases is the idea of screening. That is that the in-
teraction between widely separated charges decreases due to the presence
of the other particles in the gas, at least at low densities. Thus, one ex-
pects that |〈ρi(x)ρj(y)〉dipole| should be smaller than |〈ρi(x)ρj(y)〉x,y,dipole|
for |x − y| 	 1, where 〈·〉x,y,dipole denotes expectation of the Gibbs ensem-
ble for just the two dipoles x→ x+ ei and y → y + ej . One can easily see
that 〈ρi(x)ρj(y)〉x,y,dipole 
 (xi − yi)(xj − yj)/|x− y|d+2 for |x− y| 	 1. The
main result of the current paper implies that if a < 1 then screening occurs
in this sense provided we make the approximation 〈sin[∇iφ(x)] sin[∇jφ(y)]〉 

〈∇iφ(x)∇jφ(y)〉.

We state our result in terms of the Green’s function for the homogenized
constant coefficient elliptic PDE

(1.6) −∇ahom∇uhom(x) = f(x), x ∈Rd,

associated with the massless measure (1.1), which was obtained by Naddaf
and Spencer [36].

Theorem 1.1. Let V :Rd →R be a C3 function such that V ′′(z), z ∈Rd,
is a diagonal d× d matrix, which satisfies the quadratic form inequality λId ≤
V ′′(z) ≤ ΛId, z ∈Rd, for some constants λ,Λ > 0 and ‖V ′′′(·)‖∞ <∞. Let
Gahom

(x), x ∈Rd, be the Green’s function for the Naddaf–Spencer PDE (1.6),
and 〈·〉 denote expectation for the m→ 0 massless measure of (1.1). Then for
d≥ 2 there is a constant α> 0 depending only on d and the ratio Λ/λ, and a
constant C depending only on ‖V ′′′(·)‖∞, Λ, λ, d such that for x ∈Zd −{0},∣∣〈φ(x)φ(0)〉−Gahom

(x)
∣∣ ≤ C/|x|d−2+α,(1.7) ∣∣〈∇φ(x)φ(0)

〉
−∇Gahom

(x)
∣∣ ≤ C/|x|d−1+α,(1.8) ∣∣〈∇∇∗φ(x)φ(0)

〉
−∇∇∗Gahom

(x)
∣∣ ≤ C/|x|d+α.(1.9)

Remark 1. Note that both terms 〈φ(x)φ(0)〉 and Gahom
(x) on the LHS

of (1.7) are divergent in dimension d = 2. However, the difference suitably
defined is finite. The exponent α > 0 can be taken arbitrarily close to 1 by
choosing λ/Λ sufficiently close to 1.

A correlation inequality like (1.7) which applies for the case of the dipole
gas (1.5) was first proven by Gawedzki and Kupiainen [21] using a very compli-
cated induction argument known as the renormalization group method. The
renormalization group method they develop is very powerful and applies also
to certain models in which the function V (·) is not uniformly convex. An

example is the (∇φ)4 model for which V (z) = |z|2/2+ b
∑d

j=1 |zj |4 with b > 0.
However the renormalization group method does not allow one to make a rea-
sonable estimate on the value of a in (1.5) for which the inequality (1.7) holds.
In our case, the inequality is shown to hold for a < 1. The induction argument



146 J. G. CONLON AND A. FAHIM

of [21] was simplified and further developed in an influential paper of Brydges
and Yau [6]. Using the method of [6], Dimock and Hurd [17] gave a new
proof of (1.7) for a dipole gas model in Rd in which the potential is Coulomb
with ultra-violet cutoff. They also obtained corresponding inequalities for the
covariance of the variables eiφ(x), e−iφ(0) (Theorem 3 of [17]). More recently,
Dimock [16] has taken a different renormalization group approach for the lat-
tice dipole gas model, proving existence of the thermodynamic pressure. The
inequalities (1.8), (1.9) are new in this paper even for the case of (1.5) with
a
 1. In fact it seems unlikely to the authors that (1.9) can be proven using
the renormalization group method. The reason is that the proof of (1.9)—
unlike the proof of (1.7), (1.8)—uses in an essential way a discrete version of
the Nash–Moser Harnack inequality for solutions to parabolic PDE [15], [33].

The main technical tools we shall use to prove Theorem 1.1 are discrete
versions of two classical theorems from the analysis of parabolic PDE. The first
of these is a generalization by Jones [26] of the Calderon–Zygmund theorem
to parabolic multipliers. Let G(x, t), x ∈Rd, t > 0, be the Green’s function
for the heat equation

(1.10)
∂u(x, t)

∂t
=Δu(x, t), x ∈Rd, t > 0,

and extend G to a function on Rd+1 by setting G(x, t) = 0 for x ∈Rd, t < 0.
We then define the convolution operator T on functions ψ :Rd+1 →Cd by

(1.11) Tψ(x, t) =

∫
Rd

∫
R

∇∇∗G
(
x′, t′

)
ψ

(
x− x′, t− t′

)
dx′ dt′.

It is easy to see by going to Fourier variables that T is a bounded operator on
L2(Rd+1;Cd). In fact, if T̂ denotes the Fourier transformed operator T then
we have that

(1.12) T̂ ψ̂(ξ, θ) =
ξξ∗

iθ+ |ξ|2 ψ̂(ξ, θ),

where ξ ∈ Rd is the variable dual to x ∈ Rd and θ ∈ R the variable dual
to t ∈ R. It follows from (1.12) that T is bounded on L2(Rd+1;Cd) with
norm ‖T‖2 = 1. In [26] it is shown that for 1 < p < ∞ the operator T is
bounded on Lp(Rd+1;Cd) with norm ‖T‖p <∞. Furthermore, one can see
that limp→2 ‖T‖p = 1. This convergence property of ‖T‖p as p→ 2 plays a
key role in our argument.

The second classical theorem we use is the Aronson inequality [1] for fun-
damental solutions to parabolic PDE. Let a : Rd × R+ → Rd(d+1)/2 be a
bounded function taking values in symmetric d × d matrices and satisfying
the quadratic form inequality λId ≤ a(·, ·)≤ ΛId for some constants λ,Λ> 0.
Aronson proved that if Ga(x, y, t), x, y ∈Rd, t > 0, is the fundamental solution
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to the PDE

(1.13)
∂u(x, t)

∂t
=∇a(x, t)∇u(x, t), x ∈Rd, t > 0,

then Ga satisfies an inequality

(1.14) Ga(x, y, t)≤C1G
(
C2(x− y),Λt

)
,

where G is the fundamental solution to the heat equation (1.10) and C1,
C2 are positive constants depending only on d, Λ/λ. Aronson also proved a
corresponding lower bound for Ga, but this is not relevant for us.

The final key ingredient in the proof of Theorem 1.1 is the Poincaré in-
equality for the white noise process: Suppose g(B(·)) is a suitably regular
function of Brownian motion B(t), t≥ 0, and let DMalg(t;B(·)), t > 0, denote
the Malliavin derivative of g. Then one has (Theorem 5.4 of [8])

(1.15) Var
[
g
(
B(·)

)]
≤

〈∫ ∞

0

∣∣DMalg
(
t;B(·)

)∣∣2 dt〉.

The proof of Theorem 1.1 proceeds by means of an identity obtained by
Naddaf and Spencer [36] (proven rigorously in [22]), which relates the expecta-
tion 〈φ(x)φ(0)〉 for the massive measure (1.1) to an expectation of the Green’s
function for a parabolic partial difference equation with random coefficients.
Let (Ω,F , P ) be a probability space equipped with measure preserving transla-
tion operators τx,t : Ω→Ω, x ∈Zd, t ∈R, and a : Ω→Rd(d+1)/2 be a function
from Ω to the space of symmetric d× d matrices which satisfies the quadratic
form inequality λId ≤ a(ω) ≤ ΛId, ω ∈ Ω, for some positive constants Λ, λ.
Solutions u(x, t,ω) to the random parabolic difference equation

(1.16)
∂u(x, t,ω)

∂t
=−∇∗a(τx,tω)∇u(x, t,ω), x ∈Zd, t≥ 0, ω ∈Ω,

with initial data

(1.17) u(x,0, ω) = h(x), x ∈Zd, ω ∈Ω,

can be written in terms of a Green’s function Ga as

(1.18) u(x, t,ω) =
∑
y∈Zd

Ga(x, y, t,ω)h(y), x ∈Zd, t > 0.

Then one has that

(1.19)
〈
φ(x)φ(0)

〉
=

∫ ∞

0

e−m2t
〈
Ga(x,0, t, ·)

〉
dt

for a particular probability space (Ω,F , P ) and function a : Ω →Rd(d+1)/2.
The notation Ga has been used in (1.14) and in (1.18) to refer to different
Green’s functions. We shall frequently use this notation for the Green’s func-
tion of an evolution equation such as (1.13) or (1.16), which is associated with
a symmetric matrix a.
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In [12], we studied expectations of the Green’s function for random evolu-
tion equations (1.16), (1.17), and proved that for certain probability spaces
(Ω,F , P ) they were well approximated on large length and time scales by
the Green’s function for the heat equation (1.10). The spaces (Ω,F , P ) were
required to satisfy a strong independence condition for this result to hold
(Theorem 1.3 of [12]). That is the variables a(τx,t·), x ∈Zd, t ∈R, needed to
be approximately independent. In this paper, we shall prove that the results
of Theorem 1.3 of [12] continue to hold for certain spaces (Ω,F , P ) in which
the variables a(τx,t·), x ∈Zd, t ∈R, have long range correlations. The condi-
tion on (Ω,F , P ) is now given in terms of a uniform integrability assumption,
which implies strong mixing of the variables a(τx,t·), x ∈ Zd, t ∈ R, but is
much weaker than the approximate independence assumption. The space for
which the identity (1.19) holds satisfies this uniform integrability assumption
by virtue of a discrete version of Aronson’s inequality (1.14). Theorem 1.1
then follows from (1.19) and our improvement (Theorem 2.2) of Theorem 1.3
of [12].

2. Rate of convergence in homogenization

If the translation operators τx,t, x ∈Zd, t ∈R, are ergodic on Ω then solu-
tions to the random evolution equation (1.16), (1.17) converge under diffusive
scaling to solutions of a constant coefficient homogenized equation. Thus sup-
pose f :Rd →R is a C∞ function with compact support and for ε satisfying
0 < ε ≤ 1 set h(x) = f(εx), x ∈ Zd, in (1.17), and let uε(x, t,ω) denote the
corresponding solution to (1.16) with this initial data. It has been shown in
[30], just assuming ergodicity of the translation operators, that uε(x/ε, t/ε

2, ω)
converges in probability as ε→ 0 to a function uhom(x, t), x ∈Rd, t > 0, which
is the solution to a constant coefficient parabolic PDE

(2.1)
∂uhom(x, t)

∂t
=∇ahom∇uhom(x, t), x ∈Rd, t > 0,

with initial condition

(2.2) uhom(x,0) = f(x), x ∈Rd.

If the matrix a(·) of (1.16) satisfies the quadratic form inequality λId ≤ a(·)≤
ΛId for some λ,Λ> 0, then the symmetric matrix ahom in (2.1) also satisfies
the inequality λId ≤ ahom ≤ ΛId. Similar results under various ergodic type
assumptions on Ω can be found in [3], [9], [18], [40]. In time-independent
environments the corresponding results for elliptic equations in divergence
form have been proven much earlier—see [28], [29], [39], [43].

In [12], we obtained a rate of convergence result for the homogenized limit,
limε→0 uε(x/ε, t/ε

2, ω) = uhom(x, t). The corresponding problem for elliptic
equations has been extensively studied, beginning with the seminal work of
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Yurinskii [42]. Recent papers on the subject have addressed the issue of ob-
taining optimal rates of convergence [23], [24], [31], and include results for
fully non-linear elliptic equations [7]. Optimal estimates on variances of solu-
tions have been obtained, but precise results on fluctuations analogous to the
central limit theorem have been proven only in the case of one dimension [2].
In all these papers, one must make a quantitative strong mixing assumption on
the environment (Ω,F , P ) in order to obtain a rate of convergence in homoge-
nization. For the parabolic problem, the literature contains rather few results
on rate of convergence in homogenization [34] (see also [25]), and for these the
environment is fixed in time. In [12] as in [34], our results are restricted to
obtaining a rate of convergence for the mean 〈uε(x/ε, t/ε

2, ·)〉 of the solution
of (1.16) to uhom(x, t). We were able to show that, for certain environments
(Ω,F , P ) satisfying a quantitative strong mixing condition, there exists α> 0
depending only on d, Λ/λ such that

(2.3) sup
x∈εZd,t>0

∣∣〈uε

(
x/ε, t/ε2, ·

)〉
− uhom(x, t)

∣∣ ≤Cεα for 0< ε≤ 1.

In [12], we followed the approach of Naddaf and Spencer [37] to the problem
of obtaining rates of convergence in homogenization by formulating the quanti-
tative strong mixing assumption on the environment as a Poincaré inequality.
Specifically, consider a measure space (Ω̃, F̃) of time dependent vector fields
ω̃ : Zd ×R→Rk with the property that the functions t→ ω̃(x, t), t ∈R, are

continuous for all x ∈ Zd and each ω̃(x, t) : Ω̃→Rk is Borel measurable with

respect to the σ-algebra F̃ . For a function G : Ω̃→R the gradient of G is
defined in a weak sense. Thus, if h :Zd×R→Rk is continuous with compact
support the directional derivative dhG(ω̃) of G(ω̃) in the direction h is defined
as the limit

(2.4) dhG(ω̃) = lim
δ→0

[
G(ω̃+ δh)−G(ω̃)

]
/δ.

The function dω̃G(ω̃) : Zd ×R→Rk is then the gradient of G at ω̃ if it is
Borel measurable and

(2.5) dhG(ω̃) =
∑
x∈Zd

∫ ∞

−∞
dtdω̃G(x, t; ω̃) · h(x, t) =

[
dω̃G(ω̃), h

]
for all continuous h : Zd ×R → Rk of compact support. In (2.5), we have
denoted by [·, ·] the Euclidean inner product on L2(Zd × R,Rk). Letting

‖ · ‖2 denote the corresponding Euclidean norm, a probability measure P̃ on

(Ω̃, F̃) is said to satisfy a Poincaré inequality if there is a constant KP̃ > 0
such that

(2.6) Var
[
G(·)

]
≤KP̃

〈∥∥dω̃G(·; ω̃)
∥∥2

2

〉
for all C1 functions G : Ω̃→C.

If the translation invariant probability measure P̃ is Gaussian, then the
measure is determined by the 2-point correlation function Γ :Zd ×R→Rk ⊗
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Rk defined by Γ(x, t) = 〈ω̃(x, t)ω̃(0,0)∗〉, x ∈ Zd, t ∈R, where ω̃(·, ·) ∈Rk is
assumed to be a column vector and the superscript ∗ denotes adjoint. Defining
the Fourier transform of a function h :Zd ×R→C by

(2.7) ĥ(ζ, θ) =
∑
x∈Zd

∫ ∞

−∞
dth(x, t)eix·ζ+itθ, ζ ∈ [−π,π]d, θ ∈R,

then the Poincaré inequality (2.6) holds if and only if Γ̂ ∈ L∞([−π,π]d ×R).

To see this, we observe that for a Gaussian measure P̃ , the inequality (2.6)
holds if and only if it holds for linear functions G(ω̃) of the field ω̃. Hence,
(2.6) holds with constant KP̃ if and only if

(2.8)
∑

x,x′∈Zd

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ f(x, t)∗Γ

(
x− x′, t− t′

)
f
(
x′, t′

)
≤KP̃ ‖f‖22

for all square integrable functions f :Zd ×R→Rk. We conclude that if Γ is
integrable on Zd ×R then (2.6) holds, but it is unlikely to hold if Γ is not
integrable.

In the present paper, we shall prove rate of convergence results in homog-
enization of the parabolic PDE (1.16) for certain environments that include
some Gaussian environments in which Γ is not integrable. To do this, we
extend the method introduced in [13] for elliptic PDE in divergence form
to the parabolic case. The idea is to consider environments defined by
a(ω) = ã(ω(0,0)) where ω : Zd ×R→Rn is a translation invariant function
of ω̃ :Zd×R→Rk. The gradient of ω with respect to ω̃ is assumed to satisfy
a uniform integrability condition, and the probability space (Ω̃, F̃ , P̃ ) for ω̃ to
satisfy the Poincaré inequality (2.6).

We define what we mean by the terms used in the previous paragraph.
Let (Ω,F , P ) be the probability space for ω induced by the probability space

(Ω̃, F̃ , P̃ ) for ω̃ and the functional dependence ω̃ → ω. Translation operators
τx,t, x ∈ Zd, t ∈R, on Ω are defined by τx,tω(z, s) = ω(x+ z, t+ s), z ∈ Zd,

s ∈ R, with a similar definition of translation on Ω̃. The function ω̃ → ω,
which we denote by ω(·, ·, ω̃) is translation invariant if

(2.9) τx,tω(·, ·, ω̃) = ω(·, ·, τx,tω̃) for x ∈Zd, t ∈R, ω̃ ∈ Ω̃.

Note that if ω is a linear translation invariant function of ω̃ then ω is the
convolution of some function h : Zd ×R→Rn ⊗Rk from Zd ×R to n× k
matrices with ω̃,

ω(x, t, ω̃) = h ∗ ω̃(x, t) =
∑
y∈Zd

∫ ∞

−∞
dsh(x− y, t− s)ω̃(y, s),(2.10)

x ∈Zd, t ∈R.

For given x ∈ Zd, t ∈R we use the notation of (2.5) to write the gradient of

the function ω(x, t, ·) : Ω̃→Rn as dω̃ω(z, s;x, t, ω̃), z ∈Zd, s ∈R, ω̃ ∈ Ω̃. The
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uniform integrability condition is then that

(2.11)
∑
x∈Zd

∫ ∞

−∞
dt

[
sup
ω̃∈Ω̃

∣∣dω̃ω(0,0;x, t, ω̃)∣∣]q ≤ (Kω,q)
q <∞

for some q with 1 ≤ q < 2. It follows from (2.10) that when ω is a linear
function of ω̃ the condition (2.11) is equivalent to the condition that the
function h in (2.10) is q integrable.

In [12], we proved that (2.3) holds in the case where (Ω,F , P ) is the sta-
tionary process associated with the massive m > 0 invariant measure (1.1).
The function V :Rd →R is assumed to be C2 and satisfy the uniform con-
vexity assumption λId ≤ V ′′(·) ≤ ΛId for some λ,Λ > 0. Consider functions
φ :Zd ×R→R which we denote as φ(x, t) where x lies on the integer lattice
Zd and t on the real line R. Let Ω be the space of all such functions which
have the property that for each x ∈Zd the function t→ φ(x, t) on R is contin-
uous, and F be the Borel algebra generated by finite dimensional rectangles
{φ(·, ·) ∈Ω : |φ(xi, ti)− ai|< ri, i= 1, . . . ,N}, where (xi, ti) ∈Zd ×R, ai ∈R,
ri > 0, i= 1, . . . ,N , N ≥ 1. For any d≥ 1 and m> 0 one can define as in [10],
[20] a unique ergodic translation invariant probability measure Pm on (Ω,F)
which depends on the function V and m. In this measure the variables φ(x, t),
x ∈ Zd, t > 0, conditioned on the variables φ(x,0), x ∈ Zd, are determined as
solutions of the infinite dimensional stochastic differential equation

dφ(x, t) = − ∂

∂φ(x, t)

∑
x′∈Zd

1

2

{
V

(
∇φ

(
x′, t

))
+m2φ

(
x′, t

)2
/2

}
dt(2.12)

+ dB(x, t), x ∈Zd, t > 0,

where B(x, ·), x ∈ Zd, are independent copies of Brownian motion. Formally
the invariant measure for the Markov process (2.12) is the measure (1.1).

Hence, if the variables φ(x,0), x ∈ Zd, have distribution determined by
(1.1), then φ(·, t), t > 0, is a stationary process and so can be extended to
all t ∈R to yield a measure Pm on (Ω,F). The probability space (Ω,F , Pm)
satisfies the Poincaré inequality (2.6) with constant KPm = 4/m4 (Lemma 6.1
of [12]). In [12] we conclude from this that the inequality (2.3) holds provided
a(ω) = ã(φ(0,0)), where ã : R → Rd(d+1)/2 is assumed to be a C1 function
satisfying

(2.13)
∥∥Dã(·)

∥∥
∞ <∞, λId ≤ ã(·)≤ ΛId for some λ,Λ> 0.

Let (Ω̃, F̃ , P̃ ) be a probability space for which the Poincaré inequality (2.6)
holds, and ω̃ → ω a function which satisfies the translation invariant con-
dition (2.9) and the uniform integrability condition (2.11) for some q with
1≤ q < 2. Our goal in the current paper is to show that the inequality (2.3)
holds for the environment (Ω,F , P ) of ω ∈ Ω where a(ω) = ã(ω(0,0)) and
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ã :R→Rd(d+1)/2 satisfies (2.13). Rather than attempt to formulate a gen-
eral theorem for such environments, we shall only rigorously prove that (2.3)
holds for certain limits of the probability spaces (Ω,F , Pm) defined by (1.1),
(2.12) as m → 0. In Section 3, we indicate the generality of our argument
by showing that the proof of Proposition 6.3 of [12] formally extends to the
environment (Ω,F , P ).

From (2.12), we see that the stationary process ω(·, ·) = φ(·, ·) is a transla-
tion invariant function of the white noise stationary process ω̃(·, ·) = dB(·, ·).
We see from (1.15) that the white noise process satisfies a Poincaré inequality
(2.6) with KP̃ = 1. Consider now the terminal value problem for the back-
wards in time parabolic PDE

∂u(z, s)

∂s
=

1

2
∇∗V ′′(∇φ(z, s)

)
∇u(z, s), s < t, z ∈Zd,

(2.14)
u(z, t) = u0(z), z ∈Zd.

The solution has the representation

(2.15) u(z, s) =
∑
x∈Zd

GV ′′(z, s;x, t, φ)u0(x), s < t, z ∈Zd,

where GV ′′ is the Green’s function for (2.14). We see from equation (6.17)
of [12] that the gradient of ω(x, t) = φ(x, t), x ∈ Zd, t ∈R, with respect to ω̃
should be given by the formula

dω̃ω(z, s;x, t, ω̃) = e−m2(t−s)/2GV ′′(z, s;x, t, φ) for s < t,
(2.16)

dω̃ω(z, s;x, t, ω̃) = 0 for s > t, z ∈Zd.

In [22] a discrete version of the Aronson inequality (1.14) was proven in the
case when the diffusion matrix V ′′(·) for (2.14) is diagonal. In particular, it
was shown that there is a positive constant C depending only on d, Λ/λ such
that

(2.17) 0<GV ′′(z, s;x, t, φ)≤ C

[Λ(t− s) + 1]d/2
exp

[
− |x− z|√

Λ(t− s) + 1

]
.

Hence (2.16), (2.17) imply that the uniform integrability condition (2.11) holds
for any q with q > 1 + 2/d and the bound on the RHS of (2.11) can be taken
independent of m as m→ 0. Hence, if d≥ 3 the condition (2.11) holds in the
limit m→ 0 for some q with 1≤ q < 2.

It has been shown by Funaki and Spohn [20] (see also [10]) that if
d ≥ 3 then there is a unique limit as m → 0 of the stationary process
defined by (1.1), (2.12). In Section 4, we shall extend the rate of con-
vergence results in homogenization of (1.16), (1.17) obtained in [12] for
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the massive field stationary process (1.1), (2.12) with m > 0 to this mass-
less m → 0 stationary process. In particular, we prove the following theo-
rem.

Theorem 2.1. Let V :Rd →R be a C2 function such that V ′′(z), z ∈Rd,
is a diagonal d× d matrix which satisfies the quadratic form inequality λId ≤
V ′′(·)≤ ΛId for some λ,Λ> 0. Let ã :R→Rd(d+1)/2 be a C1 function on R
with values in the space of symmetric d × d matrices which satisfies (2.13).
For d≥ 3 let (Ω,F , P ) be the probability space of the stationary process φ(·, ·)
determined by the limit as m→ 0 of the stationary process defined by (1.1),
(2.12) and set a(·) in (1.16) to be a(φ) = ã(φ(0,0)), φ ∈ Ω. Let f :Rd →R
be a C∞ function of compact support, uε(x, t,ω) the corresponding solution
to (1.16), (1.17) with h(x) = f(εx), x ∈ Zd, and uhom(x, t), x ∈Rd, t > 0 the
solution to (2.1), (2.2). Then there is a constant α > 0 depending only on d,
Λ/λ and a constant C depending only on d, Λ, λ, ‖Dã(·)‖∞, f(·) such that
(2.3) holds.

Remark 2. The exponent α > 0 in (2.3) can be taken equal to 1 if d≥ 5
and the ratio λ/Λ is sufficiently close to 1. In [12] the matrix V ′′(·) is not
required to be diagonal since we use the fact that the Poincaré inequality
(2.6) holds for the massive field stationary process. In the Gaussian case
where V (·) is quadratic (2.3) also holds without the restriction that V ′′(·)
be diagonal. This follows from the fact that a bound on the Green’s func-
tion defined by (2.15) similar to (2.17) holds in this case. Another way of
seeing it is to note that the field φ(·, ·) is a linear translation invariant func-
tion of another field ω̃(·, ·) as in (2.10) with probability space which does
satisfy a Poincaré inequality. This property of φ(·, ·), being the convolution
of a function with another field whose probability space satisfies a Poincaré
inequality, does not seem to generalize to the case of uniformly convex V (·)
which is not quadratic. One reason for this is that the measure for the time
dependent stationary process φ(·, ·) associated with (2.12) appears to be log
concave in φ(·, ·) only in the Gaussian case when V (·) is quadratic (see Ap-
pendix A). In contrast, the invariant measure (1.1) for this process is easily
seen to be log concave when V (·) is convex. Hence the Brascamp–Lieb in-
equality (1.3) implies that a Poincaré inequality holds for the gradient ∇φ(·)
of the invariant measure field φ(·) of (1.1) if V (·) is uniformly convex (see
[14]).

Parallel to [12], we also establish for the massless field stationary process
point-wise convergence at large length scales of the averaged Green’s function
for the initial value problem (1.16), (1.17) to the homogenized Green’s func-
tion for the initial value problem (2.1), (2.2). The averaged Green’s function
Ga(x, t), x ∈ Zd, t ≥ 0, for (1.16), (1.17) is defined by Ga(x, t) = 〈u(x, t, ·)〉,
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where h(·) in (1.17) is the Kronecker delta function h(x) = 0 if x �= 0 and
h(0) = 1.

Theorem 2.2. With the same environment as in the statement of The-
orem 1.1, let Gahom

(x, t), x ∈Rd, t > 0, be the Green’s function for the ho-
mogenized problem (2.1), (2.2). Then there are constants α,γ > 0 depending
only on d and the ratio Λ/λ of the constants λ, Λ of (2.13), and a constant
C depending only on ‖Dã(·)‖∞, Λ, λ, d such that for Λt≥ 1,∣∣Ga(x, t)−Gahom

(x, t)
∣∣(2.18)

≤ C

[Λt+ 1](d+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
,∣∣∇Ga(x, t)−∇Gahom

(x, t)
∣∣(2.19)

≤ C

[Λt+ 1](d+1+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
,∣∣∇∇Ga(x, t)−∇∇Gahom

(x, t)
∣∣(2.20)

≤ C

[Λt+ 1](d+2+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
.

Proof of Theorem 1.1. We identify the probability space (Ω,F , P ) and
function a(·) for which the identity (1.19) holds. The probability space is
the space (Ω,F , Pm) of stationary massive fields φ : Zd ×R→R defined by
(2.12). The function a(·) is defined by a(φ) = V ′′(∇φ(0,0)), φ ∈Ω. To prove
Theorem 1.1, we observe that the methods used to prove Theorem 2.2 for
diffusion matrices a(·) of the form a(φ) = ã(φ(0,0)) can also be applied for
diffusion matrices of the form a(φ) = ã(∇φ(0,0)), where ã :Rd →Rd/(d+1)/2

is C1 and satisfies (2.13). Instead of the bound (2.17), we use the inequal-
ity

(2.21)
∣∣∇xGV ′′(z, s;x, t, φ)

∣∣ ≤ C

[Λ(t− s) + 1](d+β)/2
exp

[
− |x− z|√

Λ(t− s) + 1

]
.

Evidently (2.21) with β = 0 is a consequence of (2.17). This is sufficient to
prove Theorem 1.1 when d≥ 3. To prove the theorem for d= 2, we need to
use the fact that β can be chosen strictly positive depending only on λ/Λ.
This follows from the Harnack inequality [15], [33]. Furthermore, β can be
chosen arbitrarily close to 1 provided λ/Λ is sufficiently close to 1. The result
follows by letting m→ 0 in (1.19). �

3. Variance estimate on the solution to a PDE on Ω

We recall some definitions from [12]. For ξ ∈Rd and 1≤ j ≤ d, we define
the ξ derivative of a measurable function ψ : Ω→C in the j direction by ∂j,ξ ,
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and its adjoint by ∂∗
j,ξ , where

∂j,ξψ(ω) = e−iej .ξψ(τej ,0ω)−ψ(ω),
(3.1)

∂∗
j,ξψ(ω) = eiej .ξψ(τ−ej ,0ω)−ψ(ω).

We also define a d dimensional column ξ gradient operator ∂ξ by ∂ξ =
(∂1,ξ, . . . , ∂d,ξ), which has adjoint ∂∗

ξ given by the row operator ∂∗
ξ =

(∂∗
1,ξ, . . . , ∂

∗
d,ξ). The time derivative of ψ is defined by

(3.2) ∂ψ(ω) = lim
δ→0

[
ψ(τ0,δω)−ψ(ω)

]
/δ.

Let H(Ω) be the Hilbert space of measurable functions Ψ : Ω → Cd with
norm ‖Ψ‖H(Ω) given by ‖Ψ‖2H(Ω) = 〈|Ψ(·)|22〉, where | · |2 is the Euclidean

norm on Cd. Then there is a unique row vector solution Φ(ξ, η,ω) =
(Φ1(ξ, η,ω), . . . ,Φd(ξ, η,ω)) to the equation

[η+ ∂]Φ(ξ, η,ω) + ∂∗
ξ

[
a(ω)∂ξΦ(ξ, η,ω)

]
=−∂∗

ξa(ω),(3.3)

η > 0, ξ ∈Rd, ω ∈Ω,

such that Φ(ξ, η, ·)v ∈ L2(Ω) for any v ∈Cd. The solution is in fact given by
a convergent series expansion—see (2.14) of [12]. Furthermore, Φ(ξ, η, ·)v ∈
L2(Ω) satisfies the inequality

(3.4) η
∥∥Φ(ξ, η, ·)v∥∥2

L2(Ω)
+ λ

∥∥∂ξΦ(ξ, η, ·)v∥∥2

H(Ω)
≤ Λ2|v|2/λ.

Letting P denote the projection orthogonal to the constant function, our
generalization of Proposition 6.3 of [12] is as follows.

Proposition 3.1. Suppose a(·) in (3.3) is given by a(ω) = ã(ω(0,0)) where
ã :Rn →Rd(d+1)/2 is a C1 d× d symmetric matrix valued function satisfying
the quadratic form inequality (2.13) and ‖Dã(·)‖∞ < ∞. The random field
ω :Zd×R→Rn is a translation invariant function of a random field ω̃ : Zd×
R→Rk which satisfies the uniform integrability condition (2.11) for some q

with 1 ≤ q < 2. The probability space (Ω̃, F̃ , P̃ ) of fields ω̃ : Zd × R → Rk

is assumed to satisfy the Poincaré inequality (2.6). Then there exists q0 < 2
depending only on d, Λ/λ such that if q0 ≤ q ≤ 2 and g ∈ Lp(Zd×R,Cd⊗Cd)
with p= 2q/(3q− 2) the inequality∥∥∥∥P ∑

x∈Zd

∫ ∞

−∞
dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v

∥∥∥∥
H(Ω)

(3.5)

≤
CK

1/2

P̃
‖Dã(·)‖∞|v|
Λ

Kω,q‖g‖p, v ∈Cd,

holds for a constant C depending only on d, n, k, Λ/λ, q0.
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Proof. From (2.6), we have that

∥∥∥∥P ∑
x∈Zd

∫ ∞

−∞
dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v

∥∥∥∥
2

H(Ω)

(3.6)

≤KP̃

∑
z∈Zd

∫ ∞

−∞
ds

〈∣∣∣∣ ∂

∂ω̃(z,−s)

×
∑
x∈Zd

∫ ∞

−∞
dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v

∣∣∣∣
2

2

〉
.

From the chain rule, we see that

∂

∂ω̃(z,−s)
∂ξΦ(ξ, η, τx,−t·)v(3.7)

=
∑
y∈Zd

∫ ∞

−∞
dt′

[
∂

∂ω(y, t′)
∂ξΦ(ξ, η, τx,−t·)v

]
· dω̃ω

(
z,−s;y, t′, ω̃

)
.

Next, we do a translation of the functions on the RHS of (3.7). Translation

of a function G : Ω̃ → C through (x, t) ∈ Zd × R is defined by τx,tG(ω̃) =

G(τx,tω̃), ω̃ ∈ Ω̃. For a function G : Ω→C there are two possible notions of
translation through (x, t), the first being given by τx,tG(ω) =G(τx,tω), ω ∈Ω.

Since ω is a function of ω̃ ∈ Ω̃ we can also define translation through (x, t)

by regarding G : Ω→C as a function on Ω̃ and doing the translation on Ω̃.
It follows from the translation invariance property (2.9) that both of these
notions are the same. Now using the translation invariance of the probability
measure P̃ on Ω̃ we conclude from (3.6), (3.7) that

∥∥∥∥P ∑
x∈Zd

∫ ∞

−∞
dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v

∥∥∥∥
2

H(Ω)

(3.8)

≤KP̃

∑
z∈Zd

∫ ∞

−∞
ds

〈∣∣∣∣ ∑
x∈Zd

∫ ∞

−∞
dt g(x, t)

∑
y∈Zd

∫ ∞

−∞
dt′

×
[
τ−z,s

∂

∂ω(y, t′)
∂ξΦ(ξ, η, τx,−t·)v

]
· τ−z,s dω̃ω

(
z,−s;y, t′, ω̃

)∣∣∣∣
2

2

〉
.

We define a function u :Zd ×R× Ω̃→Ck by

u(z, s, ω̃) = e−iz·ξ
∑
y∈Zd

∫ ∞

−∞
dt′(3.9)

×
[
dωΦ

(
y, t′; ξ, η, τz,−sω

)
v
]
· dω̃ω

(
0,0;y+ z, t′ − s, ω̃

)
,
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where dωΦ(·; ξ, η,ω)v :Zd×R→Cn is the gradient of Φ(ξ, η,ω)v with respect
to ω ∈Ω. Observe now from (2.9) that

dω̃ω
(
z,−s;y, t′, ω̃

)
=

∂

∂ω̃(z,−s)
ω
(
y, t′, ω̃

)
(3.10)

=
∂

∂ω̃(z,−s)
ω
(
y− z, t′ + s, τz,−sω̃

)
= dω̃ω

(
0,0;y− z, t′ + s, τz,−sω̃

)
.

Hence, we have that

ei(z−x).ξ
∑
y∈Zd

∫ ∞

−∞
dt′(3.11)

×
[
τ−z,s

∂

∂ω(y, t′)
Φ(ξ, η, τx,−tω)v

]
· τ−z,s dω̃ω

(
z,−s;y, t′, ω̃

)
= ei(z−x).ξ

∑
y∈Zd

∫ ∞

−∞
dt′

×
[
dωΦ

(
y− x, t′ + t; ξ, η, τx−z,s−tω

)
v
]
· dω̃ω

(
0,0;y− z, t′ + s, ω̃

)
= ei(z−x).ξ

∑
y∈Zd

∫ ∞

−∞
dt′

×
[
dωΦ

(
y, t′; ξ, η, τx−z,s−tω

)
v
]
· dω̃ω

(
0,0;y+ x− z, t′ + s− t, ω̃

)
= u(x− z, t− s, ω̃).

It follows from (3.11) that (3.8) can be rewritten as∥∥∥∥P ∑
x∈Zd

∫ ∞

−∞
dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v

∥∥∥∥
2

H(Ω)

(3.12)

≤KP̃

∑
z∈Zd

∫ ∞

−∞
ds

×
〈∣∣∣∣ ∑

x∈Zd

∫ ∞

−∞
dt g(x, t)ei(x−z)·ξ∇u(x− z, t− s, ·)

∣∣∣∣
2

2

〉
.

In [12], we defined the ξ derivative of a measurable function ψ : Zd ×R×
Ω→C in the j direction by Dj,ξ , and its adjoint by D∗

j,ξ , where

Dj,ξψ(x, t;ω) = e−iej .ξψ(x− ej , t; τejω)−ψ(x, t;ω),
(3.13)

D∗
j,ξψ(x,ω) = eiej .ξψ(x+ ej , t; τ−ejω)−ψ(x, t;ω).

The corresponding d dimensional column ξ gradient operator Dξ is then given
by Dξ = (D1,ξ, . . . ,Dd,ξ), and it has adjoint D∗

ξ given by the row operator
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D∗
ξ = (D∗

1,ξ, . . . ,D
∗
d,ξ). We also defined the time derivative D0 of ψ :Zd×R×

Ω→C by

(3.14) D0ψ(x, t;ω) = lim
δ→0

[
ψ(x, t− δ; τ0,δω)−ψ(x, t;ω)

]
/δ.

Note that (3.13), (3.14) are generalizations of (3.1), (3.2) to functions which
depend on x ∈Zd, t ∈R as well as ω ∈Ω. We see from (3.1), (3.2) that these
operators satisfy the identities

∂

∂ω(y, t)
∂ξψ(ω) =Dξdωψ(y, t;ω), y ∈Zd, t ∈R, ω ∈Ω,

(3.15)
∂

∂ω(y, t)
∂ψ(ω) =D0dωψ(y, t;ω), y ∈Zd, t ∈R, ω ∈Ω,

for differentiable functions ψ : Ω → C. A similar relationship holds for the
adjoints ∂∗

ξ , D
∗
ξ . Hence on taking the gradient of equation (3.3) with respect

to ω(·), we conclude from (3.15) that

[η+D0]dωΦ
(
y, t′; ξ, η,ω

)
v+D∗

ξ

[
ã
(
ω(0,0)

)
DξdωΦ

(
y, t′; ξ, η,ω

)]
v(3.16)

=−D∗
ξ

[
δ
(
y, t′

)
Dã

(
ω(0,0)

){
v+ ∂ξΦ(ξ, η,ω)v

}]
for y ∈Zd, t′ ∈R, ω ∈Ω.

Evidently (3.16) holds with ω ∈ Ω replaced by τz,−sω for any z ∈ Zd,
s ∈ R. We now multiply (3.16) with τz,−sω in place of ω on the right by
e−iz·ξ dω̃ω(0,0;y+ z, t′ − s, ω̃), sum with respect to y ∈Zd and integrate with
respect to t′ ∈R. It then follows from (3.9), (3.16) that

ηu(z, s, ω̃)− ∂u(z, s, ω̃)

∂s
+∇∗[ã(

ω(z,−s)
)
∇u(z, s, ω̃)

]
(3.17)

=−∇∗f(z, s, ω̃),

where the function f :Zd ×R× Ω̃→Cd ⊗Ck is given by the formula

f(z, s, ω̃) =Dã
(
ω(z,−s)

){
v+ ∂ξΦ(ξ, η, τz,−sω)v

}
(3.18)

× e−iz·ξ dω̃ω(0,0; z,−s, ω̃).

For any 1 < q < ∞ we consider the function f as a mapping f : Zd ×R →
L2(Ω̃,Cd ⊗Ck) with norm defined by

(3.19) ‖f‖qq =
∑
y∈Zd

∫ ∞

−∞
dt′

∥∥f(
y, t′, ·

)∥∥q

2
,

where ‖f(y, t′, ·)‖2 is the norm of f(y, t′·) ∈ L2(Ω̃,Cd ⊗Ck). Now from (3.4)
it follows that ∂ξΦ(ξ, η, ·)v ∈H(Ω) and ‖∂ξΦ(ξ, η, ·)v‖H(Ω) ≤ Λ|v|/λ. Hence if

the inequality (2.11) holds then the function f is in Lq(Zd ×R,L2(Ω̃,Cd ⊗
Ck)) and ‖f‖q ≤ ‖Dã(·)‖∞(1 + Λ/λ)|v|Kω,q . We see from (3.17) that in the

case q = 2 then∇u is also in L2(Zd×R,L2(Ω̃,Cd⊗Ck)) and ‖∇u‖2 ≤ ‖f‖2/λ.
It follows now from (3.12) that (3.5) holds with q = 2 and p= 1.



EUCLIDEAN FIELDS 159

To prove the inequality for some p > 1, we use the parabolic version of
Meyer’s theorem [32]. We note that just as the Calderon–Zygmund theorem
applies to functions with range in a Hilbert space [41], Jone’s theorem for
parabolic multipliers [26] also applies to functions with range in a Hilbert
space (see Lemma 5.2 of [12]). We conclude that there exists q0 depending
only on d, Λ/λ with 1 < q0 < 2 such that if ‖f‖q < ∞ for any q satisfying
q0 ≤ q ≤ 2 then ‖∇u‖q ≤ 2‖f‖q/λ. Assume now that (2.11) holds for some q
in the interval q0 ≤ q ≤ 2. Then by Young’s inequality for convolutions we see
from (3.12) that (3.5) holds with p= 2q/(3q− 2). �

4. Proof of Theorem 2.1 and Theorem 2.2

The basic approach of [12] is to use the fact that the solution to (1.16)
can be expressed by a Fourier inversion formula. For η ∈C, denote its real
part by �η ∈ R and its imaginary part by �η ∈ R so that η = �η + i�η,
and similarly denote the real and imaginary parts of ξ ∈Cd by �ξ,�ξ ∈Rd

whence ξ =�ξ + i�ξ. We consider solutions to the equation

[η+ ∂]Φ(ξ, η,ω) +P∂∗
ξa(ω)∂ξΦ(ξ, η,ω) =−P∂∗

ξa(ω),(4.1)

�η > 0, ξ ∈Rd, ω ∈Ω.

As with (3.3) there exists a unique solution to (4.1) such that Φ(ξ, η, ·)v ∈
L2(Ω) for any v ∈Cd. Furthermore, Φ(ξ, η, ·)v ∈ L2(Ω) satisfies the inequality

(4.2) �η
∥∥Φ(ξ, η, ·)v∥∥2

L2(Ω)
+ λ

∥∥∂ξΦ(ξ, η, ·)v∥∥2

H(Ω)
≤ Λ2|v|2/λ.

If ξ = 0, the solution Φ(ξ, η,ω) to (3.3) has zero mean so 〈Φ(0, η, ·)〉 = 0.
Hence, the solutions to (3.3), (4.1) coincide if ξ = 0 but are in general different.
For ξ ∈Rd and η ∈C with �η > 0 let e(ξ) ∈Cd be the vector e(ξ) = ∂ξ1 and
q(ξ, η) be the d× d matrix

(4.3) q(ξ, η) =
〈
a(·)

〉
+

〈
a(·)∂ξΦ(ξ, η, ·)

〉
,

where Φ(ξ, η,ω) is the solution to (4.1). From equation (2.42) of [12], we have
that the solution to (1.16), (1.17) is given by the formula

u(x, t,ω) =
1

(2π)d+1

∫
[−π,π]d

∫ ∞

−∞

ĥ(ξ)e−iξ.x+ηt

η+ e(ξ)∗q(ξ, η)e(ξ)
(4.4)

×
[
1 +Φ(ξ, η, τx,tω)e(ξ)

]
d[�η]dξ.

If the environment (Ω,F , P ) is ergodic then the limit limη→0 q(0, η) = ahom
exists (see Lemma 2.5 of [11] for a proof in the discrete time case), and ahom
is the diffusion matrix for the homogenized equation (2.1). Let Ĝa(ξ, η),
ξ ∈ [−π,π]d, �η > 0, be the Fourier–Laplace transform of the averaged Green’s
function Ga(x, t), x ∈Zd, t≥ 0, for (1.16), (1.17) defined by

(4.5) Ĝa(ξ, η) =

∫ ∞

0

dt
∑
x∈Zd

Ga(x, t) exp[ix.ξ − ηt].
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It follows from (4.4) that Ĝa(ξ, η) is given by the formula

(4.6) Ĝa(ξ, η) = 1/
[
η+ e(ξ)∗q(ξ, η)e(ξ)

]
for ξ ∈ [−π,π]d,�η > 0.

In [12] it was shown that Theorem 2.1 and Theorem 2.2 are consequences of
the following.

Hypothesis 4.1. For ξ ∈Cd, η ∈C there exist positive constants C1 and
α≤ 1 depending only on d and Λ/λ, such the function q(ξ, η), ξ ∈Rd, �η > 0,

has an analytic continuation to the region |�ξ|<C1

√
�η/Λ, 0<�η < Λ, and∥∥q(ξ′, η′)− q(ξ, η)

∥∥ ≤CΛ
[
|ξ′ − ξ|α +

∣∣(η′ − η
)
/Λ

∣∣α/2],(4.7)

0<�η ≤�η′ ≤ Λ, ξ′, ξ ∈Cd with |�ξ|,
∣∣�ξ′∣∣ ≤C1

√
�η/Λ,

where C is a constant depending on the environment and the function a(·).

This follows from Theorem 4.1 and Theorem 4.2 of [12]. Note that these
theorems have been stated for discrete time, whence the requirement 4dΛ≤ 1.
In the case of continuous time, there is no need for this restriction on the value
of Λ (see remarks at the end of §4 of [12]). Here we shall prove that Hypoth-
esis 4.1 holds for the massless field environment (Ω,F , P ) of Theorem 2.1.
To do this, we recall some operators defined in [12]. For any g ∈ H(Ω), let
ψ(ξ, η,ω) be the solution to the equation

(4.8)
1

Λ
[η+ ∂]ψ(ξ, η,ω) + ∂∗

ξ∂ξψ(ξ, η,ω) = ∂∗
ξ g(ω), �η > 0, ξ ∈Rd, ω ∈Ω.

The operator Tξ,η on H(Ω) is defined by Tξ,ηg(·) = ∂ξψ(ξ, η, ·). Let G(x, t),
x ∈Zd, t > 0, be the solution to the initial value problem

∂G(x, t)

∂t
+∇∗∇G(x, t) = 0, x ∈Zd, t > 0,

(4.9)
G(x,0) = δ(x), x ∈Zd.

It is well known [35] that there exist positive constants C, γ depending only
on d such that G satisfies the inequality

G(x, t) + (t+ 1)1/2
∣∣∇G(x, t)

∣∣+ (t+ 1)
∣∣∇∇∗G(x, t)

∣∣(4.10)

≤ C

[t+ 1]d/2
exp

[
−γmin

{
|x|, |x|2

t+ 1

}]
, for x ∈Zd, t≥ 0.

From (2.47) of [12], we have that the operator Tξ,η is also given by the formula

(4.11) Tξ,ηg(ω) = Λ

∫ ∞

0

e−ηt dt
∑
x∈Zd

{
∇∇∗G(x,Λt)

}∗
exp[−ix.ξ]g(τx,−tω).

It easily follows from (4.8) that Tξ,η is a bounded operator on H(Ω) with
‖Tξ,η‖H(Ω) ≤ 1 provided ξ ∈Rd, �η > 0. Furthermore by Lemma 2.1 of [12],

the function (ξ, η)→ Tξ,η from Rd×R to the Banach space of bounded linear



EUCLIDEAN FIELDS 161

operators on H(Ω) has an analytic continuation to a strip 0<�η < Λ, |�ξ|<
C

√
�η/Λ where C is a constant depending only on d.

Let b be the d × d matrix valued function b(ω) = Id − a(ω)/Λ, ω ∈ Ω,
whence (2.13) implies the quadratic form inequality 0 ≤ b(·) ≤ (1− λ/Λ)Id.
It follows from (4.3)—see (2.21) of [12]—that

(4.12) q(ξ, η) =
〈
a(·)

〉
−Λ

∞∑
m=1

〈
b(·)

[
PTξ,ηb(·)

]m〉
.

We consider ξ ∈Cd, η ∈C with ξ having fixed imaginary part, η having fixed
positive real part, and satisfying the conditions of Hypothesis 4.1. For k =
1,2, . . . , we define an operator Tk,�ξ,�η from functions g :Zd ×R→Cd ⊗Cd

to periodic functions Tk,�ξ,�ηg : [−π,π]d ×R×Ω→Cd ⊗Cd by

(4.13) Tk,�ξ,�ηg(�ξ,�η, ·) =
∑
x∈Zd

∫ ∞

−∞
dt g(x, t)τx,−tPb(·)

[
PTξ,ηb(·)

]k−1
,

where ξ = �ξ + i�ξ, η = �η + i�η in (4.13). For 1 ≤ p <∞ let Lp(Zd ×R,
Cd ⊗Cd) be the Banach space of d× d matrix valued functions g :Zd ×R→
Cd ⊗Cd with norm ‖g‖p defined by

(4.14) ‖g‖pp = sup
v∈Cd:|v|=1

∑
x∈Zd

∫ ∞

−∞
dt

∣∣g(x, t)v∣∣p
2
,

where |g(x, t)v|2 is the Euclidean norm of the vector g(x, t)v ∈Cd. We simi-
larly define the space L∞([−π,π]d ×R×Ω,Cd ⊗Cd) of d× d matrix valued
functions g : [−π,π]d ×R×Ω→Cd ⊗Cd with norm ‖g‖∞ defined by

(4.15) ‖g‖∞ = sup
v∈Cd:|v|=1

[
sup

ζ∈[−π,π]d,θ∈R

∥∥g(ζ, θ, ·)v∥∥H(Ω)

]
.

Since ‖Tξ,η‖H(Ω) ≤ 1 if ξ ∈Rd, �η > 0 it follows from (4.13), (4.14) that if

�ξ = 0 then Tk,�ξ,�η is a bounded operator from L1(Zd × R,Cd ⊗ Cd) to
L∞([−π,π]d ×R × Ω,Cd ⊗Cd) with norm ‖Tk,�ξ,�η‖1,∞ ≤ (1 − λ/Λ)k. In
the next section we show that Tk,�ξ,�η is a bounded operator from Lp(Zd ×
R,Cd ⊗Cd) to L∞([−π,π]d ×R × Ω,Cd ⊗Cd) for some p > 1 in the case
of the environment of Theorem 2.1 and estimate its norm ‖Tk,�ξ,�η‖p,∞. In
particular, we prove the following lemma.

Lemma 4.1. Let (Ω,F , P ) be an environment of massless fields φ : Zd ×
R → R with d ≥ 3, and ã : R → Rd(d+1)/2 be as in the statement of The-
orem 2.1. Set a(φ) = ã(φ(0,0)), φ ∈ Ω. Then there exists p0(Λ/λ) with
1 < p0(Λ/λ) < 2 depending only on d and Λ/λ, and positive constants
C1(Λ/λ), C2(Λ/λ) depending only on d and Λ/λ such that for 0 < �η < Λ,
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|�ξ|<C1(Λ/λ)
√

�η/Λ,

‖Tk,�ξ,�η‖p,∞ ≤ C2(Λ/λ)k‖Dã(·)‖∞
Λ5/2−1/p

(4.16)

× (1− λ/Λ)(k−1)/2
[
1 +C2|�ξ|2/(�η/Λ)

]k−1

provided 1≤ p≤ p0(Λ/λ).

To complete this section, we show how Lemma 4.1 implies that Hypothe-
sis 4.1 holds.

Proof of Hypothesis 4.1. We assume that (ξ, η) and (ξ′, η′) are as in the
statement of Hypothesis 4.1. Let g : Zd × R → Cd ⊗ Cd be the function
defined by

(4.17) g(x, t) = Λ
{
∇∇∗G(x,Λt)

}∗
e−ix·ξ′−η′t −Λ

{
∇∇∗G(x,Λt)

}∗
e−ix·ξ−ηt,

where the Green’s function G(·, ·) is defined by (4.9). We use Lemma 2.1 of
[12], which also holds for continuous time translation operators (see remarks
at the end of §2 of [12]). It then follows from (4.11), (4.12) that the constant
C1 > 0 in (4.7) can be chosen depending only on d and Λ/λ so that

∥∥[
q
(
ξ′, η′

)
− q(ξ, η)

]
v
∥∥≤C2Λ

∞∑
k=1

∥∥Tk,�ξ,�ηg(�ξ,�η, ·)v
∥∥
H(Ω)

(4.18)

for |�ξ|,
∣∣�ξ′∣∣ ≤C1

√
�η/Λ,

where C2 is a constant depending only on d, Λ/λ. We can see from (4.10) that

there is a constant C1 depending only on d such that if |�ξ|, |�ξ′|<C1

√
�η/Λ

then the function g is in Lp(Zd ×R,Cd ⊗Cd) for any p > 1. Furthermore if
0≤ α≤ 1 and p > (d+ 2)/(d+ 2− α), then ‖g‖p satisfies the inequality

(4.19) ‖g‖p ≤CpΛ
1−1/p

[∣∣ξ′ − ξ
∣∣α +

∣∣(η′ − η
)
/Λ

∣∣α/2],
where the constant Cp depends only on d, p. The Hölder continuity (4.7) for
sufficiently small α> 0 follows from (4.18), (4.19) and Lemma 4.1. �

5. Proof of Lemma 4.1

In [12], we proved that the operator Tk,�ξ,�η of (4.13) is for some p in
the range 1≤ p≤ p0(Λ/λ) a bounded operator from Lp(Zd ×R,Cd ⊗Cd) to
L∞([−π,π]d ×R×Ω,Cd ⊗Cd) if the environment (Ω,F , P ) is the stationary
process for the SDE (2.12) with m > 0. Here, we take an alternative ap-
proach to proving this result which will allow us to study the m→ 0 limit of
‖Tk,�ξ,�η‖p,∞. We first establish an inequality for periodic fields φ :Q→R
on cubes Q⊂ Zd, and then show that we can let Q→Zd since our estimates
are independent of Q. Let L be an even integer and Q=QL denote the lat-
tice points of Zd contained in the cube of length L centered at the origin.
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In the following, we identify all points x, y ∈Q with x− y = Lek for some k,
1≤ k ≤ d.

As in [12], the Malliavin calculus [8], [38] is the main tool we use to prove
Lemma 4.1. We assume that V :Rd →R is a C2 uniformly convex function
such that a(·) = V ′′(·) satisfies (2.13) and m> 0. Letting B(x, ·), x ∈Q, be
independent copies of Brownian motion, then the SDE initial value problem

dφ(x, t)(5.1)

=− ∂

∂φ(x, t)

∑
x′∈Q

1

2

{
V

(
∇φ

(
x′, t

))
+m2φ

(
x′, t

)2
/2

}
dt+ dB(x, t)

for x ∈Q, t > 0, with φ(x,0) = 0 for x ∈Q,

has a unique periodic solution φ(x, t), x ∈ Q, t > 0, which is continuous
in t ≥ 0 with probability 1. We denote the function φ corresponding to
a particular realization ω̃ of the white noise process dB(·, ·) as φ(ω̃). Let
(ΩQ,Mal,FQ,Mal, PQ,Mal) be the Malliavin probability space associated with
the Brownian motions B(x, ·), x ∈Q. We denote the Malliavin derivative of
a function G : ΩQ,Mal →C at a point ω̃ ∈ ΩQ,Mal by DMalG(x, t; ω̃), x ∈ Q,
t > 0. It is well known (see [8] Theorem 5.4) that the Poincaré inequality (2.6)
holds for (ΩQ,Mal,FQ,Mal, PQ,Mal) with constant KP̃ = 1. Thus, we have that

(5.2) Var
[
G(·)

]
≤

〈∥∥DMalG(·; ω̃)
∥∥2

2

〉
ΩQ,Mal

,

where ‖ · ‖2 is the Euclidean norm in L2(Q×R+).
Let φ :Zd×R→R be continuous and consider the terminal value problem

for the backwards in time parabolic PDE

∂u(y, s)

∂s
=

1

2
∇∗V ′′(∇φ(y, s)

)
∇u(y, s), s < t, y ∈Zd,

(5.3)
u(y, t) = u0(y), y ∈Zd,

with solution

(5.4) u(y, s) =
∑
x∈Zd

G(y, s;x, t, φ)u0(x), s≤ t, y ∈Zd.

It is easy to see that if u0(·) ∈ L2(Zd) then u(·, s) ∈ L2(Zd) for s ≤ t and
‖u(·, s)‖L2(Zd) ≤ ‖u0(·)‖L2(Zd). The function G satisfies

(5.5)
∑
x∈Zd

G(y, s;x, t, φ) = 1, y ∈Zd;
∑
y∈Zd

G(y, s;x, t, φ) = 1, x ∈Zd;

and is non-negative if V ′′(·) is diagonal. In that case, the function x →
G(y, s;x, t, φ), x ∈ Zd, is the pdf for the position at time t of a continuous
time random walk started at y at time s. If φ :Q×R→R is periodic we can
extend it to a periodic function φ : Zd ×R→R. Let u0 :Q→R be periodic
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and extend it to a periodic function u0 : Z
d →R. Then the solution to the

periodic terminal value problem (5.3) is given by

(5.6) u(y, s) =
∑
x∈Q

GQ(y, s;x, t, φ)u0(x), s≤ t, y ∈Q,

where GQ is the periodic Green’s function

(5.7) GQ(y, s;x, t) =
∑
n∈Zd

G(y, s;x+Ln, t,φ), s≤ t, x, y ∈Zd.

It was shown in [12]—see equation (6.17)—that the Malliavin derivative of
φ(x, t, ω̃), x ∈Q, t > 0, is given by the formula

DMalφ(y, s;x, t, ω̃) = e−m2(t−s)/2GQ

(
y, s;x, t, φ(ω̃)

)
for 0< s< t,

(5.8)
DMalφ(y, s;x, t, ω̃) = 0 for s > t, y ∈Q.

The solution to (5.3) can be written in a perturbation expansion by setting

V ′′(z) = Λ[Id−b̃V (z)], z ∈Rd, where 0≤ b̃V (·)≤ (1−λ/Λ)Id in the quadratic
form sense. Then

(5.9) u(y, s) =

∞∑
n=0

un(y, s), y ∈Zd, s < t,

where u0(y, s) is the solution to the terminal value problem

∂u0(y, s)

∂s
=

Λ

2
∇∗∇u0(y, s), s < t, y ∈Zd,

(5.10)
u0(y, t) = u0(y), y ∈Zd,

and the un(y, s), n= 1,2, . . . , solutions to the terminal value problems

∂un(y, s)

∂s
=

Λ

2

[
∇∗∇un(y, s)−∇∗b̃V

(
∇φ(y, s)

)
∇un−1(y, s)

]
,

s < t, y ∈Zd,(5.11)

un(y, t) = 0, y ∈Zd.

It follows from (4.9) that

(5.12) u0(y, s) =
∑
z∈Zd

G
(
y− z,Λ(t− s)/2

)
u0(z), y ∈Zd, s < t.

Similarly we have that for n≥ 1,

un(z, r) =
∑
y∈Zd

∫ t−r

0

ds∇G(y,Λs/2)b̃V

(
∇φ(z + y, r+ s)

)
(5.13)

×∇un−1(z + y, r+ s), z ∈Zd, r < t.
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If we set u0 in (5.3) to be given by u0(y) = δ(y−x), y ∈Zd, then the perturba-
tion expansion (5.9) yields a perturbation expansion for the Green’s function,

(5.14) G(y, s;x, t, φ) =
∞∑

n=0

Gn(y, s;x, t, φ),

where the Gn are multilinear in b̃V of degree n. By choosing u0(y) =∑
n∈Zd δ(y − x − nL), y ∈ Zd, we obtain a similar perturbation expansion

for the periodic Green’s function

(5.15) GQ(y, s;x, t, φ) =

∞∑
n=0

Gn,Q(y, s;x, t, φ).

Next, we consider the inhomogeneous problem

∂u(y, s)

∂s
=

1

2
∇∗V ′′(∇φ(y, s)

)
∇u(y, s)− f(y, s), s ∈R, y ∈Zd,

(5.16)
lim

s→+∞
u(y, s) = 0, y ∈Zd.

Let f :Zd×R→C be a continuous function such that
∫ ∞
−∞ dt‖f(·, t)‖L2(Zd) <

∞. From Duhamel’s formula we see that the solution to (5.16) is given by

(5.17) u(y, s) =
∑
x∈Zd

∫ ∞

s

dtG(y, s;x, t, φ)f(x, t), s ∈R, y ∈Zd.

We can similarly consider the inhomogeneous periodic problem where f :Q×
R→C is assumed periodic and we extend it to a periodic function f : Zd ×
R→C. The solution to (5.16) is then periodic and is given by the formula

(5.18) u(y, s) =
∑
x∈Q

∫ ∞

s

dtGQ(y, s;x, t, φ)f(x, t), s ∈R, y ∈Q.

Lemma 5.1. Assume g :Zd×R→C is in L2(Zd×R) and define for m> 0
the function v :Zd ×R→C by

(5.19) v(y, s) =
∑
x∈Zd

∫ ∞

s

dt e−m2(t−s)/2G(y, s;x, t, φ)g(x, t), s ∈R, y ∈Zd.

Then v is also in L2(Zd ×R) and ‖v(·, ·)‖L2(Zd×R) ≤ 2m−2‖g(·, ·)‖L2(Zd×R).
Corresponding to the perturbation expansion (5.14) the function v can be writ-
ten as a sum

v =

∞∑
n=0

vn,(5.20)

where
∥∥vn(·, ·)∥∥L2(Zd×R)

≤ 1

m2
(1− λ/Λ)n

∥∥g(·, ·)∥∥
L2(Zd×R)

.
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Proof. It follows from (5.16) that v satisfies

(5.21)

[
∂

∂s
− m2

2

]
v(y, s) =

1

2
∇∗V ′′(∇φ(y, s)

)
∇v(y, s)− g(y, s).

Multiplying (5.21) by v(y, s), summing over y ∈ Zd and integrating with re-
spect to s in the interval −T ≤ s≤ T we see that

m2

2

∑
y∈Zd

∫ T

−T

ds
∣∣v(y, s)∣∣2(5.22)

≤ 1

2

∑
y∈Zd

{∣∣v(y,T )∣∣2 − ∣∣v(y,−T )
∣∣2}+�

[ ∑
y∈Zd

∫ T

−T

dsv(y, s)g(y, s)

]
.

Now from (5.19) we have that for s ∈R,∥∥v(·, s)∥∥
L2(Zd)

≤
∫ ∞

0

e−m2t/2
∥∥g(·, s+ t)

∥∥
L2(Zd)

dt(5.23)

≤ 1

m

[∫ ∞

0

dt
∥∥g(·, s+ t)

∥∥2

L2(Zd)

]1/2

.

Since g ∈ L2(Zd ×R) it follows that the last expression on the RHS of (5.23)
vanishes as s→∞, whence limT→∞ ‖v(·, T )‖L2(Zd) = 0. We similarly conclude
that limT→∞ ‖v(·,−T )‖L2(Zd) = 0. Letting T → ∞ in (5.22) and using the

Schwarz inequality we see that if g ∈ L2(Zd×R) then v is also in L2(Zd×R)
and their norms are related as stated.

To prove (5.20), we observe that

(5.24)

[
∂

∂s
− m2

2

]
v0(y, s) =

Λ

2
∇∗∇v0(y, s)− g(y, s),

and that for n≥ 1,

(5.25)

[
∂

∂s
− m2

2

]
vn(y, s) =

Λ

2

[
∇∗∇vn(y, s)−∇∗b̃V

(
∇φ(y, s)

)
∇vn−1(y, s)

]
.

Arguing as in the previous paragraph, we see from (5.24) that

m2

4

∥∥v0(·, ·)∥∥2

L2(Zd×R)
+

Λ

2

∥∥∇v0(·, ·)
∥∥2

L2(Zd×R,Cd)
(5.26)

≤ 1

m2

∥∥g(·, ·)∥∥2

L2(Zd×R)
.

Similarly we have from (5.25) that for n≥ 1,

m2

2

∥∥vn(·, ·)∥∥2

L2(Zd×R)
+

Λ

4

∥∥∇vn(·, ·)
∥∥2

L2(Zd×R,Cd)
(5.27)

≤ Λ

4
(1− λ/Λ)2

∥∥∇vn−1(·, ·)
∥∥2

L2(Zd×R,Cd)
.

The inequality in (5.20) easily follows from (5.26), (5.27). �
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Remark 3. The result of Lemma 5.1 holds if Zd is replaced by a periodic
cube Q with the Green’s function G replaced by the periodic Green’s function
GQ of (5.7) with perturbation expansion (5.15).

In [12]—see equation (6.31)—we considered vector valued functions F (φ)
of fields φ : Zd ×R→R and defined the field derivative of F at φ to be the
function dF (·, ·;φ) with domain Zd ×R which satisfies

(5.28) lim
ε→0

[
F (φ+ εh)− F (φ)

]
/ε=

∑
y∈Zd

∫ ∞

−∞
dsdF (y, s;φ)h(y, s)

for all continuous functions h : Zd ×R→R with compact support. Let b̃ :
R→Rd(d+1)/2 be a C1 function taking values in the symmetric d×d matrices
such that ‖b̃‖∞+‖Db̃‖∞ <∞ and define b(·) in (4.13) as a function of fields

φ : Zd ×R → R by setting b(φ) = b̃(φ(0,0)). It follows from (4.11), (4.13)
that for v ∈Cd one has Tk,�ξ,�ηg(�ξ,�η,φ)v = F (φ) where

F (φ) = Λk−1

{
k−1∏
j=0

∑
xj∈Zd

∫ ∞

−∞
dtj

}
(5.29)

× exp
[
−η(tk−1 − t0)− i(xk−1 − x0) · ξ

]
× g(x0, t0)Pb̃

(
φ(x0,−t0)

)
×

k−1∏
j=1

{
∇∇∗G

(
xj − xj−1,Λ(tj − tj−1)

)}∗Pb̃
(
φ(xj ,−tj)

)
v.

In (5.29), we have extended the domain of the Green’s function G(x, t) defined
by (4.9) for t≥ 0 to t < 0 by setting G(x, t) = 0, t < 0. The operator I −P
is now any linear operator taking d × d symmetric matrix valued functions
b(·) of φ : Zd × R → R to a constant matrix which has the property that
‖(I − P)b‖∞ ≤ supφ:Zd×R→R ‖b(φ)‖∞. We can see from (4.10) that there
exists C1 > 0 depending only on d such that if (ξ, η) satisfies the inequality

(5.30) 0<�η < Λ, |�ξ|<C1

√
�η/Λ,

and g ∈ L1(Zd ×R,Cd ⊗Cd) then F (φ) ∈Cd is bounded by

(5.31)
∣∣F (φ)

∣∣ ≤CΛk−1‖b̃‖k∞[�η]−(k−1)‖g‖1|v|,

where the constant C depends only on d, k. Furthermore, F is differentiable
in the sense of (5.28) and the field derivative is given by the formula

dF (y, s;φ)(5.32)

= Λk−1

{
k−1∏
j=0

∑
xj∈Zd

∫ ∞

−∞
dtj

}
exp

[
−η(tk−1 − t0)− i(xk−1 − x0) · ξ

]
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×
[
g(x0, t0)δ(x0 − y, t0 + s)Db̃

(
φ(x0,−t0)

)

×
k−1∏
j=1

{
∇∇∗G

(
xj − xj−1,Λ(tj − tj−1)

)}∗Pb̃
(
φ(xj ,−tj)

)
v+ · · ·

+ g(x0, t0)b̃
(
φ(x0,−t0)

) k−2∏
j=1

{
∇∇∗G

(
xj − xj−1,Λ(tj − tj−1)

)}∗

× b̃
(
φ(xj ,−tj)

)
δ(xk−1 − y, tk−1 + s)

×
{
∇∇∗G

(
xk−1 − xk−2,Λ(tk−1 − tk−2)

)}∗

×Db̃
(
φ(xk−1,−tk−1)

)
v

]
,

for (y, s) ∈ Zd ×R, where δ(x, t) = δ(x)δ(t) is the product of the Kronecker
and Dirac delta functions. If g is also in L2(Zd×R,Cd⊗Cd) then dF (·, ·;φ) ∈
L2(Zd ×R,Cd) and from (4.10) we see that∥∥dF (·, ·;φ)

∥∥
2

(5.33)

≤CΛk−1‖Db̃‖∞‖b̃‖k−1
∞ [�η]−(k−1)

×
[
‖g‖2 +�η‖g‖1

{ ∑
x∈Zd

∫ ∞

0

dt
∣∣∇∇∗G(x,Λt)

∣∣2}1/2]
|v|,

where C depends only on d, k.

Lemma 5.2. Let (Ω,F , Pm) with m> 0 be the environment of massive fields
φ :Zd×R→R defined by (2.12), (1.1) and g :Zd×R→Cd⊗Cd a continuous
function of compact support. Then there exists C1 > 0 depending only on d
such that if (ξ, η) lies in the region (5.30) the operator of (4.13) satisfies the
inequality〈∣∣Tk,�ξ,�ηg(�ξ,�η, ·)v

∣∣2〉(5.34)

≤
〈 ∑

y∈Zd

∫ ∞

−∞
ds

∣∣∣∣ ∑
x∈Zd

∫ ∞

s

dt e−m2(t−s)/2G(y, s;x, t, φ)dF (x, t;φ)

∣∣∣∣
2〉

,

where G is the Green’s function defined by (5.4), and dF is the field derivative
(5.32).

Proof. It follows from (5.31) that the LHS of (5.34) is the expectation of a
bounded function. From Lemma 5.1 and (5.33), we see that the RHS is also
the expectation of a bounded function. To prove (5.34), we use the Poincaré
inequality (5.2) and the formula (5.8) for the Malliavin derivative. Thus, let
Q⊂ Zd be the periodic cube with side of length L and φ(x, t), x ∈Q, t≥ 0,
the solution to the initial value problem (5.1). For T > 0, we denote by φT
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the periodic field φT : Q ×R → R defined by φT (x, t) = φ(x,T + t), x ∈ Q,
t≥−T where φ is the solution to (5.1), and φT (x, t) = 0, x ∈Q, t <−T . We
extend the field φT to a periodic field φT :Zd ×R→R. From (5.8), we have
that for the function F of (5.29) if y ∈Q and s >−T then

DMalF (y,T + s;φT )(5.35)

=
∑
x∈Q

∫ ∞

s

dt e−m2(t−s)/2GQ(y, s;x, t, φT )dFQ(x, t;φT ),

where dFQ is given in terms of (5.32) by

(5.36) dFQ(x, t;φ) =
∑
n∈Zd

dF (x+Ln, t;φ).

It is easy to see from (5.32) that ‖dFQ(·, ·;φ)‖∞ ≤C for some constant inde-
pendent of φ so the RHS of (5.35) is bounded.

The invariant measure associated with the Markov process defined by the
SDE (5.1) is given by the formula

(5.37) exp

[
−

∑
x∈Q

V
(
∇φ(x)

)
+m2φ(x)2/2

] ∏
x∈Q

dφ(x)/normalization.

We denote the probability space for the corresponding stationary process
φ(x, t), x ∈Q, t ∈R by (ΩQ,FQ, PQ,m) and expectation with respect to the
measure PQ,m by 〈·〉ΩQ,m

. Evidently (ΩQ,FQ, PQ,m) is invariant with respect

to the translation operators τx,t : ΩQ →ΩQ, x ∈Zd, t ∈R. Our first goal will
be to obtain a version of the inequality (5.34) for the operator Tk,�ξ,�η of
(4.13) when the random environment is given by (ΩQ,FQ, PQ,m). To do this,
we use the fact (see Appendix A for a proof) that for any N ≥ 1, continuous
bounded function f :RN →C, and (x1, t1), . . . , (xN , tN ) ∈Q×R,

lim
T→∞

〈
f
(
φT (x1, t1), . . . , φT (xN , tN )

)〉
ΩQ,Mal

(5.38)

=
〈
f
(
φ(x1, t1), . . . , φ(xN , tN )

)〉
ΩQ,m

.

It follows from (5.38) that for any d× d constant matrices A1, . . . ,AN+1,

lim
T→∞

〈
v∗

N∏
j=1

AjPb̃
(
φT (xj ,−tj)

)
AN+1v

〉
ΩQ,Mal

(5.39)

=

〈
v∗

N∏
j=1

AjPb̃
(
φ(xj ,−tj)

)
AN+1v

〉
ΩQ,m

,

where I−P on the LHS of (5.39) denotes expectation with respect to 〈·〉ΩQ,Mal

and on the RHS expectation with respect to 〈·〉ΩQ,m
. We conclude from (5.39),
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Fubini’s theorem and the dominated convergence theorem that

lim
T→∞

〈∣∣F (φT )
∣∣2〉

ΩQ,Mal
=

〈∣∣F (φ)
∣∣2〉

ΩQ,m
(5.40)

=
〈∣∣Tk,�ξ,�ηg(�ξ,�η, ·)v

∣∣2〉
ΩQ,m

.

Next, we see from the Poincaré inequality (5.2) and (5.35) that〈∣∣F (φT )
∣∣2〉

ΩQ,Mal
(5.41)

≤
〈∑

y∈Q

∫ ∞

−T

ds

∣∣∣∣∑
x∈Q

∫ ∞

s

dt e−m2(t−s)/2

×GQ(y, s;x, t, φT )dFQ(x, t;φT )

∣∣∣∣
2〉

ΩQ,Mal

.

We assume that L is sufficiently large so that the support of g is contained
in Q × R. It is easy to see then that dFQ(y, s;φ) is given by the RHS of
(5.32) with Zd replaced by Q and the function G(x,Λt) replaced by the corre-
sponding periodic Green’s function on Q. Hence, ‖dFQ(·, ·, φ)‖L2(Q×R,Cd) is
bounded by the periodic version of the RHS of (5.33). From this, we see that
limsupQ→Zd ‖dFQ(·, ·, φ)‖L2(Q×R,Cd) < ∞. Observe now that we can argue
as in the proof of (5.40) to conclude that if Gn,Q, n= 0,1,2, . . . , denote the
terms in the perturbation expansion (5.15) and N ≥ 0 then

lim
T→∞

〈∑
y∈Q

∫ ∞

−T

ds

∣∣∣∣∣
∑
x∈Q

∫ ∞

s

dt e−m2(t−s)/2(5.42)

×
N∑

n=0

Gn,Q(y, s;x, t, φT )dFQ(x, t;φT )

∣∣∣∣∣
2〉

ΩQ,Mal

=

〈∑
y∈Q

∫ ∞

−∞
ds

∣∣∣∣∣
∑
x∈Q

∫ ∞

s

dt e−m2(t−s)/2

×
N∑

n=0

Gn,Q(y, s;x, t, φ)dFQ(x, t;φ)

∣∣∣∣∣
2〉

ΩQ,m

.

It follows from (5.40), (5.42) and the periodic version of Lemma 5.1 that〈∣∣Tk,�ξ,�ηg(�ξ,�η, ·)v
∣∣2〉

ΩQ,m
(5.43)

≤
〈∑

y∈Q

∫ ∞

−∞
ds

∣∣∣∣∑
x∈Q

∫ ∞

s

dt e−m2(t−s)/2

×GQ(y, s;x, t, φ)dFQ(x, t;φ)

∣∣∣∣
2〉

ΩQ,m

.
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Finally, we let Q → Zd in (5.43) to obtain (5.34). We denote by 〈·〉Ωm

expectation with respect to the stationary process defined by (2.12), (1.1). It
was proved in [20]) (see also [10]) that for any N ≥ 1, continuous bounded
function f :RN →C, and (x1, t1), . . . , (xN , tN ) ∈Q×R,

lim
Q→Zd

〈
f
(
φ(x1, t1), . . . , φ(xN , tN )

)〉
ΩQ,m

(5.44)

=
〈
f
(
φ(x1, t1), . . . , φ(xN , tN )

)〉
Ωm

.

Hence, we can using (5.44) argue as with the T →∞ limit to conclude that
(5.34) holds for any m> 0. �

For ξ ∈Rd and u :Zd →C we denote by ∇ξu :Zd →Cd the column vector
∇ξu(z) = [∇1,ξu(z), . . . ,∇j,ξu(z)], z ∈Zd, where ∇j,ξu(z) = e−iej ·ξu(z+ej)−
u(z), z ∈Zd, j = 1, . . . , d. The column operator ∇ξ has adjoint ∇∗

ξ which is a

row operator. If f ∈ L2(Zd ×R,Cd) and ξ ∈Rd, η ∈C with �η > 0 there is
a unique solution u(ξ, η, ·) ∈ L2(Zd ×R) to the PDE

1

Λ

[
η− ∂

∂r

]
u(ξ, η, z, r) +∇∗

ξ∇ξu(ξ, η, z, r) =∇∗
ξf(z, r),(5.45)

z ∈Zd, r ∈R.

Furthermore, we have that

�η
Λ

∥∥u(ξ, η, ·)∥∥2

L2(Zd×R)
+

∥∥∇ξu(ξ, η, ·)
∥∥2

L2(Zd×R,Cd)
(5.46)

≤
∥∥f(·)∥∥2

L2(Zd×R,Cd)
.

We also see similarly to (4.11) that ∇ξu(ξ, η, ·) = T̃ξ,ηf(·) where

T̃ξ,ηf(z, r)(5.47)

= Λ

∫ ∞

0

e−ηs ds
∑
y∈Zd

{
∇∇∗G(y,Λs)

}∗
exp[−iy.ξ]f(z + y, r+ s),

z ∈Zd, r ∈R.

From Lemma 2.1 of [12], we have that u regarded as a function (ξ, η) →
L2(Zd × R) has an analytic continuation to the region (5.30) with C1 > 0
depending only on d. For (ξ, η) in this region there is a constant C2 depending
only on d such that

�η
2Λ

∥∥u(ξ, η, ·)∥∥2

L2(Zd×R)
+

∥∥∇�ξu(ξ, η, ·)
∥∥2

L2(Zd×R,Cd)
(5.48)

≤
[
1 +C2|�ξ|2/(�η/Λ)

]
‖f(·)‖2L2(Zd×R,Cd).

For φ : Zd ×R→R a continuous function, we extend the corresponding
Green’s function G(y, s;x, t, φ) defined by (5.4) for s ≤ t to s > t by setting
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G(y, s;x, t, φ) = 0 when s > t. For ξ ∈ Rd, η ∈ C, v ∈ Cd, with �η > 0 let
f2(ξ, η, z, r, φ), z ∈Zd, r ∈R with range in Cd be defined by

(5.49) f2(ξ, η, z, r, φ) =Db̃
(
φ(z,−r)

)
vem

2r/2G(0,0; z,−r,φ).

It is evident from (5.3), (5.4) that f2(ξ, η, ·, ·, φ) is in L2(Zd ×R), whence we
can define the function u2(ξ, η, z, r, φ) as the solution to (5.45) with f(·, ·) =
f2(ξ, η, ·, ·, φ). Let b(φ) = b̃(φ(0,0)) and for k = 2,3, . . . , set

(5.50) ∂ξFk(ξ, η,φ) =
[
PTξ,ηb(·)

]k−1
v,

where Tξ,η is the operator (4.11). We then inductively define functions fk, uk

for k = 3,4, . . . , by the formula

fk(ξ, η, z, r, φ)(5.51)

=Db̃
(
φ(z,−r)

)
∂ξFk−1(ξ, η, τz,−rφ)e

m2r/2G(0,0; z,−r,φ)

+ b̃
(
φ(z,−r)

)
∇ξuk−1(ξ, η, z, r, φ),

where for k = 3,4, . . . , the function uk(ξ, η, z, r, φ) is the solution to (5.45)
with f(·, ·) = fk(ξ, η, ·, ·, φ). The uk(ξ, η, z, r, φ) and fk(ξ, η, z, r, φ) for ξ ∈Cd

are defined by analytic continuation from their values when ξ ∈Rd.

Lemma 5.3. Let G be the Green’s function defined by (5.4) and for any k ≥
2, v ∈Cd, let dF be the function (5.32). Then there exists C1 > 0 depending
only on d such that for (ξ, η) in the region (5.30) the following identity holds:∑

y∈Zd

∫ ∞

−r

dse−m2(s+r)/2G(z,−r;y, s, τ−z,rφ)dF (y, s; τ−z,rφ)(5.52)

=
∑
x∈Zd

∫ ∞

−∞
dt g(x, t)em

2(t−r)/2

×G(0,0;x− z, r− t, φ)Db̃
(
φ(x− z, r− t)

)
∂ξFk(ξ, η, τx−z,r−tφ)

+
∑
x∈Zd

∫ ∞

−∞
dt g(x, t)b̃

(
φ(x− z, r− t)

)
∇ξuk(ξ, η, x− z, t− r,φ).

Proof. We note that the first term on the RHS of (5.52) comes from the
sum which contains δ(x0 − y, t0 + s) on the RHS of (5.32), in which we make
the change of variables (y, s)↔ (x,−t). The remaining part of the RHS of
(5.32) is the same as∑

x∈Zd

∫ ∞

−∞
dt g(x, t)b̃

(
φ(x− z, r− t)

) ∑
y∈Zd

∫ ∞

−r

dse−m2(s+r)/2(5.53)

×G(z,−r;y, s, τ−z,rφ)dHk(y− x, s+ t; τx−z,r−tφ),

where dHk is the field derivative of the function

(5.54) Hk(φ) =
[
PTξ,ηb(·)

]k−1
v.
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Observe now that∑
y∈Zd

∫ ∞

−r

dse−m2(s+r)/2(5.55)

×G(z,−r;y, s, τ−z,rφ)dHk(y− x, s+ t; τx−z,r−tφ)

=
∑
y∈Zd

∫ ∞

0

dse−m2s/2

×G(0,0;y, s,φ)dHk

(
y− (x− z), s+ (t− r); τx−z,r−tφ

)
,

so the expression is just a function of (x− z, t− r,φ). We show by induction
that for k ≥ 2,

∇ξuk(ξ, η, x, t, φ)(5.56)

=
∑
y∈Zd

∫ ∞

0

dse−m2s/2G(0,0;y, s,φ)dHk(y− x, s+ t; τx,−tφ).

Hence the identity (5.52) follows from (5.55).
To prove (5.56), we first show that it holds for k = 2. To see this, we note

from (4.11) that dH2 is given by the formula

(5.57) dH2(y, s;φ) = Λ
{
∇∇∗G(y,−Λs)

}∗
exp[ηs− iy.ξ]Db̃

(
φ(y, s)

)
v.

Now (5.56) for k = 2 follows from (5.47), (5.49), (5.57). To do the induction
step, we use the identity

dHk+1(y, s;φ)(5.58)

= Λ
{
∇∇∗G(y,−Λs)

}∗
exp[ηs− iy.ξ]Db̃

(
φ(y, s)

)
∂ξFk(ξ, η, τy,sφ)

+ Λ

∫ ∞

0

e−ηr dr
∑
z∈Zd

{
∇∇∗G(z,Λr)

}∗

× exp[−iz · ξ]b̃
(
φ(z,−r)

)
dHk(y− z, s+ r; τz,−rφ).

From (5.58) and the induction hypothesis (5.56), we conclude that

∑
y∈Zd

∫ ∞

0

dse−m2s/2G(0,0;y, s,φ)dHk+1(y− x, s+ t; τx,−tφ)(5.59)

= T̃ξ,η

[
fk+1(ξ, η, ·, ·, φ)

]
(x, t) =∇ξuk+1(ξ, η, x, t, φ). �

In order to prove Lemma 4.1 we shall need to use a parabolic version of
Meyer’s theorem [32].

Lemma 5.4. Let H be a Hilbert space and for 1< p<∞ let Lp(Zd×R,H)
be the space of p integrable functions f :Zd ×R→H where the Lp norm of f
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is defined by

(5.60) ‖f‖pp =
∑
y∈Zd

∫ ∞

−∞
ds

∥∥f(y, s)∥∥p

H.

Then there exists a constant C1 > 0 depending only on d such that if (ξ, η) lies

in the region (5.30) the operator T̃ξ,η of (5.47) is bounded on Lp(Zd ×R,H)
for 1< p <∞. Furthermore there is a constant C2 > 0 depending only on d
such that the norm of T̃ξ,η acting on Lp(Zd ×R,H) satisfies the inequality

‖T̃ξ,η‖p ≤ [1+ δ(p)](1+C2|�ξ|2/[�η/Λ]) where the function δ(·) depends only
on d and limp→2 δ(p) = 0.

Proof. This follows from the argument of Lemma 5.2 and Corollary 5.1 of
[12]. �

Proof of Lemma 4.1. We assume g : Zd ×R → Cd ⊗Cd is continuous of
compact support. Then from Lemma 5.2 and Lemma 5.3 we have that〈∣∣Tk,�ξ,�ηg(�ξ,�η, ·)v

∣∣2〉
Ωm

(5.61)

≤ 2
∑
z∈Zd

∫ ∞

−∞
dr

〈∣∣∣∣ ∑
x∈Zd

∫ ∞

−∞
dt g(x, t)em

2(t−r)/2G(0,0;x− z, r− t, φ)

×Db̃
(
φ(x− z, r− t)

)
∂ξFk(ξ, η, τx−z,r−tφ)

∣∣∣∣
2〉

Ωm

+

〈∣∣∣∣ ∑
x∈Zd

∫ ∞

−∞
dt g(x, t)b̃

(
φ(x− z, r− t)

)

×P∇ξuk(ξ, η, x− z, t− r,φ)

∣∣∣∣
2〉

Ωm

.

Let (Ω,F , P ) be the massless field stationary process corresponding to the
limit as m → 0 of the massive field stationary processes defined by (2.12),
(1.1), and denote expectation with respect to this measure by 〈·〉Ω. We have
from [20] (see also [10]) that if d≥ 3 then for any N ≥ 1, continuous bounded
function f :RN →C, and (x1, t1), . . . , (xN , tN ) ∈Zd ×R,

lim
m→0

〈
f
(
φ(x1, t1), . . . , φ(xN , tN )

)〉
Ωm

=
〈
f
(
φ(x1, t1), . . . , φ(xN , tN )

)〉
Ω
.(5.62)

Arguing as in Lemma 5.2, we conclude that if d≥ 3 then

(5.63) lim
m→0

〈∣∣Tk,�ξ,�ηg(�ξ,�η, ·)v
∣∣2〉

Ωm
=

〈∣∣Tk,�ξ,�ηg(�ξ,�η, ·)v
∣∣2〉

Ω
.

Hence to prove Lemma 4.1 it will be sufficient to obtain an upper bound on
the RHS of (5.61) which is independent of m as m→ 0.
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For ξ ∈Rd, η ∈C with �η > 0 the functions Fk(ξ, η,φ), k = 2,3, . . . , φ ∈Ω,
defined by (5.50) satisfy the recurrence equations

[η+ ∂]F2(ξ, η,φ) + Λ∂∗
ξ∂ξF2(ξ, η,φ) = ΛP∂∗

ξ

[
b̃
(
φ(0,0)

)
v
]
,

(5.64)
[η+ ∂]Fk(ξ, η,φ) + Λ∂∗

ξ∂ξFk(ξ, η,φ)

= ΛP∂∗
ξ

[
b̃
(
φ(0,0)

)
∂ξFk−1(ξ, η,φ)

]
if k > 2.

Then as in (4.2) we see that Fk(ξ, η, ·) ∈ L2(Ω) and

(5.65)
�η
Λ

∥∥Fk(ξ, η, ·)
∥∥2

L2(Ω)
+

∥∥∂ξFk(ξ, η, ·)
∥∥2

H(Ω)
≤ (1− λ/Λ)2(k−1)|v|2.

The Fk(ξ, η,φ) for ξ ∈Cd are defined by analytic continuation from the values
of Fk(ξ, η,φ) when ξ ∈Rd. From the continuous time version of Lemma 2.1
of [12], we see that Fk regarded as a function (ξ, η)→ L2(Ω) has an analytic
continuation to the region (5.30) where C1 is a constant depending only on d.
For (ξ, η) in this region there is a constant C2 depending only on d such that

�η
2Λ

∥∥Fk(ξ, η, ·)
∥∥2

L2(Ω)
+

∥∥∂ξFk(ξ, η, ·)
∥∥2

H(Ω)
(5.66)

≤ (1− λ/Λ)2(k−1)
[
1 +C2|�ξ|2/(�η/Λ)

]2(k−1)|v|2.

We take H to be the Hilbert space H= L2(Ω,Cd) and for k = 2,3, . . . , let
hk :Z

d ×R→H be the function

(5.67) hk(z, r,φ) =Db̃
(
φ(z,−r)

)
∂ξFk(ξ, η, τz,−rφ)e

m2r/2G(0,0; z,−r,φ).

Then the first term on the RHS of (5.61) is the square of the norm in L2(Zd×
R,H) of the convolution g ∗ hk. It follows from (2.17) and (5.66) that if
q > 1 + 2/d then

‖hk‖Lq(Zd×R,H)(5.68)

≤CqΛ
−1/q

∥∥Db̃(·)
∥∥
∞(1− λ/Λ)(k−1)

[
1 +C2|�ξ|2/(�η/Λ)

](k−1)|v|,

where the constant Cq depends only on d, q, λ/Λ. Taking q < 2 we have by
Young’s inequality for convolutions that if for p= 2q/(3q − 2) the function g
is in Lp(Zd ×R,Cd ⊗Cd) with norm (4.14) then g ∗ hk is in L2(Zd ×R,H)
and

(5.69) ‖g ∗ hk‖L2(Zd×R,H) ≤C‖g‖Lp(Zd×R,Cd⊗Cd)‖hk‖Lq(Zd×R,H),

for a constant C depending only on d.
To bound the second term on the RHS of (5.61), we show that the function

(z, r)→∇ξuk(ξ, η, z, r, φ) is in Lq(Zd ×R,H). In fact from (2.17), (5.49) we
have that

(5.70)
∥∥f2(ξ, η, ·, ·, ·)∥∥Lq(Zd×R,H)

≤CqΛ
−1/q

∥∥Db̃(·)
∥∥
∞|v|,
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for a constant Cq depending only on q, d. Hence, Lemma 5.4 implies that∥∥∇ξu2(ξ, η, ·, ·, ·)
∥∥
Lq(Zd×R,H)

(5.71)

≤CqΛ
−1/q

∥∥Db̃(·)
∥∥
∞

[
1 + δ(q)

][
1 +C2|�ξ|2/(�η/Λ)

]
|v|.

From (5.51), we similarly have that for k ≥ 3,∥∥fk(ξ, η, ·, ·, ·)∥∥Lq(Zd×R,H)
(5.72)

≤CqΛ
−1/q

∥∥Db̃(·)
∥∥
∞(1− λ/Λ)(k−2)

[
1 +C2|�ξ|2/(�η/Λ)

](k−2)|v|
+ (1− λ/Λ)

∥∥∇ξuk−1(ξ, η, ·, ·, ·)
∥∥
Lq(Zd×R,H)

,

where Cq depends only on q, d. Hence using Lemma 5.4, we have by induction
from (5.70)–(5.72) that for k ≥ 2,∥∥fk(ξ, η, ·, ·, ·)∥∥Lq(Zd×R,H)
(5.73)

≤Cqk
[
1 + δ(q)

]k−2
Λ−1/q

∥∥Db̃(·)
∥∥
∞

× (1− λ/Λ)(k−2)
[
1 +C2|�ξ|2/(�η/Λ)

](k−2)|v|.
The inequality (4.16) follows now from (5.73) and Lemma 5.4 by taking q
sufficiently close to 2 so that 1 + δ(q)< (1− λ/Λ)−1/2. �

Appendix A. Diffusion processes with convex potential

Let W :Rk →R be a C2 uniformly convex function such that W ′′(·) sat-
isfies the quadratic form inequality λIk ≤ W ′′(·) ≤ ΛIk for some constants
λ,Λ> 0. We consider the diffusion process φ :R+ →Rk which is the solution
to the SDE initial value problem

(A.1) dφ(t) =−1

2
∇W

(
φ(t)

)
dt+ dB(t), t > 0, φ(0) = 0,

where B(·) is k dimensional Brownian motion. The invariant measure for the
SDE (A.1) is given by

(A.2) exp
[
−W (φ)

]
dφ/normalization, φ ∈Rk.

We denote the probability space for the stationary process of functions
φ :R→Rk associated with the SDE (A.1) and invariant measure (A.2) by
(Ω,F , P ), and expectation with respect to (Ω,F , P ) by 〈·〉Ω. For T > 0 let
φT : [−T,∞) → Rk be defined by φT (t) = φ(T + t), where φ(·) is the solu-
tion to (A.1). The stationary process measure can be obtained by taking the
T →∞ limit of φT as follows:

Lemma A.1. Let f :RNk →R be a continuous bounded function. Then

(A.3) lim
T→∞

〈
f
(
φT (t1), . . . , φT (tN )

)〉
=

〈
f
(
φ(t1), . . . , φ(tN )

)〉
Ω
.
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Proof. The diffusion equation corresponding to the SDE (A.1) is given by

(A.4)
∂u(φ, t)

∂t
=−1

2
∇W (φ) · ∇u(φ, t) +

1

2
Δu(φ, t), t > 0.

The solution to (A.4) with initial data

(A.5) u(φ,0) = u0(φ), φ ∈Rk,

can be written in terms of the Green’s function G :Rk ×Rk ×R+ →R as

(A.6) u(φ, t) =

∫
Rk

G
(
φ,φ′, t

)
u0

(
φ′)dφ′, φ ∈Rk, t > 0.

Now it is clear that for a continuous bounded function f :Rk →R,

(A.7)
〈
f
(
φT (t1)

)〉
=

∫
Rk

G
(
0, φ′, T + t1

)
f
(
φ′)dφ′.

Let 〈·〉W denote expectation with respect to the invariant measure (A.2) and
L2
W (Rk) the corresponding space of square integrable functions g :Rk →R

with respect to 〈·〉W . Letting [·, ·]W denote the inner product on L2
W (Rk) we

see from (A.7) that for any δ satisfying 0< δ < T + t1,〈
f
(
φT (t1)

)〉
= [f1, f2]W ,(A.8)

where f1(φ) =G(0, φ, δ) exp
[
W (φ)

]∫
Rk

exp
[
−W

(
φ′)]dφ′

and f2(φ) =

∫
Rk

G
(
φ,φ′, T + t1 − δ

)
f
(
φ′)dφ′.

Since ‖f2‖∞ ≤ ‖f‖∞ it follows that f2 ∈ L2
W (Rk). We can also easily see that

for δ > 0 sufficiently small the function f1 is in L2
W (Rk). Now we use the fact

that the operator H =−Δ+∇W (φ) ·∇ is self adjoint non-negative definitive
on L2

W (Rk) and the constant is an eigenfunction of H with eigenvalue 0. From
the Brascamp–Lieb inequality [4] the operator H acting on the subspace of
L2
W (Rk) of functions orthogonal to the constant is bounded below by λ > 0.

Furthermore from (A.8), we have that

(A.9)
〈
f
(
φT (t1)

)〉
=

[
f1, e

−H(T+t1−δ)/2f
]
W
,

whence we conclude that

(A.10) lim
T→∞

〈
f
(
φT (t1)

)〉
=

〈
f1(φ)

〉
W

〈
f(φ)

〉
W

=
〈
f(φ)

〉
W
.

We have proven (A.3) when N = 1. The identity (A.3) for N > 1 can be
proven similarly. Assuming 0< t1 < t2 < · · ·< tN , we have that〈

f
(
φT (t1), . . . , φT (tN )

)〉
=

[
f1, e

−H(T+t1−δ)/2g
]
W
,(A.11)

where g(φ1) =

∫
R(N−1)k

G(φ1, φ2, t2 − t1) · · ·G(φN−1, φN , tN − tN−1)

× f(φ1, . . . , φN )dφ2 · · ·dφN .
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Letting T →∞ in (A.11) we see as before that(A.3) holds. �

Next, we wish to obtain a representation of the measure for the probability
space (Ω,F , P ) for the stationary process associated with the SDE (A.1) and
invariant measure (A.2). First, we consider the Gaussian case, so there is
a symmetric positive definite k × k matrix A and k dimensional vector b
with

(A.12) W (φ) =
1

2
φ∗Aφ− b∗φ, where λIk ≤A≤ ΛIk.

The SDE (A.1) is explicitly solvable when W (·) is given by (A.12) with solu-
tion

(A.13) φ(t) =

∫ t

0

e−A(t−s)/2
[
b/2ds+ dB(s)

]
, t≥ 0.

It is well known that the measure for the stationary process is Gaussian . We
can use Lemma A.1 and (A.13) to find formulas for the mean and covariance
of φ(·). Thus, we have that〈

φ(t)
〉
Ω
= A−1b,

(A.14)
covΩ

[
φ(t1), φ(t2)

∗] = Γ(t2 − t1) =A−1e−A|t1−t2|/2.

The Fourier transform (2.7) of the covariance is therefore given by Γ̂(θ) =
[θ2 +A2/4]−1. Hence, the Gaussian measure corresponding to the covariance
is formally given by the expression

(A.15) exp

[
−1

2

∫ ∞

−∞

∣∣∣∣dφ(t)dt

∣∣∣∣
2

+
1

4

∣∣Aφ(t)− b
∣∣2 dt] ∏

t∈R

dφ(t)/normalization.

Evidently the measure (A.15) is log concave.
We can obtain a representation of the stationary process measure similar

to (A.15) for general C2 uniformly convex functions W (·). To see this, we
write the solution of (A.4), (A.5) using the Cameron–Martin formula [27]
as

u(φ, t) = E

[
exp

{
−1

2

∫ t

0

∇W
(
B(s)

)
· dB(s)(A.16)

− 1

8

∫ t

0

∣∣∇W
(
B(s)

)∣∣2 ds}u0

(
B(t)

)∣∣∣B(0) = φ

]
,

where B(·) is k dimensional Brownian motion. We rewrite (A.16) using Ito’s
formula

(A.17) W
(
B(t)

)
−W

(
B(0)

)
=

∫ t

0

∇W
(
B(s)

)
· dB(s) +

1

2

∫ t

0

ΔW
(
B(s)

)
ds.
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From (A.16), (A.17), we see that

u(φ, t) = eW (φ)/2E

[
exp

{
−1

2

∫ t

0

−1

2
ΔW

(
B(s)

)
+

1

4

∣∣∇W
(
B(s)

)∣∣2 ds}(A.18)

× e−W (B(t))/2u0

(
B(t)

)∣∣∣B(0) = φ

]
.

The identity (A.18) can be alternatively obtained using the Feynman–Kac
representation [27] for the solution to the PDE

(A.19)
∂v(φ, t)

∂t
= V (φ)v(φ, t) +

1

2
Δv(φ, t), t > 0,

with initial data

(A.20) v(φ,0) = v0(φ), φ ∈Rk.

Thus, we have from the Feynman–Kac formula that

(A.21) v(φ, t) =E

[
exp

{∫ t

0

V
(
B(s)

)
ds

}
v0

(
B(t)

)∣∣∣B(0) = φ

]
.

The formula (A.18) follows now from (A.21) using the fact that if u(φ, t) is
the solution to (A.4), (A.5) then the function v(φ, t) = exp[−W (φ)/2]u(φ, t)
is the solution to (A.19), (A.20) with

(A.22) V (φ) =
1

4
ΔW (φ)− 1

8

∣∣∇W (φ)
∣∣2, v0(φ) = exp

[
−W (φ)/2

]
u0(φ).

To obtain the representation for the measure of the stationary process, we
use Lemma A.1. Thus from (A.18) the LHS of (A.3) is given by the formula〈

f
(
φT (t1), . . . , φT (tN )

)〉
(A.23)

= eW (0)/2E

[
exp

{
−1

2

∫ T+tN+T ′

0

−1

2
ΔW

(
B(s)

)
+

1

4

∣∣∇W
(
B(s)

)∣∣2 ds}e−W (B(T+tN+T ′))/2

× f
(
B(T + t1),B(T + t2), . . . ,B(T + tN )

)∣∣∣B(0) = 0

]
,

for any T ′ ≥ 0. Recall now that the Brownian motion measure B(s), s ≥ 0,
has the representation

(A.24) exp

[
−1

2

∫ ∞

0

∣∣∣∣dφ(s)ds

∣∣∣∣
2

ds

] ∏
s∈R+

dφ(s)/normalization with φ(0) = 0.
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Hence, on letting T,T ′ →∞ in (A.23) and using (A.24), we see that limiting
measure defined by (A.3) with expectation 〈·〉Ω has the representation

(A.25) exp

[
−1

2

∫ ∞

−∞

∣∣∣∣dφ(t)dt

∣∣∣∣
2

−1

2
ΔW

(
φ(t)

)
+

1

4

∣∣∇W
(
φ(t)

)∣∣2 dt] ∏
t∈R

dφ(t).

In the Gaussian case (A.12) the representation (A.25) is equivalent to (A.15)
since ΔW (·) is constant and is therefore part of the normalization constant.
The measure (A.25) is log concave when W (·) is quadratic, but it is easy to
see that even if W (·) is a small perturbation of a quadratic the measure is no
longer log concave.

Appendix B. The Coulomb dipole gas

In the lattice Coulomb gas the interaction energy between a particle at
x ∈Zd with charge qx and a particle at y ∈Zd with charge qy is qxqyG(x− y)
where G(·) is the Green’s function for the lattice Laplacian, that is,

(B.1) −ΔG(x) = δ(x), x ∈Zd.

Consider now two dipoles, one along the bond x→ x+ei with charge qx at x,
and the other along the bond y→ y+ ej with charge qy at y. The interaction
energy between the two dipoles is given by qxqy∇x,i∇y,jG(x− y), where ∇x,i

is the difference operator ∇i of (1.2) applied to the x variable of G(x− y),
and similarly ∇y,j the difference operator ∇j to the y variable.

In the Gibbs’ ensemble for the dipole gas the charge ρi(x) at x of dipoles
on the bond x→ x+ ei is a compound Poisson variable given by

(B.2) ρi(x) =

N (x)∑
r=1

Yr(x), Yr(x) =±1 with prob.
1

2
, E

[
N (x)

]
= a,

where N (x) is a Poisson variable and the Yr(x), r = 1,2, . . . , are independent
Bernoulli. It follows that the characteristic function of ρk(x) is given by

(B.3) E
[
exp

{
iθρk(x)

}]
= exp[a cosθ], θ ∈R.

Let F : Rn → R be a continuous bounded function. The Gibbs’ ensemble
expectation for F (ρk1(x1), ρk2(x2) · · ·ρkn(xn)) in the dipole gas is formally
given by 〈

F
(
ρk1(x1), ρk2(x2) · · ·ρkn(xn)

)〉
dipole

(B.4)

= (normalization)−1E

[
F

(
ρk1(x1), ρk2(x2) · · ·ρkn(xn)

)

× exp

{
−1

2

d∑
i,j=1

∑
x,y∈Zd

ρi(x)ρj(y)∇x,i∇y,jG(x− y)

}]
,
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where the variables ρi(x), 1 ≤ i ≤ d, x ∈ Zd are assumed independent with
characteristic function (B.3).

The rigorous study of Coulomb systems proceeds by means of the sine-
Gordon transformation which localizes the interaction. The basic idea is to
use the identity

(B.5) exp

[
−1

2
uA−1u

]
= (constant)

∫
Rn

exp

[
iφ · u− 1

2
φAφ

]
dφ,

which holds for any N ×N symmetric positive definite matrix A and N di-
mensional vector u. Observe now that

∑
x,y∈Zd

d∑
i,j=1

ρi(x)∇x,i∇y,jG(x− y)ρj(y)(B.6)

=
∑

x,y∈Zd

d∑
i,j=1

[
ρi(x)− ρi(x− ei)

]
G(x− y)

[
ρj(y)− ρj(y− ej)

]
.

We conclude that

(B.7)
∑

x,y∈Zd

d∑
i,j=1

ρi(x)∇x,i∇y,jG(x− y)ρj(y) = uA−1u,

where

(B.8) A=−Δ, u(x) =
d∑

i=1

[
ρi(x)− ρi(x− ei)

]
, x ∈Zd.

Let ψ : Zd → Rd be of finite support. Then from (B.5), (B.8) there is a
constant C such that

exp

{
i

∑
x∈Zd

d∑
j=1

ψj(x)ρj(x)(B.9)

− 1

2

∑
x,y∈Zd

d∑
i,j=1

ρi(x)∇x,i∇y,jG(x− y)ρj(y)

}

=C

∫
exp

{
i

∑
x∈Zd

d∑
j=1

[
∇jφ(x) + ψj(x)

]
ρj(x)−

1

2

∑
x∈Zd

∣∣∇φ(x)
∣∣2}

×
∏
x∈Zd

dφ(x).
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It follows from (B.3), (B.9) that〈
exp

{
i

∑
x∈Zd

d∑
j=1

ψj(x)ρj(x)

}〉
dipole

(B.10)

=

〈
exp

{
a

∑
x∈Zd

d∑
j=1

cos
[
∇jφ(x) + ψj(x)

]
− cos

[
∇jφ(x)

]}〉
,

where the measure on the RHS of (B.10) is the massless field measure (1.1)
with V (·) given by (1.5). We conclude from (B.10) that the first and second
moment dipole gas expectations are related to massless field expectations by〈

ρj(x)
〉
dipole

= 0,
(B.11) 〈

ρj(x)ρk(y)
〉
dipole

= −a2
〈
sin

{
∇jφ(x)

}
sin

{
∇kφ(y)

}〉
, x �= y.

Expectations for the Gibbs’ ensemble for just two dipoles, one on the bond
x→ x+ ei and the other on the bond y → y + ej is given similarly to (B.4)
by 〈

F
(
ρi(x), ρj(y)

)〉
x,y,dipole

(B.12)

= (normalization)−1E
[
F

(
ρi(x), ρj(y)

)
× exp

{
−αρi(x)

2/2− αρj(y)
2/2− ρi(x)ρj(y)∇x,i∇y,jG(x− y)

}]
,

where α=∇x,i∇y,iG(x− y)|x=y = 2G(0)−G(ei)−G(−ei) = 1/d from (B.1).
The variables ρi(x), ρj(y) are independent and have characteristic function
given by (B.3). Thus the probability measure (B.12) is obtained from the
measure (B.4) by retaining only the compound Poisson variables ρi(x), ρj(y)
and setting all other variables to zero. We can estimate second moments for
the measure (B.12) when |x−y| 	 1 by using the fact that ∇x,i∇y,jG(x−y)

1/|x− y|d. Thus,〈

ρi(x)ρj(y)
〉
x,y,dipole

(B.13)

=−∇x,i∇y,jG(x− y)

×
{
E

[
ρi(x)

2 exp
{
−αρi(x)

2/2
}]
/E

[
exp

{
−αρi(x)

2/2
}]}2

+O
(
1/|x− y|2d

)
.

We have now from (B.3), (B.5) that

(B.14) E
[
exp

{
−αρi(x)

2/2
}]

=E
[
ea cos(

√
αZ)

]
= 1+ ae−α/2 +O

(
a2

)
,

where Z is the standard normal variable. It follows from (B.13), (B.14) that

(B.15)
〈
ρi(x)ρj(y)

〉
x,y,dipole

=−∇x,i∇y,jG(x− y)a2e−1/d
[
1 +O(a)

]
.

We compare the second moment (B.15) for the two dipole system to the
corresponding second moment for the complete system with measure (B.4).
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To do this we use the identity (B.11) and make the quadratic approxima-
tion V (z) 
 (1 + a)|z|2/2 − da, z ∈ Rd for the function (1.5). In that case
the massless field expectation (1.1) for (1.5) is approximately the Gaussian
expectation

(B.16)
〈
sin

{
∇iφ(x)

}
sin

{
∇jφ(y)

}〉



〈
sin

{
∇iφ(x)

}
sin

{
∇jφ(y)

}〉
Gaussian

.

The RHS of (B.16) can be explicitly computed by using the identity〈
exp

[
i

∑
z∈Zd

f(z)φ(z)

]〉
Gaussian

(B.17)

= exp

[
− 1

2(1 + a)

∑
z,z′∈Zd

f(z)G
(
z − z′

)
f
(
z′

)]
.

We see from (B.17) that〈
sin

{
∇iφ(x)

}
sin

{
∇jφ(y)

}〉
Gaussian

(B.18)

= exp

[
− 1

(1 + a)d

]
1

1 + a
∇x,i∇y,jG(x− y) +O

(
1

|x− y|2d
)
.

Observing now that if d≥ 1 then

(B.19) exp

[
a

(1 + a)d

]
1

1 + a
< 1 for a > 0,

we conclude from (B.11), (B.15), (B.18) that if a is sufficiently small, then
|〈ρi(x)ρj(y)〉dipole| < |〈ρi(x)ρj(y)〉x,y,dipole| for |x − y| 	 1. Hence, we have
verified the effect of screening within the Gaussian approximation for the
function V (·).

Finally, we justify the Gaussian approximation for V (·) in the previous
paragraph by obtaining the expansion of ahom in the Naddaf–Spencer homog-
enized PDE (1.6) with V (·) given by (1.5) to first order in a. To do this, we
recall that ahom = q(0,0) where q(ξ, η) is given by (4.3) and a(·) is diagonal
with ai,i(φ) = 1 + a cos(∇iφ(0,0)), i= 1, . . . , d. It is easy to see that the sec-
ond term 〈a(·)∂ξΦ(ξ, η)〉 on the RHS of (4.3) is O(a2), whence we conclude
that

(B.20) ahom =
(
1 + a′

)
Id +O

(
a2

)
, where a′ = a

〈
cos

(
∇1φ(0)

)〉
a
,

and 〈·〉a denotes expectation with respect to the massless measure (1.1) with
V (·) given by (1.5). It is easy to see, as in the proof of Theorem 3.1 of [19],
that 〈cos(∇1φ(0))〉a > 0, whence a′ > 0. We shall show using the method
employed in [10] to construct the measures (1.1) that

(B.21)
〈
cos

(
∇1φ(0)

)〉
a
=

〈
cos

(
∇1φ(0)

)〉
0
+O(a).

We have that the Gaussian expectation 〈cos(∇1φ(0))〉0 = exp[−{2G(0) −
G(e1)−G(−e1)}/2] = exp[−1/2d]. Hence, from (B.20) it follows that ahom =
(1+ae−1/2d)Id+O(a2), which is different from what we obtained in the naive
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argument of the previous paragraph that yielded ahom = 1 + a to first order
in a. Note however that the screening argument there continues to work since
ahom > Id.

To prove (B.21), we obtain an inequality for the measure (5.37), which is
uniform as Q → Zd and m → 0. Letting 〈·〉a,ΩQ,m

denote expectation with
respect to the measure (5.37) with V (·) given by (1.5), we have from the
fundamental theorem of calculus that〈

cos
(
∇1φ(0)

)〉
a,ΩQ,m

(B.22)

=
〈
cos

(
∇1φ(0)

)〉
0,ΩQ,m

+ a

∫ 1

0

dt
d∑

j=1

∑
x∈Q

covta,ΩQ,m

[
cos

(
∇1φ(0)

)
, cos

(
∇jφ(x)

)]
.

By translation invariance of the measure (5.37), we have that∑
x∈Q

covta,ΩQ,m

[
cos

(
∇1φ(0)

)
, cos

(
∇jφ(x)

)]
(B.23)

=
1

Ld
covta,ΩQ,m

[
F1(φ), Fj(φ)

]
,

where the function Fj , j = 1, . . . , d of periodic fields φ :Q→R is given by

(B.24) Fj(φ) =
∑
x∈Q

cos
(
∇jφ(x)

)
.

We can estimate the RHS of (B.23) by using (1.3). Thus, we have that

(B.25) Varta,ΩQ,m

[
Fj(φ)

]
≤

〈[
dFj(φ),

{
−(1− a)Δ+m2

}−1
dFj(φ)

]〉
ta,ΩQ,m

,

where Δ is the Laplacian for the periodic cube Q. Observe now that
dFj(x;φ) =∇∗

jGj(x,φ), x ∈ Q, where Gj(x,φ) = sin(∇jφ(x)), x ∈Q. It fol-
lows that[

dFj(φ),
{
−(1− a)Δ+m2

}−1
dFj(φ)

]
(B.26)

=
[
Gj(φ),∇j

{
−(1− a)Δ+m2

}−1∇∗
jGj(φ)

]
≤

∥∥Gj(φ)
∥∥2

2
≤ Ld.

We conclude from (B.22)–(B.26) and Theorem 3.1 of [19] that

(B.27) 0≤
〈
cos

(
∇1φ(0)

)〉
a,ΩQ,m

−
〈
cos

(
∇1φ(0)

)〉
0,ΩQ,m

≤ ad.
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