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METRICS WITH CONIC SINGULARITIES AND
SPHERICAL POLYGONS

ALEXANDRE EREMENKO, ANDREI GABRIELOV AND VITALY TARASOV

Abstract. A spherical n-gon is a bordered surface homeomor-
phic to a closed disk, with n distinguished boundary points called

corners, equipped with a Riemannian metric of constant curva-
ture 1, except at the corners, and such that the boundary arcs

between the corners are geodesic. We discuss the problem of clas-
sification of these polygons and enumerate them in the case that

two angles at the corners are not multiples of π. The problem

is equivalent to classification of some second order linear differ-
ential equations with regular singularities, with real parameters
and unitary monodromy.

1. Introduction

Let S be a compact Riemann surface, and {a0, . . . , an−1} a finite set of
points on S. Let us consider a conformal Riemannian metric on S of constant
curvature K ∈ {0,1,−1} with conic singularities at the points aj . This means
that in a local conformal coordinate z the length element of the metric is given
by the formula ds= ρ(z)|dz|, where ρ is a solution of the differential equation

(1.1) Δ logρ+Kρ2 = 0 in S \ {a0, . . . , an−1},
and ρ(z)∼ |z|αj−1, for the local coordinate z which is equal to 0 at aj . Here
αj > 0, and 2παj is the total angle around the singularity aj .

Alternatively, for every point in S, there exists a local coordinate z for
which

ds=
2α|z|α−1|dz|
1 +K|z|2 ,
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where α > 0. At the singular points aj we have α = αj while at all other
points, α= 1.

In 1890, the Göttingen Mathematical Society proposed the study of equa-
tion (1.1) as a competition topic, probably by suggestion of H. A. Schwarz
as described in [31]. E. Picard wrote several papers on the subject, [25], [26],
[27], see also [28, Chapter 4]. When K < 0, the topic is closely related to
the uniformization of orbifolds [31], [9], [29]. In the case of uniformization of
orbifolds, one is interested in the angles 2παj = 2π/mj , where mj are positive
integers. The case K ≤ 0 is quite well understood, but very little is known on
the case K > 0.

McOwen [21] and Troyanov [35] studied the general question of existence
and uniqueness of such metrics with prescribed aj , αj and K. Troyanov also
considered the case of non-constant curvature K. One necessary condition
that one has to impose on these data follows from the Gauss–Bonnet theorem:
the quantity

(1.2) χ(S) +
n−1∑
j=0

(αj − 1) has the same sign as K.

Here χ is the Euler characteristic. Indeed, this quantity multiplied by 2π is
the integral curvature of the smooth part of the surface.

It follows from the results of Picard, Heins [15, Chapter II], McOwen and
Troyanov, that for K ≤ 0, condition (1.2) is also sufficient for the existence
of the metric with conic singularities at arbitrary points aj and angles 2παj .
The metric with given aj and αj is unique when K < 0, and unique up to a
constant multiple when K = 0.

In the case of positive curvature, the results are much less complete. The
result of Troyanov that applies to K = 1 is the following:

Let S be a compact Riemann surface, a0, . . . , an−1 points on S, and
α0, . . . , αn−1 positive numbers satisfying

(1.3) 0<χ(S) +

n−1∑
j=0

(αj − 1)< 2min{1, α0, . . . , αn−1}.

Then there exists a conformal metric of positive curvature 1 on S with conic
singularities at aj and angles 2παj .

F. Luo and G. Tian [20] proved that if the condition 0<αj < 1 is satisfied
for 0≤ j ≤ n− 1, then (1.3) is necessary and sufficient, and the metric with
given aj and αj is unique.

In general, the second inequality in (1.3) is not necessary. In this paper,
we only consider the simplest case when S is the sphere, so χ(S) = 2. The
problem of description and classification of conformal metrics of curvature 1
with conic singularities on the sphere has applications to the study of certain
surfaces of constant mean curvature [10], [2], [3], and to several other questions
of geometry and physics [17], [35].
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The so-called “real case” is interesting and important. Suppose that all
singularities belong to a circle on the sphere S, and we only consider the
metrics which are symmetric with respect to this circle. Then the circle splits
S into two symmetric halves, and each of them is a spherical polygon, for
which we state a formal definition:

Definition 1.1. A spherical n-gon is a closed disk with n distinguished
boundary points aj called the corners, equipped with a conformal Riemannian
metric of constant curvature 1 everywhere except the corners, and such that
the sides (boundary arcs between the corners) are geodesic. The metric has
conic singularities at the corners.

Example 1.2. Let us consider flat n-gons, which are defined similarly,
with K = 0. The necessary and sufficient condition for the existence of a flat
n-gon with angles παj is given by the Gauss–Bonnet theorem which in this
case says that ∑

αj = n− 2,

and the polygon with given angles and prescribed corners1 is unique up to a
scaling factor. The simplest proof of these facts is the Schwarz–Christoffel for-
mula. Thus our subject can be considered as a generalization of the Schwarz–
Christoffel formula to the case of positive curvature.

In [36], [4], all possibilities for spherical triangles are completely described,
see also [10] where a minor error in [4, Theorem 2] is corrected. In the case
of triangles, the metric is uniquely determined by the angles in the case that
none of the αj is an integer.

The case when all αj are integers, and n is arbitrary, is also well understood.
In this case, the line element of the metric has the global representation

ds=
2|f ′||dz|
1 + |f |2 ,

where f is a rational function. The singular points aj are the critical points
of f , αj − 1 is the multiplicity of the critical point at aj , and αj is the local
degree of f at aj .

Thus the problem with all integer αj is equivalent to describing rational
functions with prescribed critical points [12], [32], [5], [6], [7], [8]. Also, this
problem is equivalent to diagonalization of commuting Hamiltonians for the
quantum Gaudin model by the Bethe ansatz method [11], [22], [24].

Almost nothing is known in the case that some of the αj are not integers,
the number of singularities is greater than 3, and the second inequality in
(1.3) is violated.

1 By this we mean that the images of the corners under a conformal map onto a disk are

prescribed.
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In this paper, we investigate the case when two of the αj are non-integer
while the rest are integers, with the emphasis on the real case. See also [1]
where some examples of such metrics are given.

Our method can be considered a generalization of the method in [5], [6],
[8] and Klein [18], who classified circular triangles with arbitrary angles, not
necessarily geodesic. A modern paper which uses Klein’s approach to triangles
is [37].

The contents of the paper is the following. In Section 2, we recall the
connection of the problem with linear differential equations. In Section 3, we
describe what is known about the case when all αj are integers, with a special
emphasis on the “real case” when all aj belong to the real line.

In Sections 4–6, we study the case when two of the αj are not integers and
the others are integers, and give a complete classification of spherical polygons
in this case.

We thank the referee whose remarks were very helpful.

2. Connection with linear differential equations

Let (S,ds) be the Riemann sphere equipped with a metric with conic sin-
gularities. Every smooth point of S has a neighborhood which is isometric
to a region on the standard unit sphere S; let f be such an isometry. Then
f has an analytic continuation along every path in S \ {a0, . . . , an−1}, and
we obtain a multi-valued function which is called the developing map. The
monodromy of f consists of orientation-preserving isometries (rotations) of S,
so the Schwarzian derivative

(2.1) F (z) :=
f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

is a single valued function.
Developing map is completely characterized by the properties that it has an

analytic continuation along any curve in S \ {a0, . . . , an−1}, has asymptotics
∼ c(z − aj)

αj as z → aj , where c �= 0, and has PSU(2) = SO(3) monodromy.
It is possible that two such maps with the same aj and αj are related by
post-composition with a fractional-linear transformation. The metrics arising
from such maps will be called equivalent. Following [10], we say that the
metric is reducible if its monodromy group is commutative (which is equivalent
to all monodromy transformations having a common fixed point). In the
case of irreducible metrics, each equivalence class contains only one metric.
For reducible metrics, the equivalence class is a 1-parametric family when
the monodromy is non-trivial and a 2-parametric family when monodromy is
trivial.

The asymptotic behavior of f at the singular points aj implies that the only
singularities of F on the sphere are double poles, so F is a rational function,
and we obtain the Schwarz differential equation (2.1) for f .
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It is well known that the general solution of the Schwarz differential equa-
tion is a ratio of two linearly independent solutions of the linear differential
equation

(2.2) y′′ + Py′ +Qy = 0, f = y1/y0,

where

F =−P ′ − P 2/2 + 2Q.

For example, one can take P = 0, then Q= F/2. Another convenient choice
is to make all poles but one of P and Q simple. When n= 3, equation (2.2)
is equivalent to the hypergeometric equation, and when n = 4 to the Heun
equation [30].

The singular points aj of the metric are the singular points of the equa-
tion (2.2). These singular points are regular, and to each point correspond
two exponents α′

j > α′′
j , so that αj = α′

j − α′′
j . If αj is an integer for some j,

we have an additional condition of the absence of logarithms in the formal
solution of (2.2) near aj .

It is easy to write down the general form of a Fuchsian equation with
prescribed singularities and prescribed exponents at the singularities. By a
fractional-linear change of the independent variable one can achieve that one
singular point, say an−1 is∞. Then by changes of the variable y(z) �→ y(z)(z−
aj)

βj , one can achieve that the smaller exponent at each finite singular point
is 0, see [30]. After a normalization, n− 3 parameters remain, the so-called
accessory parameters [13, Chapter IV, 7]

(2.3) w′′ +
n−2∑
j=0

1− αj

z − aj
w′ +

α′α′′zn−3 + λn−4z
n−4 + · · ·+ λ0∏n−2

j=0 (z − aj)
w = 0,

where

(2.4) αn−1 = α′ − α′′,
n−2∑
j=0

αj + α′ + α′′ = n− 2.

Here the exponents at the singular points are described by the Riemann sym-
bol

P

⎧⎨
⎩

a0 a1 a2 . . . ∞
0 0 0 . . . α′′; z

α0 α1 α2 . . . α′

⎫⎬
⎭ .

The first line lists the singularities, the second the smaller exponents and the
third the larger exponents. So the angle at infinity is αn−1 = α′ − α′′. The
accessory parameters are λ0, . . . , λn−4.

To obtain a conformal metric of curvature 1, one has to choose these ac-
cessory parameters in such a way that the monodromy group of the equation
is conjugate to a subgroup of PSU(2).
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Solving (2.4), we obtain

(2.5) α′ =
1

2

(
n− 2 + αn−1 −

n−2∑
j=0

αj

)

and

α′′ =
1

2

(
n− 2− αn−1 −

n−2∑
j=0

αj

)
.

The question of existence of a spherical metric with given singularities
a0, a1, . . . , an−2,∞ and given angles 2παj ,0 ≤ j ≤ n− 1 is equivalent to the
following: When one can choose the accessory parameters λj so that the pro-
jective monodromy group of the equation (2.3) is conjugate to a subgroup of
PSU(2)?

The necessary condition (1.2) can be restated for the equation (2.3) as

(2.6) α′′ < 0.

For the case of four singularities, questions similar to our problem were inves-
tigated in [19], [16], [33], [34]: when can one choose the accessory parameter
so that the monodromy group of the Heun equation preserves a circle? All
these authors consider the problem under the assumption

(2.7) 0≤ αj < 1, for 0≤ j ≤ n− 1.

In the paper [3], the problem of choosing the accessory parameter so that the
monodromy group is conjugate to a subgroup in PSU(2) is discussed. However
all results of this paper are also proved only under the assumption (2.7).
Assumption (2.7) seems to be essential for the methods of Klein [19], Hilb
[16], Smirnov [33], [34], Dorfmeister and Schuster [3], [2].

3. Case when all αj are integers

If all αj are integers, the developing map f is a rational function, and the
metric of curvature 1 with conic singularities can be globally described as the
pull-back of the spherical metric via f , that is

ds=
2|f ′||dz|
1 + |f |2 .

The singular points of the metric are critical points of f , and αj − 1 are
multiplicities of these critical points.

The following results are known for this case.
First of all, the sum of αj − 1 must be even: if d is the degree of f , then

(3.1) 2 +

n∑
j=1

(αj − 1) = 2d.

This is stronger than the general necessary condition (1.2).
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Second,

(3.2) αj ≤ d for all j,

because a rational function of degree d cannot have a point where the local
degree is greater than d.

Subject to these two restrictions (3.1) and (3.2), a rational function with
prescribed critical points at aj of multiplicities αj − 1 always exists [12], [32].
Thus for every aj and every αj satisfying (3.1) and (3.2) there exist metrics
of curvature 1 on S with angles 2παj at aj .

Two rational functions f1 and f2 are called equivalent if f1 = φ ◦ f2, where
φ is a fractional-linear transformation. Equivalent functions have the same
critical points with the same multiplicities. Equivalent functions generate
equivalent metrics.

The number of equivalence classes of rational functions with prescribed
critical points and multiplicities is at most K(α0 − 1, . . . , αn−1 − 1), where
K is the Kostka number which can be described as follows. Consider Young
diagrams of shape 2× (d− 1). They consist of two rows of length d− 1 one
above another. A semi-standard Young tableau (SSYT) is a filling of such a
diagram with positive integers such that an integer k appears mk−1 times,
the entries are strictly increasing in the columns and non-decreasing in the
rows. The number of such SSYT’s is the Kostka number K(m0, . . . ,mn−1).

For a generic choice of the critical points aj , the number of classes of
rational functions is equal to the Kostka number, see [32], [8].

Suppose now that the points aj and the corresponding multiplicities αj

are symmetric with respect to some circle. We may assume without loss of
generality that this circle is the real line R∪{∞}. It may happen that among
the rational functions f with these given critical points and multiplicities none
are symmetric. So the resulting metrics are all asymmetric as well [6], [7].

However, there is a surprising result [5], [6], [8], [22] which was conjectured
by B. and M. Shapiro:

If all critical points of a rational function lie on a circle, then the function
is equivalent to a function symmetric with respect to this circle. Moreover,
in this case there are exactly K equivalence classes of rational functions with
prescribed critical points.

It is interesting to find out which of these results can be extended to the
general case of arbitrary positive αj .

4. The case of two non-integer αj . Condition on the angles

In the rest of the paper, we study the case with two non-integer αj . Some
examples of polygons with this property can be found in [1]. We answer the
following questions:

(a) In the equation (2.3), for which αj one can choose the accessory parame-
ters so that the monodromy group is conjugate to a subgroup of PSU(2)?
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(b) If αj satisfy (a), how many choices of accessory parameters satisfying (a)
are possible?

(c) If in addition all aj are real, how many choices of real accessory parameters
satisfying (a) are possible?

One cannot have exactly one non-integer αj . Indeed, in this case the de-
veloping map f would have just one branching point on the sphere, which is
impossible by the Monodromy theorem.

Let us consider the case of two non-integer angles. In this section, we
obtain a necessary and sufficient condition on the angles for this case, that is
solve problem (a).

We place the two singularities corresponding to non-integer α at a0 = 0
and an−1 =∞, and let the total angles at these points be 2πα0 and 2παn−1,
where α0 and αn−1 are not integers. Then the developing map has an analytic
continuation in C∗ from which we conclude that the monodromy group must
be a cyclic group generated by a rotation z �→ ze2πiα, with some α ∈ (0,1).
This means that f(z) is multiplied by e2πiα when z traverses a simple loop
around the origin. Thus, g(z) = z−αf(z) is a single valued function with at
most power growth at 0 and ∞. Then we have a representation f(z) = zαg(z),
where g is a rational function. Then α0 = |k+α|, αn−1 = |j+α|, where k and
j are integers, so either α0 − αn−1 or α0 + αn−1 is an integer. The angles at
the other singular points of the metric are integer multiples of 2π, and they
are the critical points of f other than 0 and ∞.

Let g = P/Q where P and Q are polynomials without common zeros of
degrees p, q, respectively. Let p0, q0 be the multiplicities of zeros of P and Q
at 0. Then min{p0, q0}= 0.

The equation for the critical points of f is the following:

(4.1) z
(
P ′(z)Q(z)− P (z)Q′(z)

)
+ αP (z)Q(z) = 0.

Let 2πα0,2πα1, . . . ,2παn−1 be the angles at the conical singularities at
0, a1, . . . , an−2,∞, so that αj ≥ 2 are integers for 1≤ j ≤ n− 2.

Denote

σ := α1 + · · ·+ αn−2 − n+ 2≥ 0.

Then we have the following system of equations

α0 = |p0 − q0 + α|,
σ = p+ q−max{p0, q0},(4.2)

αn−1 = |p− q+ α|.
The first and the last equations follow immediately from the representation
f(z) = zαP (z)/Q(z) of the developing map. The second equation holds be-
cause the left-hand side of (4.1) is a polynomial of degree exactly p+ q, there-
fore the sum of multiplicities of its zeros at aj for 1 ≤ j ≤ n − 2 must be
p+ q−max{p0, q0}.
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Solving this system of equations (4.2) in non-negative integers satisfying
min{p0, q0}= 0, p0 ≤ p, q0 ≤ q, we obtain necessary and sufficient conditions
the angles should satisfy, which we state as the following.

Theorem 4.1. Suppose that n points a0, . . . , an−1 on the Riemann sphere
and numbers αj > 0, 0 ≤ j ≤ n − 1, are such that αj ≥ 2 are integers for
1≤ j ≤ n− 2, while α0 and αn−1 are not integers.

The necessary and sufficient conditions for the existence of a metric of
curvature 1 on the sphere, with conic singularities at aj and angles 2παj are
the following:

(a) If σ+ [α0] + [αn−1] is even, then α0 − αn−1 is an integer, and

(4.3)
∣∣[α0]− [αn−1]

∣∣≤ σ.

(b) If σ+ [α0] + [αn−1] is odd, then α0 + αn−1 is an integer, and

(4.4) [α0] + [αn−1] + 1≤ σ.

Proof. Let us first verify that conditions (a)–(b) are necessary and sufficient
for the existence of a unique solution p, q, p0, q0, α of the system (4.2) satisfying
min{p0, q0}= 0, p0 ≤ p, q0 ≤ q, α ∈ (0,1).

We consider four cases.
Case 1. p≥ q, p0 ≥ q0 = 0. Then

p0 = [α0],

p+ q = σ+ [α0],

p− q = [αn−1].

So α0 − αn−1 is an integer, and 2p= σ+ [α0] + [αn−1] is even. Now

0 ≤ 2(p− p0) = σ− [α0] + [αn−1],

0 ≤ 2q =
(
σ+ [α0]− [αn−1]

)
,

so we obtain (4.3).
Case 2. p≥ q, q0 > p0 = 0. Then

q0 = [α0] + 1,

p+ q = σ+ [α0] + 1,

p− q = [αn−1].

So α0 + αn−1 is an integer, and 2p= σ + [α0] + [αn−1] + 1 is even. We have
2q = σ+ [α0]− [αn−1] + 1, so

0≤ 2(q− q0) = σ− [α0]− [αn−1]− 1,

which gives (4.4).
Case 3. p < q, p0 ≥ q0 = 0. Then

p0 = [α0],

p+ q = σ+ [α0],
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q− p = [αn−1] + 1.

So α0 + αn−1 is an integer, and 2q = σ + 1+ [α0] + [αn−1] is even. We have
2p= σ− 1 + [α0]− [αn−1], so

0≤ 2(p− p0) = σ− 1− [α0]− [αn−1],

which is (4.4).
Case 4. p < q, q0 > p0 = 0. Then

q0 = [α0] + 1,

p+ q = σ+ 1+ [α0],

q− p = [αn−1] + 1.

So α0 − αn−1 is an integer, and 2q = σ + [α0] + [αn−1] + 2 is even. We have
0≤ 2p= σ+ [α0]− [αn−1], and

0≤ 2(q− q0) = σ− [α0] + [αn−1],

which implies (4.3).
Thus the conditions (a) and (b) are necessary.
Now we set

R(z) = zmax{p0,q0}
n−2∏
j=1

(z − aj)
αj−1.

Second equation in (4.2) gives degR= p+ q. Now we consider the equation

(4.5) z
(
P ′Q− PQ′)+ αPQ=R.

This equation must be solved in polynomials P,Q of degrees p, q having roots
of multiplicities p0, q0 at 0.

Non-zero polynomials of degree at most m modulo proportionality can be
identified with points of the complex projective space Pm. The map

(4.6) Wα :Pp ×Pq →Pp+q, (P,Q) �→ z
(
P ′Q− PQ′)+ αPQ

is well defined. It can be represented as a linear projection of the Segre variety.
Its degree is known [14, Example 18.15]: it is equal to

(4.7)

(
p+ q

p

)
.

Let us prove that the map is finite, that is each R ∈Pp+q has finite preimage.
First of all, if R(z) = zr is a monomial then its preimage is finite, consisting
of pairs of monomials (zm, zn) such that m+n= r. Indeed, if we have a pair
of polynomials in the preimage of R(z) with the lowest powers of monomials
(m,n) then the lowest power of monomials in R(z) is m+n, because α is not
an integer. Same argument applies to monomials of the highest power. Thus,
the preimage of a monomial consists of pairs of monomials.

Now for every (P (z),Q(z)) ∈Pp ×Pq we define a family(
Pλ(z),Qλ(z)

)
=
(
P (z/λ),Q(z/λ)

)
.
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Then we have

Wα(Pλ,Qλ)(z) =Wα(P,Q)(z/λ)

so polynomials R(z) and Rλ(z) = λdegRR(z/λ) have preimages of the same
dimension. As the limit of Rλ(z) when λ→ 0 is a monomial, and the dimen-
sion of preimage is upper semi-continuous [14, p. 138], preimage of every R(z)
is finite.

Thus the equation (4.5) always has a complex solution (P,Q). The func-
tion f = zα(P/Q) is then a developing map with the required properties. So
conditions (a)–(b) are sufficient. �

We will later prove that the estimate (4.7) of the number of preimages is
best possible: it is attained when p0 = q0 = 0 and all roots of R are positive
and simple, and all preimages are real in this case.

5. Case α= 1/2

Let us consider a spherical polygon, parametrized by the upper half-
plane H , with corners

(5.1) 0 = a0 < a1 < · · ·< an−2, an−1 =∞,

and suppose that the angles παj at aj are integer multiples of π for 1≤ j ≤
n − 2 while 2α0 and 2αn−1 are odd integers. This means that α = 1/2 in
(4.6), and the roots of the polynomial (4.1) are non-negative. In intrinsic
terms, condition (5.1) means that the corners with non-integer angles of our
spherical polygon are adjacent.

Let Q be our spherical polygon, and Q′ its mirror image. We paste Q and
Q′ together identifying the sides between the non-integer corners isometrically.
The result is a polygon Q∗ with 2n− 2 corners and all integer angles. With
our half-plane model this procedure can be performed in the following way.
Parametrize our original polygon Q by the first quadrant, with corners as in
(5.1), and Q′ by the second quadrant with corners at

0 = a0 >−a1 >−a2 > · · ·>−an−2 >−an−1 =∞.

Then the upper half-plane will parametrize Q∗. Thus, the developing map
f∗ :H → S of the polygon Q∗ is a real rational function with all critical points
real. It satisfies

(5.2) f∗(−z) =−f∗(z),

so f∗ is odd. In the opposite direction, if f∗ is an odd real rational function
with all critical points real, then the restriction of

(5.3) f(z) = f∗(
√
z)

to H parametrizes a spherical polygon of the considered type.
Thus we obtain the following proposition.
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Proposition 5.1. Equivalence classes of spherical polygons with all angles
but two integer, and adjacent non-integer angles such that 2α0 and 2αn are
odd integers, are in one-to-one correspondence with classes of odd real ratio-
nal functions with real critical points. The correspondence is explicitly given
by (5.3).

We recall that equivalence classes of real rational functions with real critical
points are counted by chord diagrams [5], [6], [8]. Let g be such a function.
Then g−1(R ∪∞) restricted to H is a chord diagram: it consists of smooth
arcs in H with ends on R ∪ {∞}, and these arcs are disjoint except at the
ends. These ends are the critical points. At a critical point of multiplicity m,
m arcs meet, so in our case we have

m0 = 2α0 − 1, mn−1 = 2αn−1 − 1, mj = αj − 1, 1≤ j ≤ n− 2

for the critical points on the ray 0≤ x≤∞. A rational function is odd iff the
diagram is invariant with respect to z �→ −z, and even number of arcs meet
at 0 and at ∞. We call such chord diagrams odd.

Without these conditions, the number K(n1, . . . , nk) of all chord diagrams
with vertices of orders n1, . . . , nk is the Kostka number which was defined
in Section 3. A necessary condition for existence of such a diagram is that
n1+ · · ·+nk is an even number 2d− 2. We set K(n1, . . . , nk) = 0 if the SSYT
with parameters nj in the definition of Kostka number does not exist. We
recall that Kostka number does not change after a permutation of nj .

Now we return to odd chord diagrams. Let m0,m1, . . . ,mn−1 be the mul-
tiplicities of critical points on 0 ≤ x ≤ ∞, and E(m0,m1, . . . ,mn−2,mn−1)
the number of chord diagrams corresponding to odd rational functions with
critical points of multiplicities m0, . . . ,mn−1 on 0≤ x≤∞. We express this
quantity in terms of Kostka numbers.

Theorem 5.2. If m0 and mn−1 are even, then

(5.4) E(m0,m1, . . . ,mn−2,mn−1) =K(r,m1, . . . ,mn−2, s),

where positive integers r and s satisfy

(5.5) r+ s >m1 + · · ·+mn−2,

and are defined as follows:
If μ := (m0 +mn−1)/2 +m1 + · · ·+mn−2 is even, then r =m0/2 + k and

s=mn−1/2 + k, where k is large enough to satisfy (5.5).
If μ is odd, then r = (m0 +mn−1)/2 + k + 1 and s = k, where k is large

enough to satisfy (5.5).

Proof. Let us say that an edge of a chord diagram is crossing if its one
endpoint is positive and another negative. The number ν of crossing edges
satisfies ν ≡ μ mod 2.
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If ν is even, we have

(5.6) E(m0,m1, . . . ,mn−2,mn−1) =E(m0 + 2,m1, . . . ,mn−2,mn−1 + 2).

Indeed we can establish a bijection between the nets counted by both sides
of (5.6) as follows. If ν = 0, we can add two edges connecting a0 = 0 and
an−1 = ∞. If ν �= 0, we can replace two extreme crossing edges (closest to
a0 and an−1) by the edges going to a0 and an−1, without changing the other
endpoints of these edges. Notice that these operations do not change the
parity of ν.

If ν is odd, and mn−1 > 0, we have

(5.7) E(m0,m1, . . . ,mn−2,mn−1) =E(m0 + 2,m1, . . . ,mn−2,mn−1 − 2).

Indeed, in this case we can shift one crossing edge so that it becomes an
edge ending at a0, the other endpoint unchanged, and at an−1 to perform the
opposite operation: replace one edge ending at an−1 by a crossing edge.

Similarly if ν is odd and m0 > 0, we have

(5.8) E(m0,m1, . . . ,mn−2,mn−1) =E(m0 − 2,m1, . . . ,mn−2,mn−1 + 2).

These operations do not change the number ν. Finally, if ν is odd and m0 = 0,
we have

(5.9) E(0,m1, . . . ,mn−2,mn−1) =E(0,m1, . . . ,mn−2,mn−1 + 2),

and similarly, if ν is odd and mn−1 = 0 then

E(m0,m1, . . . ,0) =E(m0 + 2,m1, . . . ,mn−2,0)

and this operation replaces ν by ν − 1, so it switches the parity of ν.
Finally we notice that if m0 +mn−1 > 2(m1 + · · ·+mn−2) then there can

be no crossing edges, thus our chord diagram is simply the union of two
symmetrical chord diagrams, and thus

E(m0, . . . ,mn−1) =K(m0/2,m1, . . . ,mn−2,mn−1/2).

The result follows from (5.6), (5.7), (5.8) and (5.9). �
There is no explicit formula for Kostka numbers. But we need a simple

formula in the generic case. We recall that the number K(1,1, . . . ,1) of chord
diagrams with 2d vertices and one chord ending at each vertex is

Cd =
1

d+ 1

(
2d

d

)
,

the Catalan number.

Proposition 5.3. For m vertices on the positive ray, one edge ending at
each vertex, we have

Em :=E(0,1, . . . ,1︸ ︷︷ ︸
m times

,0) =

(
m

[m/2]

)
.
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Proof. It is sufficient to determine K(r,1, . . . ,1, s) with r and s defined as
in Theorem 5.2, namely,

(5.10) r+ s >m,

and r = s if m is even, and r = s+ 1 if m is odd. Let us define the positive
integer d by the formula 2(d− 1) = r + s+m. Then we are counting Young
tableaux of shape 2× (d− 1). In such a tableau, 1’s must stand in the first
row on the left and m+ 2’s in the second row on the right. In view of the
inequality (5.10), the part of the tableau with entries 2, . . . ,m+ 1 consists of
two rows that have no common columns. The number of ways to fill these
rows is the binomial coefficient. �

Now we return to solution of the equation (4.5) with generic real R, whose
roots are simple and positive, and degR= p+ q. We conclude that q = p or
q = p+ 1, and obtain that the degree of the map Wα is(

p+ q

p

)
,

according to (4.7). So all preimages W−1
1/2(R) are real. Taking limits of such

polynomials we obtain the following proposition.

Proposition 5.4. For a real polynomial R with non-negative roots, all
solutions of the equation W1/2(P,Q) =R are real.

This proposition can be also derived from [23, Theorem 4.2(ii)].

6. Deformation argument

Now we extend the results of the previous paragraph to the case of arbitrary
α and prove the following theorem.

Theorem 6.1. Let α0, α1, . . . , αn−1, n ≥ 4, be given positive numbers of
which α0 and αn−1 are not integers and the rest are integers, and suppose
that conditions of Theorem 4.1 are satisfied.

Then for given a0, . . . , an−1 there are at most

(6.1) E
(
2[α0]− 1, α1 − 1, . . . , αn−2 − 1,2[αn−1]− 1

)
equivalence classes of metrics with conic singularities a0, . . . , an, and angles
2πα0, . . . ,2παn−1. For generic aj we have equality.

Moreover, we always have equality, when the aj lie on a circle in the cyclic
order a0, . . . , an−1.

It is sufficient to prove this for symmetric metrics. Let us fix some α ∈ (0,1).
Let Q be a spherical n-gon with all angles but two integer multiples of π,
the two corners with non-integer angles adjacent, and the non-integer angles
satisfy that 2α0 and 2αn−1 are odd integers.
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We parametrize Q by the upper half-plane H as before, with corners as in
(5.1). Let f :Q→ S be the developing map. Then all sides of Q are mapped
into two circles, f(R+)⊂ C0 and f(R−)⊂ C1/2. We may assume that C0 is
the real line and C1/2 is the imaginary line.

Let ψ : S→ S be a quasiconformal homeomorphism that leaves the real line
pointwise fixed and maps the imaginary line onto Cα = {reiα : r ∈R}. Then
(6.2) g = ψ ◦ f,
is a quasiregular map H → S which is a local homeomorphism in the interior
of H and maps the real line into R∪Cα∪∞. By solving a Beltrami equation,
we find a quasiconformal homeomorphism φ :H →H such that

(6.3) h= ψ ◦ f ◦ φ
is holomorphic. Then h :H → S is a developing map of a polygon Qα.

This correspondence can be inverted: for every spherical polygon Qα with
all angles but two integers, and adjacent corners with non-integer angles, and
developing map g we can find a polygon Q whose non-integer angle at one
vertex has fractional part 1/2, such that the developing maps of Q and Qα

are related by formula (6.3).
Let

(6.4) 0< a1 < · · ·< an−2 <∞
be the corners of Q, and 0< b1 < · · ·< bn−2 <∞ be the corners of Qα. We
evidently have aj = φ(bj). It is convenient to normalize a1 = b1 = 1, then
the map ψ which will uniquely define φ. With this normalization, the set
of possible configurations aj forms the interior of a simplex Δa of dimension
n− 3.

Let N be the chord diagram corresponding to f as in the previous section.
It is known [8] that for a fixed chord diagram, and for each point x ∈ Δa,
there exists a unique equivalence class of rational functions and thus a map f .
To this f we put into correspondence the map g by formula (6.3), and obtain
a point y =Φ(x) ∈Δb.

We claim that the map Φ is a diffeomorphism of open simplexes Δa →Δb.
First we prove that it is surjective. Whenever some subset aj , aj+1, . . . , aj+k

collide, the corresponding subset bj , bj+1, . . . , bj+k collides, because φ and φ−1

are normalized quasiconformal maps with maximum dilatation that depends
only on α. So the faces of Δa correspond to faces of Δb with the same names.
Thus the degree of Φ must be equal to one, and the map is surjective.

In particular, this implies that for every polynomial R with all roots positive
and simple the full preimage under the map Wα is real, the fact which can
be alternatively derived from [23, Theorem 4.3(ii)]. It follows that the Jacobi
determinant of Wα cannot be zero over a polynomial R with all non-negative
roots (no matter simple or not).
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We have that Φ : Δa → Δb has degree 1 and Jacobian is never zero. It
follows that the map is a diffeomorphism. This proves the theorem.
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