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ON INJECTIVE RESOLUTIONS OF LOCAL
COHOMOLOGY MODULES

TONY J. PUTHENPURAKAL

Abstract. Let R = K[X1, . . . ,Xn] where K is a field of char-
acteristic zero. Let I be an ideal in R and let M = Hi

I(R) be

the ith-local cohomology module of R with respect to I. Let

c= injdimM . We prove that if P is a prime ideal in R with Bass
number μc(P,M)> 0 then P is a maximal ideal in R.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring. If M is an
R-module and Y be a locally closed subscheme of Spec(R), we denote by
Hi

Y (M) the ith-local cohomology module of M with support in Y . If Y is
closed in Spec(R) with defining ideal I , then Hi

Y (M) is denoted by Hi
I(M).

In a remarkable paper, [4], Huneke and Sharp proved that if R is a reg-
ular ring containing a field of characteristic p > 0, and I is an ideal in R
then the local cohomology modules of R with respect to I have the following
properties:

(i) Hj
m(H

i
I(R)) is injective, where m is any maximal ideal of R.

(ii) injdimRHi
I(R)≤ dimSuppHi

I(R).
(iii) The set of associated primes of Hi

I(R) is finite.
(iv) All the Bass numbers of Hi

I(R) are finite.

Here injdimRHi
I(R) denotes the injective dimension of Hi

I(R). Also
SuppM = {P | MP �= 0 and P is a prime in R} is the support of an R-
module M . The jth Bass number of an R-module M with respect to a
prime ideal P is defined as μj(P,M) = dimk(P )Ext

j
RP

(k(P ),MP ) where k(P )
is the residue field of RP .

In another remarkable paper, for regular rings in characteristic zero,
Lyubeznik was able to establish the above properties for a considerably larger
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class of functors than just the local cohomology modules, see [5]. We call such
functors as Lyubeznik functors, see section two for details. If T is a Lyubeznik
functor on Mod(R) then T (R) satisfies the following properties:

(i) Hj
m(T (R)) is injective, where m is any maximal ideal of R.

(ii) injdimR T (R)≤ dimSuppT (R).
(iii) For every maximal ideal m, the number of associated primes of T (R)

contained in m is finite.
(iv) All the Bass numbers of T (R) are finite.

We should note that if R=K[X1, . . . ,Xn] then the number of associate primes
of T (R) is finite.

The results of Lyubeznik for characteristic zero raised the question of
whether the results (i)–(iv) of Huneke and Sharp (in characteristic p > 0)
could be extended to this larger class of functors. In [6], Lyubeznik proves it.

If M is a finitely generated module over a Cohen–Macaulay ring R and say
M has finite injective dimension d= dimR, then it is elementary to prove that
if μd(P,M) > 0 then P is a maximal ideal in R, use [3, Proposition 3.1.13].
This fails for modules which are not finitely generated, for instance consider
the injective hull E(R/P ) of R/P where P is a prime ideal which is not
maximal.

Our main result is the following theorem.

Theorem 1.1. Let R=K[X1, . . . ,Xn] where K is a field of characteristic
zero. Let T be a Lyubeznik functor on Mod(R). Suppose injdimT (R) = c.
If P is a prime ideal in R with Bass number μc(P,T (R)) > 0 then P is a
maximal ideal of R.

As an aside, we note that to best of our knowledge this is the first result
whose proof uses the fact that AssT (R) is finite for any Lyubeznik functor T .

The referee suggested to us the following interesting consequence of Theo-
rem 1.1.

Corollary 1.2. Let R =K[X1, . . . ,Xn] where K is a field of character-
istic zero. Let T be a Lyubeznik functor on Mod(R). Then injdimT (R) =
dimSuppT (R).

A natural question is what can we say about μc(m,T (R)) as m varies over
maximal ideals in R. Our next result is essentially only an observation.

Proposition 1.3. Let K be an algebraically closed field of characteristic
zero and let R =K[X1, . . . ,Xn]. Let T be a Lyubeznik functor on Mod(R).
Suppose injdimT (R) = c. Then for all i= 0, . . . , c; the set{

μi

(
m,T (R)

)
|m a maximal ideal of R

}
is bounded.
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A natural question is whether Theorem 1.1 and Proposition 1.3 hold in
characteristic p > 0. Although we expect this to be true; our techniques do
not work in positive characteristic. We are only able to extend Proposition 1.3
to a subclass of Lyubeznik functors, see Remark 5.2.

We now describe in brief the contents of this paper. In Section 2, we define
Lyubeznik functors and also a few preliminary results on holonomic modules
which we need. In Section 3, we discuss two lemmas which will help in proving
Theorem 1.1. In Section 4, we prove Theorem 1.1 and Corollary 1.2. Finally
in Section 5, we prove Proposition 1.3.

2. Preliminaries

In this section, we define Lyubeznik functors. We also prove a result on
holonomic modules which we need.

2.1. Lyubeznik functors. Let R be a commutative Noetherian ring and
let X = Spec(R). Let Y be a locally closed subset of X . If M is an R-module
and Y be a locally closed subscheme of Spec(R), we denote by Hi

Y (M) the
ith-local cohomology module of M with support in Y . Suppose Y = Y1 \ Y2

where Y2 ⊆ Y1 are two closed subsets of X , then we have an exact sequence
of functors

· · · →Hi
Y1
(−)→Hi

Y2
(−)→Hi

Y (−)→Hi+1
Y1

(−)→ · · · .

A Lyubeznik functor T is any functor of the form T = T1 ◦ T2 ◦ · · · ◦ Tm where
every functor Tj is either Hi

Y (−) for some locally closed subset of X or the
kernel, image or cokernel of some arrow in the previous long exact sequence
for closed subsets Y1, Y2 of X such that Y2 ⊆ Y1.

We need the following result from [5, Lemma 3.1].

Proposition 2.1. Let φ : R → S be a flat homomorphism of Noetherian
rings. Let T be a Lyubeznik functor on Mod(R). Then there exists a Lyubeznik

functor T̂ on Mod(S) and isomorphisms T̂ (M ⊗R S)∼= T (M)⊗R S which is
functorial in M .

2.2. Lyubeznik functors and holonomicity. Let K be a field of char-
acteristic zero. Let S =K[[X1, . . . ,Xn]]. Let D be the ring of K-linear dif-
ferential operators on S. Let T be a Lyubeznik functor on Mod(S). If M
is any holonomic D-module then T (M) is a holonomic D-module; see [5,
Remark 2.2d]. In particular, T (S) is a holonomic D-module.

Let R=K[X1, . . . ,Xn] and let An(K) be the nth-Weyl algebra over K. Let
T be a Lyubeznik functor on Mod(R). If M is any holonomic An(K)-module
then T (M) is a holonomic An(K)-module (the proof in [5, Remark 2.2d] can
be modified to prove this result). In particular, T (R) is a holonomic An(K)-
module.
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Remark 2.2. In [2] holonomic An(K)-modules are called modules belong-
ing to the Bernstein class.

2.3. Localization of holonomic modules. Let k be a field of characteristic
zero and let S = k[[Y1, . . . , Yn]]. Let D be the ring of k-linear differential
operators on S. Let C be a simple holonomicD-module. Notice AssS C = {P}
for some prime P in S. Also C is P -torsion; see [2, Lemma 3.3.16–17]. It
follows from [2, p. 109, lines 3–6] that there exists h ∈ (S/P ) non-zero such
that HomS(S/P,C)h is a finitely generated (S/P )h module. Let g be a pre-
image of h in S. Then clearly HomS(S/P,C)g is a finitely generated Sg-
module. We now generalize this result.

Proposition 2.3 (with hypotheses as in 2.3). Let M be a holonomic D-
module. Assume AssS M = {P} and M is P -torsion. Then there exists h ∈
S \ P such that HomS(S/P,M)h is finitely generated as a Sh-module.

Proof. Let 0 = M0 � M1 � M2 � · · · � Mn−1 � Mn = M be a filtration
of M with Mi/Mi−1 simple D-module for i = 1, . . . , n. By induction on i,
we prove that there exists hi ∈ S \ P such that HomS(S/P,Mi)hi is finitely
generated as a Shi -module.

For i= 1, note that M1 is a simple holonomic D-module. Also AssS M1 ⊆
AssS M = {P}. Then by 2.3 we get the required assertion. We assume the
result for i= r and prove it for i= r+ 1. Say HomS(S/P,Mr)hr is a finitely
generated Shr -module. We consider the following two cases.

Case 1 : AssS Mr+1/Mr = {P}.
By 2.3, there exists gr ∈ S \P such that HomS(S/P,Mr+1/Mr)gr is finitely

generated Sgr -module. Consider the exact sequence

0→HomS(S/P,Mr)→HomS(S/P,Mr+1)→HomS(S/P,Mr+1/Mr).

Localize at hr+1 = hrgr ∈ S \ P . Notice

(1) HomS(S/P,Mr)hr+1 = (HomS(S/P,Mr)hr )gr is finitely generated as a
Shr+1 -module.

(2) HomS(S/P,Mr+1/Mr)hr+1 = (HomS(S/P,Mr+1/Mr)gr )hr is finitely gen-
erated as a Shr+1 -module.

It follows that HomS(S/P,Mr+1)hr+1 is finitely generated as a Shr+1 -module.
Case 2 : AssS Mr+1/Mr = {Q} with Q �= P .
As M is P -torsion we have that Q � P . Take g ∈ Q \ P . Then

(Mr+1/Mr)g = 0. So HomS(S/P,Mr+1/Mr)g = 0. Put hr+1 = hrg ∈ S \ P .
Then note that

HomS(S/P,Mr+1)hr+1
∼=HomS(S/P,Mr)hr+1 =

(
HomS(S/P,Mr)hr

)
g
,

is finitely generated as a Shr+1 -module. Thus by induction, we get that there
exists h ∈ S \ P such that HomS(S/P,M)h is finitely generated as a Sh-
module. �
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2.4. Non-singular locus of affine varieties. Finally, we need the following
well-known result regarding non-singular locus of affine domains.

Theorem 2.4. Let A be an affine domain, finitely generated over a perfect
field k. Then

(1) The non-singular locus of A is non-empty and an open subset of Spec(A).
(2) There exists a maximal ideal m of A with Am regular local.
(3) If dimA≥ 1, then there exists infinitely many maximal ideals of A with

Am regular local.
(4) Suppose dimA≥ 2 and let f ∈A. Then there exists a maximal ideal m of

A with f /∈m and Am-regular local.

3. Two lemmas

In this section, we establish two lemmas which will enable us to prove our
main result. Let K be a field of characteristic zero and let P be a prime
ideal of height g in R = K[X1, . . . ,Xn]. Let E(R/P ) denote the injective
hull of R/P . Recall that E(R/P ) =Hg

P (R)P . It follows that E(R/P ) is a
An(K)-module and the natural inclusion Hg

P (R)→E(R/P ) is An(K)-linear.

Lemma 3.1. Let K be a field of characteristic zero and let P be a prime
ideal of height n− 1 in R=K[X1, . . . ,Xn]. Then E(R/P ) is not a holonomic
An(K)-module.

Proof. Suppose if possible E(R/P ) is a holonomic An(K)-module. We
have an exact sequence of An(K)-modules

0→Hn−1
P (R)→E(R/P )→C → 0.

As E(R/P ) is holonomic we have that C is also a holonomic An(K)-module.
Notice CP = 0. It follows that C is supported at only finitely many maximal
ideals of R, say m1, . . . ,mr. By Theorem 2.4(3), there exists a maximal ideal m
of R such that m �=mi for all i and (R/P )m is regular local. Note Hn−1

P (R)m =
E(R/P )m as Cm = 0. If mRm = (z1, . . . , zn) then as Rm/PRm is regular we
may assume that PRm = (z1, . . . , zn−1). In particular, Hn

PRm
(Rm) = 0.

Let f ∈mRm \ PRm. Note that we have an exact sequence

0→Hn−1
PRm

(Rm)→Hn−1
PRm

(Rm)f →Hn
(PRm,f)(Rm)→Hn

PRm
(Rm) = 0.

As Hn−1
PRm

(Rm) =Hn−1
P (R)m = E(R/P )m it follows that the first map in the

above exact sequence is an isomorphism. It follows that Hn
(PRm,f)(Rm) = 0.

This contradicts Grothendieck’s non-vanishing theorem as
√

(PRm, f) =
mRm. �

Our next result is
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Lemma 3.2. Let K be a field of characteristic zero and let P be a height
g prime in R=K[X1, . . . ,Xn] with g ≤ n− 2. Suppose m is a maximal ideal
in R with (R/P )m a regular local ring. Let T be a Lyubeznik functor on
Mod(Rm). Then T (Rm) �=E(R/P )cm for any c > 0.

Proof. Suppose if possible T (Rm) = E(R/P )cm for some c > 0. Let R̂m

be the completion of Rm at mRm. Note R̂m =K ′[[Z1, . . . ,Zn]] where K ′ ∼=
R/m. Let D be the ring of K ′-linear differential operators on R̂m. Note

by Proposition 2.1 there exists a Lyubeznik functor T̂ on Mod(R̂m) such

that T̂ (R̂m) = T (Rm) ⊗ R̂m. In particular E(R/P )cm ⊗ R̂m is a holonomic

D-module. So V =E(R/P )m ⊗ R̂m is a holonomic D-module.
As (R/P )m is regular local, we may assume that PRm = (Z1, . . . ,Zg). Note

n ≥ g + 2. In particular, we have that PR̂m is a prime ideal in R̂m. Notice

V is PR̂m-torsion. Furthermore, AssV = {PR̂m}. Using Proposition 2.3, we

get that there exists h ∈ R̂m \PR̂m such that Hom(R̂m/PR̂m, V )h is a finitely

generated (R̂m)h-module. Notice HomRm
(Rm/PRm,E(R/P )m) = k(P ) where

k(P ) is the quotient field of Rm/PRm. It follows that

Hom(R̂m/PR̂m, V ) = HomRm

(
Rm/PRm,E(R/P )m

)
⊗ R̂m = k(P )⊗ R̂m.

For λ ∈K let qλ = (Z1, . . . ,Zg,Zg+1 + λZg+2). Clearly, qλ is a prime ideal

of height g + 1 in Rm containing PRm. Furthermore, we have that qλR̂m is

a prime ideal in R̂m. If λ1 �= λ2, then it is easy to show that qλ1 �= qλ2 . Now

consider h, the image of h in R̂m/PR̂m. By considering a primary decompo-

sition of (h) it follows that infinitely many qλR̂m do not contain h. Choose

one such λ. Thus we have that Hom(R̂m/PR̂m, V )
qλR̂m

is a finitely generated

(R̂m)qλR̂m
-module. Notice we have a flat local map (Rm)qλ

→ (R̂m)qλR̂m
.

Furthermore, note that

Hom(R̂m/PR̂m, V )
qλR̂m

= k(P )⊗Rm
R̂m ⊗

R̂m
(R̂m)qλR̂m

= k(P )⊗Rm
(R̂m)qλR̂m

= k(P )⊗Rm
(Rm)qλ

⊗(Rm)qλ
(R̂m)qλR̂m

= k(P )⊗(Rm)qλ
(R̂m)qλR̂m

.

In the last equation, we have used that k(P )qλ
= k(P ). By Proposition 3.3, we

get that k(P ) is a finitely generated (Rm)qλ
-module. This is a contradiction

as P (Rm)qλ
is a non-maximal prime ideal in (Rm)qλ

. �
We need the following result in the proof of Lemma 3.2.

Proposition 3.3. Let φ : A → B be a flat local map of Noetherian local
rings. Let L be an A-module. Then L is finitely generated as a A-module if
and only if L⊗A B is finitely generated as a B-module.
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Proof. If L is finitely generated as a A-module, then clearly L ⊗A B is
finitely B-module. Suppose now that L is not a finitely generated A-module.
Let

L1 � L2 � · · ·� Ln � Ln+1 � · · ·
be a strictly ascending chain of submodules in L. By faithful flatness, we have
that

L1 ⊗B � L2 ⊗B � · · ·� Ln ⊗B � Ln+1 ⊗B � · · ·
is a strictly ascending chain of submodules of L⊗B. It follows that L⊗B is
not finitely generated. �

4. Proof of the Theorem 1.1 and Corollary 1.2

In this section, we prove our main result. We need the following easily
proved fact.

Proposition 4.1. Let A be a Noetherian ring and let T be an A-module.
Let f ∈A. Then the natural map

η : T → Tf is injective if and only if f /∈
⋃

P∈AssT

P.

We now give

Proof of Theorem 1.1. Set M = T (R). We prove that if P is a prime ideal
in R and not maximal then μc(P,M) = 0. Notice μc(P,M) = μ0(P,H

c
P (M)),

see [5, Lemma 1.4 and Theorem 3.4(b)]. We consider two cases.
Case 1 : heightP = n− 1.
Suppose if possible μ0(P,H

c
P (M)) �= 0. Notice then P is a minimal prime

of Hc
P (M). So if q ∈ AssRHc

P (M) and q �= P then q is a maximal ideal
of R. In this case, Γq(H

c
P (M)) =E(R/q)r for some r > 0. Since AssHc

P (M)
is a finite set we can write Hc

P (M) = L ⊕ I as R-modules where AssRL =
{P} and I = E(R/m1)

r1 ⊕ E(R/m2)
r2 ⊕ · · · ⊕ E(R/ms)

rs for some maximal
ideals m1, . . . ,ms and finite numbers r1, . . . , rs. Thus, I is an injective R-
module. Also note that both L and I are P -torsion. Further note that I =
Γm1m2···ms(H

c
P (M)) is a An(K)-submodule of Hc

P (M) and so L∼=Hc
P (M)/I

is a holonomic An(K)-module.
Let f ∈R \ P . Recall injdimM = c. We have an exact sequence

Hc
(P,f)(M)→Hc

P (M)→Hc
P (M)f →Hc+1

(P,f)(M) = 0.

Thus, the natural map η : L→ Lf is surjective. As f /∈ P and AssL = {P}
we get that η is also injective. Thus, L= Lf for every f ∈R \ P . It follows
that L= LP . Also note that LP =Hc

P (M)P . By [5, Theorem 3.4(b)], LP =
E(R/P )l for some finite l > 0. Thus, we have that E(R/P ) is a holonomic
An(K)-module. By Lemma 3.1, this is a contradiction.

Case 2 : heightP ≤ n− 2.
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Suppose if possible μ0(P,H
c
P (M)) �= 0. Let AssHc

P (M) = {P,Q1, . . . ,Qc}
where Qi �= P . As Hc

P (M) is P -torsion we have that Qi � P for all i. Let
fi ∈Qi \P . Put f = f1 · · ·fc. By Theorem 2.4(4), there exists a maximal ideal
m of R such that f /∈m and (R/P )m is regular local. Localize at m. Notice
AssRm

Hc
P (M)m = {PRm}. Let g ∈Rm \ PRm. Notice injdimRm

Mm ≤ c. So
we have an exact sequence

Hc
(PRm,g)(Mm)→Hc

PRm
(Mm)→Hc

PRm
(Mm)g →Hc+1

(PRm,g)(Mm) = 0.

Thus, the natural map η : Hc
PRm

(Mm) → Hc
PRm

(Mm)g is surjective. By
Lemma 4.1, it is also injective as AssHc

PRm
(Mm) = {PRm}. It follows

that Hc
PRm

(Mm) = Hc
PRm

(Mm)g . So Hc
PRm

(Mm) = Hc
PRm

(Mm)PRm
. By

[5, Theorem 3.4(b)], we get that Hc
PRm

(Mm)P ∼= E(Rm/PRm)
s for some

finite s > 0. By Proposition 2.1 there exist a Lyubeznik functor T ′ on
Mod(Rm) with T ′(Rm) = T (R) ⊗ Rm = Mm. Observe that G = Hc

PRm
◦ T ′

is a Lyubeznik functor on Rm. We have G(Rm) = E(Rm/PRm)
s. This con-

tradicts Lemma 3.2. �

We now give a proof of Corollary 1.2. I thank the referee for both the
statement and proof of this result.

Proof of Corollary 1.2. Let s = injdimT (R) and let d = dimSuppT (R).
As AssT (R) is finite we may choose finitely many primes P1, . . . , Ps in
SuppT (R) such that d= dimR/Pi for all i and dimR/P < d for all primes P
in SuppT (R) with P �= Pi for all i. We use induction on d.

If d= 0, there is nothing to prove. Assume we have proved the result when
dimSuppG(S) = d− 1 for all polynomial rings S over K and all Lyubeznik
functors G.

If d > 1, then we can choose a linear combination y of the variables
such that k[y] ∩ Pi = 0 for i = 1, . . . , s. Set R′ = k(y) ⊗k[y] R. Notice
that R′ is a polynomial ring over the field k(y) in n − 1 variables and
dimSuppT (R)⊗RR′ = d−1. Now by Proposition 2.1 there exists a Lyubeznik

functor T̂ on Mod(R′) and an isomorphism T̂ (R′)∼= T (R)⊗RR′. Hence by in-
duction hypothesis, injdimT (R)⊗R R′ = d− 1. So μd−1(Q

′,T (R)⊗R R′)> 0
for some maximal ideal Q′ of R′. Let Q be the contraction of Q′ to R. We note
that Q cannot be a maximal ideal of R (for instance see [8, Theorem 5.1]). As
μd−1(Q,T (R))> 0 we get by Theorem 1.1 that injdimT (R) cannot be d− 1.
Since injdimT (R)≤ d, it follows that injdimT (R) = d. �

5. Proof of Proposition 1.3

In this section, we prove Proposition 1.3. Throughout K is an algebraically
closed field of characteristic zero. Let R =K[X1, . . . ,Xn] and let An(K) be
the nth-Weyl algebra over K. We use notions developed in [2, Chapter 1], in
particular we use the notion of Bernstein filtration of An(K), good filtration,
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multiplicity and dimension of a finitely generated An(K)-module. We will
use the fact that for any holonomic module M we have �(M) ≤ e(M); here
�(M) denotes the length of M as an An(K)-module and e(M) denotes its
multiplicity.

The following result is well-known. So we just sketch an argument.

Proposition 5.1. Let m be a maximal ideal of R. Then e(E(R/m)) = 1.
In particular E(R/m) is a simple An(K)-module.

Proof (Sketch). As K is algebraically closed m= (X1−a1, . . . ,Xn−an) for
some a1, . . . , an ∈K. After a change of variables, we may assume a1 = · · ·=
an = 0. Note E(R/m) =K[∂1, . . . , ∂n]. The obvious filtration on E(R/m) is
compatible with the Bernstein filtration and is good. So e(E(R/m)) = 1. �

5.1. A multiplicity bound. LetM be a holonomic An(K)-module. Let f ∈
R be a polynomial of degree d. Then by proof of Theorem 5.19 in Chapter 1
of [2] we have

(1) e(Mf )≤ e(M)(1 + deg f)n.

We now give

Proof of Proposition 1.3. Set M = T (R). Let m= (X1 − a1, . . . ,Xn − an)
be a maximal ideal of R. Fix i with 0 ≤ i ≤ c. Notice μi(m,M) =
μ0(m,Hi

m(M)), see [5, Lemma 1.4 and Theorem 3.4(b)]. If Hi
m(M) =

E(R/m)ri then μi(m,M) = ri = �(Hi
m(M)). To compute Hi

m(M) we use the
Čech-complex:

C : 0→M →
n⊕

j=1

M(Xj−aj) → · · · →M(X1−a1)···(Xn−an) → 0.

In particular we have that �(Hi
m(M)) ≤ �(Ci). Notice Ci has

(
n
i

)
copies of

modules of the form Mf were f is a product of i distinct polynomials among
X1 − a1, . . . ,Xn − an. In particular deg f = i. So by Equation (1), we have
e(Mf )≤ e(M)(1 + i)n. Thus,

ri ≤ e
(
Ci

)
≤
(
n

i

)
e(M)(1 + i)n. �

Remark 5.2. If Kp is an algebraically closed field of characteristic p and
S =Kp[X1, . . . ,Xn] then Proposition 1.3 holds for functors of the form

G(−) =Hi1
I1

(
Hi2

I2

(
· · ·

(
Hir

Ir
(−)

)
· · ·

))
.

The point is that G(R) is a holonomic D-module where D is the ring of Kp-
linear differential operators over S. Here we use the notion of holonomicity
by V. Bavula [1]. In this case the bound �(Mf )≤ n!�(M)(1 + deg f)n holds,
see [7, Proof of Corollary 3.6]. The proof then follows by the same argument
as before.
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