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ESTIMATES FOR THE AFFINE AND DUAL AFFINE
QUERMASSINTEGRALS OF CONVEX BODIES

NIKOS DAFNIS AND GRIGORIS PAOURIS

Abstract. We provide estimates for suitable normalizations of
the affine and dual affine quermassintegrals of a convex body K in

R
n. These follow by a more general study of normalized p-means

of projection and section functions of K.

1. Introduction

The starting point of this paper is an integral formula of Furstenberg and
Tzkoni [5] about the volume of k-dimensional sections of ellipsoids: for every
ellipsoid E in R

n and every 1≤ k ≤ n one has

(1.1)

∫
Gn,k

|E ∩ F |n dνn,k(F ) = cn,k|E|k,

where νn,k is the Haar measure on the Grassmannian Gn,k and cn,k is a

constant depending only on n and k; more precisely, cn,k =Γ(n2 + 1)k/Γ(k2 +
1)n. It was proved by Miles [15] that this formula can be obtained in a simpler
way as a consequence of classical formulas of Blaschke and Petkantschin.

Later, analogous quantities were considered by Lutwak and Grinberg in the
setting of convex bodies. Lutwak introduced in [11]—for every convex body
K in R

n and every 1≤ k ≤ n− 1 – the quantities

(1.2) Φn−k(K) =
ωn

ωk

(∫
Gn,k

∣∣PF (K)
∣∣−n

dνn,k(F )

)−1/n

,

where PF (K) is the orthogonal projection onto F and ωk is the volume of
the Euclidean unit ball in R

k. For k = 0 and k = n one sets Φ0(K) = |K|
and Φn(K) = ωn, respectively. Grinberg [8] proved that these quantities are
invariant under volume preserving affine transformations; this justifies the
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terminology “affine quermassintegrals” for Φn−k(K). From the definition of
Φn−k(K), it is clear that

(1.3) Φn−k(K)≤ ωn

ωk

∫
Gn,k

∣∣PF (K)
∣∣dνn,k(F ) =Wn−k(K),

where Wn−k(K) = V (K, [k]Bn
2 , [n− k]) are the Quermassintegrals of K. Lut-

wak conjectured in [12] that the affine quermassintegrals satisfy the inequali-
ties

(1.4) ωj
nΦ

n−j
i ≤ ωi

nΦj(K)n−i

for all 0≤ i < j < n. For example, Lutwak asks if

(1.5) Φn−k(K)≥ ω(n−k)/n
n |K|k/n

with equality if and only if K is an ellipsoid; note that the weaker inequality

Wn−k(K)≥ ω
(n−k)/n
n |K|k/n holds true by the isoperimetric inequality. Most

of these questions remain open (see [6, Chapter 9]); two cases of (1.5) follow
from classical results: when k = n− 1 this inequality is the Petty projection
inequality and when k = 1 and K is symmetric then (1.5) is the Blaschke–
Santaló inequality.

Lutwak proposed in [13] to study the dual affine quermassintegrals

Φ̃n−k(K). For every convex body K in R
n and every 1 ≤ k ≤ n − 1 one

defines

(1.6) Φ̃n−k(K) =
ωn

ωk

(∫
Gn,k

|K ∩ F |n dνn,k(F )

)1/n

.

For k = 0 and k = n one sets Φ̃0(K) = |K| and Φ̃n(K) = ωn, respectively.
Grinberg proved in [8] that these quantities are also invariant under volume
preserving linear transformations, and he established the inequality

(1.7) Φ̃n−k(K)≤ ω(n−k)/n
n |K|k/n

for all 1 ≤ k ≤ n − 1, with equality if and only if K is a centered ellipsoid.
The case k = n− 1 of this inequality is the Busemann intersection inequality
(while the case k = 1 becomes an identity for symmetric convex bodies).

Being affinely invariant, affine and dual affine quermassintegrals appear to
be useful in asymptotic convex geometry. So, one of the purposes of this work
is to give upper and lower bounds for Φn−k(K) and Φ̃n−k(K) in the remaining
cases. We introduce a different notation and normalization which is better
adapted to our needs. Nevertheless, the question we study is equivalent to for
example, [6, Problem 9.7].

Definition 1.1 (Normalized affine quermassintegrals). For every convex
body K in R

n and every 1≤ k ≤ n− 1, we define

(1.8) Φ[k](K) =

(∫
Gn,k

∣∣PF (K)
∣∣−n

dνn,k(F )

)− 1
kn

.
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We also set Φ[n](K) = |K|1/n. Lutwak’s conjectures about affine quermassin-
tegrals can now be restated as follows:

(i) For every (symmetric) convex body K of volume 1 in R
n and every 1≤

k ≤ n− 1,

(1.9) Φ[k](K)≥Φ[k](Dn),

where Dn is the Euclidean ball of volume 1.
(ii) For every convex body K of volume 1 in R

n and every 1≤ k ≤ n− 1,

(1.10) Φ[k](K)≤Φ[k](Sn),

where Sn is the regular Simplex of volume 1.

In view of these conjectures, in the asymptotic setting it is reasonable to ask
if the following holds true: There exist absolute constants c1, c2 > 0 such that
for every convex body K of volume 1 in R

n and every 1≤ k ≤ n− 1,

(1.11) c1
√
n/k ≤Φ[k](K)≤ c2

√
n/k.

For k = 1, the Blaschke–Santaló inequality shows that (1.9) holds true. Prov-
ing (1.10) for k = 1 corresponds to Malher’s conjecture. Clearly, (1.11) for
k = 1 follows from the Blaschke–Santaló and the reverse Santaló inequality of
Bourgain–Milman [3].

Note that for k = n− 1, we have

(1.12) Φ[n−1](K) =

(
|Bn

2 |
|Π∗(K)|

) 1
n(n−1)

,

where Π∗(K) is the polar projection body of K. Then, Hölder’s inequality
and the isoperimetric inequality show that (1.9) holds true. The same is true
for (1.10): this follows from Zhang’s inequality; see [28].

Definition 1.2 (Normalized dual affine quermassintegrals). For every con-
vex body K in R

n and every 1≤ k ≤ n− 1, we define

(1.13) Φ̃[k](K) =

(∫
Gn,k

∣∣K ∩ F⊥∣∣n dνn,k(F )

) 1
kn

.

Grinberg’s theorem about dual affine quermassintegrals states that if K has
volume 1 then

(1.14) Φ̃[k](K)≤ Φ̃[k](Dn)≤ c2,

where c2 > 0 is an absolute constant. As we will see, if the hyperplane con-
jecture has an affirmative answer then

(1.15) Φ̃[k](K)≥ c1

for every centered convex body of volume 1, where c1 > 0 is an absolute
constant. In view of the above, here one asks if the following holds true:
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There exist absolute constants c1, c2 > 0 such that for every centered convex
body K of volume 1 in R

n and every 1≤ k ≤ n− 1,

(1.16) c1 ≤ Φ̃[k](K)≤ c2.

Our estimates on the normalized affine and dual affine quermassintegrals
are summarized in the following (the notation a� b, means that c1a≤ b≤ c2a
for some absolute constants c1, c2 > 0):

Theorem 1.3. Let K be a convex body of volume 1 in R
n. Then, for every

1≤ k ≤ n− 1,

(1.17) Φ[k](K)≤ c1
√

n/k logn

and, if K is also centered,

(1.18) Φ̃[k](K)≥ c2
LK

,

where LK is the isotropic constant of K. In particular, assuming the hyper-
plane conjecture we have that Φ̃[k](K)� 1 for all 1≤ k ≤ n− 1. We also have
the bounds

(1.19) Φ[k](K)≤ c3(n/k)
3/2

√
log (en/k)

and

(1.20) Φ̃[k](K)≥ c4√
n/k

√
log(en/k)

which are sharp when k is proportional to n.

For the proofs of these estimates, we attempt a more general study of nor-
malized p-means of projection and section functions of K, which we introduce
for every 1≤ k ≤ n− 1 and every p �= 0 by setting

(1.21) W[k,p](K) :=

(∫
Gn,k

∣∣PF (K)
∣∣p dνn,k(F )

) 1
kp

and

(1.22) W̃[k,p](K) =

(∫
Gn,k

∣∣K ∩ F⊥∣∣p dνn,k(F )

) 1
kp

respectively. The kth normalized affine and dual affine quermassintegrals of
K correspond to the cases p=−n and p= n, respectively:

(1.23) Φ[k](K) =W[k,−n](K) and Φ̃[k](K) = W̃[k,n](K).

We list several properties of the p-means and prove some related inequalities.
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2. Notation and preliminaries

We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉. We

denote by ‖ · ‖2 the corresponding Euclidean norm, and write Bn
2 for the

Euclidean unit ball, and Sn−1 for the unit sphere. Volume is denoted by
| · |. We write ωn for the volume of Bn

2 and σ for the rotationally invariant
probability measure on Sn−1. The Grassmann manifold Gn,k of k-dimensional
subspaces of R

n is equipped with the Haar probability measure νn,k. We

also write A for the homothetic image of volume 1 of a compact set A⊆ R
n

of positive volume, that is, A := |A|− 1
nA. If A and B are compact sets in

R
n, then the covering number N(A,B) of A by B is the smallest number of

translates of B whose union covers A.
The letters c, c′, c1, c2 etc. denote absolute positive constants which may

change from line to line. Whenever we write a� b, we mean that there exist
absolute constants c1, c2 > 0 such that c1a≤ b≤ c2a.

A star-shaped body C with respect to the origin is a compact set that
satisfies tC ⊆C for all t ∈ [0,1]. We denote by ‖ · ‖C the gauge function of C:

(2.1) ‖x‖C = inf{λ > 0 : x ∈ λC}.
A convex body in R

n is a compact convex subset C of Rn with nonempty
interior. We say that C is symmetric if x ∈ C implies that −x ∈ C. We say
that C is centered if it has centre of mass at the origin:

∫
C
〈x, θ〉dx = 0 for

every θ ∈ Sn−1. The support function hC : Rn →R of C is defined by hC(x) =
max{〈x, y〉 : y ∈ C}. The radius of C is the quantity R(C) = max{‖x‖2 : x ∈
C} and, if the origin is an interior point of C, the polar body C◦ of C is

(2.2) C◦ :=
{
y ∈R

n : 〈x, y〉 ≤ 1 for all x ∈C
}
.

Let K be a centered convex body of volume 1 in R
n. Then, the Blaschke–

Santaló inequality and the Bourgain–Milman inequality imply that

(2.3) |K◦| 1
n � 1

n
.

Let K be a centered convex body in R
n. For every F ∈Gn,k, 1≤ k ≤ n− 1,

we have that PF (K
◦) = (K ∩ F )◦, and hence,

(2.4) |K ∩ F |1/k
∣∣PFK

◦∣∣1/k � 1

k
.

The Rogers–Shephard inequality [26] states that

(2.5) 1≤ |PFK|1/k
∣∣K ∩ F⊥∣∣1/k ≤

(
n

k

)1/k

≤ en

k
.

We refer to the books [27], [20] and [24] for basic facts from the Brunn–
Minkowski theory and the asymptotic theory of finite dimensional normed
spaces.
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Let K be a centered convex body of volume 1 in R
n. For every q ≥ 1 and

θ ∈ Sn−1, we define

(2.6) hZq(K)(θ) :=

(∫
K

∣∣〈x, θ〉∣∣q dx
)1/q

.

We define the Lq-centroid body Zq(K) of K to be the centrally symmetric
convex set with support function hZq(K). Lq-centroid bodies were introduced
in [14]. Here we follow the normalization (and notation) that appeared in
[22].

It is easy to check that Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for every 1 ≤
p ≤ q ≤ ∞, where Z∞(K) = conv{K,−K}. Note that if T ∈ SL(n) then
Zp(T (K)) = T (Zp(K)). Moreover, as a consequence of the Brunn–Minkowski
inequality (see, for example, [22]), one can check that

(2.7) Zq(K)⊆ c
q

p
Zp(K)

for all 1≤ p < q, where c≥ 1 is an absolute constant, and

(2.8) Zq(K)⊇ cK

for all q ≥ n, where c > 0 is an absolute constant.
A centered convex body K of volume 1 in R

n is called isotropic if Z2(K)
is a multiple of Bn

2 . Then, we define the isotropic constant of K by

(2.9) LK :=

(
|Z2(K)|
|Bn

2 |

)1/n

.

It is known that LK ≥ LBn
2
≥ c > 0 for every convex body K in R

n. Bourgain
proved in [2] that LK ≤ c 4

√
n logn and, a few years ago, Klartag [9] obtained

the estimate LK ≤ c 4
√
n (see also [10]). The hyperplane conjecture asks if

LK ≤ C, where C > 0 is an absolute constant. We refer to [18], [7] and [22]
for additional information on isotropic convex bodies.

Let K be a centered convex body of volume 1 in R
n. For every star shaped

body C in R
n and any −n < p≤∞, p �= 0, we set

(2.10) Ip(K,C) :=

(∫
K

‖x‖pC dx

)1/p

.

If C =Bn
2 , we simply write Ip(K) instead of Ip(K,Bn

2 ).

3. p-mean projection functions and estimates for Φ[k](K)

We first consider the question whether there exist absolute constants c1,
c2 > 0 such that for every convex body K of volume 1 in R

n and every 1≤
k ≤ n− 1,

(3.1) c1
√
n/k ≤Φ[k](K)≤ c2

√
n/k.

We can prove that the right-hand side inequality holds true up to a logn term.
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Theorem 3.1. Let K be a centered convex body of volume 1 in R
n. Then,

for every 1≤ k ≤ n− 1,

(3.2) Φ[k](K)≤ c
√
n/k logn.

For the proof of Theorem 3.1, we introduce a normalized version of the
quermassintegrals of a convex body.

3.1. Normalized quermassintegrals. Let K be a convex body in R
n. For

every 1≤ k ≤ n− 1 we define the normalized k-quermassintegral of K by

(3.3) W[k](K) :=W[k,1](K) =

(∫
Gn,k

∣∣PF (K)
∣∣dνn,k(F )

)1/k

.

We also set W[n](K) = |K|1/n and W[0](K) = 1. Note that

(3.4) W[1](K) =

∫
Sn−1

[
hK(θ) + hK(−θ)

]
dσ(θ) = 2w(K).

From the definition and Kubota’s formula (see [27]), it is clear that, for every
1≤ k ≤ n− 1 one has

(3.5) W[k](K) =

(
ωk

ωn
V

(
K, [k];Bn

2 , [n− k]
))1/k

.

Applying the Aleksandrov–Fenchel inequality (see [27, Chapter 6]) one can
check the following:

(i) If K and L are convex bodies in R
n, then, for all 1≤ k ≤ n,

(3.6) W[k](K +L)≥W[k](K) +W[k](L).

(ii) For all 0≤ k1 < k2 < k3 ≤ n,

(3.7)
W[k2](K)W[k1](B

n
2 )

W[k1](K)W[k2](B
n
2 )

≥
(
W[k3](K)W[k1](B

n
2 )

W[k1](K)W[k3](B
n
2 )

) (k2−k1)k3
k2(k3−k1)

.

(iii) For all 1≤ k1 ≤ k2 ≤ n,

(3.8)
W[k2](K)

W[k2](B
n
2 )

≤
W[k1](K)

W[k1](B
n
2 )

.

Proof of Theorem 3.1. Since Φ[k](K) is affine invariant we may assume
that K is centered. It is well known that Pisier’s inequality (see [24, Chap-
ter 2]) on the norm of the Rademacher projection implies that there exists
T ∈ SL(n) such that

(3.9) W[1]

(
T (K)

)
= 2w

(
T (K)

)
≤ c

√
n logn.

More precisely, (3.9) follows from Pisier’s inequality in the case where K is
symmetric. However, it is not difficult to extend the inequality to the non
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necessarily symmetric case (see, e.g., [21, Lemma 3]). Then, using the affine
invariance of Φ[k] and the fact that Φ[k](K)≤W[k](K), we write

(3.10) Φ[k](K) = Φ[k]

(
T (K)

)
≤W[k]

(
T (K)

)
.

Since W[k](B
n
2 ) = ω

1/k
k � 1√

k
, it follows from (3.8) that

(3.11) W[k]

(
T (K)

)
≤

W[k](B
n
2 )

W[1](B
n
2 )

W[1]

(
T (K)

)
≤ c

√
n/k logn.

This completes the proof. �

Next, we introduce the p-mean projection function W[k,p](K) and the p-
mean width wp(K) of a convex body K and prove a weak lower bound in the
direction of the left hand side inequality of (3.1).

3.2. p-mean projection function. Let K be a convex body in R
n. Recall

that, for every 1 ≤ k ≤ n − 1 and for every p �= 0, the p-mean projection
function

(3.12) W[k,p](K) :=

(∫
Gn,k

∣∣PF (K)
∣∣p dνn,k(F )

) 1
kp

was defined in (1.21). We also set W[n](K) := |K|1/n. Finally, recall from
(1.23) that the kth normalized affine quermassintegral of K corresponds to
the case p=−n:

(3.13) Φ[k](K) :=W[k,−n](K).

It is clear that W[k,p](K) is an increasing function of p, W[s,p](λK) =
λW[s,p](K) for every λ > 0 and W[s,p](K)≤W[s,p](L) whenever K ⊆ L. More-
over, for every 1≤ k <m≤ n− 1 and every p �= 0, one has

(3.14) W[k,p](K) =

(∫
Gn,m

W kp
[k,p]

(
PE(K)

)
dνn,m(E)

) 1
kp

.

In particular,

(3.15) W[k,−m](K) =

(∫
Gn,m

Φ−km
[k]

(
PE(K)

)
dνn,m(E)

)− 1
km

.

3.3. p-mean width. The p-mean width of K is defined for every p �= 0 by

(3.16) wp(K) =

(∫
Sn−1

hp
K(θ)dσ(θ)

)1/p

.

It is clear that wp(K) is an increasing function of p, wp(λK) = λwp(K) for
every λ > 0 and wp(K) ≤ wp(L) whenever K ⊆ L. Note that, if K◦ is the



AFFINE AND DUAL AFFINE QUERMASSINTEGRALS 1013

polar body of K, then

(3.17) w−n(K) =

(
|Bn

2 |
|K◦|

) 1
n

.

Also, for every 1≤ k ≤ n− 1,

(3.18) wp(K) =

(∫
Gn,k

wp
p

(
PE(K)

)
dνn,k(E)

)1/p

and, in particular,

(3.19) w−k(K) = ω
1/k
k

(∫
Gn,k

∣∣(PE(K)
)◦∣∣dνn,k(E)

)−1/k

.

Using the above, we are able to prove that, in the symmetric case,
W[k,−q](K)≥ c

√
n/k as far as q ≤ n/k; recall that Φ[k](K) =W[k,−n](K).

Theorem 3.2. Let K be a symmetric convex body of volume 1 in R
n.

Then, for every 1≤ k ≤ n− 1,

(3.20) W[k,−n/k](K)≥ c
√
n/k.

Proof. Using Hölder’s inequality, the Blaschke–Santaló and the reverse San-
taló inequality, for every p≥ 1 we can write

(∫
Gn,k

∣∣PF (K)
∣∣−p

dνn,k(F )

) 1
kp

�
(∫

Gn,k

|(PF (K))◦|p

ω2p
k

dνn,k(F )

) 1
kp

�
√
k

(∫
Gn,k

(∫
SF

1

hk
K(θ)

dσF (θ)

)p

dνn,k(F )

) 1
kp

≤ c
√
k

(∫
Gn,k

∫
SF

1

hkp
K (θ)

dσF (θ)dνn,k(F )

) 1
kp

= c
√
k

(∫
Sn−1

1

hkp
K (θ)

dσ(θ)

) 1
kp

= c
√
kw−1

−kp(K).

We set p := n/k ≥ 1. Then, from (3.17) we get

(3.21) W[k,−n/k](K)≥ w−n(K)

c
√
k

� 1

c
√
k

ω
1/n
n

|K◦|1/n �
√

n/k.

This completes the proof. �
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Note 1. What we have actually shown in the proof of Theorem 3.2 is that

W[k,−p](K) �
√
k

(∫
Gn,k

(∫
SF

1

hk
K(θ)

dσF (θ)

)p

dνn,k(F )

)− 1
kp

(3.22)

≥ c
w−kp(K)√

k

for all 1≤ k ≤ n− 1 and p≥ 1.

4. p-mean section functions and estimates for Φ̃[k](K)

Next, we consider the dual affine quermassintegrals. We first provide a
lower bound which is sharp up to the isotropic constant of the body.

Theorem 4.1. Let K be a centered convex body of volume 1 in R
n and let

1≤ k ≤ n− 1. Then,

(4.1) Φ̃[k](K)≥ c

LK
.

Proof. By the linear invariance of Φ̃[k](K), we may assume that K is in the
isotropic position. Let F be a k-dimensional subspace of Rn. We denote by
E the orthogonal subspace of F and for every φ ∈ F \ {0} we define E+(φ) =
{x ∈ span{E,φ} : 〈x,φ〉 ≥ 0}. K. Ball (see [1] and [18]) proved that, for every
q ≥ 0, the function

(4.2) φ �→ ‖φ‖1+
q

q+1

2

(∫
K∩E+(φ)

〈x,φ〉q dx
)− 1

q+1

is the gauge function of a convex body Bq(K,F ) on F . We will make use of
the fact that, if K is isotropic then

(4.3)
∣∣K ∩ F⊥∣∣1/k � LBk+1(K,F )

LK
.

See [18] and [22] for a proof. Therefore,

(4.4) Φ̃[k](K)LK �
(∫

Gn,k

Lkn
Bk+1(K,F ) dνn,k(F )

) 1
kn

.

Recall that the isotropic constant is uniformly bounded from below: we know
that LBk+1(K,F ) ≥ c, where c > 0 is an absolute constant. It follows that

(4.5) Φ̃k(K)LK �
(∫

Gn,k

Lkn
Bk+1(K,F ) dνn,k(F )

) 1
kn

≥ c,

and the result follows. �
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Note 2. Theorem 4.1 shows that if the hyperplane conjecture is correct
then (if we also take into account Grinberg’s theorem), for every centered
convex body K of volume 1 in R

n and for every 1≤ k ≤ n− 1,

(4.6) c1 ≤ Φ̃[k](K)≤ c2,

where c1, c2 > 0 are absolute constants. This would answer completely the
asymptotic version of our original problems about the dual affine quermass-
integrals.

The proof of Theorem 4.1 has some interesting consequences:

Corollary 4.2. Let K be an isotropic convex body in R
n. For every

1≤ k ≤ n− 1 we have

(4.7) νn,k
(
{F ∈Gn,k : LBk+1(K,F ) ≥ cLK}

)
≤ e−kn,

where c > 0 is an absolute constant.

Proof. From Grinberg’s theorem, see (1.14), we know that Φ̃[k](K) ≤
Φ̃[k](Dn)≤ c2, where c2 > 0 is an absolute constant. From (4.5), we get

(4.8)

(∫
Gn,k

Lkn
Bk+1(K,F ) dνn,k(F )

) 1
kn

≤ c3LK ,

and the result follows from Markov’s inequality. �
We complement Theorem 4.1 with a second lower bound for Φ̃[k](K), which

is sharp when k is proportional to n.

Theorem 4.3. Let K be a centered convex body of volume 1 in R
n. For

every 1≤ k ≤ n− 1 we have that

(4.9) Φ̃[k](K)≥ c√
n/k

√
log(en/k)

.

For the proof of this bound, we introduce the p-mean section function
W̃[k,p](K) of a convex body K.

4.1. p-mean section function. Let K be a convex body in R
n. Recall

that, for every 1≤ k ≤ n− 1 and for every p �= 0, the p-mean

(4.10) W̃[k,p](K) =

(∫
Gn,k

∣∣K ∩ F⊥∣∣p dνn,k(F )

) 1
kp

was defined in (1.22). The normalized dual k-quermassintegral of K is

W̃[k](K) := W̃[k,1](K). Also, recall that the kth normalized dual affine quer-
massintegral of K corresponds to the case p= n:

(4.11) Φ̃[k](K) = W̃[k,n](K).

Hölder’s inequality implies that, for a fixed value of k, W̃[k,p](K) is an increas-
ing function of p.



1016 N. DAFNIS AND G. PAOURIS

The next proposition shows that the normalized dual quermassintegrals
W̃[k](K) are strongly related to the quantities Ip(K).

Proposition 4.4. Let K be a convex body of volume 1 in R
n and let

1≤ k ≤ n− 1. Then,

(4.12) W̃[k](K)I−k(K) =

(
(n− k)ωn−k

nωn

)1/k

= W̃[k](Dn)I−k(Dn).

Note 3. It is easy to check that ( (n−k)ωn−k

nωn
)1/k �√

n.

Proof of Proposition 4.4. We integrate in polar coordinates:

I−k
−k (K) =

nωn

n− k

∫
Sn−1

1

‖x‖n−k
K

dσ(x)

=
nωn

(n− k)ωn−k

∫
Gn,n−k

ωn−k

∫
SF

1

‖θ‖n−k
K∩F

dσ(θ)dνn,n−k(F )

=
nωn

(n− k)ωn−k

∫
Gn,n−k

|K ∩ F |dνn,n−k(F )

=
nωn

(n− k)ωn−k

∫
Gn,k

∣∣K ∩ F⊥∣∣dνn,k(F ).

The definition of W̃[k](K) completes the proof. �

Proposition 4.4 has the following consequence.

Proposition 4.5. Let K be a centered convex body of volume 1 in R
n.

Then, for every 1≤ s≤m≤ n− 1,

(4.13) W̃[s](K)≤ W̃[s](Dn)

and

(4.14)
W̃[m](K)

W̃[s](K)
≥

W̃[m](Dn)

W̃[s](Dn)
.

Proof. It is known (see [23]) that for any q ≥ p≥−n we have

(4.15) Ip(K)≥ Ip(Dn)

and

(4.16)
Iq(K)

Ip(K)
≥ Iq(Dn)

Ip(Dn)
.

Then, the result follows from Proposition 4.4. �

Note 4. It is easy to check that

(4.17) W̃[k](Dn) = W̃[k,p](Dn) = Φ̃[k](Dn)� 1.
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Proof of Theorem 4.3. Hölder’s inequality and Proposition 4.4 imply that

(4.18) Φ̃[k](K)≥ W̃[k](K)≥ c
√
n

I−k(K)
.

Now, we use the fact (see Theorem 5.2 and Lemma 5.6 in [4]) that there exists
T ∈ SL(n) such that

(4.19) I−k

(
T (K)

)
≤ c

√
n
√

n/k
√

log en/k.

By the affine invariance of Φ̃[k](K), we have

(4.20) Φ̃[k](K) = Φ̃[k]

(
T (K)

)
≥ c

√
n

I−k(T (K))
,

and this completes the proof. �

5. Duality relations

In this section, we prove some inequalities involving the p-means of projec-
tion and section functions of a convex body. In particular, we obtain duality
relations between Φ[n/2](K) and Φ̃[n/2](K◦). These will allow us to obtain a
second upper bound for Φ[k](K) which is sharp when k is proportional to n.

One source of such inequalities, is the following “Lq-version of the Rogers–
Shephard inequality” which was proved in [23].

Lemma 5.1. Let K be a centered convex body of volume 1 in R
n. Then,

for every 1≤ k ≤ n− 1 and every F ∈Gn,k we have that

(5.1) c1 ≤
∣∣K ∩ F⊥∣∣1/k∣∣PF

(
Zk(K)

)∣∣1/k ≤ c2,

where c1, c2 > 0 are universal constants.

A direct application of Lemma 5.1 leads to the following proposition.

Proposition 5.2. Let K be a centered convex body of volume 1 in R
n. For

every 1≤ k ≤ n− 1 and p �= 0 we have that

(i) c1 ≤ W̃[k,p](K)W[k,−p](Zk(K))≤ c2,

(ii) c3 ≤ Φ̃[k](K)Φ[k](Zk(K))≤ c4,

(iii) c5 ≤ Φ̃[k](K)Φ[k](K)≤ c6n/k,

where ci > 0, i= 1, . . . ,6 are absolute constants.

Proof. From the definitions and (5.1), we readily see that

W̃[k,p](K) =

(∫
Gn,k

∣∣K ∩ F⊥∣∣p dνn,k(F )

)1/(kp)

�
(∫

Gn,k

∣∣PF

(
Zk(K)

)∣∣−p
dνn,k(F )

)1/(kp)

=W−1
[k,−p]

(
Zk(K)

)
.
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This proves (i). Then, (ii) corresponds to the special case p= n. Since K ⊆
cn
k Zk(K), (iii) follows. �

A second source of inequalities is the Blaschke–Santaló and the reverse
Santaló inequality. Since (K ∩ F⊥)◦ = PF⊥(K◦), for every 1≤ k ≤ n− 1 and
F ∈Gn,k we have

(5.2) cn−kω2
n−k ≤

∣∣PF⊥
(
K◦)∣∣∣∣K ∩ F⊥∣∣≤ ω2

n−k.

Therefore,

W̃[k,p](K) =

(∫
Gn,k

∣∣K ∩ F⊥∣∣p dνn,k(F )

)1/(kp)

≤ ω
2/k
n−k

(∫
Gn,k

∣∣PF⊥
(
K◦)∣∣−p

dνn,k(F )

)1/(kp)

= ω
2/k
n−k

(∫
Gn,n−k

∣∣PF

(
K◦)∣∣−p

dνn,n−k(F )

)1/(kp)

= ω
2/k
n−kW

−(n−k)/k
[n−k,p]

(
K◦).

Working in the same way, we check that

(5.3) W̃[k,p](K)W
(n−k)/k
[k,p]

(
K◦) ≥ c(n−k)/kω

2/k
n−k.

We summarize in the following proposition.

Proposition 5.3. Let K be a centered convex body of volume 1 in R
n. For

every 1≤ k ≤ n− 1 and p �= 0 we have:

(i) c(n−k)/kω
2/k
n−k ≤ W̃[k,p](K)W

(n−k)/k
[k,p] (K◦)≤ ω

2/k
n−k.

(ii) If n is even, then W̃[n/2,p](K)W[n/2,p](K
◦)� 1

n .

(iii) If n is even, then Φ̃[n/2](K)Φ[n/2](K◦)� 1.

Taking into account Proposition 5.2(iii), we have the following corollary.

Corollary 5.4. Let K be a centered convex body of volume 1 in R
n. Then,

(5.4) Φ̃[n/2](K)� Φ̃[n/2]

(
K◦

)
and Φ[n/2](K)�Φ[n/2]

(
K◦

)
.

We can get more precise information if we use the M -ellipsoid of K. Let
K be a convex body of volume 1 in R

n. Milman (see [16], [17] and also [19]
for the not necessarily symmetric case) proved that there exists an ellipsoid
E with |E|= 1, such that

(5.5) logN(K,E)≤ νn,

where ν > 0 is an absolute constant. In other words, for any centered convex
body K of volume 1 in R

n there exists T ∈ SL(n) such that

(5.6) N
(
T (K),Dn

)
≤ eνn.
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Theorem 5.5. Let n be even and let K be a centered convex body of volume
1 in R

n. Then,

(5.7) c1 ≤ Φ̃[n/2](K)≤ c2,

where c1, c2 > 0 are absolute constants.

Proof. We will use the following inequality of Rogers and Shephard [25]. If
K is a centered convex body of volume 1 in R

n, then

(5.8) |K −K| ≤ 4n.

We choose T ∈ SL(n) so that

(5.9) N
(
T (K −K),Dn

)
≤ eνn.

Then, for any F ∈Gn,n2
,

(5.10)
∣∣PF

(
T (K −K)

)∣∣ ≤N
(
T (K −K),Dn

)∣∣PF (Dn)
∣∣ ≤ eνncn.

Moreover, using (5.8) we have that∣∣PF

(
Zn

2

(
T (K)

))∣∣ ≤ ∣∣PF

(
conv

(
T (K),−T (K)

))∣∣
≤

∣∣PF

(
T (K −K)

)∣∣
≤ 4n

∣∣PF

(
T (K −K)

)∣∣.
Combining the above with (5.10) and (5.1), we have that

(5.11)
∣∣T (K)∩ F⊥∣∣≥ c

n
2
0

|PF (Zn
2
(T (K)))| ≥

c
n
2
0

eνncn
=: c

n
2
1 .

So, we have shown that for any F ∈Gn,n2
,

(5.12)
∣∣T (K)∩ F

∣∣≥ c
n
2
1 .

This implies that

(5.13) Φ̃[n2 ](K) = Φ̃[n2 ]

(
T (K)

)
≥ min

F∈Gn, n
2

∣∣T (K)∩ F
∣∣ 2
n ≥ c2.

This shows the left-hand side inequality in (5.7). The right-hand side inequal-
ity follows from (1.14). �

Combining Theorem 5.5 with Proposition 5.3 and Corollary 5.4 we conclude
the following corollary.

Corollary 5.6. Let K be a centered convex body of volume 1 in R
n. Then,

(5.14) Φ̃[n/2](K)� Φ̃[n/2]

(
K◦

)
�Φ[n/2](K)�Φ[n/2]

(
K◦

)
� 1.

Note 5. In view of Corollary 5.6, if n is even and k = n/2, then (4.4)
becomes a formula:
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Corollary 5.7. Let K be an isotropic convex body in R
n. Then,

(5.15) LK �
(∫

Gn,n/2

L
n2/2
Bn

2
+1(K,F ) dνn,n/2(F )

)2/n2

.

In particular, there exists F ∈Gn,n/2 such that

(5.16) LK ≤ cLBn
2

+1(K,F ).

Making use of Theorem 4.3 and of Proposition 5.2, we can now give a
second upper bound for Φ[k](K), which sharpens the estimate in Theorem 3.1
when k is proportional to n.

Theorem 5.8. Let K be a convex body of volume 1 in R
n and let 1≤ k ≤

n− 1. Then,

(5.17) Φ[k](K)≤ c(n/k)3/2
√

log en/k.

Proof. We may assume that K is also centered. By Proposition 5.2, we
have that

(5.18) Φ[k](K) =
Φ[k](K)Φ̃[k](K)

Φ̃[k](K)
≤ cn/k

Φ̃[k](K)
.

Then, we use the lower bound of Theorem 4.3 for Φ̃[k](K). �
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des espaces normés, C. R. Acad. Sci. Paris 302 (1986), 25–28. MR 0827101
[17] V. D. Milman, Isomorphic symmetrization and geometric inequalities, Geometric as-

pects of functional analysis (J. Lindenstrauss and V. D. Milman, eds.), Lecture Notes
in Math., vol. 1317, Springer, Berlin, 1988, pp. 107–131. MR 0950978

[18] V. D. Milman and A. Pajor, Isotropic positions and inertia ellipsoids and zonoids of
the unit ball of a normed n-dimensional space, GAFA Seminar 87–89, Lecture Notes

in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717
[19] V. D. Milman and A. Pajor, Entropy and asymptotic geometry of non-symmetric

convex bodies, Adv. Math. 152 (2000), 314–335. MR 1764107
[20] V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed

spaces, Lecture Notes in Math., vol. 1200, Springer, Berlin, 1986. MR 0856576
[21] G. Paouris, On the isotropic constant of non-symmetric convex bodies, Geometric

aspects of functional analysis, Lecture Notes in Math., vol. 1745, Springer, Berlin,
2000, pp. 239–243. MR 1796722

[22] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006),
1021–1049. MR 2276533

[23] G. Paouris, Small ball probability estimates for log-concave measures, Trans. Amer.
Math. Soc. 364 (2012), 287–308. MR 2833584

[24] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts
in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275

[25] C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math.
8 (1957), 220–233. MR 0092172

[26] C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body,

J. London Math. Soc. 33 (1958), 270–281. MR 0101508
[27] R. Schneider, Convex bodies: The Brunn–Minkowski theory, Encyclopedia of Math-

ematics and Its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.
MR 1216521

[28] G. Zhang, Restricted chord projection and affine inequalities, Geom. Dedicata 39
(1991), 213–222. MR 1119653

Nikos Dafnis, Department of Mathematics, University of Crete, 714-09 Herak-

lion, Crete, Greece

E-mail address: nikdafnis@googlemail.com

Grigoris Paouris, Department of Mathematics, Texas A&M University, Col-

lege Station, TX 77843, USA

E-mail address: grigoris paouris@yahoo.co.uk

http://arxiv.org/abs/arXiv:1103.2985v1
http://www.ams.org/mathscinet-getitem?mr=0728360
http://www.ams.org/mathscinet-getitem?mr=0928304
http://www.ams.org/mathscinet-getitem?mr=0963487
http://www.ams.org/mathscinet-getitem?mr=1601426
http://www.ams.org/mathscinet-getitem?mr=0328843
http://www.ams.org/mathscinet-getitem?mr=0827101
http://www.ams.org/mathscinet-getitem?mr=0950978
http://www.ams.org/mathscinet-getitem?mr=1008717
http://www.ams.org/mathscinet-getitem?mr=1764107
http://www.ams.org/mathscinet-getitem?mr=0856576
http://www.ams.org/mathscinet-getitem?mr=1796722
http://www.ams.org/mathscinet-getitem?mr=2276533
http://www.ams.org/mathscinet-getitem?mr=2833584
http://www.ams.org/mathscinet-getitem?mr=1036275
http://www.ams.org/mathscinet-getitem?mr=0092172
http://www.ams.org/mathscinet-getitem?mr=0101508
http://www.ams.org/mathscinet-getitem?mr=1216521
http://www.ams.org/mathscinet-getitem?mr=1119653
mailto:nikdafnis@googlemail.com
mailto:grigoris_paouris@yahoo.co.uk

	Introduction
	Notation and preliminaries
	p-mean projection functions and estimates for Phi[k](K)
	Normalized quermassintegrals
	p-mean projection function
	p-mean width

	p-mean section functions and estimates for Phi[k](K)
	p-mean section function

	Duality relations
	Acknowledgments
	References
	Author's Addresses

