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MIXING MULTILINEAR OPERATORS

DUMITRU POPA

ABSTRACT. As a natural extension of mixing linear operators we
introduce the notion of mixing multilinear operators. We prove
composition results for mixing multilinear operators extending
those from the linear case.

Introduction and notation

The theory of operator ideals, as it was introduced by A. Pietsch in the
linear case, is well established, as the reader can see in the excellent mono-
graphs: [5], [6], [11], [16]. In [12], A. Pietsch sketched an n-linear approach
to the theory of absolutely summing operators and since then a large number
of papers has followed this line, for example, [1], [2], [3], [4], [7], [8], [10], [13],
[14], [15], where there are proven some extensions of the linear case to the
multilinear one.

In this paper, as a natural extension of mixing linear operators, we intro-
duce the notion of mixing multilinear operators. As far as we know, this is
the first attempt in this regard. This extension was suggested by the results
in our paper [14], see also Acknowledgement 1. We prove composition results
for mixing multilinear operators extending those from the linear case, see [11,
Chapter IV].

We fix some notations and notions.

Given 0 < p < 0o, a Banach space X over K=R or C, for a finite system
(xi)lgign C X we define

lp(z; |1 <i<n) (Z ||1:1||p> and
wp(z; |1 <i<n)= sup <Z|x x;) ) .
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If X is a Banach space, n a natural number, 1 < p < oo, we define wy (X)
as X" on which we consider the norm defined by wy(z; | 1 <i<mn).

If n is a natural number 0 <p < oo, then I = (K",[| - |,), where
(a1, an)lp =0, |az|p) If a = (a;)1<i<n, b= (b;)1<i<n are two scalar
sequences, by ab we denote their pointwise multiplication that is, ab =
(aibi)i<i<n-

Let X, Y be Banach spaces and 1 <p < co. A bounded linear operator
T: X —Y is p-summing, if there exists a constant C' > 0 such that for every
Z1,...,x, € X the following relation holds

(ZHT:EZ 1 ) < Cwy(z;|1<i<n)

and the p-summing norm of T is 7,(T") = min{C | C' as above}. We denote
by IL,(X,Y) the class of p-summing operators, see [5], [6], [11], [16].

Besides the class of p-summing operators, in the linear case, there is the
class of all (¢, p)-mixing operators. The class of all (¢, p)-mixing operators was
first introduced by A. Pietsch in his monograph [11, Chapter IV, 20.4] and,
as he said, this notion was implicitly used in Maurey’s paper [9]. We recall
now Pietsch’s approach to (g, p)-mixing operators, see [11, Chapter IV, 20.4].

Let 1 <p< g < oo and define r by zlﬁ = é + % Let X be a Banach space.
For a finite system (z;)1<i<n C X, we define

my (2 | 1<i<n)=inf{||laf,wy(z) |1<i<n)},

where the infimum is taken over all systems a = (@;)1<i<n CK, (29)1<i<n C X
such that x; = aix? for each 1 <1i<n.

Let 1<p<qg<oo, X, Y be Banach spaces. A bounded linear operator
U: X =Y is called (¢,p)-mixing if there exists C' > 0 such that for all finite
systems (x;)1<i<n C X we have

mqp(U(xi)|1<i<n)<pr(x7;|1§i§n)

and the (g, p)-mixing norm of U is M, ,(U) =inf{C | C as above}.
We denote by M, ,(X,Y) the class of all (¢,p)-mixing operators from X

into Y. When we say that an operator is (g, p)-mixing we always understand
that 1 <p < ¢ < oo and r is defined by —:% 1.
The following basic results can be found in [11, Chapter IV, 20.4]
(PI) Il o My, C 1Ly
(PII) My =TI,  oTl,;
(PIII) II, C My p;
(PIV) MpqoMyp, C My, whenever 1 <p<qg<b.

We mention that regarding to the formula (PI), A. Pietsch in [11, Chapter
IV, 20.2.1, page 285] writes: “This formula was the starting-point of the
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theory of (g,p)-mixing operators”. More interesting details on the (q,p)-
mixing operators the reader can find also in A. Defant and K. Floret [5].
A special importance has

Space(Mg ) = {X | Ix € ./\/lq,p(X,X)}7

where Ix : X — X is the identity operator that is, Ix(z) = z.

We observe that from (PII), X is a (g,p)-mixing space that is, X €
Space(M,g ) (and My, (X) = My ,(Ix)) if and only if for all Banach spaces
Y we have the equality IL,(X,Y) =1I,(X,Y).

For 1 <p < oo, we denote by p* the conjugate of p that is, % + 1% =1.

We recall some possible extensions of the concept of p-summing operator
in the multilinear case (see [1], [2], [3], [4], [7], [8], [10], [12], [13], [14], [15]).

We introduce first two useful functions.

DEFINITION 1. Let k be a natural number. We define vy, : [1,00)"

by

1 1 1
ve(propk)  PL Pk
and dj, : A — (1,00) by
1 1 1
[di(p1, ... p)]* :13_*1‘+'..+19_Z’

where

AkZ{(ph...,pk)E(l,oo)k i—i—--~—|—i >k—1}.
b1 Pk
DEFINITION 2. Let p1,...,pr € [1,00) and ¢ € (0, 00) be such that vg(p1,. ..,
pr) <t. A bounded k-linear operator U : X7 x---x X} — Y is called (¢;p1, ...,
pr)-summing if and only if there exists C' > 0 such that for each (S(Jg)lgign -
X, (1<j<k) the following hold

<Z|}U(z},,xf)”t> §C’wm(z}|1§i§n)...wm(zf|1§i§n)
i=1

and 7, (U)=inf{C | C as above}.

We denote by IIf, ~ (Xi,...,X;Y) the class of all (t;py,...,pk)-
summing operators from X7 X --- x X} into Y on which T‘-f;m,m,pk is a norm if
t > 1 (t-norm, if t <1). In case when p; =--- = py = p, we write simply Hffm
instead of IIf,, . Also we write II} instead of II%. .

The situation when vy (p1,...,pr) =t is an important particular case of this

general definition.
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DEFINITION 3. Let py,...,px € [1,00). A bounded k-linear operator U :
Xy X x X =Y is called (p1,...,pg)-dominated if and only if there exists
C >0 such that for each (2])1<i<n C X; (1 <j <k) the following hold

< Cuwy, (27| 1<i<n) - wy, (¢F [1<i<n)
and A, ., (U)=inf{C| C as above}.

We denote by A, . (X1,...,Xk;Y) the class of all (p1,...,px)-domi-
nated operators from X; x --- x X}, into Y on which A, . is a norm if
vg(p1,..-,0k) > 1 (vg(p1,...,px)-norm, if vg(p1,...,pr) <1). In case when
p1 =+ =pp =p, we write simply A’; instead of A, .

We mention that the class of (p1,...,pr)-dominated operators is character-
ized by a Grothendieck—Pietsch type domination theorem, see [8], [10].

The results

In the definition of an ideal of multilinear (k-linear) bounded operators,
see [7], [12], appear two natural kind of compositions

Xy x XMy s oxvi 520 vixeex By Sz

which can be written under the form Lx o (£1,...,£1) C Li; L1 0 L C L.
k-times
The first kind of composition is used in the so called “Factorization method”,
which is the one of the most natural way to construct (A-) Banach ideals of
bounded multilinear operators, see 3, page 75|, [4, Definition 3.1]. We recall
this general definition.

DEFINITION 4. Let k be a natural number and (71, - |7 )s- -+ (Tx, || - | 72.)
Banach ideals of bounded linear operators.

We say that U € L (X1,...,Xk;Y) belongs to L o (J1,. .., Te) (X1, .., Xk;
Y) if and only if there exists Banach spaces Y7,...,Y; and 4; € J1(X1,Y1),...,
Ap € To(Xp, Vi), T € Li(Y1,...,Y3; Y) such that U =To (A, ..., A). In this
case, we define

Ul 2eo(n,eee0) = inE{ [ A1llz, - [ Akl 7 1T}

where the infimum is taken over all factorizations of U as above.

It can be proved, see [4, Proposition 3.1], that (Ly o (J1,...,Tk)s
| lzeo(,...7)) is a 3-Banach ideal of bounded k-linear operators. We
state now a particular case of this general definition.
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DEFINITION 5. Let k be a natural number, 1 <p; <g; <oo, 1 <r; <00
such that pij:——i— for each 1 <j <k.

We say that U'e Lyp(X1,..., X Y) belongs to Ly o (Mg pys---s
M) (X1, ..., Xi; Y) if and only if there exists Banach spaces Y1,...,Y} and
Al € Mqupl(Xl,Yl),...,Ak € qu,pk(XkaYk)a T € ﬁk(Yl,...,Yk;Y) such
that U =T o (Ay,...,A). In this case, we define

qkypk _1nf{ q1,P1 Al) (Ikvpk(Ak HT”}

where the infimum is taken over all factorizations of U as above.

(24| VRS vT—

The following result is natural.

THEOREM 6. Let k be a natural number, 1 <p; < q; <oo, 1 <r; <oo such
that %:%Jr% for each 1 <j<k. Then
J J J

Am,---ﬂ“k CLgo (MZIMDU' e ’Mqlwpk)7
1 Wl 2o(May iy oMy ) < By (-

Proof. Since by Pietsch’s basic formula, (PIII), II, C M, , and M, ,(-) <
7 (*) Whenever == + =, we get

£k O(Hr17-~-7H7‘k) C ‘Cko (MQ1,IJ1""7MQkaPk)7

I lzroMay py oMoy ) ) S N l2ioqm,, o, -

Further, if we use the well-known characterization of (rq,...,7;)-dominated
operators, see [8], [10],

A"‘l)n'ﬂ"k :‘CkO(HTN""HTk)? ATl,mJ’k(') = H . ||£ko(Hr1 ,,,,, Hrk)(.)
we get the statement. 0

The following definition was suggested by Corollary 5 in [14], see also Ac-
knowledgement 1.

DEFINITION 7. Let k be a natural number, 1 < qj,...,q; < oo such that
1 i 11, 1
qil+--~+q—k>k—1amdlgpj<qj<oo7 1 <r; < oo such that w=a Ty
for each 1 <j <k. Let U € Li(X1,...,X;Y).
For each (2})1<i<n C X1,...,(@%)1<i<n C Xi we define

k 1 k .
M (q1,p1) s (arp1) (U(mi A >$i) | I<i< n)
=inf{|lerllr, - llarllrywa, gr...q0) (¥ | 1 <7 <),

where the infimum is taken over all a; = (a})1<i<n CK, ..., = (aF)1<i<n C
K, (yi)1<i<n CY such that

U(lea“- xk):almafyi for each 1 <7< n.

»e (3
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We say that U is ((q1,p1),- - -, (qk, pr))-mixing if and only if there exists C' >0
such that for each (2})1<;<n C X1,..., (#F)1<i<n C X}, the following relation
hold

k 1 k ,

LU O, (U(zf,...,27) | 1<i<n)

< Cwy, (z} |1<i<n) - wy, (2F | 1<i<n)

and M(’fh,pl)““’(qk’pk)(U) =inf{C > 0] C as above}.
We denote by Méﬂthl)wl_,(qk’pk)(Xl, ., X3 Y) the class of all ((q1,p1),---,

(qk, px))-mixing operators U : X1 X -+ x X = Y.

Observe that in case k =1, we get the class of linear mixing operators.
Unfortunately, we have no proof for the fact that the class (M’(“thl)’“_,( Gopr)’
M(’f]hpl),_w(qk’pk)) is a Banach ideal (or A-Banach ideal, for some 0 < A < 1)
of bounded k-linear operators. However, we do not need in our paper of this
result.

Since Definition 7 depends on the values of the function di we give two
situations in which the values of the function dj, is reasonably simple, see [14,
Observation 6, proof of Theorem 4].

ExXAMPLE 8. (i) Given a natural number k, 1 < ¢ < k*, we have di(q,. ..,
a)=(%)"

(ii) Given a natural number k, 1 < ¢ < 0o, we have di((kq*)*, ..., (kq*)*) =q.
From Definition 7 and Example 8(i), we get

DEFINITION 9. Let k be a natural number, 1 <p < ¢ <k*, k <r < oo such
that =14 1. Let U € L(X1,..., Xi;Y).

For each (l‘%)lgign Cc X1y, (ﬂff)gign C X we define
m](cq,p)(U(xilV"a'T’éC) |1 Sign) :inf{”alur"'Hak”rw(%)*(yi 1< Sn)},

where the infimum is taken over all a; = (a})1<i<n CK, ..., = (a¥)1<i<n C
K, (yi)1<i<n C Y such that

R 7

U(z] ...,a:k):ag-“af/yi for each 1 <i<n.

We say that U is (g, p)-mixing if and only if there exists C > 0 such that for
each (z}])1<i<n C X1,..-, (Sﬁf)lgign C X, the following relation hold

m’(“q,p)(U(x},...,xf) |1§z’§n) Spr(x}|1§i§n)~-~wp(xf|1§i§n)
and M(’f]’p)(U) =inf{C > 0] C as above}.

We denote by /\/l’(“q’p)(Xl7 ..., Xp;Y) the class of all (g, p)-mixing operators
U: Xgx---xX,—>Y.

If in Definition 9, we take k =2, which forces 1 <p < ¢ <2, we get the
following possible concept for mixing bounded bilinear operators.
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DEFINITION 10. Let 1 <p < ¢ <2 <r < oo be such that 1_13 = % + % Let
U: X xY — Z be a bounded bilinear operator. For each (x;)1<i<n C X,
(Yi)1<i<n C Y we define

m?q’p)(U(xi,yi) [1<i< n) :inf{||aHT||,6’||rw(%)*(zi |1 Sign)},

where the infimum is taken over all o = (;)1<i<n CK, = (8i)i1<i<n CK,
(2i)1<i<n C Z such that

Uz, yi) = a;B;z; for each 1 <i<n.

We say that U is (gq,p)-mixing if and only if there exists C' > 0 such that for
each (z;)1<i<n C X, (¥i)1<i<n C Y the following relation hold

m?q)p) (U(ziyi) [1<i<n) < Cwpla; |1 <i<n)wy(y |1<i<n)
and M(2q7p)(U) =inf{C > 0] C as above}.
From Definition 7 and Example 8(ii), we get the following.

DEFINITION 11. Let k be a natural number, 1 < ¢ < oo, 1 <p < (kg*)* i.e.
k< 7;—* and 1 < r < oo such that %zﬁ—i—%. Let U € Lp(Xq,..., Xk} Y).
For each (z})1<i<n C X1,..., (;Uf)lgign C X} we define

m’(“kq*)*yp(U(xl cLaf) |1 <i<n) =inf{|lag |y [|anllrwg(vi | 1 <i<n)},

R
where the infimum is taken over all a; = (@} )1<i<n CK, ..., = (a¥)1<i<n C
K, (yi)1<i<n C Y such that

U(:E},... xk):ag--~a§yi for each 1 <i<n.

[had}

We say that U is ((kg*)*, p)-mixing if and only if there exists C' > 0 such that
for each (z})1<i<n C X1,..., (xf)lgign C X}, the following relation hold
k 1 k '
m(kq*)*’p(U(mi,...,mi) [1<i< n)

< Cup(af [1<i<n)--wy(ef [1<i<n)

and M(kkq*)* ,(U)=inf{C >0[C as above}.
We denote by M’(“kq*)* p(Xl, ..y X Y) the class of all ((kg*)*,p)-mixing
operators U : X7 X -+ X X =Y.

Taking r = kq¢* in Definition 11 we get Definition 12.

DEFINITION 12. Let k be a natural number, 1 < g < co. Let U € L (X7, ...,
X/C;Y). For each (xll)lgign cXy,..., (l‘?)lgign C X we define

mlfkq*)*71 (U(zl,....at)|1<i<n)

= inf{flonllng - [lkllig-wq(yi [ 1 < i <m)},
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where the infimum is taken over all a; = (a})1<i<n CK, ..., = (aF)1<i<n C

K, (yi)1<i<n C Y such that -

U(z},...,2f) =a} - aly; foreach1<i<n.

1 Yl

We say that U is ((kg*)*,1)-mixing if and only if there exists C' > 0 such that
for each (z})1<i<n C X1,...,(z¥)1<i<n C X}, the following relation hold

ml(vkq*)*’l(U(‘Z},...?xf) | 1§Z§n>
SC’wl(a:Zl|1§i§n)---w1(xf|1§i§n)
and M(kq = 1(U) =inf{C >0[C as above}.

We denote by M’fkq*)*’l(Xl,...,X;g;Y) the class of all ((k¢*)*,1)-mixing
operators U : X1 X --- X X =Y.

Our next objective is to prove that between these two classes of bounded
oy . k
multlhnear. operators, that is, £ o (/\/lql.’p1 b ,/.\/lqk i) .ar'ld Moy, (gu.p0)?
both seeming to be the natural extensions of linear mixing operators intro-
duced by A. Pietsch, there is a predictable connection, see Theorem 14 below.
To do this, we need the following result, perhaps well known.

PROPOSITION 13. Let k be a natural number, 1 < q1,...,q, < o0 such that
Loyt q—k >k—1andT: X1 x---x X =Y a bounded k-linear operator.
Then for each natural number n, the operator

hr  wg, (X1) X -+ x wg (Xg) — wgk(qlww%)(y)
defined by

hr ((@ )1<1<n "7(9”?)19'@;) = (T(x}v“"xf))xmn
is bounded k-linear and |\hp| = ||T|.
Proof. We have

([P (2 )1<z<n ’(x?)1<i<n)H

= sup sup Zazy T )

ly* <1l caq,-ap)1* <1|5=1

Let |ly*]| <1 and a = (ai)1<i<n be such that |all(4, (g

1 _ 1 1 .
e F = @ + -+ r there exists

a) <L From

,,,,,

fr= (ﬁil)gign with |51
Br = (ﬁf)gign

such that o=y --- Bk i.e. ai:ﬁ}nﬂf for each 1 <i<n.

» <1
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Then, from the Defant—Voigt theorem that is, L(Xi,...,Xy;K) =
I, (Xy,. .., Xk;K), (see [1, Theorem 3.10], [2, Theorem 3]), we get

n n
Zaiy*T(xg,...,xf) Zy*T( }xi,,ﬁfmf)
i=1 i=1

y T ||w (B | 1 <i<n)--w (BFaF|1<i<n).

<

But, from Holder’s inequality
wl(ﬁfxg |1<i<n)< ||Bj\|q]*_wqj(mg |1<i<n) quj(mg |1<i<n)

for each 1 < j <k, thus

n
Zaiy*T(a:}, ol
i=1

< T |Jwg, (2} [ L<i<n) - wg, (zF |1 <i<n).

So
HhT((le)gign"“’(33?)152571) H
ST g, (i |1 <i <) wg, (2F [ 1< i <),
that is, ||hr|| <||T||. The converse inequality is obvious. O

In the following theorem, we prove the promised predictable connection
between the two classes of multilinear operators.

THEOREM 14. Let k be a natural number, 1 < qi,...,qr < oo such that
1 1 1 1 1
q—1+~--+q—k>k‘—1,1§pj<qj<oo,1<rj<oo suchthatp—qu—j—i-r—jfor
each 1 <j<k. Then

ﬁko(MqlaPIV"’M(Ikvpk) CMk and

(q1,P1) 55 (qrPK)
k
M(Q17p1)7~'~:(Qk7pk)(.) < H'HEkO(Mql,m»~~~»qu,pk)‘
Proof. Let U € L o (Mg, pys--- - Mg p)(X1,...,X;Y) and consider a
factorization of U of the form

Xy xx X My oy Bz,
where Ay is (q1,p1)-mixing, ..., Ag is (qx,pr)-mixing and T is bounded k-
linear.
Let (2])1<i<n C X; (1<j<k) and € >0. Since A; is (¢j,p;)-mixing
(linear) (1 <j <k), there exists a; = (& )1<i<n C K, (¥ )1<i<n CYj such
that

Aj(xf) = ozgyg for each 1 <i <n,
llegj ey g, (4] 1 1 < i <) < (1 €)My, g, (Aj)Juwp, (27 [ 1< i < ).
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Then
U(:z:zl, ):(To (A44,... Ak))( .. ,xf)

=T (A (27), -, Ar(27F))

:azl ! kT<yza ayf)

= all akz, for each 1 <i <n,
where

zi:T(yl,...,yf) for each 1 <i<n.

Since m = L. —|— from Proposition 13 we get

wdk(‘llw»-y‘]k‘)(’zi | 1 S 7’ g n) = wdk(ql,...,qk)(T(yivn . 7y1) ‘ 1 S Z § n)
ST fwg, (v [1<i <) wg, (yF | 1<i<n).

Then

larllry - lowllr Way (qr...oq) (20 | 1 <0 <)
<\IT | eallry wg, (v} 11 < i <n) - lag]lpwg, (yF | 1<i<n)
< (146" My (A1) - My e (Ag)
X || T ||lwp, (xf | 1<i<n) - wp, (aF | 1 <i < n).

We deduce that U is ((¢1,p1),-- -, (qk, pr))-mixing and

My 1), ap) (U) < (L €) Mg,y (A1) -+ Mo,y (A)I|T-

Since € > 0 is arbitrary, we obtain

; U) < Mlhypl (A1> QkJ)k(Ak?)HT”

M(Ql’pl)wu,(%mk)(

Taking the infimum over all factorizations of U as above, we obtain
k

M(Qlapl)’--w(‘Ikypk)(U) S ||U||‘CkO(Mh‘mv'“quk-,pk)‘ g

A combination of Theorem 6 and Theorem 14 gives us Corollary 5 in [14],
see also Acknowledgement 1.

COROLLARY 15. (i) Let k be a natural number, 1 < q1,...,q; < 00 such
that -+ -+ - >k—1,1<p; <gj<oo, 1 <rj <00 suchthatpij:
%4—% for each 1 <j<k. Then
J

k
A TkCM(thl), - (awpr) and M(’Ilvl”l)vn-v(kaPk)(.)SATl""’T’“(')'

(ii) Let k be a natural number, 1 <p < q < k*, k <r < oo such that % = %—F%.
Then
k k k k
A CMgpy and Mgy () < Ar().
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(iii) Let k be a natural number, 1 < g < oo, 1 <p < (kg*)* i.e. k< Z_: and
11 1
1 <r<oo such that E_W—’—;' Then
AF C Mfygeyep and M. () SARC).
(iv) Let k be a natural number, 1 < g <oo. Then
Afpe CMfygeyey and Ml . () S AR ().

Proof. (i) Follows from Theorem 6 and Theorem 14.
(ii) Follows from (i) and Definition 9; see also Example 8(i).
(iii) Follows from (i) and Definition 11; see also Example 8(ii).
(iv) Is a particular case of (iii); see also Definition 12. O

We will need further the following result whose simple proof, based on the
definition of the infimum, is omitted.

LEMMA 16. Let k be a natural number, 1 < qi,...,qx < oo such that q% +
...+qik>k—1, 1<p; <q; <00, 1<r; <oo such that plj:qu_Fr_lj for each
1<j<k.

(i) Let U € Lp(X1,...,X1;Y) and (z})1<i<n C X17~~~7($f)1§¢§n c Xp.
Then for alle > 0, there exists a1 = (a})1<i<n CK, ... ar = (aF)1<icn C
K, (yi)i<i<n CY such that

U(m%,...,xf):a}---afyi for each 1 <i<n,

leallr, - lekllri way (g .cq) (Wi [ 1 S 0 <)
k 1 k .
S (]. + E)m(QI,pl)»u-a(Qkapk) (U("I}'Z g .,xi) | 1 S (3 S n)

(ii) Let U € M?CIl,pl)p--,(QIWPk)(Xl"“7Xk;Y)' Then for all € >0, all finite
systems (z})1<i<n C Xl,...,(xf)lgign C X, there exists o1 =

(a})lgign CK,...,ar= (af)lgign CK, (yi)1<i<n CY such that

U(a:zl,,xf) :ozil-~~ozfyi for each 1 <i<n,
Ha1||7‘1 Hal‘v‘||Tkwdk(qum,%)(yi | 1<i< n)

<(1+e)Mf, (Dwp, (z} | 1<i<n) - wy, (2 |1 <i<n).

2P1)5--+,(ak,PK)

In the case when X; is (¢1,p1)-mixing space, ..., Xj is (qx,pg)-mixing
space, we have, obviously,

Ly o (quﬂw'"7MQk7pk)(X17"'vXk;Y) :'Ck(leu-ach?Y)

for each Banach space Y and thus from Theorem 14 and Lemma 16 we get
the following corollary.
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COROLLARY 17. Let k be a natural number, 1 < q1,...,q, < 0o such that
1 1 1 1 1
q—lJr-~~Jrq—k>k—17 1<p; <q; <00, 1<r; <oo such that Fj:?j+7j for
each 1 <j<k.

Let Xy be (q1,p1)-mizing space, ..., X be (qi,pr)-mizing space, Y a Ba-
nach space and U : X1 X --- X X =Y a bounded k-linear operator.

Then for all finite systems (x})1<i<cn C X1, .., (2F)1<i<n C Xy, all € >0,
there exists an = (a})1<i<n CK, ... a5 = (aF)1<i<n CK, (yi)1<i<n CY such
that

U(le,,:cf) :ozzl-~~ozfyi for each 1 <i<m,
s Nkl s (31 << )
S (A +e) Mg, py)(X1) - Mg, py) (Xk)

><||Upr1(gc11|1§i§n)--~wpk(xf|1§i§n).

In order to state the following corollary, we recall the following coincidence
theorems, see [6, Corollary 11.16(a) and (b)], or [16, Corollary 10.18(i) and
Corollary 21.5(1)]:

(a) if X has cotype 2, then for all 1 <p < ¢ <2, all Banach spaces Y we have
the equality II4(X,Y) =1I,(X,Y);

(b) if X has cotype s, with 2 < s < 0o, then for all 1 <p < ¢ < s*, all Banach
spaces Y we have the equality II,(X,Y) =1I,(X,Y).

In order to unify these coincidence theorems, we introduce a notation. If
2<b<ooand 1<a< oo, we write

< i =
a0t if a_2* in case b=2,
a<b* in caseb>2.

With this notation the above coincidence theorems can be restated under the
form:

REMARK 18. Let X be a Banach space of finite cotype, denoted by
Cotype(X) and 1 <p < ¢ Z (Cotype(X))*. Then X is a (g,p)-mixing space,
or, equivalent, for all Banach spaces Y we have the equality II,(X,Y) =
I, (X,Y).

From Remark 18 and Corollary 17, we get the following.

COROLLARY 19. Let k be a natural number, Xy,..., X, Banach spaces
of finite cotype, 1 < q1,...,qx < 00 such that qil+~--+ é >k—1and 1 3
(Cotype(X1))*,...,qk = (Cotypel(Xk))*. Let 1<pi <q,...,1 <pp <qy and

1, 1 1 _ 1 4, 1
1<ry,...,rp < oo be such that =t o T T .

Let Y be a Banach space and U : X1 X --- X X =Y a bounded k-linear

operator. Then for all finite systems (x})1<i<n C X1,..., (aﬂf)lgign C Xy, all
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e>0, there exists o = (a})lgign C K,. O = (a?)lgign C K, (yi)lgign C
Y such that

U(wzl,,xf) =aj---afy;  for each 1<i<n,

leallr, - ok llre way (q,eiqe) (i | L <0 <)

<(1+ &‘)M(thl)(Xl) o M(qk’pk)(Xk)
X NUlwp, (2 [ 1< <n)oawy, (af [ 1< i <),

As a concrete illustration of Corollary 19, we get the following “spliting
result” in the case of bilinear operators.

COROLLARY 20. Suppose that X and Y both have cotype 2 and let 1 <p <
q<2<r<oo be such that % = % + % Then for each Banach space Z, each
bounded bilinear operator U : X xY — Z, each e > 0 and each (z;)1<i<n C X,
(yi)i<i<n C Y, there exists a = (a;)1<i<n C K, B = (Bi)i<i<n C K,
(zi)1<i<n C Z such that

Uz, y:) = a; Bz for each 1 <i<n,
”aHrHﬁ”rw(%)*('zi |1<i<n)
< (14 €)My (X) Mgy (V)|Up (2 | 1 < 6 < )y (3 | 1 < < ).

The following theorem is the first version of a possible multilinear variant
of Pietsch’s composition formula (PIV).

THEOREM 21. Let k be a natural number, 1 < q1,...,qr < 0o such that
q%-i--~-—|—i>k—17 1<b; <pj<gqj<oo for each 1 <j<k. Then
k
M(q1 (Mpl,bw"'vMpmbk) CM(ql,bl),.. (

3P1)5--+5(qk Pk) - (qk,br)

Proof. Deﬁne1<7"j<oo such that %:%—i—% foreach 1<j<k, 1<
L
Dpj

X1 %% X), Dy x x5 2,

where A; is (p1,b1)-mixing, ..., Ax is (pg, bx)-mixing and T is ((¢1,p1),-- .,
(g, pr))-mixing.

Let € >0 and take (27)1<i<, € X; (1 <j <k). Since A; is (p;,bj)-mixing
(linear) (1 <j <k), there exists oj = (& )1<i<n C K, (yi)lgzgn C Y such
that

cj <00 by % for each 1 < j <k. Let us consider the diagram

A; (m7) = ajyg for each 1 <i<n,

2

||04ch7wp7(yz\1<z<n) (14 e)My, b, (Aj)ws, (x 1< <n).

Then
(To(Al,...,Ak)) (x},,xf)
:T(Al(x}),...7Ak(x’?)) :a1~~~al-“T(yi1,...,yf) for each 1 <i<n.

K2 2 2
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Since T is ((¢q1,p1),- (q;f,pk))-mixing7 from Lemma 16(ii) there exists A; =
(A%)lgign C K7 )\k = ()\ )1<z<n C K (Zi)lgign C Z such that

T(y217,yf) :)\Zl-~-)\izi for each 1 <i <n,
[A2llry = Il Wy (g ) (26 | 1< <)
<1+ E)]M(tn P1)e a(Qk:Pk)(T)wpl (yll [1<i< n) Wy (yf [1<i< n)
Then
(To(Ar,...,Ap)) (z},...,2F) =af Al - afAFz;  for each 1 <i<n.

1 ) K3
Define also ci + Ti = Si for each 1 < j < k. Then, from Holder’s inequality
J J J

llej Ajlls; < llejlle; [IAllr; - for each 1< j <k

Moreover, we have

||041/\1||s1 ||ak)AkHckwdk(qlw'“vqk)(zi | l<is ’I’L)
< Noalles ekl Ay =~ [Nkl 0t 1) (2 | 1 < < 1)
(1+€)M(Q1 3P1)5-++5(qk,Pk) ( )

% Jlonlleywp, (y; 11 <0 <) [lonfle,wp, (y7 [ 1< i <n)
<1+ E)kHM(’ih,pl) (qupk)(T>
X M, by (A1) -+ My, (Ap)wy, (z} [1<i<n) -y, (2F |1 <i < n).
We deduce that T'o (Ay,..., Ax) is ((q1,b1), -, (g, br))-mixing and
M(kql,bl)7n~;(q1c;bk)(To (A1,..., Ar))
< (L +e)" My, 1, (A1) - My o (A MG, 1. i) (T)

which conclude the proof, since € > 0 is arbitrary. O
From Theorem 21 and Definitions 9, 11, 12 we get

COROLLARY 22. (i) Let k be a natural number, 1 <p<q<k*, k<r<oo
such that :%—i—% and 1 <by,...,b, <p. Then

k
M(q p) oMy s Mpp,) C M(qybl)y-»-y(qybk)'

(ii) Let k be a natural number, 1 < g <oo, 1 <p < (kg*)* that is, k < Z—i and

1<r<oo such that%:(kq%)*—kl and 1 <bq,...,by <p. Then

r

k k
M{kg=y= ) Mpbrs -+ Mp b)) CMhgeys 5,), o ((ha)* i)

In the proof of a second possible version of a multilinear Pietsch multipli-
cation formula, (PIV), we need the following well-known result. For the sake
of completeness we include its proof.
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PROPOSITION 23. Let k be a natural number, 1 < py,...,pr <00 and n
be a natural number. Then for each A = (A\;)1<i<n € lvk(p1 pr) there exists

A= (A%)lgign € lgl, ceey A= ()\f)lgign S l;k such that

A=A NE e A=A N for each 1<i <,
Mo or.eoy = AL, = XL,

Proof. Write v, = vk (p1,...,pr) and take

A\ 0, if A; =0
©T) (sgn )| P, i N A0,
e_Jo if A\ =0,

P N, i A #0,

& 0, if \; =0, .
P vk for each 1 <i<n.

?

The following theorem is a second possible version of a multilinear Pietsch
multiplication formula (PIV).

THEOREM 24. Let k be a natural number, 1 <p; < q; <bj < oo for each
1<5<k and%+-~-+i>k—1. Then

k k
Mdk(bl7--~7bk)vdk(‘11a-~~v‘lk)OM(Ql,Pl) ----- (‘Ilmpk)CM(bLPI) ----- (bk.pK)*

Proof. Define 1<rj<oo such that L:L+L for each 1 <j <k, %:
b +— and - —b —|—— foreach1<]<k andwhere S—:%—i—cij for each
.7 J J

i <j< < k. Let us consider the diagram

Xix--x Xy Ay Lz,

where A is ((q1,p1),---,(qk,px))-mixing and T is (dg(b1,...,bk),dx(q1,. ..,
qx))-mixing.

Take (27)1<i<n € X; (1<j<k) and & >0. From Lemma 16(ii), there
exists al = (a%)lgign cKk,..., ab = (af)lgign cK, (yi)lgign C Ysuch that

A(x},,xf) =a}---afy; foreach1<i<n,

Hoz,1||r1 . ||akHrkwdk(Q1y~-7Qk)(yi | 1< < n)

¢ Jre)M(kql7P1),-~~7(Qk7pk)(A)wP1 (le [1<i< n) Wy, (l’f [1<i< n)

Then, from the hypotheses we get
1 B 1 N 1
di(qrs-- - qx)  di(br,. . bk)  vi(er,... c)
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and, by the fact that T is (dg(b1,...,bk),dk(q1,. .., qx))-mixing (linear), there
exists A= (A;)1<i<n CK, (2)1<i<n C Z such that
T(y;) = Niz; for each 1 <i<mn,
A og(crommser) Wi (b1 b (20 | 1 <8 <)
< (L4 &) May by ,..oobi) i (a1,esa) (D) Wi (1) (W3 [ 1 S 0 <),
1

Since m =+ + % from Proposition 23, there exists Al =

(A%)lgign S ZZLI N \F= (Af)lgifn S l?k such that
A=A de A=A A foreach 1<i<n,
Mloeer, e = A, =+ [IA*]l, -

Then
(TOA)(x},...,mf) =ai\l - af Mz for each 1<i<n.
From % = % + % by Holder’s inequality, we have
Haj)\jusj < HajHrj H)\chj for each 1 <j <k.
We deduce
@ X, -+ 04X ([ 1< < )
<t la¥ I3, -+ Ay s 1 < )
= HO‘1||T1 ||O‘k||rk ||)‘||vk(cl7...,ck)wdk(b1,.,,,bk)(Zi [1<i<n)
S (I +e)Ma, by, br) i (gasrsar) (L)
<Nl -+ lle*l,, waiaq (i | 1 <P <)

< (142)* My, by, 50 (g1ens) (T)

''''' (qk’]%)(A)u)p1 (:rzl |1 gign) --~wp,€(aci-€ |1 gign).

This means that T o A is ((b1,p1),. .., (bg, px))-mixing and
k
M(b1,p1),~-7(bk,pk)(T °4)
< (1 + 5)2M(Iz;1,pl) ..... (qk,pk)(T)Mdk(bl7~~»7bk)adk(q17»--,q1c)(A)'
This concludes the proof, since € > 0 is arbitrary. O
From Theorem 24 and Definition 9, we get
COROLLARY 25. Let k be a natural number, 1 <p < q<b<k*. Then
k k
My (arye @ Mg p) © M)
The following result is one of possible multilinear variants of Pietsch’s basic

formula (PI), see also [14, Theorem 2.4, Theorem 3.3, Theorem 4.3] for another
possible multilinear variants.
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THEOREM 26. Let k be a natural number, 1 < qi,...,qr < oo such that
qil—i—~--—|—l%k>k—17 1<p; <gq; <00, 1<r; <oo such that p%-:q%-"'r% for
each 1 <j<k and 1 <b< oo such that di(q1,...,qx) <b. Then

k k
Hbvdk(‘hv---a‘lk) °© M(thl)w--,(%,m) - H“k+1(7‘17~~-7Tk7b)§p17~~-»pk'
Proof. Let us consider the diagram
Xix---x Xy Av Lz

in which A is ((Q1ap1)a'"7(Qk7pk))_miXing and T is (ba dk(Q17"'aqk))_
summing. .
Let € > 0 and take (z])1<i<n C X; (1<j <k). From Lemma 16(ii), there

exists o' = (a})1<i<n CK,...,a" = (a¥)1<i<n CK, (¥i)1<i<n C Y such that
A(z},...,2f)=al---aly, foreach1<i<n,
o], =Nl wartar, .. (i [ 1< i <)
<(1 +E)M(kql;pl);~~~7(q7c7pk)(A)wp1 (z}|1<i<n) - wy, (mf |1<i<n).

Then from
(ToA)(a:l,...,:rf) :T(A(z},...,xf)) :a}~~afT(yi)

(2

1
T1,.., kb

the equality, — y = % +- 4 % + ¢ and Holder’s inequality we get
Lopsr (r i) ((T oA) (le’ ) xf) |1<i< n)
<lo[l,, -+ llo* ], b (T@:) [1<i<n).
Since T is (b,dk(q1, .. -,qx))-summing
(T(yi) | 1< <n) <Thay(gr,qe) (DWay(gr...q) Wi | 1 < <n).
We deduce
Loor (1) (T 0 A) (2, 2f) [1<i <)
< ﬂ-bvdk(‘h:--*vqk)(T)Hal||T1 Ho‘k||rkwdk(m7---,q1c)(yi |[1<i<n)
<( JrE)M(kqhm)w-,(qmm)(A)
X T dy (q1ensq) (D) Wpy (le [1<i<n)-wy, (xf |[1<i<n).

This means that T o A is (vg41(r1,-..,7%,b); P15 - ., Pk )-Summing and
k k
T k1 (T15ees T b) iDL 55D (T © A) < (1 + E)]\4(111 301 )5+ 5 (Qk Pk ) (A)ﬂ-b’dk(qlww%) (T)
Since € > 0 is arbitrary, we get the statement. O

COROLLARY 27. (i) Let k be a natural number, 1 <p <q<k* and k <
r < oo such that % = % + % Then

k k k k
H(%)*OM(q’p)CH and H OATCH(%)*W'

(B)*5p (%)
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(ii) Let k be a natural number, 1 < g < oo, 1 <p < (kg*)* ie. k< Z_: and

1_ 1 1
1 <r < oo such that > = Toa ) + 5. Then
I, 0 M, I d Il oAF CII hore — = —- !
10 Mgy Sy and g o By Gl where 20= g0 ot s
k
(iii) Let k be a natural number, 1 < g < oo. Then
1 1
qu/\/l?(kq*)n) Cka;l and quA’,jq* C ka;l, where . 1+ ey
Proof. (i) We have
1 k 1 k k k 1
rveiei it i i ek TTaRTE
Ukgr(rym () () q ()

From Theorem 26, we get the first part of the statement. The second follows
from the first part and Corollary 15(ii).
(ii) We have
1 k 1

=4
’U]H*l(rv s T (kq*)*) r (kq*)*

= —(%)*
From Theorem 26, we get the first part of the statement. The second follows

from the first part and Corollary 15(iii).
(iii) Follows from (ii) in which we take r = kq*. O
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