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COMPLETE GEOMETRIC UNITARIES IN
OPERATOR SPACES

XU-JIAN HUANG

ABSTRACT. We study the abstract complete geometric notion of
unitaries in an operator space characterized in terms of the matrix
numerical index, which is a quantity determined by a norm-one
element and the matrix numerical radius.

1. Introduction

The characterizations of geometric unitaries in Banach spaces have re-
cently been studied in [1], [4], [10], [11]. Tt is natural to study the properties
of unitaries in general operator spaces, since operator spaces are “quantized
Banach spaces” which basically means that they are spaces of bounded op-
erators on some Hilbert spaces. Motivated by the work of Huang and Ng
[9], we study the abstract complete geometric notion of unitaries in operator
spaces.

The notion of matrix numerical index was first introduced in [9] to charac-
terize abstract unital operator spaces. A matriz numerical range space (V,u)
will be a pair consisting of an operator space V and a norm-one element
u € V. We denote by &1(V) the unit sphere of V. Let (V,u) be a matrix
numerical range space. For each n € N, we define the n matriz state space
of u

Sa (Vi) i= { € CB(V,My) ¢ [llen < 1ip(u) = I},

and the matriz numerical radius of an element z in My (V)(k € N),

Vit (x) == sup{[l¢w(2)|| : ¢ € Sn(V;u),n € N}
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as well as the matriz numerical index of u, namely
neb(Viu) :=inf{y}(2) : 2 € &1 (My(V)),k € N}.

Equivalently, n.,(V;u) is the greatest constant ¢ > 0 such that t||z|| <~} (z)
for every x € M (V). We call u a complete geometric unitary (respectively,
complete strict geometric unitary) if nep(Viu) > 0 (respectively, ne,(Viu) =
1). Note that ne,(V;u) > 0 (respectively, ne,(V;u) = 1) if and only if there
exist a Hilbert space H and a completely contractive completely topological
injection (respectively, complete isometry) © : V. — L(H) such that O(u) =
idgr (see [9, Theorem 2.7]). A matrix numerical range space (V,u) is called a
unital operator space if u is a complete strict geometric unitary. Such spaces
play a significant role since the birth of operator space theory(see [2, Theorems
1.2.3 and 1.2.9]).

The outline of the paper is as follows. In Section 2, we give a characteriza-
tion of the unitaries of a unital C*-algebra A by working in M,,(A*) for some
n € N. By this, we introduce some properties of complete geometric unitaries
in operator spaces. Next, we use the above results in Section 3 to present that
u ® v is a complete geometric unitary in the operator space injective tensor
product V@ W, if and only if 4 and v are complete geometric unitares in 'V
and W, respectively. We consider complete geometric unitaries in the space
C(Q) &V, where Q is a compact set. If F'€ C(Q) &V is a complete (respec-
tively, strict) geometric unitary, then F'(t) is a complete (respectively, strict)
geometric unitary for all ¢ € ). Finally, we devote Section 4 to show that for
an isometry u in a unital C*-algebra, u and u* are complete strict geometric
unitaries in 'V, where V := Span{e,u,u*} is a 3-dimensional system.

2. Operator spaces characterizations of complete geometric
unitaries

We will give a new characterization of unitaries in a unital C*-algebra,
which is a generalization of [1, Theorem 2] by C. Akemann and N. Weaver.
However, only the final step in the proof of the next theorem is based on an
idea of [1, Theorem 2].

THEOREM 2.1. Let A be a unital C*-algebra with the identity e, and let u
be a norm-one element of A. Then the following are equivalent:
(a) w is a unitary.

(b) For all n €N, one has

M (A7) <1

3
C {Zikaktpkak L or €Sn(Asu), okl < 1,0 € (My)4,Vk =0, 1,2,3}.
k=0
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(c) There exists n € N and r >0 such that
M, (A*)

-<r
3
< {Zikakgpkak C Pk ESTL(Avu)a HakH < laak' € (Mn)-l-aVk :07 1a2a3}
k=0
(d) There exists n € N such that
{aeA:p(a)=0,0€8,(A;u)} ={0}.

Proof. (a) = (b) Let ¢ € M,,(A*) be a complete contraction. From [5,
Theorem 5.3.2] there exist matrix states ¢ and 19 from A to M, such that

1 w) (a b> <w1(a) w(b)>
o= ", : Ms(A) = My, : — X
(& 5) = (5 0) = (00 26
is a matrix state. Let ¥ := ® o P, where P is a completely positive mapping
PIA—)Mg(A)ZOA—)(a a).
a a

Then we have the relation
3k
o= < [Life[Li]"
k=0

Set Ry = %[1,ik]\11[1,ik]*,k =0,1,2,3. It follows from [5, Lemma 5.1.6] that
for each Ry, there exists a matrix state @i € S, (A;e) such that

Ri(-) = Ri(e)?ox(-) Ric(e) /.
This implies that

3
o= i*Ry(e)/2pi() Ri(e) /2.
k

Because each Ry, is a completely positive completely contractive mapping, we
have

M, (A*)

<1

3
< {Zi’“awkak : ok € Su(Ase), llax] < 1,ax € (Mn>+,vk=o,1,2,3}.
k=0

Suppose that u is a unitary and consider the map T : A — A given by T'(a) =
ua. This map is a bijective complete isometry, and hence so is the adjoint
map T* : A* — A*. More precisely,

T, (¢p)(a) = p(ua) (a€A)
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for all n € N and ¢ € M, (A*) = CB(A, M,,). It follows that T (S, (A;u)) =
Sn(Ajse), and so

Mo (A7) <1

3

< {Zikak%ak Ok € Sn(Aju), [larl| < 1,05 € (Mn)4, Yk =0, 132,3}-
k=0

(b)=(c) and (c)=(d) are trivial.

(d)=(a). We claim that u is an extreme point of A <;. If u is not an

extreme point, then there exists a nonzero v € A such that u+v € A <;.
Thus for each ¢ € S, (A;u),

12+ (0) + 0(0)* + 9(0)* ()| = [[n + ¢@)||* = | (u+v)||* <1,

120 — 0 (v) = (v)* + () ()] = | In — 0(®)|]* = ||elu — v)|* < 1.

We conclude that ||, + ¢(v)* cp(v)|| <1, and thus ¢(v) = 0. This contradicts
our hypothesis. Hence u is an extreme point as claimed, and by [7, Theorem 1]
we see that u is a partial isometry.

Suppose that u is not a unitary. We can assume that p=e — u*u #0. We
will prove that ¢(p) =0 for any ¢ € S,(A;u). Fix ¢ € S,,(A;u). Then for
each t € R,

|1 +tRep(p || = ||Re¢( u—l—tp)||2 < lu+tp|? = |luu* +%p[| < 14¢
and

||In7tIm<p( H 7HI +itp(p H <H90 quztp)H
< lu+ itp||* = |Juw* +¢7p|| <1+ 2

If r € o (Re(p(p))), where o(Re(¢(p))) denotes the spectrum of Re(¢(p)), then
(1+7t)? <1+ for all real t. This implies that r =0 and hence Re ¢(p) = 0.
As the same argument as above, we have Im(p) = 0. This contradiction
establishes that ¢(p) =0, as claimed. O

We will gather some facts about matrix numerical index that we shall use
in the following results.

REMARK 2.2. Let (V,u) be a matrix numerical range space.

(a) Let W be an operator space and ¥ : V. — W is complete isometry. Then
we have ncp(Viu) <nep(W; ¥ (u)).

(b) We denote by @, the canonical complete contraction from V to V,,
where N, :={v €V :4¥(v) =0}. Then (V,,Q.(u)) is a unital operator
space. If ne,(Viu) > 0, then ne,(Viu) = Q7|5 (see [9, Lemma 2.4]).

(¢) If neb(V;u) >0, then u is an extreme point of the closed unit ball of V.

(d) neb(Viu) =ne,(V**5u).
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THEOREM 2.3. Let (V,u) be a matriz numerical range space. Then u is a
complete geometric unitary if and only if there exists 0 <r <1 such that

M, (V*)

-l <r

3
C {Zikakgpkak Cor €Sn(V,u), lanll < 1,ap € (M) 4, k= 0,1,273}
k=0

for all n e N.

Proof. Suppose that u is a complete geometric unitary, we will show that

M, (V) Il <nen (Viu)

3

- {Zikakg@kak sk € Sp(V,u), lax|| < 1,04 € (M) 4+, k=0, 1,2,3}
k=0

for all n € N.

We first do the case ncp(V,u) = 1. Then there exist a Hilbert space H and a
complete isometry © : V — L(H) such that O(u) = idg by [9, Theorem 2.7].
Therefore, (0*), : M, (L(H)*) — M, (V*) is a surjective quotient mapping
and

(07), (S (L), Irr)) = S, (Vi)
by Arveson-Wittstock—-Hahn—Banach theorem [5, Theorem 4.1.5]) for any
n € N. Thus for each ¢ € M,,(V*)|.| <1, there exists ¢ € CB(L(H), M,).|<1
such that O (¢) = . It follows from Theorem 2.1 that we can write

3
¢=> i*arpra,
k=0
where ay, € (My,)+, okl <1 and ¢ € S, (L(H); In) (k=0,1,2,3). We have
proved that if ne,(V;u) =1 then for each n € N,

Ma(V) a1

3
< {Zikamak ok €Sa(Viu), flaw] < 1an € (Mn>+,vze=o,1,z,3}.
k=0

To deal with the general case when n.,(V;u) > 0, we consider the map
(Q)n: CB(Vy,M,) — CB(V,M,) given by Q,. It is clear that (Q), is a
completely contractive complete isomorphism and
In fact, we get that

neb(Viu)llellen < [|(Q), ()|, (€ Mn(V3)).
On the other hand, for any ¢ € S,,(V;u),

[er(@)]| <% @) =[[(Qur@)], (z€M(V)).
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Hence, there exists ¢ € CB(V,, M,,) with ¢ =1 0 Q, and ||¢||c, < 1. This
shows that (Q}), is a surjection (and hence a bijection) from S,,(Vy; Qy(u))
to Sp(V;u). Since nep(Vy, Qu(uw)) =1 by Remark 2.2(b), we can apply the
above argument to obtain the general case.

Conversely, for each ¢ € M,(V*)|j<1 (n €N), we can find oy € (My),
llakll <1 and ¢k € S, (V;iu) (k=0,1,2,3) such that

3
ke
rp = g 1° QPR -

k=0

This means that for every x in My(V),

Vi () = rlxll/4
and so ne,(Viu) > r/4. O

We obtain directly the following interesting corollary from Theorem 2.1
and Theorem 2.3.

COROLLARY 2.4. Let A be a unital C*-algebra, and let u be a morm-one
element of A. Then u is complete geometric unitary if and only if it is a
unitary.

PROPOSITION 2.5. Let V be a finite dimensional operator space with u €
S1(V). Then u is a complete geometric unitary if and only if there exists
n € N such that

{veV:pw) =00€e8,(V;u)} ={0}.
Proof. If u is a complete geometric unitary, then from Theorem 2.3, for
each n € N,
{veV:pw) =0¢e8,(V;u)} ={0}.
Conversely, by the hypothesis 7% induces a norm on M, (V). Thus N, =
{0} and the canonical complete contraction @, is the identity mapping. By
the Inverse Mapping theorem, Q! is bounded. If V is an m-dimensional

operator space, then ||Q;|cr < m| QY| by [5, Corollary 2.2.4]. Tt follows
from Remark 2.2(b) that

nep(Viu) = | Q1| > 0. O

PROPOSITION 2.6. Let {Vy: A€ A} be a family of operator spaces. If
u = (uy) s a complete geometric unitary in the I direct sum [ ycp Valoo,
then each uy is a complete geometric unitary. In this case,

Neb ( {EB V,\} % (u>\)> = inf{ne(Vasur) : A€ A}

AEA



COMPLETE GEOMETRIC UNITARIES IN OPERATOR SPACES 639

Proof. Tf u= (uy) is a complete geometric unitary, then from Remark 2.2(c),
u=(uy) is an extreme point. Thus, each u) is a norm-one element. We will
prove that

Neb ( LEE\VA} w;u> =inf{ne(Vajuy) : A€ A}.

This completes the proof.
Given fixed Ao € A, one has clearly that

[@VA} =V, Poo {EB VA] .
AeA o A#£Xo 0

Set U= [Dy», Valoo and e = (ur)azr,- Then e is a norm-one element on
U. Fixing a linear functional f € §1(V;uy,), we define an operator

U:Vy, =V B U by ¥(v):= (v, f(v)e) (vEVy,).
It is easily verified that W is a complete isometry such that ¥(uy,) = u. Thus,

for each \g € A
Neh ( {@ V)\} ;u> <neb(Viag;tng)-
AEA oo

On the other hand, let £ € N and v = (vx) € My ([P cp Valoo). Then for
every € > 0, there exists A\; € A such that

loa, llx > [v]lx — e

Set W := [@A;ﬁ)\l Voo and e = (up)rxa,. Forallm,neN, p € S,,(Va,;uy,)
and ¢ € S,,(W;e), we consider the operator § € CB(Vy, @ W, M,,,) de-
fined by

0((x,9)) = p(z) ®d(y) (x€Vr,yeW).
We clearly have
0 €Smin(Va, Doo Wiu) and ngk(v,\l)H < HHMU)H
It follows that
(Iolle = ) nen(Vassua,) < lox, Tenen(Vaysua,) <57 (0a,) <90 (v).
Consequently,

Neb ( {@ VA} w;u) > inf{ne,(Va;un) : A€ A}

AEA O

Let Q be a topological space and V an operator space. We let B(€,V) be
the space of all bounded Borel measurable mappings from €2 into V. Then
B(Q2,V) as a subspace of (2, V) is an operator space.
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PROPOSITION 2.7. Let Q be a topological space and V an operator space.
If F e B(,V) is a complete geometric unitary, then F(t) is a complete geo-
metric unitary for each t € Q. In this case,

ne, (B(Q, V); F) =inf{na, (V; F(t)) : t € Q}.

Proof. Since F € B(Q,V) is a complete geometric unitary, we see that F
is an extreme point of the closed unit ball of B(2,V). It follows that each
F(t) is a norm-one element in V. Otherwise, there exist tg € 2 and € > 0 such
that [|F(to)]] <1—e<1. Set x:=F(ty) and E;, :={t € Q: F(t)=x}. Then
Ey, is a Borel set and ||F +exp, v €| <1. We have F'=1/2(F +exg,, 7) +
1/2(F — exE4,x). This leads to a contradiction that F' is an extreme point.

Foreach s € Q,set u:=F(s) and Es:={t € Q: F(t) =u}. Fix f € §;(V;u)
and consider the mapping © : V — B(Q2,V) defined by

O(v) = xg.v+ f(v)xEe F.
Then O is a complete isometry and ©(u) = F'. Tt follows that
ney (B(Q,V); F) <n(V,F(s)),
and so
ner (B(Q,V); F) <inf{n(V;F(t)) : t € Q}.
Conversely, we can regard B(Q2,V) as a subspace of [ (€2, V). By Proposi-
tion 2.6, the reverse inequality holds. O

3. Complete geometric unitaries in the injective tensor product

DEFINITION 3.1. For any two operator spaces V and W we define the
injective matriz norm || - | on V.® W by setting

[ully = sup{||(f @ g)n(w)|| : f € M,(V*),g€ Mg(W*),[If]l, gl <1}

for each matrix u € M, (V@ W). We define the operator space injective tensor
product V@ W to be the completion of the operator space (V@ W, |- ).

THEOREM 3.2. Let (V,u) and (W,v) be matriz numerical range spaces.
Then u®wv is a complete (respectively, strict) geometric unitary if and only if
u and v are complete (respectively, strict) geometric unitaries.

Proof. We suppose that u ® v is a complete (respectively, strict) geometric
unitary. Since V and W can be regarded as a subspace of V@ W through
x—=r®v and y+— u®y, it follows that u and v are complete (respectively,
strict) geometric unitaries.

Conversely, if © and v are complete strict geometric unitaries. We assume
that ¢: V — L(H) and ¢ : W — L(K) are complete isometries such that
¢(u) =idg and ¥ (v) =idk. It follows from [5, Proposition 8.1.6] that ¢ ®
¥: VW — L(H®K) is a complete isometry with ¢ ® ¥(u ® v) = idagk.
We conclude that u ® v is a complete strict geometric unitary.
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For the general case, we suppose that u and v are complete geometric
unitaries. We can regard V@ W as a subspace of CB(V*, W) by [5, Propo-
sition 8.1.2]. Fix ® € M,,(V@W) with ||®| =1. Given ¢ > 0, there exist
m €N, 1 € My, (V*). <1 such that |[[®,,(¢)[| > 1 —e. Since u is a complete
geometric unitary, from Theorem 2.3 we can find «,, € (M,,)+, ||ag| <1 and
ok € Sm(Viu), (k=0,1,2,3) such that

3
new (Vi) = Z iF oo,
k=0
Thus, there exists ¢ € S, (V;u) such that

[@5(0)[| > neb (Viu)(1 —e) /4.

Hence, by the definition of n.,(W;v), there exist p € N, ¢ € S,(W;v) such
that

|G (@n () || > 1 (W) || @0 ()] — e
We define an operator § € CB(V® W, M,,,) by

0(¥) = ¢ (Un(p)) foreach e VOW.
Now 0 € Snp(v ®W7 U U)v am((b) = (z)mn(q)n(@)) and

Hem(@)H > ncb(W;v)H‘I)n(go)H —&>nep(Vi;u)ne, (W;v) /4 — 2e.
The desired inequality ne, (V@ W;u®@v) > ne, (Vi u)ne, (Wi v) /4 follows. O
Let Q be a compact Hausdorff space and V an operator space. It is well

known that for each f € (C(Q2)®@V)*, there is a unique weakly regular set
function m: Y — V* so that f(F) = [, Fdm for each F € C(Q)QV =

C(Q,V) (see [3, Theorem 2.2]). Then we can regard B(2,V) as a subspace
of (C(Q)®V)** by the way

G(f):/Kde, GeBQ,V).

THEOREM 3.3. Let V be an operator space and Q0 a compact Hausdorff
space. If F € C(Q)®V is a complete (respectively, strict) geometric unitary,
then for all t € Q, F(t) is a complete (respectively, strict) geometric unitary.
In this case,

neb (C(Q) @ V; F) =inf{ne,(V; F(t)) : t € Q}.
Proof. Since C(Q)&V is a subspace of B(Q,V), and since moreover

B(Q,V) is a subspace of (C(2)®@V)**, it follows from Remark 2.2(a) and
(d) that

neb (C(Q) @V F) = nep (B(L V), F) = na, (C(QEV) 7 F).

Thus, F is a complete (respectively, strict) geometric unitary in B(Q2, V). By
Proposition 2.7, the conclusion follows. O
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DEFINITION 3.4. A matrix numerical range space (V,u) is called a min-
imal unital operator space if there exist a compact Hausdorff space 2 and a
complete isometry ® : V — C(Q) satisfying ®(u) = I.

PROPOSITION 3.5. Let (V,u) and (W, v) be matriz numerical range spaces.
If (V,u) is a minimal unital operator space, then

ncb(v®w7u ®’U) = ncb(W;’U)'

Proof. If (V,u) is a minimal unital operator space, then there exist a
compact Hausdorff space 2 and a complete isometry ®: V — C(Q) satis-
fying ®(u) =I. Since W can be regarded as a subspace of V@ W through
w—u®w and VAW can be regarded as a subspace of C(Q) ® W through
@ wr— &(x) ®w, we have

neb(W30) = 16 (VR W0 ® 0) > ney (C(Q) @ W3 T @v).
It suffices to show that ne,(C(Q) @ W31 ®v) > ne,(W;v). Fix k€ N and

We may find tg € Q such that ||g|| = ||g(to)||- For any n € N and ¢ € S,,(W;v),
we consider the operator ¢ € CB(C'(Q2) @ W, M,,) given by

o(f)=¢(f(to), fEC)OW.
It is easy to check that
€S, (COOOW;T®v) and ¢i(g) = ek (g(to))-

Hence,

77 (9) 2 (9(t0)) = nen (W),
and o0 ncp (C(Q) QWi T Q@ u) > nep (W v). O

4. Complete geometric unitaries in 3-dimensional operator
systems

Let A be a unital C*-algebra with v € &1(A). Then u is a complete
geometric unitary if and only if w is a unitary by Corollary 2.4. Thus, an
isometry u in A may be not a complete geometric unitary. We define a 3-
dimensional operator system by setting V :=span{e, u,u*}. It is interesting to
ask whether u in V is a complete geometric unitary. To answer this question,
we need to introduce some more definitions and results.

A (concrete) operator system is a self-adjoint unital subspace of a unital
C*-algebra. Let V be an operator system with the identity e. Consider the
set CPr(V) of all completely positive linear maps ¢ : V — M. If ¥, ¢ €
CPx(V), then the notation ¥ <., ¢ means that ¢ — ¢ € CP(V). A matriz
state on 'V is an element ¢ € CPy(V) such that ¢(e) = I;. A matrix state
¢ € CPk(V) is said to be pure if for every ¢ € CPr(V) satistying ¢ <., ¢
there is a t € [0,1] C R such that ¢ =¢¢. If ¢: V — M, is a linear mapping
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such that ¢(e) = I, then ¢ is completely positive if and only if it is a complete
contraction (see [5, Corollary 5.1.2]). Thus in the case of an operator system,
Sk(V;e) is the set of all matrix states ¢ : V. — M.

DEFINITION 4.1. A matrix convezr set in a vector space V is a collection
K = (K,,) of subsets K,, C M, (V) such that

i

for all z; € K,,, and ; € My, , for i =1,... k satisfying >, vy = In.

Given a collection S = (S,,) of subsets S, C M, (V) for some local con-
vex vector space V, we define the closed matriz conver hull ¢o(S) to be the
smallest closed matrix convex set containing S. We can describe ¢o(S) as the
closure of all elements © € M, (V) of the form

ZV;xiVi S Kn
[

for all z; € S,,, and v; € M,,, 5, for i =1,...,k satisfying >, v v = In..

DEFINITION 4.2. We define a compact matriz conver set to be a matrix
convex subset K = (K,) of a locally convex vector space V such that each
K, is compact in the product topology in M, (V).

DEFINITION 4.3. Suppose that K = (K,) is a matrix convex set in a vector
space V. A matriz extreme point of K is an element v € K,, for some n € N
with the property: whenever

k
_ *
U= E Vi Vi%i,
=1

with v; € K, and v; € M, ,, (¢ =1,...,k) such that each ; is a right-
invertible complex matrix satisfying Zle v~y = I,, we have each n; =n and
v = u;v;u; for some unitary u; € M,,.

We denote by 0K, the (possibly empty) set of matrix extreme points in
K,.

If V is a 3-dimensional operator system, then it has a basis in a particularly
useful form: V =span{e,u,u*}, where u is called the “generator” of V. We
can easily get the following proposition from [6, Theorem 3.1 and Theorem 3.2]
as well as [6, Proposition 5.2].

LEMMA 4.4. Assume that V :=span{e,u,u*} is a 3-dimensional system in
a unital C*-algebra and that ||u]| =1 and T C o(u), where o(u) denotes the
spectrum of u. Then u is a complete strict geometric unitary.
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Proof. Let S :=(8,(V;e))nen. Then S is a compact matrix convex set in
the point-norm topology (see [6] for details). Thus, [6, Theorem 3.2] tells us
that S is the closure of the matrix convex hull of the matrix extreme points
of S. Then for any k € N and x € My(V),

|#]|x = sup{||¢r(z)|| : ¢ € Sn(V;e),n €N}
= sup{||¢(2)| : ¢ € 0S,(V;e),n € N}.
Moreover, [6, Theorem 3.1] together with [6, Proposition 5.2] tells us that
%] = sup{||¢x(2)]| : ¢ € DSa(V;e),n e N}
= sup{”qﬁk(x)H € 81(Vie) and ‘¢(u)| =1}.
This completes the proof. O

THEOREM 4.5. Assume that V :=span{e,u,u*} is a 3-dimensional system
in a unital C*-algebra, where u is an isometry. Then u and u* are complete
strict geometric unitaries.

Proof. We can assume that V C L(H) on a Hilbert space H. If u is a
unilateral shift operator on H, then sp(u) = sp(u*) =D (the closed unit disc)
by [8, the solution of Problem 82]. It follows from Lemma 4.4 that ne,(V;u) =
nep(Viu*) =1. If u is an isometry, we recall from [8, Problem 149] that every
isometry is either a unitary, or a direct sum of one or more copies of the
unilateral shift, or a direct sum of a unitary operator and some copies of the
unilateral shift. Using Proposition 2.6, we obtain the required result. (]
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