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COMPLETE GEOMETRIC UNITARIES IN
OPERATOR SPACES

XU-JIAN HUANG

Abstract. We study the abstract complete geometric notion of
unitaries in an operator space characterized in terms of the matrix

numerical index, which is a quantity determined by a norm-one
element and the matrix numerical radius.

1. Introduction

The characterizations of geometric unitaries in Banach spaces have re-
cently been studied in [1], [4], [10], [11]. It is natural to study the properties
of unitaries in general operator spaces, since operator spaces are “quantized
Banach spaces” which basically means that they are spaces of bounded op-
erators on some Hilbert spaces. Motivated by the work of Huang and Ng
[9], we study the abstract complete geometric notion of unitaries in operator
spaces.

The notion of matrix numerical index was first introduced in [9] to charac-
terize abstract unital operator spaces. A matrix numerical range space (V, u)
will be a pair consisting of an operator space V and a norm-one element
u ∈V. We denote by S1(V) the unit sphere of V. Let (V, u) be a matrix
numerical range space. For each n ∈ N, we define the n matrix state space
of u

Sn(V;u) :=
{
ϕ ∈CB(V,Mn) : ‖ϕ‖cb ≤ 1, ϕ(u) = In

}
,

and the matrix numerical radius of an element x in Mk(V)(k ∈N),

γu
k (x) := sup

{
‖ϕk(x)‖ : ϕ ∈ Sn(V;u), n ∈N

}
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as well as the matrix numerical index of u, namely

ncb(V;u) := inf
{
γu
k (x) : x ∈S1

(
Mk(V)

)
, k ∈N

}
.

Equivalently, ncb(V;u) is the greatest constant t≥ 0 such that t‖x‖ ≤ γu
k (x)

for every x ∈Mk(V). We call u a complete geometric unitary (respectively,
complete strict geometric unitary) if ncb(V;u)> 0 (respectively, ncb(V;u) =
1). Note that ncb(V;u)> 0 (respectively, ncb(V;u) = 1) if and only if there
exist a Hilbert space H and a completely contractive completely topological
injection (respectively, complete isometry) Θ : V →L(H) such that Θ(u) =
idH (see [9, Theorem 2.7]). A matrix numerical range space (V, u) is called a
unital operator space if u is a complete strict geometric unitary. Such spaces
play a significant role since the birth of operator space theory(see [2, Theorems
1.2.3 and 1.2.9]).

The outline of the paper is as follows. In Section 2, we give a characteriza-
tion of the unitaries of a unital C∗-algebra A by working in Mn(A

∗) for some
n ∈N. By this, we introduce some properties of complete geometric unitaries
in operator spaces. Next, we use the above results in Section 3 to present that
u⊗ v is a complete geometric unitary in the operator space injective tensor
product V ⊗̌W, if and only if u and v are complete geometric unitares in V
and W, respectively. We consider complete geometric unitaries in the space
C(Ω) ⊗̌V, where Ω is a compact set. If F ∈C(Ω) ⊗̌V is a complete (respec-
tively, strict) geometric unitary, then F (t) is a complete (respectively, strict)
geometric unitary for all t ∈Ω. Finally, we devote Section 4 to show that for
an isometry u in a unital C∗-algebra, u and u∗ are complete strict geometric
unitaries in V, where V := Span{e,u,u∗} is a 3-dimensional system.

2. Operator spaces characterizations of complete geometric
unitaries

We will give a new characterization of unitaries in a unital C∗-algebra,
which is a generalization of [1, Theorem 2] by C. Akemann and N. Weaver.
However, only the final step in the proof of the next theorem is based on an
idea of [1, Theorem 2].

Theorem 2.1. Let A be a unital C∗-algebra with the identity e, and let u
be a norm-one element of A. Then the following are equivalent:

(a) u is a unitary.
(b) For all n ∈N, one has

Mn

(
A∗)

‖·‖≤1

⊆
{

3∑
k=0

ikαkϕkαk : ϕk ∈ Sn(A;u),‖αk‖ ≤ 1, αk ∈ (Mn)+,∀k = 0,1,2,3

}
.
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(c) There exists n ∈N and r > 0 such that

Mn

(
A∗)

‖·‖≤r

⊆
{

3∑
k=0

ikαkϕkαk : ϕk ∈ Sn(A;u),‖αk‖ ≤ 1, αk ∈ (Mn)+,∀k = 0,1,2,3

}
.

(d) There exists n ∈N such that{
a ∈A : ϕ(a) = 0, ϕ ∈ Sn(A;u)

}
= {0}.

Proof. (a) ⇒ (b) Let ϕ ∈ Mn(A
∗) be a complete contraction. From [5,

Theorem 5.3.2] there exist matrix states ψ1 and ψ2 from A to Mn such that

Φ =

(
ψ1 ϕ
ϕ∗ ψ2

)
: M2(A)→M2n :

(
a b
c d

)
→

(
ψ1(a) ϕ(b)
ϕ∗(c) ψ2(d)

)

is a matrix state. Let Ψ := Φ ◦ P , where P is a completely positive mapping

P : A→M2(A) : a �→
(
a a
a a

)
.

Then we have the relation

ϕ=
3∑

k=0

ik

4

[
1, ik

]
Ψ

[
1, ik

]∗
.

Set Rk = 1
4 [1, i

k]Ψ[1, ik]∗, k = 0,1,2,3. It follows from [5, Lemma 5.1.6] that
for each Rk there exists a matrix state ϕk ∈ Sn(A; e) such that

Rk(·) =Rk(e)
1/2ϕk(·)Rk(e)

1/2.

This implies that

ϕ=
3∑
k

ikRk(e)
1/2ϕk(·)Rk(e)

1/2.

Because each Rk is a completely positive completely contractive mapping, we
have

Mn

(
A∗)

‖·‖≤1

⊆
{

3∑
k=0

ikαkϕkαk : ϕk ∈ Sn(A; e),‖αk‖ ≤ 1, αk ∈ (Mn)+,∀k = 0,1,2,3

}
.

Suppose that u is a unitary and consider the map T : A→A given by T (a) =
ua. This map is a bijective complete isometry, and hence so is the adjoint
map T ∗ : A∗ →A∗. More precisely,

T ∗
n(ϕ)(a) = ϕ(ua) (a ∈A)
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for all n ∈ N and ϕ ∈Mn(A
∗) = CB(A,Mn). It follows that T ∗

n(Sn(A;u)) =
Sn(A; e), and so

Mn

(
A∗)

‖·‖≤1

⊆
{

3∑
k=0

ikαkφkαk : φk ∈ Sn(A;u),‖αk‖ ≤ 1, αi ∈ (Mn)+,∀k = 0,1,2,3

}
.

(b)⇒ (c) and (c)⇒ (d) are trivial.
(d)⇒ (a). We claim that u is an extreme point of A‖·‖≤1. If u is not an

extreme point, then there exists a nonzero v ∈A such that u± v ∈A‖·‖≤1.
Thus for each ϕ ∈ Sn(A;u),∥∥In +ϕ(v) +ϕ(v)∗ +ϕ(v)∗ϕ(v)

∥∥ =
∥∥In +ϕ(v)

∥∥2
=

∥∥ϕ(u+ v)
∥∥2 ≤ 1,∥∥In −ϕ(v)−ϕ(v)∗ +ϕ(v)∗ϕ(v)

∥∥ =
∥∥In −ϕ(v)

∥∥2
=

∥∥ϕ(u− v)
∥∥2 ≤ 1.

We conclude that ‖In + ϕ(v)∗ϕ(v)‖ ≤ 1, and thus ϕ(v) = 0. This contradicts
our hypothesis. Hence u is an extreme point as claimed, and by [7, Theorem 1]
we see that u is a partial isometry.

Suppose that u is not a unitary. We can assume that p= e− u∗u 
= 0. We
will prove that ϕ(p) = 0 for any ϕ ∈ Sn(A;u). Fix ϕ ∈ Sn(A;u). Then for
each t ∈R,∥∥In + tReϕ(p)

∥∥2
=

∥∥Reϕ(u+ tp)
∥∥2 ≤ ‖u+ tp‖2 =

∥∥uu∗ + t2p
∥∥ ≤ 1 + t2

and ∥∥In − t Imϕ(p)
∥∥2

=
∥∥In + itϕ(p)

∥∥2 ≤
∥∥ϕ(u+ itp)

∥∥2

≤ ‖u+ itp‖2 =
∥∥uu∗ + t2p

∥∥ ≤ 1 + t2.

If r ∈ σ(Re(ϕ(p))), where σ(Re(ϕ(p))) denotes the spectrum of Re(ϕ(p)), then
(1+ rt)2 ≤ 1+ t2 for all real t. This implies that r = 0 and hence Reϕ(p) = 0.
As the same argument as above, we have Imϕ(p) = 0. This contradiction
establishes that ϕ(p) = 0, as claimed. �

We will gather some facts about matrix numerical index that we shall use
in the following results.

Remark 2.2. Let (V, u) be a matrix numerical range space.

(a) Let W be an operator space and Ψ : V→W is complete isometry. Then
we have ncb(V;u)≤ ncb(W;Ψ(u)).

(b) We denote by Qu the canonical complete contraction from V to Vu,
where Nu := {v ∈V : γu

1 (v) = 0}. Then (Vu,Qu(u)) is a unital operator
space. If ncb(V;u)> 0, then ncb(V;u) = ‖Q−1

u ‖−1
cb (see [9, Lemma 2.4]).

(c) If ncb(V;u)> 0, then u is an extreme point of the closed unit ball of V.
(d) ncb(V;u) = ncb(V

∗∗;u).
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Theorem 2.3. Let (V, u) be a matrix numerical range space. Then u is a
complete geometric unitary if and only if there exists 0< r ≤ 1 such that

Mn

(
V∗)

‖·‖<r

⊆
{

3∑
k=0

ikαkϕkαk : ϕk ∈ Sn(V, u),‖αk‖ ≤ 1, αk ∈ (Mn)+, k = 0,1,2,3

}

for all n ∈N.

Proof. Suppose that u is a complete geometric unitary, we will show that

Mn

(
V∗)

‖·‖<ncb(V;u)

⊆
{

3∑
k=0

ikαkϕkαk : ϕk ∈ Sn(V, u),‖αk‖ ≤ 1, αk ∈ (Mn)+, k = 0,1,2,3

}

for all n ∈N.
We first do the case ncb(V, u) = 1. Then there exist a Hilbert spaceH and a

complete isometry Θ : V→L(H) such that Θ(u) = idH by [9, Theorem 2.7].
Therefore, (Θ∗)n : Mn(L(H)∗) → Mn(V

∗) is a surjective quotient mapping
and (

Θ∗)
n

(
Sn

(
L(H), IH

))
= Sn(V;u)

by Arveson–Wittstock–Hahn–Banach theorem [5, Theorem 4.1.5]) for any
n ∈ N. Thus for each ψ ∈Mn(V

∗)‖·‖<1, there exists φ ∈ CB(L(H),Mn)‖·‖≤1

such that Θ∗
n(φ) = ψ. It follows from Theorem 2.1 that we can write

φ=

3∑
k=0

ikαkφkαk,

where αk ∈ (Mn)+, ‖αk‖ ≤ 1 and φk ∈ Sn(L(H); IH) (k = 0,1,2,3). We have
proved that if ncb(V;u) = 1 then for each n ∈N,

Mn

(
V∗)

‖·‖<1

⊆
{

3∑
k=0

ikαkϕkαk : ϕk ∈ Sn(V;u),‖αk‖ ≤ 1, αk ∈ (Mn)+,∀k = 0,1,2,3

}
.

To deal with the general case when ncb(V;u) > 0, we consider the map
(Q∗

u)n : CB(Vu,Mn)→ CB(V,Mn) given by Qu. It is clear that (Q∗
u)n is a

completely contractive complete isomorphism and(
Q∗

u

)
n

(
Sn

(
Vu;Qu(u)

))
⊆ Sn(V;u).

In fact, we get that

ncb(V;u)‖ϕ‖cb ≤
∥∥(

Q∗
u

)
n
(ϕ)

∥∥
cb

(
ϕ ∈Mn

(
V∗

u

))
.

On the other hand, for any ϕ ∈ Sn(V;u),∥∥ϕk(x)
∥∥ ≤ γu

k (x) =
∥∥(Qu)k(x)

∥∥
k

(
x ∈Mk(V)

)
.
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Hence, there exists ψ ∈ CB(Vu,Mn) with ϕ = ψ ◦Qu and ‖ψ‖cb ≤ 1. This
shows that (Q∗

u)n is a surjection (and hence a bijection) from Sn(Vu;Qu(u))
to Sn(V;u). Since ncb(Vu,Qu(u)) = 1 by Remark 2.2(b), we can apply the
above argument to obtain the general case.

Conversely, for each ψ ∈Mn(V
∗)‖·‖<1 (n ∈ N), we can find αk ∈ (Mn)+,

‖αk‖ ≤ 1 and ϕk ∈ Sn(V;u) (k = 0,1,2,3) such that

rψ =

3∑
k=0

ikαkϕkαk.

This means that for every x in Mk(V),

γu
k (x)≥ r‖x‖/4

and so ncb(V;u)≥ r/4. �

We obtain directly the following interesting corollary from Theorem 2.1
and Theorem 2.3.

Corollary 2.4. Let A be a unital C∗-algebra, and let u be a norm-one
element of A. Then u is complete geometric unitary if and only if it is a
unitary.

Proposition 2.5. Let V be a finite dimensional operator space with u ∈
S1(V). Then u is a complete geometric unitary if and only if there exists
n ∈N such that {

v ∈V : ϕ(v) = 0, ϕ ∈ Sn(V;u)
}
= {0}.

Proof. If u is a complete geometric unitary, then from Theorem 2.3, for
each n ∈N, {

v ∈V : ϕ(v) = 0, ϕ ∈ Sn(V;u)
}
= {0}.

Conversely, by the hypothesis γu
n induces a norm on Mn(V). Thus Nu =

{0} and the canonical complete contraction Qu is the identity mapping. By
the Inverse Mapping theorem, Q−1

u is bounded. If V is an m-dimensional
operator space, then ‖Q−1

u ‖cb ≤ m‖Q−1
u ‖ by [5, Corollary 2.2.4]. It follows

from Remark 2.2(b) that

ncb(V;u) =
∥∥Q−1

u

∥∥−1

cb
> 0. �

Proposition 2.6. Let {Vλ : λ ∈ Λ} be a family of operator spaces. If
u= (uλ) is a complete geometric unitary in the l∞ direct sum [

⊕
λ∈ΛVλ]∞,

then each uλ is a complete geometric unitary. In this case,

ncb

([⊕
λ∈Λ

Vλ

]
∞
; (uλ)

)
= inf

{
ncb(Vλ;uλ) : λ ∈ Λ

}
.
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Proof. If u= (uλ) is a complete geometric unitary, then from Remark 2.2(c),
u= (uλ) is an extreme point. Thus, each uλ is a norm-one element. We will
prove that

ncb

([⊕
λ∈Λ

Vλ

]
∞
;u

)
= inf

{
ncb(Vλ;uλ) : λ ∈Λ

}
.

This completes the proof.
Given fixed λ0 ∈ Λ, one has clearly that[⊕

λ∈Λ

Vλ

]
∞

=Vλ0 ⊕∞

[ ⊕
λ �=λ0

Vλ

]
∞
.

Set U := [
⊕

λ �=λ0
Vλ]∞ and e= (uλ)λ �=λ0 . Then e is a norm-one element on

U. Fixing a linear functional f ∈ S1(V;uλ0), we define an operator

Ψ : Vλ0 →Vλ0 ⊕∞ U by Ψ(v) :=
(
v, f(v)e

)
(v ∈Vλ0).

It is easily verified that Ψ is a complete isometry such that Ψ(uλ0) = u. Thus,
for each λ0 ∈ Λ

ncb

([⊕
λ∈Λ

Vλ

]
∞
;u

)
≤ ncb(Vλ0 ;uλ0).

On the other hand, let k ∈ N and v = (vλ) ∈Mk([
⊕

λ∈ΛVλ]∞). Then for
every ε > 0, there exists λ1 ∈ Λ such that

‖vλ1‖k > ‖v‖k − ε.

Set W := [
⊕

λ �=λ1
Vλ]∞ and e= (uλ)λ �=λ1 . For all m,n ∈N, ϕ ∈ Sm(Vλ1 ;uλ1)

and φ ∈ Sn(W; e), we consider the operator θ ∈ CB(Vλ1 ⊕∞ W,Mm+n) de-
fined by

θ
(
(x, y)

)
:= ϕ(x)⊕ φ(y) (x ∈Vλ1 , y ∈W).

We clearly have

θ ∈ Sm+n(Vλ1 ⊕∞ W;u) and
∥∥ϕk(vλ1)

∥∥ ≤
∥∥θk(v)∥∥.

It follows that(
‖v‖k − ε

)
ncb(Vλ1 ;uλ1)< ‖vλ1‖kncb(Vλ1 ;uλ1)≤ γ

uλ1

k (vλ1)≤ γ
(uλ)
k (v).

Consequently,

ncb

([⊕
λ∈Λ

Vλ

]
∞
;u

)
≥ inf

{
ncb(Vλ;uλ) : λ ∈Λ

}
.

�

Let Ω be a topological space and V an operator space. We let B(Ω,V) be
the space of all bounded Borel measurable mappings from Ω into V. Then
B(Ω,V) as a subspace of l∞(Ω,V) is an operator space.
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Proposition 2.7. Let Ω be a topological space and V an operator space.
If F ∈B(Ω,V) is a complete geometric unitary, then F (t) is a complete geo-
metric unitary for each t ∈Ω. In this case,

ncb

(
B(Ω,V);F

)
= inf

{
ncb

(
V;F (t)

)
: t ∈Ω

}
.

Proof. Since F ∈ B(Ω,V) is a complete geometric unitary, we see that F
is an extreme point of the closed unit ball of B(Ω,V). It follows that each
F (t) is a norm-one element in V. Otherwise, there exist t0 ∈Ω and ε > 0 such
that ‖F (t0)‖ ≤ 1− ε < 1. Set x := F (t0) and Et0 := {t ∈Ω : F (t) = x}. Then
Et0 is a Borel set and ‖F ± εχEt0

x ∈ ‖ ≤ 1. We have F = 1/2(F + εχEt0
x) +

1/2(F − εχEt0x). This leads to a contradiction that F is an extreme point.
For each s ∈Ω, set u := F (s) and Es := {t ∈Ω : F (t) = u}. Fix f ∈ S1(V;u)

and consider the mapping Θ : V→B(Ω,V) defined by

Θ(v) = χEsv+ f(v)χEc
s
F.

Then Θ is a complete isometry and Θ(u) = F . It follows that

ncb

(
B(Ω,V);F

)
≤ n

(
V, F (s)

)
,

and so

ncb

(
B(Ω,V);F

)
≤ inf

{
n
(
V;F (t)

)
: t ∈Ω

}
.

Conversely, we can regard B(Ω,V) as a subspace of l∞(Ω,V). By Proposi-
tion 2.6, the reverse inequality holds. �

3. Complete geometric unitaries in the injective tensor product

Definition 3.1. For any two operator spaces V and W we define the
injective matrix norm ‖ · ‖ on V⊗W by setting

‖u‖∨ = sup
{∥∥(f ⊗ g)n(u)

∥∥ : f ∈Mp

(
V∗), g ∈Mq

(
W∗),‖f‖,‖g‖ ≤ 1

}
for each matrix u ∈Mn(V⊗W). We define the operator space injective tensor
product V ⊗̌W to be the completion of the operator space (V⊗W,‖ · ‖∨).

Theorem 3.2. Let (V, u) and (W, v) be matrix numerical range spaces.
Then u⊗ v is a complete (respectively, strict) geometric unitary if and only if
u and v are complete (respectively, strict) geometric unitaries.

Proof. We suppose that u⊗ v is a complete (respectively, strict) geometric
unitary. Since V and W can be regarded as a subspace of V ⊗̌W through
x �→ x⊗ v and y �→ u⊗ y, it follows that u and v are complete (respectively,
strict) geometric unitaries.

Conversely, if u and v are complete strict geometric unitaries. We assume
that φ : V → L(H) and ψ : W → L(K) are complete isometries such that
φ(u) = idH and ψ(v) = idK. It follows from [5, Proposition 8.1.6] that φ ⊗
ψ : V ⊗̌W→L(H⊗K) is a complete isometry with φ⊗ ψ(u⊗ v) = idH⊗K.
We conclude that u⊗ v is a complete strict geometric unitary.
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For the general case, we suppose that u and v are complete geometric
unitaries. We can regard V ⊗̌W as a subspace of CB(V∗,W) by [5, Propo-
sition 8.1.2]. Fix Φ ∈ Mn(V ⊗̌W) with ‖Φ‖ = 1. Given ε > 0, there exist
m ∈ N, ψ ∈Mm(V∗)‖·‖<1 such that ‖Φm(ψ)‖> 1− ε. Since u is a complete
geometric unitary, from Theorem 2.3 we can find αm ∈ (Mm)+, ‖αk‖ ≤ 1 and
ϕk ∈ Sm(V;u), (k = 0,1,2,3) such that

ncb(V;u)ψ =
3∑

k=0

ikαkϕkαk.

Thus, there exists ϕ ∈ Sn(V;u) such that∥∥Φn(ϕ)
∥∥ > ncb(V;u)(1− ε)/4.

Hence, by the definition of ncb(W;v), there exist p ∈ N, φ ∈ Sp(W;v) such
that ∥∥φmn

(
Φn(ϕ)

)∥∥ > ncb(W;v)
∥∥Φn(ϕ)

∥∥− ε.

We define an operator θ ∈CB(V ⊗̌W,Mnp) by

θ(Ψ) = φn

(
Ψn(ϕ)

)
for each Ψ ∈V ⊗̌W.

Now θ ∈ Snp(V ⊗̌W;u⊗ v), θm(Φ) = φmn(Φn(ϕ)) and∥∥θm(Φ)
∥∥ > ncb(W;v)

∥∥Φn(ϕ)
∥∥− ε > ncb(V;u)ncb(W;v)/4− 2ε.

The desired inequality ncb(V ⊗̌W;u⊗v)≥ ncb(V;u)ncb(W;v)/4 follows. �

Let Ω be a compact Hausdorff space and V an operator space. It is well
known that for each f ∈ (C(Ω) ⊗̌V)∗, there is a unique weakly regular set
function m :

∑
→ V∗ so that f(F ) =

∫
K
F dm for each F ∈ C(Ω) ⊗̌V =

C(Ω,V) (see [3, Theorem 2.2]). Then we can regard B(Ω,V) as a subspace
of (C(Ω) ⊗̌V)∗∗ by the way

G(f) =

∫
K

Gdm, G ∈B(Ω,V).

Theorem 3.3. Let V be an operator space and Ω a compact Hausdorff
space. If F ∈ C(Ω) ⊗̌V is a complete (respectively, strict) geometric unitary,
then for all t ∈ Ω, F (t) is a complete (respectively, strict) geometric unitary.
In this case,

ncb

(
C(Ω) ⊗̌V;F

)
= inf

{
ncb

(
V;F (t)

)
: t ∈Ω

}
.

Proof. Since C(Ω) ⊗̌V is a subspace of B(Ω,V), and since moreover
B(Ω,V) is a subspace of (C(Ω) ⊗̌V)∗∗, it follows from Remark 2.2(a) and
(d) that

ncb

(
C(Ω) ⊗̌V;F

)
= ncb

(
B(Ω,V);F

)
= ncb

((
C(Ω) ⊗̌V

)∗∗
;F

)
.

Thus, F is a complete (respectively, strict) geometric unitary in B(Ω,V). By
Proposition 2.7, the conclusion follows. �
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Definition 3.4. A matrix numerical range space (V, u) is called a min-
imal unital operator space if there exist a compact Hausdorff space Ω and a
complete isometry Φ : V→C(Ω) satisfying Φ(u) = I .

Proposition 3.5. Let (V, u) and (W, v) be matrix numerical range spaces.
If (V, u) is a minimal unital operator space, then

ncb(V ⊗̌W;u⊗ v) = ncb(W;v).

Proof. If (V, u) is a minimal unital operator space, then there exist a
compact Hausdorff space Ω and a complete isometry Φ : V → C(Ω) satis-
fying Φ(u) = I . Since W can be regarded as a subspace of V ⊗̌W through
w �→ u⊗w and V ⊗̌W can be regarded as a subspace of C(Ω) ⊗̌W through
x⊗w �→Φ(x)⊗w, we have

ncb(W;v)≥ ncb(V ⊗̌W;u⊗ v)≥ ncb

(
C(Ω) ⊗̌W; I ⊗ v

)
.

It suffices to show that ncb(C(Ω) ⊗̌W; I ⊗ v)≥ ncb(W;v). Fix k ∈N and

g ∈Mk

(
C(Ω) ⊗̌W

)
=C

(
Ω,Mk(W)

)
.

We may find t0 ∈Ω such that ‖g‖= ‖g(t0)‖. For any n ∈N and ϕ ∈ Sn(W;v),
we consider the operator φ ∈CB(C(Ω) ⊗̌W,Mn) given by

φ(f) := ϕ
(
f(t0)

)
, f ∈C(Ω) ⊗̌W.

It is easy to check that

φ ∈ Sn

(
C(Ω) ⊗̌W; I ⊗ v

)
and φk(g) = ϕk

(
g(t0)

)
.

Hence,
γI⊗u
k (g)≥ γu

k

(
g(t0)

)
≥ ncb(W;v),

and so ncb(C(Ω) ⊗̌W; I ⊗ u)≥ ncb(W;v). �

4. Complete geometric unitaries in 3-dimensional operator
systems

Let A be a unital C∗-algebra with u ∈ S1(A). Then u is a complete
geometric unitary if and only if u is a unitary by Corollary 2.4. Thus, an
isometry u in A may be not a complete geometric unitary. We define a 3-
dimensional operator system by settingV := span{e,u,u∗}. It is interesting to
ask whether u in V is a complete geometric unitary. To answer this question,
we need to introduce some more definitions and results.

A (concrete) operator system is a self-adjoint unital subspace of a unital
C∗-algebra. Let V be an operator system with the identity e. Consider the
set CPk(V) of all completely positive linear maps ψ : V → Mk. If ψ,φ ∈
CPk(V), then the notation ψ ≤cb φ means that φ− ψ ∈ CPk(V). A matrix
state on V is an element φ ∈ CPk(V) such that φ(e) = Ik. A matrix state
φ ∈ CPk(V) is said to be pure if for every ψ ∈ CPk(V) satisfying ψ ≤cb φ
there is a t ∈ [0,1]⊆ R such that ψ = tφ. If φ : V→Mk is a linear mapping
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such that φ(e) = Ik, then φ is completely positive if and only if it is a complete
contraction (see [5, Corollary 5.1.2]). Thus in the case of an operator system,
Sk(V; e) is the set of all matrix states φ : V→Mk.

Definition 4.1. A matrix convex set in a vector space V is a collection
K = (Kn) of subsets Kn ⊆Mn(V) such that∑

i

γ∗
i xiγi ∈Kn

for all xi ∈Kni and γi ∈Mni,n for i= 1, . . . , k satisfying
∑

i γ
∗
i γi = In.

Given a collection S = (Sn) of subsets Sn ⊆ Mn(V) for some local con-
vex vector space V, we define the closed matrix convex hull co(S) to be the
smallest closed matrix convex set containing S. We can describe co(S) as the
closure of all elements x ∈Mn(V) of the form∑

i

γ∗
i xiγi ∈Kn

for all xi ∈ Sni and γi ∈Mni,n for i= 1, . . . , k satisfying
∑

i γ
∗
i γi = In.

Definition 4.2. We define a compact matrix convex set to be a matrix
convex subset K = (Kn) of a locally convex vector space V such that each
Kn is compact in the product topology in Mn(V).

Definition 4.3. Suppose that K = (Kn) is a matrix convex set in a vector
space V. A matrix extreme point of K is an element v ∈Kn for some n ∈ N

with the property: whenever

v =

k∑
i=1

γ∗
i viγi,

with vi ∈ Kni and γi ∈ Mni,n (i = 1, . . . , k) such that each γi is a right-

invertible complex matrix satisfying
∑k

i=1 γ
∗
i γ = In, we have each ni = n and

v = uiviui for some unitary ui ∈Mn.

We denote by ∂Kn the (possibly empty) set of matrix extreme points in
Kn.

If V is a 3-dimensional operator system, then it has a basis in a particularly
useful form: V = span{e,u,u∗}, where u is called the “generator” of V. We
can easily get the following proposition from [6, Theorem 3.1 and Theorem 3.2]
as well as [6, Proposition 5.2].

Lemma 4.4. Assume that V := span{e,u,u∗} is a 3-dimensional system in
a unital C∗-algebra and that ‖u‖ = 1 and T ⊆ σ(u), where σ(u) denotes the
spectrum of u. Then u is a complete strict geometric unitary.
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Proof. Let S := (Sn(V; e))n∈N. Then S is a compact matrix convex set in
the point-norm topology (see [6] for details). Thus, [6, Theorem 3.2] tells us
that S is the closure of the matrix convex hull of the matrix extreme points
of S . Then for any k ∈N and x ∈Mk(V),

‖x‖k = sup
{∥∥ϕk(x)

∥∥ : ϕ ∈ Sn(V; e), n ∈N
}

= sup
{∥∥φk(x)

∥∥ : φ ∈ ∂Sn(V; e), n ∈N
}
.

Moreover, [6, Theorem 3.1] together with [6, Proposition 5.2] tells us that

‖x‖k = sup
{∥∥φk(x)

∥∥ : φ ∈ ∂Sn(V; e), n ∈N
}

= sup
{∥∥φk(x)

∥∥ : φ ∈ S1(V; e) and
∣∣φ(u)∣∣ = 1

}
.

This completes the proof. �

Theorem 4.5. Assume that V := span{e,u,u∗} is a 3-dimensional system
in a unital C∗-algebra, where u is an isometry. Then u and u∗ are complete
strict geometric unitaries.

Proof. We can assume that V ⊆ L(H) on a Hilbert space H. If u is a
unilateral shift operator on H, then sp(u) = sp(u∗) =D (the closed unit disc)
by [8, the solution of Problem 82]. It follows from Lemma 4.4 that ncb(V;u) =
ncb(V;u∗) = 1. If u is an isometry, we recall from [8, Problem 149] that every
isometry is either a unitary, or a direct sum of one or more copies of the
unilateral shift, or a direct sum of a unitary operator and some copies of the
unilateral shift. Using Proposition 2.6, we obtain the required result. �

Acknowledgments. The author is grateful to the referee for his helpful com-
ments and suggestions. The author would like to express his sincere gratitude
to his supervisor Chi-Keung Ng for his valuable suggestions and whole-hearted
encouragement.

References

[1] C. Akemann and N. Weaver, Geometric characterizations of some classes of operators

in C∗-algebras and von Neumann algebras, Proc. Amer. Math. Soc. 130 (2002), 3033–
3037. MR 1908927

[2] W. B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141–224.
MR 0253059

[3] J. K. Brookso and P. W. Lewis, Linear operators and vector measures, Trans. Amer.
Math. Soc. 291 (1974), 139–162. MR 0338821

[4] P. Bandyopadhyay, K. Jarosz and T. S. S. R. K. Rao, Unitaries in Banach spaces,

Illinois J. Math. 48 (2004), 339–351. MR 2048228

[5] E. G. Effros and Z. J. Ruan, Operator spaces, London Mathematical Society Mono-

graphs, New Series, vol. 23, Oxford Univ. Press, Oxford, 2000. MR 1793753

[6] D. R. Farenick, Pure matrix states on operator system, Linear Algebra Appl. 393

(2004), 149–173. MR 2098611

[7] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325–338.

MR 0043392

http://www.ams.org/mathscinet-getitem?mr=1908927
http://www.ams.org/mathscinet-getitem?mr=0253059
http://www.ams.org/mathscinet-getitem?mr=0338821
http://www.ams.org/mathscinet-getitem?mr=2048228
http://www.ams.org/mathscinet-getitem?mr=1793753
http://www.ams.org/mathscinet-getitem?mr=2098611
http://www.ams.org/mathscinet-getitem?mr=0043392


COMPLETE GEOMETRIC UNITARIES IN OPERATOR SPACES 645

[8] P. R. Halmos, A Hilbert space problem book, 2nd rev. and enlarged ed., Graduate Texts
in Mathematics, vol. 19, Springer, New York, 1982. MR 0675952

[9] X. J. Huang and C. K. Ng, An abstract characterization of unital operator spaces,
J. Operator Theory 67 (2012), 289–298. MR 2881544

[10] C. W. Leung, C. K. Ng and N. C. Wong, Geometric unitaries in JB-algebras, J. Math.
Anal. Appl. 360 (2009), 491–494. MR 2561247

[11] A. Rodriguez, Banach space characterizations of unitaries: A survey, J. Math. Anal.
Appl. 369 (2010), 168–178. MR 2643856

Xu-Jian Huang, Department of Mathematics, Tianjin University of Technology

300384, P.R. China

E-mail address: huangxujian86@gmail.com

http://www.ams.org/mathscinet-getitem?mr=0675952
http://www.ams.org/mathscinet-getitem?mr=2881544
http://www.ams.org/mathscinet-getitem?mr=2561247
http://www.ams.org/mathscinet-getitem?mr=2643856
mailto:huangxujian86@gmail.com

	Introduction
	Operator spaces characterizations of complete geometric unitaries
	Complete geometric unitaries in the injective tensor product
	Complete geometric unitaries in 3-dimensional operator systems
	Acknowledgments
	References
	Author's Addresses

