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WHITNEY’S EMBEDDING THEOREM FOR
PSEUDO-HOLOMORPHIC DISCS

YAT-SEN WONG

Abstract. We prove an analog of Whitney’s embedding theorem
for pseudo-holomorphic discs.

1. Introduction

Thom’s transversality theorem and Whitney’s approximation theorem are
useful tools in analysis and geometry. They are proved by local perturba-
tions and use cut-off functions to obtain a global result. Since there is no
holomorphic cut-off functions in complex analytic category, we might need a
global perturbation in order to prove the corresponding results. Kaliman and
Zaidenberg [3] proved the jet transversality theorem for any holomorphic map-
ping from a Stein manifold to a complex manifold if the domain of the initial
map is shrinked. Forstneric̆ [4] proved the a similar result without shrinking
the domain, but the target space is required to be either subelliptic or satis-
fies the Oka property. In almost complex category, Sukhov and Tumanov [1]
proved the Thom’s transversality theorem and Whitney’s immersion theorem
for pseudo-holomorphic discs. In this paper, we show Whitney’s embedding
theorem holds for pseudo-holomorphic discs.

Theorem 1.1. Let (M,J) be a C∞-smooth almost complex manifold with
dimCM > 2, fix m ≥ 0 and let f0 : D→M be a pseudo-holomorphic disc of
class Cm(D). Then there exists a pseudo-holomorphic embedding f : D→M
arbitrarily close to f0 in Cm(D).

2. Pseudo-holomorphic discs and Cauchy–Green integral

We first recall some basic results in several complex variables. Let D be
the unit disc in C and let Jst be the standard almost complex structure of Cn.
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Suppose (M,J) is an almost complex manifold, a smooth map f : D→M is
called a pseudo-holomorphic disc if

df ◦ Jst = J ◦ df.
Fix a positive integer k and a real number 0<α< 1. We denote by Cα(D) the
space of functions on D satisfying the Hölder condition with Hölder index α.
We denote

Ck,α(D) =
{
f ∈Ck(D)|the kth partial derivatives of f is in Cα(D)

}
.

The main tool that we will use in this paper is the Cauchy–Green integral

Tu(ζ) =
1

2πi

∫
D

u(ω)dω ∧ dω

ω− ζ
.

The following properties of the Cauchy–Green integral can be found in [2]:

Corollary 2.1.

(1) Let p > 2. If f ∈ Lp(D), then ∂ζTf = f in the sense of distribution, where
ζ ∈D.

(2) Let k ≥ 0 be an integer and 0 < α < 1, then T : Ck,α(D)→ Ck+1,α(D) is
bounded.

3. Surjectivity of the jet map

Let B1,B2 be n× n matrix functions on D of class Lp(D). Consider the
solution of the equation

uζ =B1u+B2u.(1)

Fix τ ∈D, we define an operator

Pu= u− T (B1u+B2u) + T (B1u+B2u)(τ).

By using a similar proof in Theorem 3.1 of [1], with changing the evaluation
point from the origin of D to τ , we have the following:

Theorem 3.1. Let B1,B2 be n× n matrices in Lp(D), p > 2 and τ ∈D.

(1) Let w1, . . . ,wd form a basis of kerP over R and let r > 2p(p− 2)−1, then
there exists holomorphic polynomial vectors p1, . . . , pd with p1(τ) = · · ·=
pd(τ) = 0 such that the operator P̃ : Lr(D)→ Lr(D) defined by

P̃ u= Pu+
d∑

j=1

(
Re(u,wj)

)
pj

has trivial kernel. The polynomials pj can be chosen to be arbitrar-
ily small. (Here (·, ·) means the inner product for u = (u1, . . . , un), v =
(v1, . . . , vn)

(u, v) =

n∑
j=1

i

2

∫
D

ujvj dζ ∧ dζ.)
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(2) If B1,B2 ∈ Ck,α(D),0 < α < 1 (resp. W k,p(D)) then P̃ is an invertible

bounded operator in Ck+1,α(D) (resp. W k+1,p(D)). The function φ= P̃ u
is holomorphic if and only if u satisfies equation (1).

Now we are going to prove the existence of solution of equation (1) with
prescribed value at two given points.

Theorem 3.2. Let B1,B2 be n × n matrix functions on D of class
Ck−1,α(D), k ≥ 1,0 < α < 1. Then for all ζ1, ζ2 ∈ D, a1, a2 ∈ Cn, there ex-
ists a solution u of equation (1) such that u ∈ Ck,α(D) and

u(ζ1) = a1, u(ζ2) = a2.

Proof. By the Theorem 5.1 in [1], there exists u1 ∈ Ck,α(D) such that
u1(ζ1) = a1. Let u(ζ) = u1(ζ) + (ζ − ζ1)w(ζ) where w has to be determined.
If we require B1u+B2u= uζ and u(ζ2) = a2, then w has to satisfy

B1(ζ)w(ζ) +B2(ζ)
ζ − ζ1
ζ − ζ1

w(ζ) =wζ(ζ)(2)

and

w(ζ2) =
a2 − u1(ζ2)

ζ2 − ζ1
� φ which is a constant vector.

Note that B̂2(ζ) =B2(ζ)
ζ−ζ1
ζ−ζ1

∈ Lp(D) for all 2< p <∞, therefore we can

apply Theorem 3.1 with τ = ζ2 and B2 = B̂2. Set w = P̃−1(φ), then we have

w ∈ W 1,p(D) for all 2 < p < ∞, hence w ∈ Cα(D), therefore φ = P̃w(ζ2) =

Pw(ζ2) =w(ζ2), and P̃w = φ implies wζ =B1w+ B̂2w.

It remains to show that u is in the class Ck,α(D). We first choose 0< r < 1
so that Dr, the disc centered at the origin with radius r, satisfying Dr ⊂D and

ζ1 ∈ Dr. Note that the coefficient matrices B1, B̂2 is in Ck−1,α(D \ Dr) and
it is proved that w ∈ Cα(D), so we can apply bootstrapping to the equation

P̃w = φ to conclude that w is in Ck,α(D \Dr).
Note that the function v(ζ) = (ζ − ζ1)w(ζ) satisfies equation (1), then we

have

v(z) = T (B1v+B2v)(z) +ψ(z)(3)

for some vector ψ(z) holomorphic on D and in Cα(D). We claim that ψ ∈
Ck,α(∂D): write T (B1v+B2v)(z) as

1

2πi

∫
Dr

B1v+B2v

ζ − z
dζ ∧ dζ +

1

2πi

∫
D\Dr

B1v+B2v

ζ − z
dζ ∧ dζ,

for which we understand it as an integration applied to each entry of the vector
function. Now the first term is holomorphic on ∂D since the function 1

ζ−z is

holomorphic in z on ∂D whenever ζ is in Dr, hence it is in Ck,α(∂D). The
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second term is in Ck,α(D \Dr) since v ∈ Ck,α(D \Dr) and B1,B2 ∈ Ck−1,α(D \
Dr). Combining with the fact that v ∈ Ck,α(D \Dr), we have ψ ∈ Ck,α(∂D).

Now ψ is holomorphic in D and in Ck,α(∂D), hence by the regularity of
Laplace operator we have ψ ∈ Ck,α(D) (see, for example, [5]). By using v ∈
Cα(D), we can apply bootstrapping to the equation

v = T (B1v+B2v) + ψ

to conclude that v, and hence u, is in fact in Ck,α(D). �

4. Approximation by embedding pseudo-holomorphic discs

Given f0 : D→M a pseudo-holomorphic disc of class Cm(D), we first use
Theorem 1.1 in [1] to approximate f0 by a C∞(D) pseudo-holomorphic im-
mersion f1 : D→M , so that f1 is close to f0 in Cm(D).

For 0 < r < 1, the function z 	→ f2,r(z) = f1(rz) is arbitrarily close to f1
in Cm(D) as r approaches 1: By Nash’s embedding theorem, we can assume
M = CN for some N sufficiently large, then the result can be easily proved
by the fact that the i-derivative f (i) is uniformly continuous on D.

For all ε > 0, choose r0 so that f2,r0 is ε-close to f1 in Cm(D), for simplicity
denote f2,r0 by f2. Note that f2 is an immersed pseudo-holomorphic disc.

Lemma 4.1. Let

R= inf
{
|c1 − c2| : c1, c2 ∈D, c1 
= c2, f2(c1) = f2(c2)

}
,

then R> 0.

Proof. Suppose R = 0, then there exists two sequences cn1 , c
n
2 in D such

that |cn1 − cn2 | → 0 as n→∞, which means cnj → c0 ∈D for each j = 1,2. Note
that r0c0 ∈ D and f1 is an immersion at r0c0 implies f1 is injective on some
neighborhood N ⊂ D of r0c0. However for n large enough, all r0c

n
1 , r0c

n
2 be-

long to N and we have f1(r0c
n
1 ) = f2(c

n
1 ) = f2(c

n
2 ) = f1(r0c

n
2 ), a contradiction.

Therefore, R> 0. �

Define

U =

{
(ζ1, ζ2) ∈D×D : |ζ1 − ζ2|<

R

2

}
.

Let Vk,α be the space of all solutions of equation (1) in the class Ck,α(D).
For any function f : X → Y , let Eζ1,ζ2f =Ef(ζ1, ζ2) be the 0-jet of f × f at
ζ1, ζ2 ∈X defined by

Eζ1,ζ2f =
(
ζ1, f(ζ1), ζ2, f(ζ2)

)
.

By using the compactness argument as in Proposition 5.2 of [1], we have
the following corollary.
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Corollary 4.2. For B1,B2 ∈ Ck−1,α(D) (k ≥ 1,0< α< 1), there exists a
subspace V ⊂ Vk,α with dimV <∞, such that for all (ζ1, ζ2) ∈ (D× D) \ U ,
the mapping u 	→ (u(ζ1), u(ζ2)) is surjective from V onto C2n.

Before proving Theorem 1.1, we need some results from [1]. Assume for the
moment that f2 : D→M is a pseudo-holomorphic disc of class Ck,α(D) where
k is large and 0 < α < 1, the particular values of k and α are unimportant.
For every point p ∈ M there exists a chart ψ : U ⊂ M → Cn such that p ∈
U,ψ(p) = 0, and for the push-forward ψ∗J = dψ ◦ J ◦ dψ−1 we have ψ∗J(0) =
Jst. It is proved in [1] that it is possible to choose such chart ψζ for each p=
f2(ζ) and ψζ Ck,α-smoothly depends on ζ ∈D. Furthermore, a map f : D→
M close to f2 is in Ck,α if and only if the map ζ 	→ g(ζ) � ψrζ(f(ζ)) ∈ Cn

satisfies an equation of the form

gζ =A(ζ, g)gζ + b(ζ, g),(4)

where b is some smooth matrix function and A(ζ, ·) is the complex matrix of

ψrζ
∗ J .
Let g0 be a solution of (4) in Ck,α(D) and put A0(ζ) = A(ζ, g0(ζ)). For

any other solution g of (4) in the same class, put h= g −A0g, so h and g is
in one-to-one correspondence. By a direct computation equation, (4) can be
written as

hζ =K0hζ +K1h+K2h+ q(5)

for some matrix functions K0,K1,K2, q. Put h0 = g0 −A0g0. Equation (5) is
equivalent to

h= T0(K0hζ +K1h+K2h+ q) + φ+ φ0,

where φ is holomorphic, φ0 is a fixed holomorphic function such that (5) holds
with h= h0 and φ= 0.

Consider the C∞ map

h 	→ F0(h) = φ= h− T0(K0hζ +K1h+K2h+ q)− φ0,

and let P = F ′
0(h0). By Theorem 3.1, we can modify F0 to get a new function

F : h 	→ F (h) where

F (h) = h− T0(K0hζ +K1h+K2h+ q)− φ0 +
d∑

j=1

Re(wj , h− h0)pj .

Note that the Fréchet derivative of F at h0 has the form

F ′(h0)u= u− T0(B1u+B2u) +

d∑
j=1

Re(wj , u)pj , B1,B2 ∈ Ck−1,α(D).

In fact F ′(h0) is an isomorphism, hence by the inverse function theorem F
gives a one-to-one correspondence between all solutions of (5) close to h0 and
all holomorphic functions φ close to 0 in Ck,α(D).
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As a conclusion we have a one-to-one correspondence f ↔ h between pseu-
do-holomorphic disc f close to f2 and solutions h of the equation (5) close
to h0.

Proof of Theorem 1.1. Let J1 = {0-jet of f × f : (D× D) \ U →M ×M |f
is J-holo}, J2 = {0-jet of h× h : (D×D) \U →C2n|h satisfies (5)}

The correspondence f ↔ h gives rise to a diffeomorphism

Ψ : W → W̃

defined in the neighborhood W ⊃Ef2((D×D) \ U) in J1, W̃ =Ψ(W ) in J2.
Let Δ = {(ζ1, x, ζ2, x) ∈ D ×M × D ×M |(ζ1, ζ2) ∈ (D × D) \ U,x ∈M} be a
subset of J1, then Ef is transversal to Δ if and only if the corresponding Eh

is transversal to Δ̃ = Ψ(Δ). (Here, we only consider the case Δ∩W 
= ∅ and
denote Δ∩W by Δ again, otherwise Ef �Δ for small perturbation of f2.)

Let u1, . . . , uN be the basis of V ⊂ Vk,α, the space of all solutions of uζ =

B1u + B2u in the class Ck,α(D). Let φj = F ′(h0)(uj) and φs =
∑

l slφl for
s= (s1, . . . , sN ) ∈RN . The map

Φ :
(
(D×D) \U

)
×RN → J2,

(ζ1, ζ2, s)→EF−1(φs)(ζ1, ζ2)

is defined for small s ∈RN . By Proposition 4.2, the mapping is a submersion
for s= 0, (ζ1, ζ2) ∈ (D× D) \ U , by shrinking the domain of s in RN , we see
that Φ is a submersion. Hence by parametric transversality, there is s ∈ RN

arbitrarily close to 0 such that Eh= (2)jF−1(φs) is transversal to Δ̃, hence
the corresponding Ef is transversal to Δ.

Now Ef is transversal to Δ implies Ef((D×D) \U)∩Δ= ∅. To see this,
first observe that dimR((D×D) \U) = 4, so

dimREf
(
(D×D) \U

)
= 4, dimR

((
(D×D) \U

)
×M

)
= 4+ 2n

and

dimR(D×M ×D×M) = 4+ 4n.

Therefore, if Ef((D×D)\U)∩Δ is nonempty, it will imply 4+4+2n≥ 4+4n
which gives dimCM = n≤ 2, a contradiction.

Finally, we need to check that f is injective on D, suppose there exists ζ1 
=
ζ2 in D with f(ζ1) = f(ζ2), then Ef((D×D) \U)∩Δ= ∅ implies (ζ1, ζ2) ∈ U ,
which means |ζ1 − ζ2| < R

2 , but this contradicts the definition of R. Hence,

the immersed pseudo-holomorphic disc f is injective. Because D is compact,
f is in fact an embedding. Therefore, we have found an embedded pseudo-
holomorphic disc f C∞(D) arbitrarily close to f2 and hence to f0 in Cm(D).
The proof of Theorem 1.1 is complete. �
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