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HERMITIAN ALGEBRA ON THE ELLIPSE

MIHAI PUTINAR AND CLAUS SCHEIDERER

To John P. D’Angelo with admiration and best wishes

Abstract. The subtle distinction between hermitian sums of
squares and sums of squares, regarded as positivity certificates of

a polynomial restricted to a real algebraic variety, is analyzed on
the simplest, yet very relevant, example: an ellipse.

1. Introduction

The present note links two recent works [6], [7]. When dealing with the
most general and abstract setting of hermitian sums of squares on real al-
gebraic varieties we have observed that restricting the mighty real algebraic
and functional analytic machinery to the case of the ellipse has much to offer.
Of course, with some elementary ad-hoc arguments in place, which make the
body of the following pages. For a full account of the real algebraic geometry
context this essay belongs to see [9].

Let z = (z1, . . . , zd) ∈ Cd denote the complex variable in a d-dimensional
hermitian space. We decompose z = x+ iy ∈ R

d + iRd into real and imagi-
nary part, and consider the algebras C[z],C[z, z],R[x, y] of complex analytic
polynomials, complex polynomials, respectively real polynomials. The algebra
C[z, z] carries an involution

f =
∑
α,β

aαβz
αzβ �→ f∗ =

∑
α,β

aαβz
βzα,

so that R[x, y] = {f ∈C[z, z];f = f∗} is the ring of fixed elements.
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Let I ⊂ R[x, y] be an ideal, and let X = VR(I) be the real zero set of I in
R

2d =C
d. The elements of the quotient algebra A=R[x, y]/I can be regarded

as real polynomial functions along X . We denote by ΣA2 the convex cone of
sums of squares in A. Also, we denote Σh to be the convex cone of sums of
hermitian squares |p(z)|2, where p ∈C[z]. On the quotient algebra A, we set
ΣhA= (Σh + I)/I . Thus, the elements of ΣhA are the cosets

∑
j |pj(z)|2 + I

in A, where pj ∈C[z] are finitely many complex analytic polynomials.
There are nontrivial examples of ideals for which ΣhA contains all strictly

positive polynomials on X . The oldest and of highest impact is known as
the Riesz–Fejér Theorem, which states that every nonnegative trigonometric
polynomial is equal to a single hermitian square (on the trigonometric circle
T). A multi-variate analogue of it for the d-dimensional torus exists (that is
I = (|z1|2 − 1, . . . , |zd|2 − 1) and X = T

d) with a necessary stronger assump-
tion: positive polynomials belong to ΣhA. Along the same lines is Quillen’s
Theorem [8], stating that every positive polynomial on the unit sphere of Cd

agrees with a sum of hermitian squares on the sphere, see also [2].
A rather abstract characterization of all ideals I ⊂ C[z, z] with Quillen’s

property (that a positive polynomial on X = VR(I) belongs to Σh(R[x, y]/I))
was given in [6]; another proof of Quillen’s theorem and a series of examples of
strictly pseudoconvex, real algebraic boundaries X without Quillen’s property
are also contained in [6]. A filtration of obstructions, quantified by a hermitian
complexity rank, was introduced in [3], ranging from Quillen’s property to the
existence of a complex curve in X .

The ellipses in C offer a surprisingly rich framework to test such novel
concepts related to hermitian sums of squares. An early and very lucid work
dealing with moment problems and positive polynomials on planar algebraic
curves (specifically, circles or lines in general position) goes back to a 1933
note by M. G. Krein [4]. Later on, moment problems along specific curves were
thoroughly investigated, see for instance [10], and in particular the Bernoulli
lemniscate case discussed there.

For a better perspective on the rather lengthy preliminaries, the reader may
want to have first a glance at the main results (Theorem 3.3 and Corollary 3.4),
stated and proved at the end of the note.

We thank the anonymous referee for several constructive comments.

2. Abstract setting and general results

We start with an ideal I ⊂ R[x, y] ⊂ C[z, z], where z = x+ iy ∈ C
d. Note

that the set Σh+I contains R+ and it is a semi-ring (i.e., closed under addition
and multiplication). A convex cone C ⊂A is called archimedean if for every
element f ∈ A there exists a constant c ∈ R such that c ± f ∈ C. When
applied to a semi-ring, such as C = Σh + I , archimedianity is equivalent to
the existence of a constant c ∈R such that c±xk, c± yk ∈C for all 1≤ k ≤ d.
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The importance of the archimedianity property for our note is derived from
the following Representation theorem, see [5] for full details and a proof.

Theorem 2.1. Let I ⊂R[x, y] be an ideal. The following are equivalent:

(a) The semi-ring Σh + I is archimedean;
(b) The real zero set VR(I) is compact and Σh + I contains every f ∈A with

f > 0 on VR(I);
(c) The ideal I contains a polynomial of the form ‖z‖2 + p− a, where p ∈Σh

and a≥ 0 is a real number.

An ideal I fulfilling the conditions in the statement will be said to possess
Quillen’s property. As an application, it follows that the ideals of the sphere
(‖z‖2−1) and the torus (|z1|2−1, . . . , |zd|2−1) satisfy the above requirements.
In other terms, every positive polynomial on the sphere, or on the torus, is
a sum of hermitian squares restricted on the respective varieties. Due to its
rather abstract form, condition (c) is not easy to check on examples. A couple
of necessary conditions for Quillen’s property were recently studied in [3], [7].

Following a recent trend in real algebra, often it is relevant to evaluate poly-
nomials on elements of a noncommutative *-algebra. One classical instance
is offered by the hereditary functional calculus introduced in operator the-
ory by Colojoara and Foias (we refer to [7] for a reference and more details).
Specifically, if T = (T1, . . . , Td) is a d-tuple of commuting linear bounded op-
erators acting on a Hilbert space H , and p(z, z) ∈ C[z, z], one defines the
operator ψT (p) by replacing zk, zk by Tk, T

∗
k ,1≤ k ≤ d, respectively, and ar-

ranging all T ∗
k ’s to the left of Tj ’s, monomial by monomial. For instance,

ψT (z1z2z3) = T ∗
2 T1T3. Note that there is no ambiguity in the definition,

thanks to the commutativity of the tuple T .
One obtains in this way a linear unital map

ψT : C[z, z]−→ L(H)

which is close to being multiplicative:

ψT

(
f1(z)f2(z, z)f3(z)

)
= ψT

(
f3(z)

)
ψT

(
f2(z, z)

)
ψT

(
f1(z)

)
.

In particular, ψT (h)≥ 0 whenever h ∈Σh.
The tuple T is called subnormal if H is a closed subspace of a larger

Hilbert space K and there exists a commutative tuple of normal operators
N = (N1, . . . ,Nd) with the property that every Nk leaves H invariant and
Nk|H = Tk,1≤ k ≤ d.

Putting the hereditary functional calculus at work in conjunction with a
well known subnormality criterion, one obtains the following complement to
the main theorem above. Details appear in [7].

Corollary 2.2. The equivalent conditions in Theorem 2.1 imply:

(d) Every commutative d-tuple of linear bounded operators T satisfying
ψT (I) = 0 is subnormal.
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An accessible measure of the distance of a real ideal I ⊂ R[x, y] from pos-
sessing Quillen’s property is offered by the hermitian complexity of I , in-
troduced in [3]. More precisely, the ideal I has hermitian complexity N ∈
N ∪ {∞}, if, roughly speaking, there are N distinct points pj ∈ C

d with the
property

(1) h(pj , pk) = 0, h ∈ I,1≤ j, k <N + 1,

and N is maximal with this property. As a matter of fact, multiplicities are
allowed, but we do not need here the exact definition, see for details [3].

An ideal I of hermitian complexity N > 1 and VR(I) compact does not have
Quillen’s property for a very simple reason. Namely, assume that two distinct
points p1, p2 ∈ Cd are subject to condition (1). Since an element f ∈ I +Σh

satisfies Cauchy–Schwarz inequality:∣∣f(p1, p2)∣∣2 ≤ f(p1, p1)f(p2, p2),

we infer f(p1, p2) = 0 whenever f(p1, p1) = f(p2, p2) = 0. On the other hand,
there are positive polynomials F on VR(I) which violate the vanishing as-
sumption (1). For instance, one can choose an element h ∈ A satisfying
h(p1, p1) = h(p2, p2) = 0 but h(p1, p2) = 1 and choose F = ε + h2 for ε > 0
small. Therefore, F /∈ I +Σh.

Just for illustration, to the other end of the hermitian complexity chain lies
the following result proved in [3].

Theorem 2.3. A principal ideal I ⊂ R[x, y] has infinite hermitian com-
plexity if and only if VR(I) contains a complex algebraic curve.

Constructive methods of computing the hermitian complexity of an ideal
are presented in [3].

3. The ellipse

Let α ∈ [0,1/2) be a parameter and let X ⊂R
2 =C be the ellipse of equa-

tion
φ(z, z) = |z|2 − αz2 − αz2 − 1 = 0,

or in real coordinates

(1− 2α)x2 + (1+ 2α)y2 = 1.

We denote by (φ) the principal ideal of R[x, y] generated by φ.

Proposition 3.1. Assume α ∈ (0,1/2) and let C > 1
1−2α . Then C − |z|2

is a positive polynomial on X , but there is no element h ∈ Σh such that C −
|z|2 − h ∈ (φ).

Proof. Clearly |z|2 ≤ 1
1−2α for all z ∈ X . Assume by contradiction that

there is p1, . . . , pk ∈C[z] and h ∈C[z, z] such that

C − |z|2 =
∣∣p1(z)∣∣2 + · · ·+

∣∣pk(z)∣∣2 + φ(z, z)h(z, z).
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The leading form of a polynomial q(z, z)=
∑

a,b cabz
azb is

∑
|a|+|b|=d cabz

azb,

where d is the highest degree |a|+ |b| occuring in q (i.e., with cab �= 0). The
leading form of a product is the product of the leading forms of the factors.
The leading form of a sum of hermitian squares is a scalar times |z|2n, for some
n≥ 0. Since α �= 0, the leading form of φ does not have this shape, and hence
it cannot divide the former. Therefore, an identity as above is impossible. �

On the other hand, for α= 0 a decomposition of the form

C − |z|2 =
∣∣p1(z)∣∣2 + (

|z|2 − 1
)
h(z, z)

exists, in virtue of Riesz–Fejér theorem.
We turn now to the hermitian complexity degree of the ellipse, and start

with analyzing whether there are pairs of points (λ,λ), (μ,μ) ∈X such that

φ(λ,μ) = φ(μ,λ) = 0.

Elementary algebra yields

λ= α(λ+ μ) = μ,

hence the ellipse has hermitian complexity degree equal to 1, not relevant for
contradicting Quillen’s property.

One step further, one can measure the distance from Quillen’s property via
functional calculi of linear operators. First, we treat the finite dimensional
setting.

Proposition 3.2. Let T ∈ L(CN ) satisfy the noncommutative equation of
the ellipse

(2) T ∗T − αT 2 − αT ∗2 = I.

Then T is normal: T ∗T = TT ∗.

Proof. Let M ⊂C
N be an invariant subspace of T , so that

T =

(
T11 T12

0 T22

)
,

with respect to the decomposition CN =M⊕M⊥. Then a direct computation
implies that T11 satisfies the same equation.

Therefore, if λ is an eigenvalue of T , then φ(λ,λ) = 0. On the other hand,
if T is not normal, then there exists a two dimensional subspace M ⊂C

N with
the property that the restriction T11 of T to M admits a matrix decomposition
of the form

T11 =

(
λ a
0 μ

)
,

with λ,μ in the spectrum of T and a �= 0.
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Equation φ(T11, T
∗
11) = 0 implies

|μ|2 + |a|2 − αμ2 − αμ2 = 1,

whence a= 0, a contradiction. �
And finally we consider the infinite dimensional situation.

Theorem 3.3. Assume 0≤ α < 1/2 and let T ∈ L(H) be a linear bounded
operator on a Hilbert space satisfying the noncommutative ellipse equation (2).
Then T is subnormal.

Proof. We identify below a scalar λ ∈ C with the multiple of the identity
operator λI . Let M > 1 be a sufficiently large constant, so that the operator
M + α

M T 2 is invertible. Rewrite equation (2) as(
M +

α

M
T ∗2

)(
M +

α

M
T 2

)
=M2 − 1 + T ∗T +

α2

M2
T ∗2T 2.

Denote

U =
√

M2 − 1

(
M +

α

M
T 2

)−1

,

V = T

(
M +

α

M
T 2

)−1

,

W =
α

M
T 2

(
M +

α

M
T 2

)−1

,

remark that [V,W ] = [U,V ] = [U,W ] = 0 and

U∗U + V ∗V +W ∗W = I.

According to Athavale’s theorem [1], or Corollary 2.2 above, the triple of
operators (U,V,W ) is subnormal. The operator U is invertible and

T =
√

M2 − 1U−1V.

Therefore, T is a subnormal operator, as the result of a rational functional
calculus applied to the subnormal tuple (U,V,W ). �

Corollary 3.4. Let φ(x, y) be the equation of an ellipse E which is not
a circle in C= R

2. Let P+(E) denote the set of all nonnegative polynomials
on E. Then the convex cone (φ) + Σh is dense in P+(E), with respect to the
finest locally convex topology of R[x, y]/(φ).

The finest locally convex topology is defined so that all linear functionals
on R[x, y]/(φ) are continuous.

In virtue of Haviland’s theorem, the above corollary can equivalently be
stated as a solution to a moment problem: Every linear functional L ∈ (R[x,
y]/(φ))′ which is nonnegative on hermitian sums of squares of polynomials is
represented by a positive Borel measure supported by the ellipse E.
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Proof. Let L ∈ (R[x, y]/(φ))′ be a linear functional which is nonnegative on
Σh, and assume φ(x, y) = (1− 2α)x2 + (1+ 2α)y2 − 1,0<α< 1/2, as before.
Then L defines a nonnegative sesquilinear form on C[z, z], by

〈f, g〉= L(fg).

Note that Cauchy–Schwarz inequality∣∣〈f, g〉∣∣2 ≤ 〈f, f〉〈g, g〉, f, g ∈C[z, z]

holds, as a consequence of LΣh
≥ 0. Moreover,

(1− 2α)‖xf‖2 + (1+ 2α)‖yf‖2 = ‖f‖2, f ∈C[z, z],

implying that the multiplication operators by x, y are bounded on C[z, z].
In particular, the multiplication operator T by z = x+ iy is bounded on

the subspace C[z], and it satisfies equation (2). According to Theorem 3.3,
the operator T is subnormal, with normal extension N , the pull back via
the same rational map of the minimal normal extension (Ũ , Ṽ , W̃ ) of the
spherical isometry (U,V,W ) appearing in the proof of theorem above. Note
that equation

(3)
〈(
Ũ∗Ũ + Ṽ ∗Ṽ + W̃ ∗W̃

)
x,x

〉
= ‖x‖2

is equivalent to x ∈ Ker(Ũ∗Ũ + Ṽ ∗Ṽ + W̃ ∗W̃ − I), thus, it defines a joint

reducing subspace for the normal triple (Ũ , Ṽ , W̃ ), containing the Hilbert
space where (U,V,W ) acts. By the minimality of the normal extension, we
find that identity (3) holds everywhere. The reader can consult [1] for more
details about the structure of the minimal normal extension of a spherical
isometry. Consequently the normal operator N also satisfies equation N∗N −
αN2 − αN∗2 − I = 0. Hence, the spectrum of N is contained in the curve
E, and in virtue of the spectral theorem for normal operators, there exists a
spectral measure Θ, supported by E, and such that

f
(
N,N∗)=

∫
E

f(λ,λ)Θ(dλ)

for all polynomials f(z, z). In particular, for a positive polynomial f ∈ P+(E)
we obtain

L(f) = 〈f,1〉=
〈
f
(
T,T ∗)1,1〉= 〈

f
(
N,N∗)1,1〉

=

∫
E

f(λ,λ)
〈
Θ(dλ)1,1

〉
≥ 0. �

To draw a conclusion of our computations: an ellipse which is not a cir-
cle does not posses Quillen’s property, yet it has hermitian complexity one
and all linear operators satisfying its associated noncommutative equation
are subnormal.
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