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POLYNOMIALS CONSTANT ON A HYPERPLANE AND CR
MAPS OF SPHERES
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Dedicated to Professor John P. D’Angelo on the occasion of his 60th birthday

Abstract. We prove a sharp degree bound for polynomials con-
stant on a hyperplane with a fixed number of nonnegative distinct

monomials. This bound was conjectured by John P. D’Angelo,

proved in two dimensions by D’Angelo, Kos and Riehl and in

three dimensions by the authors. The current work builds upon

these results to settle the conjecture in all dimensions. We also

give a complete description of all polynomials in dimensions 4

and higher for which the sharp bound is obtained. The results

prove the sharp degree bounds for monomial CR mappings of
spheres in all dimensions.

1. Introduction

We are interested in the degree and the number of monomials for polyno-
mials with nonnegative coefficients that are constant on the hypersurface

x1 + · · ·+ xn = 1.

We denote by N(p) the number of nonzero coefficients of a polynomial p. Our
main result is the following.

Theorem 1.1. Let n≥ 2 and let p be a polynomial with non-negative co-
efficients of degree d in n dimensions such that p(x) = 1 whenever x1 + · · ·+
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xn = 1. Then the following inequality holds and is sharp

(1) d≤
{
2N(p)− 3 if n= 2,
N(p)−1
n−1 if n≥ 3.

For n≥ 3, sharp means that for every n and every d there exist examples
for which equality holds. When n= 2 equality can only hold for odd degree,
for even degree there exist examples so that the right hand side is exactly one
larger.

Inequality (1) was conjectured by D’Angelo [3]. The 2-dimensional case
was proved by D’Angelo, Kos and Riehl in [3]. The 3-dimensional case was
proved by the authors in [10]. In this article we use ideas of the 2-dimensional
proof for an induction argument that uses the 3-dimensional result as a base
to obtain the result in dimensions 4 and higher.

In dimensions 4 and higher, we also give a complete description of all poly-
nomials for which inequality (1) is an equality. We note that this description
does not hold in dimensions 2 and 3.

It is instructive to note that no degree bound can hold when n = 1; the
polynomial p(x) = xd gives 1 whenever x = 1, but N(p) = 1 while d can be
arbitrarily large.

We end the introduction with a brief description of the history of the prob-
lem. The motivation of the problem comes from the study of proper holomor-
phic maps between balls in different dimensions. We denote by B

n the unit
ball in n complex dimensions. Faran [5] showed that a proper holomorphic
map from B

2 to B
3 that is sufficiently smooth on the boundary is spherically

equivalent to a monomial map of degree at most 3. It was shown by Forstnerič
[6] that any proper holomorphic map from B

n to B
N , with n≥ 2, is rational if

the map is sufficiently smooth up to the boundary, and for fixed dimensions n
and N the degree is bounded from above by a constant depending only on n
and N .

The bound on the degree in terms of n and N has been studied by various
authors. As mentioned above, Forstnerič [6] proved that a bound exists. The
best currently known bound in the general rational case was proved by Meylan
[11] in n= 2 and extended to n≥ 3 by D’Angelo and Lebl [4]. D’Angelo has
conjectured that the best possible bound for n= 2 is given by d≤ 2N −3, and
for n≥ 3 it is given by d≤ N−1

n−1 . The reader will notice that these are exactly
the same inequalities as those in Theorem 1.1. When N is small compared to
n, then the conjectured bound is known to hold in the general rational case.
When n = 2 and N = 3 it follows from Faran’s work [5] that d ≤ 3. When
n≥ 3 and N ≤ 3n−4, then d≤ 2 by the work of Huang and Ji [7] and Huang,
Ji and Xu [8].

Suppose that the proper holomorphic map f : Bn → B
N is a monomial

map, that is, every coordinate function is a monomial. Of course in this case
the map automatically extends to the boundary, and the properness of the
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map means exactly that

(2)
∥∥f(z1, . . . , zn)∥∥2 = 1 when |z1|2 + · · · |zn|2 = 1,

which we can write as

(3)
∣∣f1(z)∣∣2 + · · ·+

∣∣fN (z)
∣∣2 = 1 when |z1|2 + · · ·+ |zn|2 = 1.

Since every coordinate function fj is a monomial, we get that |f1(z)|2 +
· · ·+ |fN (z)|2 is a real polynomial p in the variables x1, . . . , xn, where xj =
|zj |2. The polynomial p has nonnegative coefficients and (at most) N distinct
nonzero coefficients. Theorem 1.1 therefore implies the following result.

Corollary 1.2. Let n,N ∈N, with n≥ 2 and suppose that f : Bn → B
N is

a monomial map that is proper and of degree d. Then the following inequality
holds and is sharp

(4) d≤
{
2N − 3 if n= 2,
N−1
n−1 if n≥ 3.

We note again that this result was proved by D’Angelo, Kos and Riehl in
[3] for n= 2 and by the authors in [10] for n= 3.

While monomial mappings may seem like a special case, we would like
to note that all known examples of proper rational maps between balls are
homotopic to a monomial map. Furthermore, the first author proved in [9]
that all degree two proper maps between balls are equivalent to monomial
maps.

2. Whitney polynomials

Denote by H the set of polynomials p with nonnegative coefficients that
satisfy p= 1 on the hyperplane x1+ · · ·+xn = 1. We start by giving a method
of constructing examples in H. From now on we write s= x1 + · · ·+ xn. Of
course s itself lies in H. Let p ∈H be a polynomial of degree d, and suppose
that m is a monomial with a positive coefficient such that p − m still has
only non-negative coefficients. Then we can replace m by s times m, in other
words,

(5) p−m+ s ·m ∈H.

Note that if m has degree d, and the coefficient of m is as large as possible,
then p−m+ sm has degree d+1, and has exactly n− 1 nonzero coefficients
more than p. So starting with s, we can repeatedly replace one of the terms
of maximal degree with s times that term, to obtain many examples of any
degree for which N = n+ (d− 1)(n− 1), or N = d(n− 1) + 1. For example
when n = 3 (calling the variables x, y, and z), we could obtain a degree 3
polynomial with 7 monomials by the following procedure:

x+ y+ z(x+ y+ z) = x+ y+ xz + yz + z2,
(6)

x+ y+ xz(x+ y+ z) + yz + z2 = x+ y+ x2z + xyz + xz2 + yz + z2.
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We call polynomials obtained by following this procedure sharp generalized
Whitney polynomials, and note that

(7) d=
N − 1

n− 1
.

As we will see, this is the best possible bound for n ≥ 3, and in fact, for
n≥ 4 these are the only polynomials for which there can be equality.

Theorem 2.1. Let n≥ 4 and let p ∈H. Then (7) holds if and only if p is
a sharp generalized Whitney polynomial.

The following example shows that Theorem 2.1 does not hold for n= 3.

(8) p(x, y, z) = x3 + 3x2z + 3xz2 + z3 + 3xy+ 3yz + y3.

This polynomial can be obtained from the polynomial F = x3 + 3xy + y3 by
substituting x+ z for x. Since F = 1 when x+ y = 1 one immediately sees
that p= 1 when x+ y+ z = 1. The polynomial p has degree 3, has 7 nonzero
coefficients and 3 variables, and 7−1

3−1 = 3. It is clear that p is not a sharp
generalized Whitney polynomial, as the highest degree terms are not of the
form s ·m.

In dimension 2 the equality d = N − 1 is not optimal, in fact N can be
decreased by roughly a factor 2. The map F = x3 + 3xy + y3 is an example
where d = 2N − 3. It was shown by D’Angelo [1] (see also [2]) that such
examples occur for any odd degree.

The sharp polynomials in n = 2 constructed by D’Angelo happen to be
group invariant, see [2]. Sharp polynomials that are group invariant also occur
in n= 3, for example (8) above. However, as a consequence of Theorem 2.1
no sharp polynomials are group invariant when n ≥ 4, as sharp generalized
Whitney polynomials are not group invariant.

3. Newton diagrams

As before, let s= x1+ · · ·+xn and let p ∈H. As p− 1 is divisible by s− 1,
we can define the polynomial

(9) q =
p− 1

s− 1
.

In general, we work with q rather than with p. While the polynomial q can
have negative coefficients, the fact that the coefficients of p are all nonnegative
puts serious restrictions on q, which we discuss in this section.

Definition 3.1. For α ∈ Z
n, we write |α|= α1+α2+ · · ·+αn. Let p−1 =

(s− 1)q as above, where p is of degree d. We define the function D : Zn →
{0, P,N} as follows. Write q in multi-index notation

(10) q(x) =
∑
α

cαx
α.
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If cα does not appear in the expansion, we let cα = 0.

(11) D(α) :=

⎧⎨
⎩

P if cα > 0,
0 if cα = 0,
N if cα < 0.

We call D the Newton diagram of q, and we say that D is the Newton diagram
corresponding to p.

We call the α ∈ Z
n points of D, and we call α a 0-point if D(α) = 0, a

P -point if D(α) = P and an N -point if D(α) =N . We say that the monomial
xα is the monomial associated to α ∈ Z

n and vice-versa. We often identify
points of Zn with the associated monomials.

Let K̂ ⊂ Z
n is the smallest set such that D−1({P,N}) ⊂ K̂, that is K̂

contains all the points where D is nonzero, and such that for some a =
(a1, . . . , an) ∈ Z

n and some k ∈N we have

(12) K̂ =
{
x ∈ Z

n | xj ≥ aj for all j and |x| ≤ k
}
.

We define the size of D as k− |a|+ 1.

Therefore, the Newton diagram of q is an n-dimensional array of P ’s, N ’s,
and 0’s, one for each coefficient of q. For convenience, we include negative
powers in the Newton diagram, even though D(α) = 0 any time α is not in
the positive quadrant. We note that if p−1 has a nonzero constant term then
the size of D is equal to the degree of p.

We generally ignore points α ∈ Z
n where D(α) = 0. We give a graphical

representation of D by drawing a lattice, and then drawing the values of D
in the lattice as circles or spheres. For convenience, when drawing the n= 2
lattice, we put (0,0) at the origin, and then let (0,1) be directed at angle π

3

and (1,0) at angle 2π
3 . Similarly, we depict the diagram for n= 3.

In the figures, we do not draw the circles and spheres corresponding to the
zero coefficients. See Figure 1 for sample diagrams.

We adopt the following terminology from [3] and [10].

Figure 1. Diagrams corresponding to the polynomial
p(x, y) = x3 + 3xy + y3 on the left, and the polynomial from
(8) on the right.
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Definition 3.2. For a Newton diagram D and α ∈ Z
n we define

(13) downk(α) = downk(α1, . . . , αn) := (α1, . . . , αk−1, αk − 1, αk+1, . . . , αn)

to be the function that subtracts 1 from the kth element of α.
We call α ∈ Z

n a sink, if

D(α) =N or 0 and
(14)

D
(
downk(α)

)
= P or 0 for all k = 1, . . . , n,

and at least one of D(α) or D(downk(α)) is nonzero.
Similarly we call α ∈ Z

n a source, if

D(α) = P or 0 and
(15)

D
(
downk(α)

)
=N or 0 for all k = 1, . . . , n,

and at least one of D(α) or D(downk(α)) is nonzero.
When we want to say that α is a sink or a source, but we do not necessarily

need to differentiate, we say α is a node. Define

(16) #(D) := # of nodes in D.

See Figure 2 for a sample two dimensional diagram with sinks and sources
marked. In the diagram sinks and sources are marked with a triangle, with
i for sink and o for source. The vertices of the triangle mark the points that
affect the sink or source. The top vertex marks the α and the bottom two
vertices of the triangle mark down1(α) and down2(α).

Note that the monomials xα, xdown1(α), . . . , xdownn(α) in q are those mono-
mials that when multiplied by (s − 1) are the ones that contribute to the
monomial xα in p− 1 = q(s− 1). Therefore, if α is a sink, then xα in p must
have a positive coefficient. Similarly, if α is a source then xα in p must have
a negative coefficient. The following proposition is then immediate.

Proposition 3.3. Let p be a polynomial such that p− 1 = (s− 1)q. Let D
be the corresponding Newton diagram. If α ∈ Z

n is a sink, then the monomial

Figure 2. The two-dimensional diagram corresponding to
p = x3

1 + 3x1x2 + x3
2 with sinks and sources marked respec-

tively i and o.
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xα has a nonzero positive coefficient in the polynomial p− 1. If α ∈ Zn is a
source then the monomial xα has a nonzero negative coefficient in p− 1. In
particular,

(17) #(D)≤N(p− 1) which implies #(D)− 1≤N(p).

Furthermore, if p ∈H (that is p has all positive coefficients) and p is noncon-
stant, then D has a unique source at α= (0, . . . ,0), and otherwise D has only
sinks.

In [10], we have further symmetrized the problem to avoid the change in
signs for sinks and sources. In most of the proofs in this paper the symmetric
version is not necessary and may in fact obscure the main argument. Certain
parts of the argument, however, will require the symmetric version in two
dimensions, and we therefore make the following definition.

Definition 3.4. Fix d. Let

(18) Hd =
{
(a, b, c) ∈ Z

3 : a+ b+ c= d, and a, b, c≥ 0
}
.

A 2-dimensional symmetric diagram is a function

(19) D : Hd →{P,N,0}.
We call (a, b, c) ∈ Z

3 a symmetric node or just node if D is nonzero on at
least one of (a − 1, b, c), (a, b − 1, c), and (a, b, c − 1), and D does not take
both the values P and N on (a− 1, b, c), (a, b− 1, c), and (a, b, c− 1). In other
words, (a, b, c) is a node if the direct image

(20) D
({

(a− 1, b, c), (a, b− 1, c), (a, b, c− 1)
})

= {0, P} or {0,N}.
As before let #(D) denote the number of nodes in D.

Proposition 3.5. Let Q(x1, x2, x3) be a homogeneous polynomial:

(21) Q(x1, x2, x3) =
∑
|α|=d

Cαx
α

and define

(22) D(α) :=

⎧⎨
⎩

P if Cα > 0,
0 if Cα = 0,
N if Cα < 0.

Then D is a 2-dimensional symmetric diagram and

(23) P (x1, x2, x3) = (x1 + x2 + x3)Q(x1, x2, x3)

has at least #(D) distinct monomials.

If we start with a Q as above and look at q(x1, x2) =Q(x1, x2,−1), then
(x1 + x2 + x3) becomes (x1 + x2 − 1) and we are in the nonsymmetric setup.
We obtain a (nonsymmetric) 2-dimensional diagram by mapping Hd into Z

2
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Figure 3. Treating a diagram as a solid for n= 3. A vertical
face and its corresponding points are shaded.

and flipping signs for points corresponding to odd powers of x3. Sinks and
sources correspond to the symmetric nodes in the symmetric diagram.

The arguments in [10] relied heavily on a geometric interpretation of the
Newton diagram of q. Our terminology treats the Newton diagram as a solid
object formed by simplices at each of α ∈ Z

n with D(α) �= 0. The definitions
of corners, edges and faces are made with this picture in mind. See Figure 3
for the geometric intuition.

Our naming convention changes slightly from [10] so that the naming is
logical and consistent for diagrams of all dimensions.

Definition 3.6. An α ∈ Z
n is called a top-corner of a Newton diagram D

if D(α) = 0 and if there exists exactly one k ∈ [1, n] with D(downk(α)) �= 0.
An α ∈ Z

n is called a bottom-corner of a Newton diagram D if D(α) �= 0 and
if D(downk(α)) = 0 for all k ∈ [1, n].

An α ∈ Z
n is said to lie on a horizontal edge of D if D(α) = 0 and

D(downk(α)) �= 0 for exactly two distinct k ∈ [1, n].
An α ∈ Z

n is said to lie on a vertical edge of D if D(α) �= 0 and
D(downk(α)) �= 0 for exactly one k ∈ [1, n].

Finally, an α ∈ Z
n is said to lie in the interior of a vertical face of D if

D(α) �= 0 and D(downj(α)) �= 0 for exactly two distinct k ∈ [1, n], and α lies
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in the interior of a horizontal face of D if D(α) = 0 and D(downk(α)) �= 0 for
exactly three distinct k ∈ [1, n].

If a node α ∈ Z
n lies on a corner or edge or in the interior of a vertical

or horizontal face, then we call α respectively a corner-, edge- or facial-node.
We often distinguish between top-corner nodes and bottom-corner nodes, and
sometimes between vertical-edge nodes and horizontal-edge nodes.

Two points α and β are said to be adjacent if there is a k such that
αj = βj for all j �= k and αk − βk = ±1. The subset S ⊂ Z

n is said to be
connected if for each α,β ∈ S there is a path from α to β along adjacent
elements of S. A vertical (2-dimensional) face of D is a maximal connected
subset of the elements α ∈ Z

n that are either corners, lie on edges or lie in a
vertical face, and that all lie in the same 2-dimensional plane in Z

n defined
by n− 2 equations of the form αj = cj . Similarly, a horizontal face of D is
a maximal connected subset of the elements α ∈ Z

n that are either corners,
lie on a horizontal edge or in a horizontal face, and that all lie in the same
2-dimensional plane in Z

n defined by |α|= d and n− 3 equations of the form
αj = cj . For a vertical face, there are exactly two parameters αk and αm

that can vary. We say that the vertical face corresponds to the variables xk

and xm.
An important step in the proof of the n= 3 case of Theorem 1.1, proved in

[10], was to count the number of nodes that lie in a 2-dimensional face, and
then add the numbers for all the faces. A difficulty that arises when counting
nodes in this manner is that the edge-nodes and corner-nodes are counted
multiple times, hence the distinction between these nodes and facial nodes,
which lie on only one face and are therefore only counted once. A similar idea
comes up in the proof for n≥ 4, which we present in the next two sections.

4. Views and sides

In a 2-dimensional diagram, we say that α and β are in the same row if
|α|= |β|, that is if they correspond to monomials of the same degree.

Definition 4.1. We define a simple diagram to be a 2-dimensional diagram
with bottom nodes only in its lowest nonzero row. The height of a simple
diagram is the number of nonzero rows.

In all arguments below, we simply ignore the bottom nodes of simple dia-
grams.

For each pair (xk, xm), where k �= n, in an n-dimensional diagram D of
size d, let us consider the corresponding vertical faces and call this the side
of the diagram. For each side we can find a finite set of simple diagrams F =
(F1, F2, . . . , Fs) such that the top and side edges of each Fj correspond to top
and side edges of the diagram D. Furthermore, the heights of Fi sum up to d.
Each edge node, top-corner node, and facial node of Fi corresponds to a node
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Figure 4. Two simple diagrams F1 and F2 as faces corre-
sponding to an edge in a three-dimensional diagram.

in D. See Figure 4 for an example when n= 3. To find the (F1, . . . , Fs), start
at the unique bottom node of D. Then find the face F1 containing this bottom
node corresponding to the edge (xk, xm). Suppose that F1 has height h1. At
the row directly above the top row of F1 (row h1+1 inD), find a nonzero point
with the smallest degree in the x1, . . . , x̂k, . . . , x̂m, . . . , xn variables (where the
·̂ means we are excluding that variable). Find the corresponding face and
consider only that part of the face from row h1 + 1 upwards and mark the
corresponding simple diagram F2. Continue until we reach the top row of D.
Depending on the points chosen it is possible to get a different set of simple
diagrams corresponding to the edge (xk, xm). However, it suffices to fix one
set of simple diagrams corresponding to each edge.

Definition 4.2. We call F = (F1, . . . , Fs) a complete set of simple diagrams
corresponding to the edge (xk, xm).

Lemma 4.3. Let D be a simple diagram of height d. Let f be the number
of facial nodes, e the number of edge nodes, and c the number of corner nodes
(excluding bottom nodes). Then

(24) 2f + e+ c≥ d+ 1.

Proof. We claim that we can “fill” the diagram without increasing the sum
2f + e+ c, starting with the zeroes on the lowest nonzero row, and working
our way up to the highest nonzero row of the diagram. By a filled diagram, we
mean that the nonzero points in the lowest row are connected, and that up to
the highest row of the diagram, a nonzero point has only nonzero points above
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it. Once the diagram is filled, the claim follows from the following argument,
which was also used in the proof of Lemma 4.2 in [10].

We refer to the horizontal rows of our filled simple diagram by rows 1
through d, starting with the lowest row and ending with the highest. For
each row we count the number of sign changes in the row as we move from
one end to the other. We denote this number by sj , the number of sign
changes, where j refers to the number of the row. For example, if the lowest
row consists of only P -points then s1 = 0.

Now consider rows j and j + 1, and note that if sj differs from sj+1 then
there must be at least one facial or edge node consisting of points in these two
rows. In fact, note that 2 times the number of facial nodes plus the number of
edge nodes that occur here must be at least as large as |sj+1 − sj |. Hence the
total number of nodes (counting facial nodes for 2) in the diagram without
counting the edge and corner nodes on the top row must be at least |sd − s1|.
The number of edge or corner nodes on the top row equals exactly ld+1− sd,
where lj denotes the length of the jth row. Hence, the total number of nodes
is at least

(25) ld + 1− sd + |sd − s1| ≥ ld + 1− sd ≥ ld + 1− (l1 − 1)≥ d+ 1,

which gives the desired inequality.
In order to prove our claim that we can always fill the diagram without

increasing the number of nodes, we need to consider several cases. We start
with the lowest nonzero row. Suppose the P - and N -points on this row do not
form a connected subset of Zn. By the definition of a simple diagram there
are no higher bottom-nodes, which means that there must exist a sequence of
0-points on the lowest row that is enclosed on either side by nonzero points.
We fill this sequence with alternating P ’s and N ’s. Of course such a filling
can be done in two distinct ways, and it turns out that for at least one way
the sum 2f + e+ c does not increase. To see this fact, note that the only way
the count can be increased is when an edge-node above one of the most outer
0-points is changed into an facial node. However, if this can happen then we
can choose what sign we change the corresponding 0-point to, such that the
edge-node disappears. In this case the (2f + e+ c)-count decreases by 1 on
that outer 0-point, and as it can increase by at most 1 on the other side the
sum 2f + e+ c does not increase. See Figure 5.

The argument for higher rows is similar but slightly different cases need to
be considered. We consider the lowest row for which there exist zeroes that
lie above nonzero points. If there are no nonzero points on this row then we
are done filling, so let us suppose that there exist nonzero points in this row.
Consider a 0-point on this row that lies above at least one nonzero point, and
that is adjacent to a nonzero point. We first consider the case when there are
nonzero points on both sides of this 0-point. In this case we again have that
by assigning an N or P to this 0-point, we can only increase the count if an
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Figure 5. Filling in the lowest row by a correctly chosen
sequence of P ’s and N ’s. The exact values of the points
marked with x’s is not relevant.

edge-node turns into an facial node. However, each time this can happen, the
edge node disappears if we assign the other sign to the 0-point. By choosing
the sign for which the number of edge-nodes that changes into a facial node
is minimal, the (2f + e+ c)-count does not increase.

The last case we need to consider is when the 0-point lies next to exactly
one nonzero point. By changing this 0-point into an N - or P -point we may
not only increase the 2f + e+ c count by changing an edge-node into a facial
node, but we also create a new corner-node which increases the count by 1.
If the number of edge-nodes that can change to a facial node is odd (in which
case it necessarily is 1), then we can always choose the sign so that more edge
nodes disappear than there are changed into facial nodes and we are done.
So let us assume that the number of edge nodes that can change into facial
nodes is even, either 0 or 2. In this case, we fill a horizontal list of 0-nodes,
starting with the given 0-node and ending with the nearest 0-node that is
either adjacent to a nonzero node, or that is part of a node itself. We fill this
list with alternating P - and N -points, see Figure 6 for an example. Note that
in this example we cannot fill fewer 0-points without increasing the number
of nodes.

When the nearest 0-point is adjacent to a nonzero node we no longer create
a new corner-node and we again choose the sign so that at least as many
edge-nodes are removed as there are edge-nodes changed into facial nodes
and we are done. In the case when the nearest 0-point is not adjacent to a
nonzero point but is a node itself, then by filling that point we can change
the (2f + e+ c)-count by exactly 1. By our assumption, the number of nodes
that is changed for the 0-point that we started with was even, so the total
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Figure 6. Filling in the rightmost three 0-points by alter-
nating P - and N -points.

is odd. Therefore we can always choose the sign of the alternating list such
that more edge- and corner-nodes disappear than edge-nodes are changed into
facial nodes. The gain obtained from the new corner-node can therefore be
countered by choosing the proper sign. This completes the argument. �

Definition 4.4. Let D be an n-dimensional diagram. For each α ∈ Z
n−1

define

γk,m(α,a, b) := (α1, . . . , αk−1, a,αk+1, . . . ,(26)

αm−1, b,αm, αm+1, . . . , αn−1) ∈ Z
n,

where 1 ≤ k ≤ n − 1, 1 ≤ m ≤ n, and k �= m. That is, we replace the kth
element with a and we prepend b before the mth element. If m= n then we
append b onto the end. For example, γ2,3((0,2), a, b) = (0, a, b).

Let

(27) γk,m(α) := γk,m(α,a, b),

where a+ b = αk, and a is the smallest integer such that D(γk,m(α,a, b)) is
nonzero.

Define D′ = V (D,k,m) as an (n− 1)-dimensional diagram by setting

(28) D′(α) :=D
(
γk,m(α)

)
.

We say that a node α ∈ Z
n−1 of D′ corresponds to a node β of D if β =

γk,m(α).
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Figure 7. Example “view” of a diagram. On the left is a
3-dimensional diagram D with directions labeled by the cor-
responding variables. On the right we have the 2-dimensional
V (D,2,3).

Intuitively, V (D,k,m) is the “view” along the edge looking from xk towards
xm. See Figure 7 for an example in n= 3.

It is not hard to see that if α ∈ Z
n−1 is a node of V (D,k,m) then it always

corresponds to a node γk,m(α) of D. Thus, we have the rather simple estimate

(29) #
(
V (D,k,m)

)
≤#(D).

In fact, if α is a sink (resp. source), then γk,m(α) is a sink (resp. source).
Hence, we also have the following proposition.

Proposition 4.5. If D has a unique source at the origin α= (0, . . . ,0) and
all other nodes are sinks, then V (D,k,m) has a unique source at the origin
and all other nodes are sinks.

When diagrams have only a single source at the origin, they have a special
form. We define two conditions that we need in the proof.

Definition 4.6. A set K ⊂ Z
2 has left overhang if there exists a point

(a, b) ∈ K, (a, b) �= (0,0) such that (a, b − 1) /∈ K and (a − 1, y) /∈ K for all
y ≥ b.

A point (a, b) ∈K is right overhang if it is a left overhang after swapping
variables. We say simply that (a, b) is an overhang if it is a left or a right
overhang.

Let K ⊂ Z
n be the support of a diagram D, that is let K =D−1({P,N}).

Define a 2-dimensional projection

π(K,k,m) :=
{
(a, b) ∈ Z

2 : there exists α ∈K(30)

with αk = a and αm = b
}
.

We say that D has no overhang if π(K,k,m) has no overhang for every
k,m= 1, . . . , n, k �=m, where K is the support of D.
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The above definition of no overhang agrees precisely with the definition
from [10]. See Figure 8 for an example.

Definition 4.7. Let D be an n-dimensional diagram (n≥ 2). A set E ⊂
D−1({P,N})⊂ Z

n (subset of the support of D) is an outside vertical edge if
there exists α ∈ Z

n and an integer k such that

E =
{
downk(α),downk

(
downk(α)

)
, . . . ,(31)

downk
(
downk

(
· · ·downk(α) · · ·

))}
,

and such that if D(α) = 0, D(downj(α)) = 0 for all j �= k, and D(downj(β)) =
0 for all j �= k and all β ∈E. See Figure 9.

Figure 8. Diagram showing an example of overhang in n= 3.

Figure 9. Diagram with outside edges marked by dark balls.
One specific outside edge is marked with thick lines.
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If β ∈E and D(downk(β)) = 0, then we say β is a bottom node (it is in fact
a node).

We say that a diagram D has no outside vertical edge nodes if for every
outside vertical edge E, no element β ∈ E is a node, except possibly the
bottom node if E contains one.

Proposition 4.8. If D is an n-dimensional (n≥ 2) diagram with a unique
source at the origin (all other nodes are sinks) then D has no overhang and
no outside vertical edge nodes.

Proof. First, suppose that D has an outside vertical edge node, then it has
to be a sink at β ∈ E for some outside vertical edge E. Then D(β) =N as
D(β) cannot be 0. If α and k are as in the definition of the edge E, then α
must be a node, and by our hypothesis on D it has to be a sink. As D(α) = 0,
then D(downk(α)) = P , but then there must be some source on the edge
between α and β contradicting the hypothesis on D.

Suppose that there is an overhang. We note that the 2-dimensional pro-
jection of the support in the definition of no overhang is the support of some
diagram

(32) D′ = V
(
· · ·V

(
V (D,k1, k2), k3, k4

)
, . . . , km−1, km

)
for some sequence of integers k1, . . . , km taking views along distinct edges until
we arrive at a 2-dimensional diagram D′ that has an overhang at some (a, b) ∈
Z
2. By definition of overhang, (a, b) is the bottom node of an outside vertical

edge while not being the origin. The outside vertical edge must consist of P ’s
only otherwise we would obtain a source in the diagram, but if D((a, b)) = P ,
then (a, b) is a source. We have a contradiction as (a, b) was not the origin. �

The definition of V (D,k,m) can be used even for a symmetric 2-dimensional
diagram. The result is a 1-dimensional symmetric diagram, that is, simply a
single row of P ’s, N ’s, and 0’s. A node on such a 1-dimensional diagram is
then simply two points next to each other that are of the configuration (0,N),
(N,0), (N,N), (0, P ), (P,0), (P,P ). In other words, a node is two points next
to each other not in the configuration (0,0), (P,N) or (N,P ).

Proposition 4.9. Let D be a 2-dimensional symmetric diagram. Either

(i) #(D) = 3, in which case D has one nonzero point, or
(ii) #(D)> 3, in which case size of D is greater than one, and there exists a

view V (D,k,m) (where k,m= 1,2,3), such that

(33) #
(
V (D,k,m)

)
≤#(D)− 2.

Proof. In [10], the authors have shown that if #(D) = 3, then D is of size
one, that is D is a single point.

In case #(D) > 3, first suppose that the support of every V (D,k,m) is
connected, that is, there is exactly one node of the form (0,∗) and exactly
one node of the form (∗,0), where ∗ is P or N . If every V (D,k,m) has only
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Figure 10. A 2-dimensional symmetric diagram with di-
rections labeled by the corresponding variables. Note that
V (D,2,3) contains a node of the form (P,P ) that does not
correspond to any node (gets hidden) in V (D,3,2).

those two nodes, then #(V (D,k,m))≤#(D)− 2 for every V (D,k,m). Thus,
suppose that V (D,k,m) is such that there is a node α in D that corresponds
to a node of the form (P,P ) or a node (N,N) in V (D,k,m). Then α does not
correspond to any node in V (D,m,k), see Figure 10. It is easy to see that at
least one node of the form (0,∗) or (∗,0) gets hidden by V (D,m,k). Thus,
#(V (D,m,k))≤#(D)− 2 for every V (D,m,k).

If the support of some V (D,k,m) is not connected, the proposition follows
easily by noting that there are two nodes in D corresponding to nodes of the
form (∗,0) or (0,∗) in V (D,k,m) that get hidden. �

5. Proof of the main result

The main step towards the proof of Theorem 1.1 is taken in the following
lemma. By a top horizontal face, we mean a horizontal face of the diagram
corresponding to the highest degree.

Lemma 5.1. Let D be an n-dimensional, n ≥ 4, diagram of size d with
a unique source at the origin. Then there exist integers k,m (k �= m, and
1≤ k,m≤ n) such that

(34) #
(
V (D,k,m)

)
≤#(D)− d.

Furthermore, if any complete set of simple diagrams corresponding to any edge
contains a facial node, or if any top horizontal face has more than three nodes,
then we can choose k and m such that

(35) #
(
V (D,k,m)

)
<#(D)− d.

Proof. For each edge, we look at all possible corresponding complete sets
of simple diagrams, and count the number of facial nodes in these complete
sets. We select an edge (xk, xm) that has a corresponding complete set of
simple diagrams F with the minimal number of facial nodes.

In the view V (D,k,m), we note that no facial node on F corresponds
to a node in V (D,k,m). Similarly, no edge node corresponds to a node in
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V (D,k,m) since only outside vertical edge nodes could possibly be seen in
V (D,k,m) and no such nodes exist by Proposition 4.8. Let F1, . . . , Fs be the
simple diagrams contained in F as described above. If dj is the height of Fj

then
∑

dj = d. A corner node in Fj that is not a top-corner of maximal degree
(maximal degree in Fj) is not visible in V (D,k,m). Were such a node visible
in V (D,k,m), it would be an outside vertical edge node and V (D,k,m) has
no such nodes by Proposition 4.8. Of the top-corner nodes of maximal degree,
we can “see” exactly one of them (the one corresponding to the xk corner),
hence one top-corner node is visible.

Let ej , cj , and fj denote the edge, corner and facial nodes in Fj (not
counting any bottom corner nodes). First, suppose that there are no facial
nodes in any complete set of simple diagrams corresponding to any edge. Then
by Lemma 4.3, we see that there must be at least ej + cj ≥ dj +1 nodes in Fj

and at most one of them is visible. Thus,

(36)

s∑
j=1

(ej + cj)≥
s∑

j=1

(dj + 1) = d+ s.

Hence, there are at least d+ s nodes in F and of those only s are visible in
V (D,k,m). Thus, d nodes in D do not correspond to any node in V (D,k,m)
and (34) holds.

Still assume that there are no facial nodes in any complete set of simple di-
agrams corresponding to any edge. Suppose that there is some top horizontal
face with more than 3 nodes. Without loss of generality, let this be the hori-
zontal face (or faces) corresponding to the vertices {x1, x2, x3}. Then there is
at least one view V (D,1,2), V (D,1,3) or V (D,2,3) that must hide at least
two nodes by Proposition 4.9. But in the above estimate we only counted one
hidden node in the top degree. Hence for that view, at least d+ 1 nodes are
hidden and so (35) holds.

Now suppose that there are facial nodes in F . There are at least two
other edges with one vertex being xm. Let F ′ and F ′′ be the corresponding
complete sets of simple diagrams. As F had the least number of facial nodes,
then F ′ and F ′′ have at least as many facial nodes as F .

We observe that as the view goes in the direction from xk to xm, any facial
nodes in F ′ and F ′′ do not correspond to nodes in V (D,k,m). Hence for each
facial node in F , two other facial nodes are hidden, one in F ′ and one in F ′′.
Therefore, by the above calculation, for each Fj there are at least

(37) 3fj + ej + cj − 1

nodes hidden in V (D,k,m). As 2fj + ej + cj ≥ d+1, then if fj > 0 for any j,
more than d nodes are hidden in V (D,k,m) and (35) holds. �
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Lemma 5.1 is the induction step in the proof of Theorem 1.1. The basis
for this induction is the following result, which was proved by the authors in
[10].

Theorem 5.2 (see [10]). Let D be a 3-dimensional diagram of size d with
a unique source at the origin. Then

(38) 2d+ 2≤#(D).

Theorem 5.3. Let D be an n-dimensional, n≥ 4, diagram of size d with
a unique source at the origin. Then

(39) (n− 1)d+ 2≤#(D).

Proof. The proof follows by induction on n. We know the result holds
for n = 3 by Theorem 5.2. Let n ≥ 4 and suppose that the result holds for
dimension n−1. By Lemma 5.1, we can find a view V with #(V )≤#(D)−d.
As V is (n− 1)-dimensional we have that

(40) (n− 2)d+ 2≤#(V )

and inequality (39) follows. �

Theorem 5.4. Let D be an n-dimensional, n≥ 4, diagram of size d with
a unique source at the origin. Suppose that D minimizes #(D) for the given
degree d, that is (n− 1)d+2 =#(D). Then D contains precisely one point in
each degree.

It is not hard to see that if a diagram D contains precisely one point in
each degree such that for each degree precisely one of the possible nodes
is cancelled by the point in the higher degree (a diagram corresponding to a
sharp generalized Whitney polynomial), then we see that #(D) = (n−1)d+2.

Proof of Theorem 5.4. If there were more than 3 nodes on any top hori-
zontal face, then we could apply Lemma 5.1 to find a view V with #(V ) <
(n−1)d+2−d= (n−2)d+2, which would contradict the bound of Theorems
5.2 (if n= 4) and 5.3 (if n > 4).

Thus, all top horizontal faces have 3 nodes. By the 2-dimensional bounds,
this means that the top horizontal faces must all consist of a single point,
therefore the top degree part of D consists of isolated points. By “isolated”
we mean that the corresponding horizontal faces (each consisting of a single
point) are disjoint. It is not hard to see that removing any of those points
would get a diagram D′ with n− 1 fewer nodes (only one node can be created
and n nodes would be removed). The diagram D′ would still have a unique
source at the origin. As D minimizes #(D) for the given degree, then the
degree of D′ must be one less. That is, there could have been at most one
point in the top degree part of D. The proof follows by induction on the
degree. �
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As we have mentioned above, Proposition 3.3, a term in p ∈H corresponds
to a sink in the corresponding diagram, and in fact #(D)− 1≤N(p). Theo-
rem 5.3 thus proves the main estimate in Theorem 1.1. Theorem 5.4 implies
that a p ∈H that satisfies equality in the bound, must be such that q = p−1

s−1

has exactly one nonzero term of each degree. It follows immediately that such
a p must be a sharp generalized Whitney polynomial, proving Theorem 2.1.

Remark 5.5. We conjecture that the same degree bound holds for all n
without requiring that p has positive coefficients, under the weaker indecom-
posability condition discussed in [10]. This conjecture was proved for n = 2
in [10]. In the above the key assumptions that make the proof work are no
overhang, which was required in [10] to prove the bound for n = 3, and in
the present proof we required no outside vertical edge nodes for n≥ 4. Both
assumptions are automatically satisfied for a diagram with a unique source at
the origin. We note that apart from these assumptions we did not differentiate
between sinks and sources.
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