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THE BERGMAN PROJECTION IN Lp FOR DOMAINS
WITH MINIMAL SMOOTHNESS

LOREDANA LANZANI AND ELIAS M. STEIN

Dedicated to John P. D’Angelo, on the occasion of his 60th birthday

Abstract. Let D ⊂C
n be a bounded, strongly Levi-pseudocon-

vex domain with minimally smooth boundary. We prove Lp(D)-
regularity for the Bergman projection B, and for the operator

|B| whose kernel is the absolute value of the Bergman kernel

with p in the range (1,+∞). As an application, we show that

the space of holomorphic functions in a neighborhood of D is
dense in ϑLp(D).

1. Introduction

This is the first in a series of papers dealing with the Lp-theory of re-
producing operators such as the Cauchy–Fantappié integrals and the Szegő
and Bergman projections for domains in C

n whose boundaries have minimal
smoothness. In the present paper, we study the Bergman projection on do-
mains in Cn that are strongly pseudoconvex and have C2 boundaries. In
succeeding papers, we will establish analogous Lp results for the Cauchy–
Leray integral on strongly C-linearly convex domains with C1,1 boundaries,
and for the Szegő projection, as well as certain holomorphic Cauchy–Fantappié
integrals, on strongly pseudoconvex domains with C2 boundaries.

In considering each of these reproducing operators and their integral ker-
nels, we may divide them into several classes. First, the “universal” Bochner–
Martinelli kernel, which is unique among all these in that it is essentially
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independent of the domain. However, its serious drawback is that it does not
produce holomorphic functions in general (because it is not holomorphic in
the parameter) and so plays no role below. Next, there are the “canonical”
kernels that are determined by the domain in question, but do not depend
on any particular choice of defining function for the domain. Among these
are the Cauchy–Leray, Szegő, and Bergman kernels. Finally, there are various
kinds of non-canonical kernels, such as the kernels of the operators Bε used
below, that also depend on the choice of defining function for the domain.

Regularity properties of the Bergman projection and in particular its Lp

boundedness have been the object of considerable interest for more that 40
years. When the boundary of the domain D is sufficiently smooth, decisive
results were obtained in the following settings:

(a) When D is strongly pseudoconvex [F], [PS].
(b) When D ⊂C

2 and its boundary is of finite type [M], [NRSW].
(c) When D ⊂C

n is convex and its boundary is of finite type [M1], [MS].
(d) When D ⊂C

n is of finite type and its Levi form is diagonalizable [CD].

Related results were obtained in [B], [B1], [BaLa], [BB], [BoLo], [EL], [H],
[KP] and [Z].

Turning to the problem of what might be the suitable condition of min-
imal smoothness for a domain D, we see a clear distinction between the
case of C (one complex variable) and C

n, n ≥ 2. In the former case, all
the Cauchy–Fantappié kernels reduce to the familiar Cauchy kernel (which
is, of course, holomorphic in the parameter) and the natural limit of regu-
larity of the boundary involves one derivative, if only because of the neces-
sity, for the Cauchy integral and the Szegő projection, that the boundary be
rectifiable. Indeed deep results of this kind—“near C1” for example, Lips-
chitz boundaries—have been obtained by a number of mathematicians for the
Cauchy integral and the Szegő and Bergman projections. (Recent results are
in [LS], along with a review of the extensive literature.) However when n≥ 2,
pseudoconvexity must intervene, and because of this the natural lower limit
of regularity should by necessity involve two orders of differentiability. Now if
we want the generality of considering all domains that are of class C2, we then
have essentially the following choice: either allow all (weakly) pseudoconvex
domains, or restrict attention to strongly pseudoconvex domains. This is be-
cause to consider an intermediate class of domains (say those of “finite-type”)
would in effect require differentiability of higher order, related to the type in
question. With these limitations in mind, we state our main result.

Theorem. Let D be a bounded domain in C
n which has a C2 boundary

that is strongly pseudoconvex. Then the Bergman projection B of L2(D) to
the Bergman Space ϑL2(D) is bounded on Lp(D), for 1< p<∞.

The main difference when dealing with the situation when D is only of class
C2 compared with the cases of the more regular domains treated in (a)–(d) is
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that in each of these cases known formulas for the Bergman kernel, or at least
size estimates, played a decisive role. In our general situation, such estimates
are unavailable and we must proceed by a different analysis.

Our starting point is the idea used in [KS] to study the Szegő projection
which was adapted by [L] and then [R] for the Bergman projection, all these
when the domains are sufficiently smooth. In terms of the Bergman operator
B, this proceeded by constructing another (non-orthogonal) projection B1 via
the Cauchy–Fantappiè formalism, corrected by the solution of a ∂-problem.
Then a simple formula connected B with B1 and B∗

1 , and the problem was
resolved because B1 − B∗

1 was “smoothing” (or sufficiently small). In our
general situation this regularity or smallness is not possible, but what works
instead can be described imprecisely as follows: One constructs an appropriate
family {Bε}ε>0 of non-orthogonal projections. While this family does not
approximate B (in fact the norms of the Bε are in general unbounded as
ε → 0), suitable truncations of the Bε approximate in a specific sense the
“essential part” of B. This is made precise in Lemma 5.1.

There are two further results worth mentioning that follow from our anal-
ysis. First, not only is the operator B bounded on Lp, but so is the operator
|B| whose kernel is the absolute value of the Bergman kernel. This is in
sharp contrast with the Cauchy–Leray integral and the Szegő projection, be-
cause such operators are non-absolutely convergent singular integrals, and this
makes their treatment more intricate than that of B. Secondly, we have the
following approximation property: The linear space of functions holomorphic
in a neighborhood of D is dense in ϑLp(D), 1< p<∞.

2. The Levi polynomial and its variants

2.1. Preliminaries. D is a bounded domain in C
n which is of class C2 and

is strongly pseudoconvex. Thus, there is a defining function ρ ∈ C2(Cn) for
D, with D = {ρ < 0} and |�ρ|> 0 on bD, with ρ strictly pluri-subharmonic.
Define Pw(z), the Levi polynomial at w by

Pw(z) =
∑
j

∂ρ(w)

∂wj
(zj −wj) +

1

2

∑
j,k

∂2ρ(w)

∂wj ∂wk
(zj −wj)(zk −wk),

which is a quadratic (holomorphic) polynomial in z. A basic property of Pw

is that

(2.1) ρ(w) + 2RePw(z) +Lw(z −w) = Tw(z)

is the second-order Taylor expansion of ρ(z) about w. (See, e.g., [K].) Here

Lw(z −w) =
∑
j,k

∂2ρ(w)

∂wj ∂wk
(zj −wj)(zk −wk)
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is the Levi form and

Lw(z −w)≥ c|z −w|2, c > 0,

by the strict pluri-subharmonicity we assumed. So we can write the above as

2Re
(
−ρ(w)− Pw(z)

)
(2.2)

=−ρ(z)− ρ(w) +Lw(z −w) + o
(
|z −w|2

)
as |z −w| → 0. Now to extend the above when z −w is not small, we define
the function g(w,z) by

(2.3) g(w,z) =−Pw(z)χ+ |z −w|2(1− χ)− ρ(w).

Here χ= χ(|z−w|2) is a C∞ function which is 1 when |z−w| ≤ μ
2 and vanishes

when |z −w| ≥ μ. We take μ to be a small constant, fixed so that (2.2) and
the strict positivity of Lw guarantee that we have

(2.4) 2Reg(w,z)≥
{
−ρ(w)− ρ(z) + c|w− z|2, if |w− z| ≤ μ,
c, if |w− z| ≥ μ

for some constant c > 0.
Now g, and its variants gε defined below, will be our basic tools.
Note g(w,z) is holomorphic (or C∞) in z, hence smooth in that variable,

but is only continuous in w, since we have only assumed ρ is of class C2.
Because of this we introduce for each ε > 0 an n× n matrix

τ ε(w) =
(
τ εj,k(w)

)
of functions that are each smooth (precisely: C2 in D), so that

sup
w∈D

∣∣∣∣ ∂2ρ(w)

∂wj ∂wk
− τ εj,k(w)

∣∣∣∣≤ ε for all 1≤ j, k ≤ n.

We define accordingly

(2.5) P ε
w(z) =

∑
j

∂ρ(w)

∂wj
(zj −wj) +

1

2

∑
j,k

τ εj,k(w)(zj −wj)(zk −wk)

and

(2.6) gε(w,z) =−P ε
w(z)χ+ |z −w|2(1− χ)− ρ(w).

Note that since

(2.7)
∣∣g(w,z)− gε(w,z)

∣∣≤ cε|w− z|2

once we have chosen ε sufficiently small, we can assert that

(2.8) 2Regε(w,z)≥
{
−ρ(w)− ρ(z) + c|w− z|2, if |w− z| ≤ μ,
c, if |w− z| ≥ μ

(after having decreased the sizes of μ and c, if necessary).
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2.2. Size estimates of the gε. There are two properties of the gε that
are needed below: size and symmetry estimates. The first is contained in the
following. We use the notation

〈a, b〉=
∑
j

ajbj ,

where a= (a1, . . . , an) and b= (b1, . . . , bn) are vectors in Cn.

Proposition 2.1. If z and w are in D and ε is sufficiently small, then:

(a) |g(w,z)| ≈ |ρ(w)|+ |ρ(z)|+ | Im〈∂ρ(w),w− z〉|+ |w− z|2.
(b) |gε(w,z)| ≈ |g(w,z)|.

Here (and below) the constants implicit in the equivalences ≈ are indepen-
dent of ε.

Proof of Proposition 2.1. Note that |ρ(z)| = −ρ(z) and |ρ(0)| = −ρ(w),
since z and w are in D. Next, when |w − z| ≥ μ/2, the assertion (a) is
immediate from (2.4). We turn to the case |w− z| ≤ μ/2.

We first observe that (2.2) and (2.3) show that

(2.9)
∣∣Reg(w,z)∣∣≈ ∣∣ρ(z)∣∣+ ∣∣ρ(w)∣∣+ |w− z|2.

Also by (2.3)

Img(w,z) =− ImPw(z)

and by the definition of Pw(z) this yields

(2.10)
∣∣Im(

g(w,z)−
〈
∂ρ(w),w− z

〉)∣∣≤ c|z −w|2.

Hence ∣∣Img(w,z)
∣∣+ c|z −w|2 ≥

∣∣Im〈
∂ρ(w),w− z

〉∣∣,
which gives∣∣g(w,z)∣∣� ∣∣ρ(z)∣∣+ ∣∣ρ(w)∣∣+ ∣∣Im〈

∂ρ(w),w− z
〉∣∣+ |w− z|2.

To see the reverse, note that by (2.10)∣∣Img(w,z)
∣∣≤ ∣∣Im〈

∂ρ(w),w− z
〉∣∣+ c|w− z|2,

and combining this with (2.9) gives∣∣g(w,z)∣∣� ∣∣ρ(z)∣∣+ ∣∣ρ(w)∣∣+ ∣∣Im〈
∂ρ(w),w− z

〉∣∣+ |w− z|2.

Hence, (a) is fully established. The conclusion (b) follows immediately from
(a) and (2.7). �

From now on, all our statements will be restricted to the ε that are small
enough so that both (2.8) and the above conclusion holds.
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2.3. Symmetries of the gε. One can observe that by Proposition 2.1 we
have the symmetries

(2.11)
∣∣g(w,z)∣∣≈ ∣∣g(z,w)∣∣ and

∣∣gε(w,z)∣∣≈ ∣∣gε(z,w)∣∣.
In fact since ρ is of class C2,〈

∂ρ(w), z −w
〉
−
〈
∂ρ(z), z −w

〉
=O

(
|w− z|2

)
,

thus ∣∣Im〈
∂ρ(w),w− z

〉∣∣+ |w− z|2 ≈
∣∣Im〈

∂ρ(z),w− z
〉∣∣+ |w− z|2

proving by (a) of Proposition 2.1, the asserted symmetry of |g(w,z)| and hence
of |gε(w,z)|.

However for what follows below a more refined version of this symmetry is
crucial.

Proposition 2.2. For any ε > 0, there is δ = δε > 0, so that∣∣gε(w,z)− gε(z,w)
∣∣≤ cε|z −w|2, if |z −w|< δε.

The inequality above takes into account the modules of continuity of the
second derivatives of ρ. In this connection, we define

ωj,k(δ) = sup
|z−w|≤δ

(∣∣∣∣ ∂2ρ(z)

∂zj ∂zk
− ∂2ρ(w)

∂wj ∂wk

∣∣∣∣+ ∣∣∣∣ ∂2ρ(z)

∂zj ∂zk
− ∂2ρ(w)

∂wj ∂wk

∣∣∣∣)
taken over all z,w ∈D. We set

ω(δ) =
∑
j,k

ωj,k(δ).

Then in view of the uniform continuity of the second derivatives of ρ, the
function ω(δ) decreases to 0 as δ→ 0.

We observe next, with Tw(z) denoting the Taylor polynomial of order 2 of
ρ(z) centered at w, see (2.1), that then

(2.12)
∣∣ρ(z)−Tw(z)

∣∣≤ cω
(
|z −w|

)
|z −w|2, if |w− z|< δ.

In fact, for any C2 function f on R we have the identity

f(t)− f(0)− tf ′(0)− t2

2
f ′′(0) =

∫ t

0

(t− s)
(
f ′′(s)− f ′′(0)

)
ds;

also the integral is majorized by

1

2
t2 sup

0≤s≤t

(
t
∣∣f ′′(s)− f ′′(0)

∣∣).
Applying this to f(t) = ρ(w + t(z − w)), then yields the inequality (2.12),
when we take t= 1.
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To prove Proposition 2.2, note by (2.6) that if we take δ ≤ μ/2, so that
|z −w| ≤ μ/2, by (2.5) we are reduced to considering

ρ(z)− ρ(w) +
〈
∂ρ(w),w− z

〉
+
〈
∂ρ(z),w− z

〉
(2.13)

+
1

2

〈
τε(z);w− z,w− z

〉
− 1

2

〈
τ ε(w);w− z,w− z

〉
.

Here we are using the shorthand

〈M ;a, b〉=
∑
j,k

Mj,kajbk

if M = (Mj,k) is an n × n matrix and a = (a1, . . . , an), b = (b1, . . . , bn) are
vectors. Next, we write the Taylor expansion of order 1 of ∂ρ(w)/∂wj centered
at z, and use the same argument that led to (2.12). We thus see that

∂ρ(w)

∂wj
=

∂ρ(z)

∂zj
+
∑
k

(
∂2ρ(z)

∂zj ∂zk
(wk − zk) +

∂2ρ(z)

∂zj ∂zk
(wk − zk)

)
+R1,

where |R1| ≤ cω(|w−z|)|w−z|. If we insert this for ∂ρ(w) in (2.13), we obtain

gε(w,z)− gε(z,w)

= ρ(z)− ρ(w) +
〈
∂ρ(z),w− z

〉
+
〈
∂ρ(z),w− z

〉
+

1

2

〈
∂2ρ(z)

∂z ∂z
;w− z,w− z

〉
+

1

2

〈
∂2ρ(z)

∂z ∂z
;w− z,w− z

〉
+

〈
∂2ρ(z)

∂z ∂z
;w− z,w− z

〉
+O

(
|w− z|R1

)
+R2,

where

R2 =
1

2

〈
∂2ρ(z)

∂z ∂z
− τ ε(w);w− z,w− z

〉
+

1

2

〈
τ ε(z)− ∂ρ(z)

∂z ∂z
;w− z,w− z

〉
.

So this can be written as

gε(w,z)− gε(z,w) = ρ(z)−Tw(z) +O
(
|w− z|R1

)
+R2.

Now recall (2.12), and by the same token, |R1| ≤ cω(|z − w|)|z − w|, while
clearly |R2| ≤ cε|z − w|2. Thus we get the inequality |gε(w,z)− gε(z,w)| ≤
cε|z−w|2 for |z−w| ≤ δ, as soon as we choose δ ≤ δε, with ω(δε)≤ ε. Propo-
sition 2.2 is therefore proved.

We should note that in this section we have not used the C2 regularity of
the (τ εj,k(w)); this will be needed in the next section.
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3. An “approximation” for the Bergman projection

The first step in the study of the Bergman projection B for the domain
D is to form a family {Bε}ε>0 of operators that are each (non-orthogonal)
projections from L2(D) to the Bergman space ϑL2(D), that is the subspace
of L2(D) consisting of holomorphic functions. While these operators do not
converge to the Bergman projection B as ε→ 0 (in fact their norms are in
general unbounded as ε → 0), they nevertheless play a crucial role in the
analysis of B. The operator Bε will be given as a sum

Bε =B1
ε +B2

ε .

The first, B1
ε , is an adaptation of a Cauchy–Fantappié integral constructed

explicitly using the function gε(w,z) of the previous section. The second, B
2
ε ,

is a correction obtained by solving a ∂-problem in a domain that strictly con-
tains D. Here we follow the approach of [KS], [L], and [R], which as it stands,
works only in the case of smooth domains (say of class C3). Another signifi-
cant difference is that now we need a family {Bε}ε>0, as opposed to a single
such operator, and that the properties of Bε as ε→ 0 are now indispensable.
We turn first to B1

ε .

3.1. The Cauchy–Fantappié part. Keeping in mind the {gε(w,z)}ε>0

given by (2.6), we define the (1,0)-forms ηε by

ηε(w,z) = χ

(∑
j

∂ρ(w)

∂wj
dwj −

1

2

∑
j,k

τ εj,k(w)(wk − zk)dwj

)
(3.1)

+ (1− χ)
∑
j

(wj − zj)dwj ,

so that

(3.2) gε(w,z) =
〈
ηε(w,z),w− z

〉
− ρ(w).

Now with the above, the definition of B1
ε will be taken to be

(3.3) B1
ε (f)(z) =

1

(2πi)n

∫
D

f(w)(∂wGε)
n(w,z), z ∈D,

where we have set

(3.4) Gε(w,z) =
ηε(w,z)

gε(w,z)
.

From inequality (2.8), it follows that for any z0 ∈D there is an open ball
Bz0 centered at z0, and a neighborhood Nz0 of bD, so that

gε(w,z) + ρ(w) �= 0, if z ∈ Bz0 , w ∈Nz0 .

Thus, if we set

Ĝε(w,z) =
ηε(w,z)

gε(w,z) + ρ(w)
=

ηε(w,z)

〈ηε(w,z),w− z〉
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then

(3.5)
〈
Ĝε(w,z),w− z

〉
= 1, for z ∈ Bz0 , w ∈Nz0 .

A (1,0)-form G(w,z) is a generating form over z0 if it is of class C2 in the
variable w and satisfies (3.5), and it is a generating form over D if it is
generating over z for any z ∈D. One has the following lemma.

Lemma 3.1. Suppose that G is a generating form over z ∈D. Then

(3.6) f(z) =
1

(2πi)n

∫
bD

f(w)
(
G ∧ (∂wG)n−1

)
(w,z)

for any f that is holomorphic in D and continuous in D.

Here we have set (∂wG)n−1 = ∂wG ∧∂wG ∧ · · ·∧∂wG, with the wedge prod-
uct taken n− 1 times. The expression

1

(2πi)n
G ∧ (∂wG)n−1

is called the Cauchy–Fantappié form of order 0 generated by G.
Starting with (3.6) we might hope to use Stokes’ theorem to show that

(3.7) B1
ε (f)(z) =

1

(2πi)n

∫
bD

f(w)
(
Gε ∧ (∂wGε)

n−1
)
(w,z), z ∈D

and hence that

(3.8) f(z) =B1
ε (f)(z), z ∈D

at least for holomorphic f that are of class C1(D). The problem is that Gε is
not a generating form (it is not of class C2(D), and it does not satisfy (3.5)),
nor do we want to restrict ourselves to the f that are in C1(D), but rather
to the holomorphic f that are in (say) L1(D). We get around these obstacles
in two stages. First, establishing (3.8) for f in C1(D), and then relaxing this
requirement on f . Our result is as follows.

Proposition 3.1. Suppose f is holomorphic in D and belongs to L1(D).
Then, the identity (3.8) holds in D, with B1

ε given by (3.3).

The first step is to approximate the defining function ρ (which is of class
C2) by a sequence {ρr} of functions each of class C3, so that the ρr and their
derivatives of order ≤ 2 converge uniformly to ρ. Recalling the definition of
ηε in (3.1) we set

ηrε(w,z) = χ

(
∂ρr(w)− 1

2

∑
j,k

τ εj,k(w)(wk − zk)dwj

)
(3.9)

+ (1− χ)
∑
j

(wj − zj)dwj , and

grε(w,z) =
〈
ηrε(w,z),w− z

〉
− ρ(w).
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We note that for z ∈ D, the ηrε(w,z) → ηε(w,z) and grε(w,z) → gε(w,z)
as r → ∞, uniformly for w ∈ D together with their first derivatives in w.
Moreover by (2.8), we have grε(w,z) �= 0 when w ∈ bD, for sufficiently large r.
We then set

(3.10) Gr
ε(w,z) =

ηrε(w,z)

grε(w,z)
and Gε(w,z) =

ηε(w,z)

gε(w,z)

and we see that the (1,0)-forms Gr
ε converge to Gε uniformly in D, together

with their first derivatives. Finally, each Gr
ε has continuous derivatives of

order ≤ 2 for w ∈D (because ρr was of class C3 and τ ε of class C2).
Now assume f is holomorphic in D and belongs to C1(D). Then ∂w(fG

r
ε ∧

(∂wG
r
ε)

n−1) = f∂w(G
r
ε ∧ (∂wG

r
ε)

n−1) = f(∂wG
r
ε)

n, since ∂w(∂wG
r
ε)

n−1 = 0.
And since fGr

ε ∧ (∂wG
r
ε)

n−1 is an (n,n− 1)-form,

∂w

(
fGr

ε ∧
(
∂wG

r
ε

)n−1)
= dw

(
fGr

ε ∧
(
∂wG

r
ε

)n−1)
.

So Stokes’ theorem gives

(3.11)

∫
D

f(w)
(
∂wG

r
ε

)n
=

∫
bD

f(w)Gr
ε ∧

(
∂wG

r
ε

)n−1
.

One notes that when w ∈ bD, we have Gr
ε = Ĝr

ε where we have defined

(3.12) Ĝr
ε(w,z) =

ηrε(w,z)

grε(w,z) + ρ(w)
=

ηrε(w,z)

〈ηrε(w,z),w− z〉 .

Also one checks that

Gr
ε ∧

(
∂wG

r
ε

)n−1
= Ĝr

ε ∧
(
∂wĜ

r
ε

)n−1
when w ∈ bD.

However now, Ĝr
ε is a generating form over D (it is of class C2(D) in the

variable w, and it satisfies (3.5) for each z ∈ D), thus by Lemmas 3.1 and
(3.11),

f(z) =
1

(2πi)n

∫
D

f(w)
(
∂wG

r
ε

)n
, z ∈D

and a passage to the limit, r→∞, then yields the representation (3.8), under
the restriction that f is holomorphic and is in C1(D).

To relax this requirement on f we use what we have established, but instead
for domains that are interior to our domain D, proceeding as follows: for any
positive λ, define Dλ by

Dλ =
{
w : ρ(w) + λ < 0

}
.

Thus, Dλ arises by replacing the defining function ρ by ρλ = ρ+λ. Note that
Dλ ⊂D0 and more generally Dλ′ ⊂Dλ if λ′ > λ.

Returning to gε and ηε if we define

(3.13) G̃λ
ε (w,z) =

ηε(w,z)

gε(w,z)− λ
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then whenever f is holomorphic in D, we have by what has already been
proved,

f(z) =
1

(2πi)
n

∫
Dλ

f(w)
(
∂wG̃

λ
e

)n−1
, whenever z ∈Dλ,

because f is automatically in C1(Dλ).
However it is also clear that for fixed z ∈D and for fixed λ(z) chosen so

that z ∈Dλ for all 0< λ< λ(z), that

G̃λ
ε →Gε, as λ→ 0, uniformly for w ∈Dλ(z),

with a corresponding convergence of derivatives of order one. However if
z ∈D,

(2πi)nf(z) =

∫
Dλ

f(w)
(
∂wG̃

λ
ε

)n
=

∫
D

f(w)(∂wGε)
n +

∫
Dλ

f(w)
[(
∂wG̃

λ
ε

)n − (∂wGε)
n
]

+

∫
D\Dλ

f(∂wGε)
n.

Now the second integral on the right tends to zero because of the nature of

the convergence of ∂wG̃
λ
ε to ∂wGε, as λ→ 0; and the third integral tends to

zero in view of the assumption that f is integrable on D. Proposition 3.1 is
therefore proved.

3.2. The correction. While the operator B1
ε satisfies the reproducing prop-

erty (3.8), the function B1
ε (f) is not necessarily holomorphic for general f that

are not holomorphic. This is because Gε(w,z) = ηε(w,z)/gε(w,z) is holomor-
phic in z only for z near w (see (3.1) and (3.2)). We now proceed to correct
B1

ε to overcome this difficulty. We write

(3.14) B1
ε (w,z) = (∂wGε)

n(w,z),

so that

B1
ε (f)(z) =

1

(2πi)n

∫
D

f(w)B1
ε (w,z).

Proposition 3.2. There is an (n,n) form (in w),B2
ε (w,z), depending on

z, that is continuous for (w,z) ∈D×D, so that if

Bε(f)(z) =
1

(2πi)n

∫
D

f(w)
(
B1

ε (w,z) +B2
ε (w,z)

)
, then:

(a) Bε(f)(z) is holomorphic for z ∈D, for each f ∈ L1(D).
(b) In addition, if f is also holomorphic in D then Bε(f)(z) = f(z), for z ∈D.
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The proof proceeds by solving a ∂-problem for a domain Ω, strictly con-
taining D, which has a smooth (C∞) boundary and is strongly pseudoconvex.
Here the focus will be on the z-variable, with w ∈D fixed (a reversal of the
attention paid to w and z above).

We define the “parabolic” region

Pw =

{
z : ρ(z) + ρ(w)<

c

2
|z −w|2

}
, w ∈D.

Here c is the constant appearing in (2.4). We note that Pw ⊃D, and in fact
Pw ⊃D for w ∈D; moreover when w ∈ bD, the exterior of Pw intersects D
only at w. We also set Bw to be the open ball centered at w,{z : |z−w|< μ/2}
where μ is the constant which occurs in the inequality (2.4). We will use the
notation Dλ = {z : ρ(z)<−λ} which appeared above, but now for λ negative,
with λ=−λ0, and λ0 > 0. We have

(3.15) Pw ∪Bw ⊃D−λ0 , where λ0 = cμ2/8.

The proof of (3.15) divides into two cases: when |z −w| ≥ μ/2 and when
|z −w|< μ/2. In the first case, if z ∈D−λ0 then ρ(z)< λ0, and since ρ(w)≤
0, it follows from our choice of λ0 that z ∈ Pw. In the second case, z is
automatically in Bw, and hence (3.15) is proved. It is equally easy to see that
we also have

(3.16) Pw ∩Bw �= ∅, w ∈D.

Next, by approximating ρ, the defining function of D, by an appropriate
C∞ function which is close to ρ and its derivatives of order not exceeding
two, we can find ρ̃, so that ρ+ λ0/2 < ρ̃ < ρ+ λ0, and so that the domain
Ω = {z : ρ̃(z) < 0} has a boundary that is C∞ and strongly pseudoconvex.
Note that

(3.17) D ⊂D−λ0/2 ⊂Ω⊂D−λ0

and so we have

D ⊂Ω, and Ω⊂Pw ∪Bw, for every w ∈D.

We now set up our ∂-problem on Ω. For each w ∈D we denote by F (w,z) =
Fε(w,z) the following double form, which is of type (0,1) in z, and of type
(n,n) in w

(3.18) F (w,z) =

{
−∂z(B

1
ε (w,z)), if z ∈ Pw,

0, if z ∈ Bw.

In fact, note by (3.1) and (3.2), that gε(w,z), ηε(w,z) are holomorphic in
z for z ∈ Bw and by (2.8), gε(w,z) is non-vanishing in Pw ∩ Bw. Thus
∂z(B

1
ε (w,z)) = 0 in Pw∩Bw and so F (w,z) is defined consistently in Pw∪Bw.

It is also clear from this and from (3.16) that F (z,w) is C∞ for z ∈ Pw ∪Bw,
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and as such it depends continuously on w ∈D. Moreover ∂zF (w,z) = 0, for
z ∈ Pw ∪Bw,w ∈D.

Now let S = Sz be the solving operator, giving the normal solution of the
problem ∂u= α in Ω, via the ∂-Neumann problem, so that u= S(α) satisfies
the above whenever α is a (0,1)-form with ∂α= 0. We set

(3.19) B2
ε (w,z) = Sz

(
F (w, ·)

)
.

Then by the regularity properties of S for which (see, e.g., [CS, Chapters 4
and 5], or [FK]), we have that B2

ε (w,z) is C∞(Ω), as a function of z, and
continuous for w ∈ Ω. Moreover ∂z(B

2
ε (w,z)) = −∂zB

1
ε (w,z), for z ∈D, so

∂z(Bε(w,z)) = 0 for z ∈D. So conclusion (a) is proved. To establish conclu-
sion (b) it suffices to see that

(3.20)

∫
D

f(w)F (w,z) = 0 for z ∈Ω,

whenever f ∈ ϑL1(D). In fact if (3.20) holds, then∫
D

f(w)B2
ε (w,z) =

∫
D

f(w)Sz

(
F (w,z)

)
= Sz

(∫
D

f(w)F (w,z)

)
= 0

thus (b) is a consequence of (3.20). Note that we have∫
D

f(w)F (w,z) =−
∫
D

f(w)∂zB
1
ε (w,z) = 0 for z ∈D,

but this does not suffice to give (3.20) (for z ∈ Ω). To prove (3.20), we need
to use Stokes’ theorem, and as in the proof of Proposition 3.1, we assume
initially that f ∈C1(D), besides being holomorphic.

Now set Gr
ε = ηrε/g

r
ε as in the proof of Proposition 3.1, with grε(w,z) =

〈ηrε(w,z),w− z〉 − ρ(w), see (3.9)–(3.10). Also, set

F r(w,z) =

{
−∂z∂w(G

r
ε ∧ (∂wG

r
ε)

n−1), if z ∈ Pw,
0, if z ∈ Bw.

Now ∫
D

f(w)F r(w,z) =

∫
D\Bw

f(w)F r(w,z) =

∫
D\B′

z

f(w)F r(w,z),

where B′
z = {w : |w− z|< μ/2}, since w ∈ B′

z exactly when z ∈ Bw.
However the boundary of D \ B′

z consists of two parts, denoted I and II
below, where

I = bD ∩
(
B′
z

)c
and II =D ∩ bB′

z.

Now

∂w

(
f(w)

(
Gr

r ∧ ∂wG
r
ε

)n−1)
= dw

(
f(w)Gr

ε ∧
(
∂wG

r
ε

)n−1)
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since f is holomorphic and Gr
ε ∧ (∂wG

r
ε)

n−1 is an (n,n− 1)-form, so Stokes’
theorem gives us that∫

D\B′
z

f(w)F r(w,z) =

(∫
I

+

∫
II

)
f(w)∂z

(
Gr

ε ∧ ∂wG
r
ε

)n−1
.

But the integral over II vanishes since Gr
ε is holomorphic in z, for z ∈ Bw,

that is w ∈ B′
z . To treat the integral over I we involve the modification Ĝr

ε

that was defined in (3.12). Then since I ⊂ bD, the same argument as before
shows ∫

I

=

∫
I

f(w)∂z

(
Ĝr

ε ∧
(
∂wĜ

r
ε

)n−1)
.

However, Ĝr
ε is a generating form over D so the following identity holds for

it.

Lemma 3.2 ([R, Lemma IV.3.5]).

(3.21) ∂z

(
Ĝr

ε ∧
(
∂wĜ

r
ε

)n−1)
= dw

(
H(w,z)

)
,

where H is the double form of type (0,1) in z, and of type (n,n− 2) in w

H(w,z) =−(n− 1)Ĝr
ε ∧

(
∂wĜ

r
ε

)n−2 ∧ ∂zĜ
r
ε.

Using (3.21), we find

f(w)∂z

(
Ĝr

ε ∧
(
∂wĜ

r
ε

)n−1)
=

1

1− n
dw

(
f(w)H(w,z)

)
,

since f is holomorphic. So by Stokes’ theorem∫
I

f(w)∂z

(
Ĝr

ε ∧
(
∂wĜ

r
ε

)n−1)
=

1

1− n

∫
bI

f(w)H(w,z) = 0,

since

∂zĜ
r
ε(w,z) = 0 for any w ∈ bI ⊂ bB′

z.

As a result, ∫
D

f(w)F r(w,z) = 0 for z ∈Ω,

and a limit as r→∞ gives (3.20) in the case when f ∈ ϑ(D)∩C1(D).
To drop the assumption that f is in C1(D) we argue as in the proof of

Proposition 3.1, by replacing the domain D with defining function ρ, by the

proper sub-domains Dλ, with defining function ρ+λ for λ positive. With G̃λ
ε

defined as in (3.13), we now set

F̃λ(w,z) =

{
−∂z∂w(G̃

λ
ε ∧ (∂wG̃

λ
ε )

n−1), if z ∈ Pw,
0, if z ∈ Bw.

Then as before, ∫
Dλ

f(w)F̃λ(w,z) = 0 for λ < λ(z),
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if is holomorphic in D. A passage to the limit, λ→ 0, then gives (3.20) and
the proof of Proposition 3.2 is complete.

For later applications, it will be useful to note that

Bε(w,z) =B1
ε (w,z) +B2

ε (w,z)

is holomorphic for z in a neighborhood of D, when every (fixed) w is inside D.
To make this precise, recall the family of domains Dλ = {ρ <−λ} used above,
and the positive number λ0 appearing in (3.15).

Corollary 1. Suppose 0< λ< λ0/2, and w ∈Dλ. Then Bε(w,z) extends
to a holomorphic function for z ∈D−λ.

Proof. Let F (w,z) be as in (3.18) and Ω be as in (3.17). Note that by
(3.19) we have

∂zB
2
ε (w,z) = F (w,z) for z ∈Ω,

and

F (w,z) =−∂zB
1
ε (w,z) for z ∈ Pw,

by the definition of F (w,z). Hence, Bε(w,z) extends to a holomorphic func-
tion for z ∈ Ω ∩ Pw. However when w ∈ Dλ, we have that Pw ⊃ D−λ (be-
cause w ∈Dλ and z ∈D−λ imply that ρ(z) + ρ(w) < 0≤ c/2|z − w|2). Also
Ω⊃D−λ0/2 by our construction, see (3.17). Thus, Ω∩Pw ⊃ (D−λ∩D−λ0/2) =
D−λ for λ < λ0/2, and Bε(w,z) is holomorphic in D−λ. �

4. An Lp estimate

We prove a basic Lp inequality needed in what follows. We deal with a
comparison operator Γ defined by

Γ (f)(z) =

∫
D

∣∣g(w,z)∣∣−n−1
f(w)dV (w), z ∈D,

where dV is the Euclidean volume element in C
n. We also consider the oper-

ator Γε defined similarly, with g replaced by gε.

Proposition 4.1. For 1< p<∞, we have∥∥Γ (f)
∥∥
Lp(D)

≤ cp‖f‖Lp(D)

and also, ∥∥Γε(f)
∥∥
Lp(D)

≤ cp‖f‖Lp(D)

with a bound cp independent of ε.

Here ‖f‖Lp(D) denotes the norm of f in the Lebesgue space Lp(D) with

respect to the Euclidean measure in R
2n. It is clear that by Proposition 2.1,

the result for Γε is immediately reducible to that for Γ , which in turn is a
consequence of the following.
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Lemma 4.1. For each α,0<α< 1

(4.1)

∫
D

∣∣g(w,z)∣∣−n−1∣∣ρ(w)∣∣−α
dV (w)≤ cα

∣∣ρ(z)∣∣−α
.

Once (4.1) is proved, the symmetry |g(w,z)| ≈ |g(z,w)|, see (2.11), shows
that the analogous inequality

(4.2)

∫
D

∣∣g(w,z)∣∣−n−1∣∣ρ(z)∣∣−α
dV (z)≤ c′α

∣∣ρ(w)∣∣−α

also holds. The fact that (4.1) and (4.2) imply Proposition 4.1 is a consequence
of standard arguments, see, for example, [MS]. Indeed, for fixed z ∈D we write∣∣g(w,z)∣∣−n−1∣∣f(w)∣∣= F1(w) · F2(w)

with

F1 =
∣∣g(w,z)∣∣−(n+1)/p∣∣f(w)∣∣∣∣ρ(w)∣∣β/q; F2 =

∣∣g(w,z)∣∣−(n+1)/q∣∣ρ(w)∣∣−β/q
,

where q is the dual exponent to p,1/p+1/q = 1 (β will be chosen later). Then
by Hölder’s inequality∣∣Γ (f)(z)

∣∣p ≤(∫
|F1| · |F2|

)p

≤
∫

|F1|p ·
(∫

|F2|q
)p/q

.

Now ∫ ∣∣F2(w)
∣∣q dV (w) =

∫ ∣∣g(w,z)∣∣−n+1∣∣ρ(w)∣∣−β
dV (w)≤ cβ

∣∣ρ(z)∣∣−β

by (4.1), if we choose β ∈ (0,1). Thus,∣∣Γ (f)(z)
∣∣p ≤ c

(∫ ∣∣g(w,z)∣∣−n−1∣∣f(w)∣∣p∣∣ρ(w)∣∣βp/q dV (w)

)∣∣ρ(z)∣∣−βp/q
.

If we integrate this in z, interchange the order of integration and use (4.2) with
α= β/q (having chosen β sufficiently small so that 0< βp/q < 1 in addition
to 0< β < 1), then the result is∫

D

∣∣Γ (f)(z)
∣∣p dV (z)≤Cp

∫
D

∣∣f(w)∣∣p dV (w),

proving the proposition.
We turn to the proof of Lemma 4.1. We consider first the heart of the

matter, where z ∈D is sufficiently close to the boundary, and the region of
integration in (4.1) is limited to those w sufficiently close to z. That is, for a
small positive constant c1, we show first that

(4.3)

∫
|w−z|<c1

∣∣g(w,z)∣∣−n−1∣∣ρ(w)∣∣−α
dV (w)≤ c

∣∣ρ(z)∣∣−α
, for

∣∣ρ(z)∣∣< c1.

Now if z is sufficiently close to bD, then the normal projection π(z) of z
to the boundary is well defined. Hence by a translation and unitary linear
transformation of C

n, we can find a new coordinate system (z1, z2, . . . , zn)
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centered at π(z), that is π(z) = (0, . . . ,0), so that if zn = xn + iyn, the points
(z1, . . . , zn−1, xn) are in the (real) tangent plane at π(z) = (0, . . . ,0); moreover
our initial z is given as (0, . . . ,0, iyn) in this coordinate system. It follows that

yn ≈
∣∣ρ(z)∣∣; ∣∣z − π(z)

∣∣≈ ∣∣ρ(z)∣∣.
In addition

∂ρ

∂zj

(
π(z)

)
= 0, 1≤ j ≤ n− 1, while

∂ρ

∂yn

(
π(z)

)
�= 0,

and (
∂ρ

∂zn

)(
π(z)

)
=− i

2

(
∂ρ

∂yn

)(
π(z)

)
.

Thus if w = (w1, . . . ,wn), with wn = un + ivn, then∣∣Im〈
∂ρ

(
π(z)

)
,w− z

〉∣∣≈ |un − xn|= |un|.
Now by Proposition 2.1 and the symmetry (2.11), we have that∣∣g(w,z)∣∣≈ ∣∣ρ(w)∣∣+ ∣∣ρ(z)∣∣+ ∣∣Im〈

∂ρ(z),w− z
〉∣∣+ |w− z|2,

and by the above,

Im
〈
∂ρ(z),w− z

〉
= Im

〈
∂ρ

(
π(z)

)
,w− z

〉
+O

(∣∣ρ(z)∣∣|w− z|
)
.

Combining this with the above and the fact that |w − z|< c1 with c1 small,
we obtain ∣∣ρ(z)∣∣+ ∣∣Im〈

∂ρ(z),w− z
〉∣∣� ∣∣ρ(z)∣∣+ |un|,

and so

(4.4)
∣∣g(w,z)∣∣� ∣∣ρ(z)∣∣+ ∣∣ρ(w)∣∣+ |un|+

∣∣w′∣∣2,
where z′ = (z1, . . . , zn−1) = (0, . . . ,0), and w′ = (w1, . . . ,wn−1).

We now introduce a further coordinate system about π(z) = (0, . . . ,0) via a
C2 change of variables so that these new coordinates (ζ1, ζ2, . . . , ζn) are related
to the previous coordinates by

ζj = zj , 1≤ j ≤ n− 1; ζn = xn − iρ(z).

Thus because of (4.4), if we write −ρ(z) = t and −ρ(w) = s, then to prove
(4.3) it suffices to see that∫

s∈R+

∫
un∈R

∫
w′∈Cn−1

s−α

(t+ s+ |un|+ |w′|2)n+1
dsdun dV

(
w′)≤ ct−α

for any t > 0, and 0< α< 1. To prove this inequality, note that by rescaling
by the mapping

w′ → δ2w′; un → δun; s→ δs,

we are reduced to checking that

(4.5)

∫
R+×R×Cn−1

s−α

(1 + s+ |un|+ |w′|2)n+1
dsdun dV

(
w′)<∞.
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Now recall that for 0<α< 1 we have∫ ∞

0

s−α

(s+X)n+1
ds= cαX

−n−α, whenever X > 0

(the restriction on α guarantees the convergence of the integral). Applying
this fact to X = 1+ |un|+ |w′|2 we see that the integral (4.5) is further reduced
to a multiple of ∫

R×Cn−1

1

(1 + |un|+ |w′|2)n+α
dun dV

(
w′),

and the finiteness of the latter is easily seen for α> 0. This proves (4.3).
What remains is the situation where either |ρ(z)| ≥ c1 or |z − w| ≥ c1 (or

both). In any case we note from Proposition 2.1 that |g(w,z)| ≥ c′ > 0 and
hence it suffices to see that

(4.6)

∫
D

∣∣ρ(w)∣∣−α
dV (w)<∞, whenever α< 1.

To verify (4.6) cover the boundary of D by finitely many small balls, so
that in each ball we can introduce a coordinate system as above. Then the
finiteness of the part of the integral (4.6) taken over each such ball is easily
reduced the fact that ∫ 1

0

s−α ds <∞, when α< 1.

This concludes the proof of Lemma 4.1 and hence also of Proposition 4.1.
We now apply this proposition to obtain a preliminary estimate for the

operators {B1
ε}ε>0. We rewrite B1

ε (w,z), the kernel of B1
ε , as

(4.7) B1
ε (w,z) =

Nε(w,z)

gε(w,z)n+1
,

where Nε(w,z) can be computed from (3.14) and (3.4), which give

(4.8) Nε(w,z) =−
(
(∂wηε)

n−1 ∧ ∂wgε ∧ ηε + gε(∂wηε)
n
)
.

Here and in the sequel, we use the notation Oε to indicate a form (or a
function) whose coefficients are bounded by cε|w − z|. Now looking back at
the definition of gε and ηε, see (2.6) and (3.1), we see that

∂wgε(w,z) = −∂ρ(w) +Oε

(
|w− z|

)
,

ηε(w,z) = ∂ρ(w) +Oε

(
|w− z|

)
,

∂wηε(w,z) = ∂∂ρ(w) +Oε

(
|w− z|

)
.

Inserting these expressions in (4.8) yields

(4.9) Nε(w,z) =
(
∂ρ∧ ∂ρ∧ (∂∂ρ)n−1

)
(w) +Oε

(
|w− z|

)
.
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Since these forms have degree 2n in w, and the Euclidean volume element in
R

2n may be expressed as

dV (w) =

n∏
j=1

i

2
dwj ∧ dwj ,

we have

(4.10)
(
∂ρ∧ ∂ρ∧ (∂∂ρ)n−1

)
(w) =K0(w)dV (w),

where K0(w) is a continuous function on D. We also have

(4.11)
∣∣Oε

(
|w− z|

)∣∣≤ cε|w− z|,
however, the bound cε may not remain bounded as ε→ 0 because it depends
on the first derivatives of τε. Nevertheless, we do have the following corollary.

Corollary 2. For each ε > 0 and 1< p<∞, the operator Bε is bounded
on Lp(D).

By Proposition 3.2, Bε =B1
ε +B2

ε , and the operator B2
ε has a kernel which

is bounded on D ×D, hence it gives rise to bounded operator on Lp, for all
1≤ p≤∞. For the operator B1

ε , we apply (4.7) through (4.11) to see that∣∣B1
ε (f)(z)

∣∣≤ (c0 + cε)Γε

(
|f |

)
(z).

Now Proposition 4.1 grants the boundedness of B1
ε on Lp for 1 < p < ∞,

proving the corollary.

5. The approximate “symmetry” of Bε

Our goal here is to understand the degree to which the operator Bε is
symmetric. Indeed, if it had exactly that property, that is, B∗

ε = Bε, then
in view of properties (a) and (b) in Proposition 3.2, Bε would necessarily be
identical with the Bergman projection. While this is not the case, the facts
concerning the approximate symmetry of Bε are centered in the following key
lemma. If

(f, g) =

∫
D

f(w)g(w)dV (w)

is the inner product on L2(D), and T is a bounded operator on L2(D), we
denote by T ∗ its adjoint with respect to this inner product; it satisfies(

T ∗f, g
)
= (f,Tg).

Lemma 5.1. For each ε > 0, we can decompose Bε −B∗
ε as

(5.1) Bε −B∗
ε =Aε +Cε,

where:

(a) ‖Aε‖Lp→Lp ≤ εcp, for 1< p<∞.
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(b) Each Cε has a kernel which is continuous on D×D, and hence Cε maps
L1(D) to C(D).

In general, the norm of the operator Cε may increase as ε→ 0.

Proof of Lemma 5.1. To construct the operators Aε and Cε we need to
break up Bε into a part whose kernel is supported near the “diagonal” of
D ×D, and a complementary part supported away from this set. For this
purpose, fix a continuous function ϕ on R

+, so that ϕ(t) = 1, when 0≤ t≤ 1
2

and ϕ(t) = 1 for t > 1, and for each r > 0 set

ϕr(w,z) = ϕ

(
|ρ(z)|+ |ρ(w)|+ |z −w|

r

)
.

We write

Dr(f)(z) =
1

(2πi)n

∫
D

ϕr(w,z)f(w)B
1
ε (w,z),

Er(f)(z) =
1

(2πi)n

∫
D

(
1−ϕr(w,z)

)
f(w)B1

ε (w,z)

so that B1
ε =Dr +Er. The parameter r will be chosen in terms of ε momen-

tarily. We then define Aε and Cε by

Aε =Dr −
(
Dr

)∗
and

Cε =Er −
(
Er

)∗
+B2

ε −
(
B2

ε

)∗
.

With these definitions, the identity (5.1) clearly holds, since Bε = B1
ε +B2

ε .
To proceed further, we recall that if T is a bounded operator on L2(D) given
with a kernel K,

T (f)(z) =

∫
D

K(w,z)f(w)dV (w),

with say |K(w,z)|� |g(w,z)|−n−1, then its adjoint T ∗ is given by the kernel
K(z,w) in place of K(w,z). In view of the representation (4.7), the kernel of
Dr is

(K0(w) +Oε(|w− z|))ϕr(w,z)

(2πi)n(gε(w,z))n+1
,

and so to study Dr − (Dr)∗ we must estimate

1

(gε(w,z))n+1
− 1

(gεz,w))
n+1

and

(5.2)
K0(w)

(2πi)n
−
(
K0(z)

(2πi)n

)
+

Oε(|w− z|)
(2πi)n

−
(
Oε(|w− z|)

(2πi)n

)
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on the support of ϕr. (Note that ϕr(w,z) is obviously symmetric in w and
z). Now(

gε(w,z)
)−n−1 −

(
gε(z,w)

)−n−1
=

(gε(z,w))
n+1 − (gε(w,z))

n+1

(gε(w,z)gε(z,w))
n+1

.

Taking into account the fact that |gε(w,z)| ≈ |gε(z,w)|, we see that the above
is majorized by a multiple of

|gε(w,z)− gε(z,w)|
|gε(w,z)|n+2

.

In turn, by Propositions 2.1 and 2.2, this is majorized by a multiple of

ε|z −w|2
|gε(w,z)|n+2

� ε

|gε(w,z)|n+1
,

whenever |z −w|< δε. So if we choose r so that r ≤ δε, then

(5.3)

∣∣∣∣ 1

(gε(w,z))n+1
− 1

gε(z,w)
n+1

∣∣∣∣≤ cε

|gε(w,z)|n+1

for (w,z) in the support of ϕr, because then |z −w|< r.
Next, we examine the numerator (5.2). To this end, we first note that

Oε

(
|w− z|

)
=Oε(r)

for (w,z) in the support of ϕr, because then |z − w| < r. To estimate the

difference K0(w)/(2πi)
n−K0(z)/(2πi)n, we invoke the identities (4.9) through

(4.10) along with the computation [R, Exercise VII.E.7.2], and obtain

K0(w)

(2πi)n
=

n!

πn

∣∣∇ρ(w)
∣∣2 detLw,

where detLw is the determinant of the Levi form at the point w (for the
domain {ζ : ρ(ζ) < ρ(w)}). This shows that K0(w)/(2πi)

n is a real -valued
continuous function on D. By its uniform continuity, there is a δ′ = δ′ε, so
that ∣∣∣∣K0(w)

(2πi)n
− K0(z)

(2πi)n

∣∣∣∣< ε if |z −w|< δ′ε.

Finally, suppose that in the above inequalities we write

Oε(r)≤ rAε

for an appropriate bound Aε (depending on ε). We can then choose r in terms
of ε by taking r =min(δε, δ

′
ε, ε/Aε). This guarantees that

(5.4)

∣∣∣∣K0(w) +Oε(|w− z|)
(2πi)n

−
(
K0(z) +Oε(|w− z|)

(2πi)n

)∣∣∣∣≤ cε
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on the support of ϕr. Combining (5.4) with (5.3) then shows that∣∣∣∣K0(w) +Oε(|w− z|)
(2πi)n(gε(w,z))n+1

−
(
K0(z) +Oε(|w− z|)
(2πi)n(gε(z,w))n+1

)∣∣∣∣(5.5)

≤ cε

|gε(w,z)|n+1
.

So by Proposition 4.1, we conclude that

‖Aε‖Lp→Lp =
∥∥Dr −

(
Dr

)∗∥∥
Lp→Lp ≤ εcp,

which is conclusion (a) of this lemma.
The second conclusion is immediate. Indeed since |ρ(z)|+ |ρ(w)|+ |z−w| ≥

r/2 on the support of 1− ϕr, we have by Proposition 2.1 that |gε(w,z)|� r2

there, and hence the kernel of B1
ε is a continuous function of (w,z) there, see

(4.7).
Thus the kernels of Er and (Er)∗ are continuous on D×D, and by Propo-

sition 3.2, the same is true for B2
ε and (B2

ε )
∗. Since Cε =Er − (Er)∗ +B2

ε −
(B2

ε )
∗, the operator Cε has a continuous kernel on D ×D. From this, it is

also evident that Cε maps L1(D) to C(D), proving the lemma. �

6. The main theorems

Let B be the Bergman projection for the domain D. The operator B is the
orthogonal projection of L2(D) to the Bergman space ϑL2(D), the subspace
of holomorphic functions in L2(D). Then as is well known,

(6.1) B(f)(z) =

∫
D

B(w,z)f(w)dV (w), f ∈ L2(D), z ∈D,

where B(w,z) is the Bergman kernel, which satisfies B(z,w) =B(w,z).

Theorem 6.1. Suppose the domain is of class C2 and strongly pseudocon-
vex. Then f �→ B(f) extends to a bounded mapping of Lp(D) to itself, for
each p, 1< p<∞.

As is well known, for each z ∈D, the function B(w,z) belongs to L2(D),
see [K]. Hence, B(f)(z) is well-defined by (6.1) when f ∈ Lp(D) for p ≥ 2.
When p ≤ 2, the operator (6.1) is initially defined only on L2(D), a dense
subspace of Lp(D). In either case, the thrust of Theorem 6.1 is the inequality∥∥B(f)

∥∥
Lp ≤ cp‖f‖Lp

for f that belongs to L2(D).
There is also a stronger version that involves the operator whose kernel is

the absolute value of the Bergman kernel. Define |B| to be the operator

|B|(f)(z) =
∫
D

∣∣B(z,w)
∣∣f(w)dV (w)

(defined initially on L2(D)).
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Theorem 6.2. Under the assumptions of Theorem 6.1, we have that f �→
|B|(f) is also bounded on Lp(D), 1< p<∞.

To prove Theorem 6.1, we start with the following identities that hold on
L2(D). First BBε =Bε, which follows from (a) of Proposition 3.2 (together
with Corollary 2, for p= 2); also BεB =B, which is a consequence of (b) of
Proposition 3.2. Taking adjoints of the second of these identities and using
that B∗ =B immediately yields

B
(
I −

(
B∗

ε −Bε

))
=Bε.

It then follows from Lemma 5.1 that

B(1 +Aε) =Bε −BCε.

Now for fixed p,1 < p < ∞, choose ε = ε(p) so small that according to
Lemma 5.1 we have that ‖Aε‖Lp→Lp < 1. Then I + Aε is invertible as an
operator on Lp, using a Neumann series. Writing the inverse as (I +Aε)

−1

gives us

(6.2) B = (Bε −BCε)(I +Aε)
−1.

Since we know that Bε is bounded on Lp (see Corollary 2), it suffices to
note that BCε is bounded on Lp. We observe this first for p≤ 2 as follows.
The fact that the kernel of Cε is continuous on D ×D gives that Cε maps
L1 to L∞, and hence Lp to L2. Thus BCε maps Lp to L2, and since p≤ 2,
we have BCε maps Lp to Lp. This proves that the boundedness of B on Lp,
when p≤ 2.

To obtain the result for p≥ 2, we may use the (self) duality of B to reduce
to the case p≤ 2. Alternatively we may retrace the steps leading to (6.2) to
obtain

(6.3) (I −Aε)B =B∗
ε +C∗

εB.

Then, after inverting (I −Aε), it suffices to see that C∗
εB is bounded on Lp.

For this one notes that B maps Lp to L2 (since now Lp ⊂ L2), and C∗
ε maps

L2 to Lp (since it maps L1 to L∞). The proof of Theorem 6.1 is now complete.
To prove Theorem 6.2, we need to manipulate operators with positive ker-

nels. To do so rigorously, we formulate the following definition. Suppose T is

a bounded linear operator on Lp. We say that T has a positive majorant T̂ ,

if T̂ is bounded linear operator on Lp that satisfies

(6.4)

{
T̂ (f)≥ 0 if f ≥ 0, and∣∣T (f)(z)∣∣≤ T̂ (|f |)(z), for a.e. z.

Observe that if T1 and T2 have positive majorants T̂1 and T̂2 respectively,
then

• T̂1 + T̂2 and T̂1 ◦ T̂2 are positive majorants for T1 + T2 and T1 ◦ T2, respec-
tively.
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Also suppose Tn have positive majorants T̂n and Tn → T , while T̂n → S, as
n→∞ strongly in Lp, then

• S is a positive majorant of T .

As a result, if T has a positive majorant T̂ and ‖T̂‖Lp→Lp < 1 (hence
‖T‖Lp→Lp < 1), then

• (I − T̂ )−1 is a positive majorant of (I − T )−1.

Indeed, by the above,
∑N

n=0 T̂
n is a positive majorant of

∑N
n=0 T

n, and
the assertion follows by a passage to the limit as N →∞.

Let us now consider the case p≥ 2. We will show first that the Bergman
projection has a positive majorant, as an operator on Lp. The proof of Corol-
lary 2 shows that Bε and B∗

ε both have positive majorants (these can be taken
to be c′εΓε, for suitable c′ε). Moreover this and the proof of (a) of Lemma 5.1
also shows that the operator Aε also has a positive majorant of the form cεΓε.

If we set T =Aε, this means that there is a positive majorant T̂ for T , with

‖T̂‖Lp→Lp < 1, if ε is sufficiently small. The same is true for T = (I −Aε)
−1.

Thus by (6.3), B will have a positive majorant as a result of the following
simple lemma applied to T0 = C∗

εB, which (by Lemma 5.1) is bounded from
Lp(D) to C(D) for all p≥ 2.

Lemma 6.1. Suppose T0 is a bounded linear mapping from Lp(D) to C(D).
Then as a linear mapping from Lp(D) to Lp(D), T0 has a positive majorant.

Proof. For each z ∈D, consider the linear functional f �→ T0(f)(z). Then
by assumption, |T0(f)(z)| ≤ c‖f‖Lp , and so there is a ψ = ψz ∈ Lq(D) with
1/p+ 1/q = 1, with ‖ψz‖Lq ≤ c, such that

T0f(z) =

∫
D

ψz(w)f(w)dV (w).

Now define T̂0 by

T̂0f(z) =

∫
D

∣∣ψz(w)
∣∣f(w)dV (w),

so

‖T̂0f‖Lp ≤ c′‖T̂0f‖L∞ ≤ c′c‖f‖Lp ,

by Hölder inequality. The lemma is therefore proved. �

As a result B, the Bergman projection, has a positive majorant B̂. This
means that

(6.5)

∣∣∣∣∫
D

B(w,z)f(w)dV (w)

∣∣∣∣≤ B̂
(
|f |

)
(z) a.e. z ∈D.

To pass from (6.5) to the operator with kernel |B(w,z)| requires a further
step, because (6.4) is asserted only for a.e. z ∈ D, and the exceptional set

may depend on f . To get around this difficulty we modify the majorant B̂,
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replacing it by another majorant B# for which the analogue (6.4) holds for
all z ∈D.

In fact, define the averaging operator M, by

M(F )(z) =
1

V (Bz)

∫
Bz

F (w)dV (w), z ∈D,

where Bz is the ball centered at z of radius equal to 1/2 the distance of z from
bD. Note that M(F )(z) is defined for all z ∈D, and has the following basic
properties:

(i) M(Bf)(z) =B(f)(z) for all z ∈D (by the mean value property applied
to B(f), since this is holomorphic).

(ii) If |f(w)| ≤ |g(w)| a.e. w, then M(|f |)(z)≤M(|g|)(z) for all z.
(iii) |M(f)(z)| ≤M(|f |)(z).

Now define B# by

B#(f)(z) =M
(
B̂(f)

)
(z), z ∈D.

Then (6.4) and the basic properties listed above imply that

(6.6)

∣∣∣∣∫
D

B(w,z)f(w)dV (w)

∣∣∣∣≤B#
(
|f |

)
(z) for all z ∈D.

Moreover by the maximal theorem f →B#(f) is also bounded on Lp, by

virtue of the Lp boundedness of B̂. Finally, for fixed z apply (6.5) to f(w)
replaced by

h(w) =

{
f(w) |B(w,z)|

B(w,z) , if B(w,z) �= 0,

0, if B(w,z) = 0.

Since the Bergman kernel, B(w,z) is anti-holomorphic in w ∈D, then for any
fixed z ∈D it will vanish only on a zero-measure subset of D. This means
that ∣∣h(w)∣∣= ∣∣f(w)∣∣ a.e. w ∈D,

and so

B#
(
|h|

)
(z) =B#

(
|f |

)
(z) for all z ∈D.

Also note that

B(h)(z) = |B|(f)(z) for all z ∈D,

and it follows from (6.6) that∣∣B(f)(z)
∣∣≤B#

(
|f |

)
(z) for all z ∈D.

From these (and the fact that B# is a positive majorant for B everywhere in
D), we obtain ∣∣|B|(f)(z)

∣∣≤B#
(
|f |

)
(z) for all z ∈D.

This shows that f → |B|(f) is bounded on Lp(D) when p ≥ 2. Since the
operator |B| with kernel |B(w,z)| is obviously self-dual, the usual duality
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shows that it extends to a bounded operator on Lp, for 1< p≤ 2. Theorem 6.2
is therefore proved.

7. Concluding remarks

7.1. Density in ϑLp(D).

Proposition 7.1. The collection of functions that are each holomorphic
in some neighborhood of D is dense in ϑLp(D), 1< p<∞.

In fact suppose that f ∈ ϑLp(D). Then we know that f = Bε(f) (see
Proposition 3.2). Now let

fn =

{
f(w), for w ∈D1/n = {ρ <−1/n},
0, for w ∈D \D1/n,

and set Fn =Bε(fn). Then clearly ‖fn−f‖Lp(D) → 0 as n→∞, which implies
that

‖Fn − f‖Lp(D) =
∥∥Bε(fn − f)

∥∥
Lp(D)

≤ c‖fn − f‖Lp(D) → 0

by Corollary 2. However if 1/n < λ0/2, where λ0 is as in (3.15), then Corol-
lary 1 shows that Fn is holomorphic in D−1/n ⊃ D, which proves Proposi-
tion 7.1.

7.2. The Bergman projection Bσ. Suppose σ is a positive function on D.
Define the inner product (· , · )σ by

(F,G)σ =

∫
D

F (w)G(w)σ(w)dV (w)

and write L2
σ(D) for the corresponding L2 space with norm

‖F‖L2
σ
= (F,F )1/2σ .

Let Bσ be the Bergman projection corresponding to L2
σ , that is, the orthog-

onal projection via (· , · )σ of L2
σ to the weighted Bergman space ϑL2

σ . Note
that B =Bσ if σ ≡ 1.

We may ask whether Bσ (like B) is bounded on Lp (or Lp
σ), for a given σ.

(This question was raised by Polam Yung.) We consider here only the first
case of interest, when σ is continuous in D and nowhere zero. Then we can
assert

• Bσ is bounded on Lp
σ , for 1< p<∞.

Under our assumptions on σ the norm on Lp
σ is clearly equivalent with the

norm on Lp. Thus we can also assert

• Bσ is bounded on Lp, for 1< p<∞.
• Similar results hold for the operator |Bσ|.
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Note however that these results are not direct consequences of Theorem 6.1
since there is no simple relation expressing Bσ in terms of B. These assertions
can, however, be established by reprising the proofs of Theorems 6.1 and 6.2.
One starts by proving an analogue of Lemma 5.1, which is based on the

following observation. Suppose that B̃σ
ε is defined to be the adjoint of Bε

with respect to (· , · )σ . Then B̃σ
ε = σ−1 ·B∗

ε · σ. Further details are left to the
interested reader.
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