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EXISTENCE OF DIVERGENT BIRKHOFF NORMAL FORMS
OF HAMILTONIAN FUNCTIONS

XIANGHONG GONG

Abstract. By the work of Siegel it is well known that as a rule
the Birkhoff normal form of a real analytic Hamiltonian system

whose eigenvalues satisfies suitable non-resonance condition can-
not be realized by convergent symplectic transformations. We

show the existence of divergent Birkhoff normal forms for suit-
able Hamiltonian systems. Our calculation shows how the small

divisors appear in the normal forms, from which the divergence
is derived by using Siegel’s methods of small divisors.

1. Introduction

We consider the standard symplectic space R4, equipped with the symplec-
tic 2-form ω = dx1 ∧ dy1 + dx2 ∧ dy2. Let h(x, y) be a real analytic function,
defined near 0 ∈R4, that has the form

(1.1) h(x, y) = λ1x1y1 + λ2x2y2 +E(x, y),

where E(x, y) =
∑

α,β Eα,βx
αyβ is a convergent power series in x, y satisfying

Eαβ = 0 for |α| + |β| < 3. For brevity, we denote the latter condition by
E(x, y) = O(3). We say that λ1 and λ2 are non-resonant, if λ · α = λ1α1 +
λ2α2 �= 0 for all multi-indices of integers α = (α1, α2) �= 0. Under the non-
resonance condition on λ, there is a formal symplectic real map ϕ of R4,
i.e. ϕ∗ω = ω, such that ϕ(0) = 0 and h ◦ ϕ−1(x, y) is a real formal power

series in x1y1, x2y2. The formal power series ĥ= h ◦ ϕ−1 is called a Birkhoff

normal form of h (e.g., see [14], p. 209). Note that ĥ(x, y) is not unique.
However, it depends on the choice of coordinates in a simple way; namely, the

only other Birkhoff normal forms are obtained from ĥ(x, y) by a permutation
of x1, x2, y1, y2 that preserves the symplectic 2-form. Therefore, the normal
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forms of the h are either all convergent or all divergent. Throughout the

paper, we refer ĥ, whose quadratic part is the same as h, as the Birkhoff
normal form of h.

The following existence theorem is our main result.

Theorem 1.1. There exist some non-resonant λ1, λ2 and a real analytic
function h(x, y) = λ1x1y1+λ2x2y2+O(3) such that the Birkhoff normal form
of h is divergent.

In [12], Siegel showed that the Birkhoff normal form cannot be realized by
convergent symplectic transformations in general. In fact, Siegel [13] showed
that for some real analytic function h(x, y) = λ1(x

2
1+y21)+λ2(x

2
2+y22)+O(3)

having any given non-resonant λ1, λ2 and generic higher order terms, there
exists no convergent symplectic mapping transforming h(x, y) into its normal
form. Note that for this type of quadratic part of h, the normal forms are
formal power series in x2

1 + y21 and x2
2 + y22 .

Despite Siegel’s divergence results and many other results, the existence
of a divergent Birkhoff normal form arising from a real analytic function is
new (for instance, see [2]). The divergence of Birkhoff normal form implies, of
course, the divergence of all normalizing transformations of the given function.
The importance of the existence of a divergent Birkhoff normal form was
demonstrated by Pérez-Marco [9].

For the Birkhoff normal form theory, the reader is referred to the works of
Moser [7], Rüssmann [10], [11], Brjuno [1], Vey [16], Ito [6], Stolovitch [15],
Giorgilli [3], and the author [4], [5] besides the above mentioned references.
Papers by Brjuno [1] and Pérez-Marco [9] contain extensive references also.

The proof of Theorem 1.1 is based on Siegel’s method of small divisors.
One would expect that the present approach will have applications for other
small-divisor problems. We will however focus on the Hamiltonian functions
to demonstrate how the small-divisors enter the normal forms. We will state
our result and its proof for the higher dimensions at the end of the paper.

2. Proof of the theorem

The proof consists of 3 steps. The first step is to recall how the Birkhoff
normal form is derived. Here we do not claim any originality, and we present
the details for the sake of the reader. These details are crucial in our construc-
tion of divergent normal forms. In this step, one sees how the small divisors
enter the formal map ϕ that normalizes the function h. The second step is

to show how the small divisors enter the normal form ĥ. Here the computa-
tion is crucial for our proof. Once we find small divisors in the coefficients

of the normal form ĥ, the proof of the divergence of ĥ follows from Siegel’s
arguments [12].
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Consider a real analytic (real-valued) function

h(x, y) = λ1x1y1 + λ2x2y2 +
∑

|α|+|β|≥3

hαβx
αyβ ,

where λ1, λ2 are non-resonant.
Let S(x, y) = O(3) be a real analytic function defined near 0 ∈R2 ×R2.

Here we denote S(x, y) = O(d) if Sαβ = 0 for all |α| + |β| < d. Let (x̂, ŷ) =
ϕ(x, y) be the symplectic map defined implicitly by

(2.1) x̂j = xj − Sŷj (x, ŷ), ŷj = yj + Sxj (x, ŷ), j = 1,2.

We want to show that there exists a unique formal power series

S(x, y) =
∑

|α|+|β|≥3

Sαβx
αyβ , Sαα = 0

such that ĥ(x̂, ŷ) = h ◦ϕ−1(x̂, ŷ) is a formal power series in x̂1ŷ1, x̂2ŷ2. Write

ϕ(x, y) =
(
x+ u(x, y), y+ v(x, y)

)
, u= (u1, u2), v = (v1, v2).

From (2.1), we see that u(x, y) =O(2), v(x, y) =O(2) and

ui(x, y) =−Sŷi

(
x, y+ v(x, y)

)
, vi(x, y) = Sxi

(
x, y+ v(x, y)

)
.

Let δ1 = (1,0) and δ2 = (0,1). By comparing coefficients of xαyβ and using
u(x, y) =O(2) and v(x, y) =O(2) in the above two identities, we get

uj,αβ = −(βj + 1)Sαβ+δj +Uj,αβ(S),(2.2)

vj,αβ = (αj + 1)Sα+δjβ + Vj,αβ(S),

where Uj,αβ(S), Vj,αβ(S) are polynomials in Sα′β′ with |α′|+ |β′| ≤ |α|+ |β|.
We need to solve the equation h(x, y) = ĥ(x+ u(x, y), y + v(x, y)) under the

normalizing condition that ĥαβ = 0 for α �= β. Comparing the coefficients we
obtain

hαβ = εαβ ĥαα +
∑

λj(vj,α−δjβ + uj,αβ−δj ) +Eαβ(ĥ, u, v)

= εαβ ĥαα + λ · (α− β)Sαβ + Fαβ(ĥ, S) (by (2.2)).

Here εαβ = 0 for α �= β and εαα = 1. Also Eαβ(ĥ, u, v) is a polynomial in

ĥα′α′ , uα′′β′′ , vα′′β′′ with max{2|α′|, |α′′|+ |β′′|+1}< |α|+ |β|, and Fαβ(ĥ, S) is

a polynomial in ĥα′α′ , Sα′β′ with max{2|α′|, |α′|+ |β′|}< |α|+ |β|. Therefore,
we get

Sαβ =
1

λ · (α− β)

{
hαβ − Fαβ(ĥ, S)

}
, α �= β,

ĥαα = hαα − Fαα(ĥ, S).
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It will be convenient to denote

μαβ =
1

(α− β) · λ, α �= β.

Recursively, we substitute Sα′β′ , ĥα′α′ into Fαβ(ĥ, S) to obtain

Sαβ =
1

λ · (α− β)

{
hαβ +Dαβ(h,μ)

}
, α �= β,

ĥαα = hαα +Dαα(h,μ),

where Dαβ(μ,h) is a polynomial in μα′β′ and hα′′β′′ with |α′|+ |β′| < |α|+
|β|, α′ �= β′ and |α′′|+ |β′′|< |α|+ |β|.

We remark that Sαβ is uniquely determined by hαβ and hα′β′ with |α′|+
|β′| < |α| + |β|. Also Dαβ = Sαβ = 0 if hα′β′ = 0 for all α′ �= β′ satisfying
2 < |α′| + |β′| < |α| + |β|. Therefore, if d > 2 is fixed and hα′β′ = 0 for all
|α′|+ |β′|< d with α′ �= β′, then

(2.3) Sαβ =
hαβ

λ · (α− β)
, α �= β, |α|+ |β|= d.

To see small divisors in ĥ, we need to calculate Dαα(μ,h) more explicitly.
To this end, we apply a preliminary change of coordinates by truncating the
above S(x, y). We fix d > 2. Let ϕ1 be the symplectic mapping defined by

x̂j = xj − S∗
ŷj
(x, ŷ), ŷj = yj + S∗

xj
(x, ŷ),

where S∗(x, y) =
∑

3≤|α|+|β|<d Sαβx
αyβ with Sαβ being determined above.

Note that when d= 3, we have taken ϕ1 to be the identity. Then f = h ◦ϕ−1
1

has the form

f(x, y) =
∑

|α|+|β|≥2

fαβx
αyβ = ĥ(x, y) +O(d),

fαβ = hαβ +Qαβ(h,μ), |α|+ |β| ≥ d,(2.4)

where Qαβ(h,μ) is a polynomial in μα′β′ and hα′′β′′ with |α′|+ |β′|< d,α′ �= β′

and |α′′|+ |β′′|< |α|+ |β|.
Define the projection

N
∑
αβ

hαβx
αyβ =

∑
α

hααx
αyα.

Lemma 2.1. Let f(x, y) = h ◦ ϕ−1
1 (x, y) = ĥ(x, y) +O(d) be as above. Let

ϕ2 be the the unique mapping defined by (2.1), where S(x, y) is replaced by

K(x, y) = O(d) and Kαα = 0 for all α, such that f ◦ ϕ−1
2 = ĥ. Let T = [K]d
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denote the sum of all monomials in K of order d > 2. Then

ĥ(x, y)−N f(x, y)(2.5)

=N
{

2∑
j,k=1

λj

(
yjTyjyk

(x, y)Txk
(x, y)

− xjTxjyk
(x, y)Txk

(x, y)
)
+

2∑
j=1

λjTxj (x, y)Tyj (x, y)

}

+O(2d− 1).

Proof. Returning to (2.1) for (x̂, ŷ) = ϕ2(x, y), we get

x̂j = xj −Kyj (x, y)−
2∑

k=1

Tyjyk
(x, y)Txk

(x, y) +O(2d− 2),

ŷj = yj +Kxj (x, y) +
2∑

k=1

Txjyk
(x, y)Txk

(x, y) +O(2d− 2).

Now ĥ(x̂, ŷ) is equal to

f(x, y)(2.6)

= ĥ(x, y) +

2∑
j,k=1

λj

[
xjTxjyk

(x, y)Txk
(x, y)

− yjTyjyk
(x, y)Txk

(x, y)
]
−

2∑
j=1

λjTxj (x, y)Tyj (x, y)

+
∑
|α|≥2

αj ĥααx
α−δjyα−δj

(
xjSxj (x, y)− yjSyj (x, y)

)
+O(2d− 1).

Here the term in the last summation is zero if αj = 0. Note that, for each j,

xjSxj (x, y)− yjSyj (x, y) =
∑
αβ

(αj − βj)Sαβx
αyβ

does not contain terms of the form xaya. Therefore,

N
{
αjx

α−δjyα−δj
(
xjSxj (x, y)− yjSyj (x, y)

)}
= 0.

Applying the projection N to (2.6), we get (2.5). �

We now identify the small divisors that contribute to the divergence of a
Birkhoff normal form. The way that the small divisors appear will be crucial
in the proof of the theorem. We will carry out computations in two steps.
The first step is the following.
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Lemma 2.2. Keep nations and assumptions in Lemma 2.1. Let N +m= d,
α= (N,m− 1), a= (N,0) and b= (0,m). Assume that m≥ 1. Then

ĥαα = fαα +
m2(λ1N − λ2)fabfba

(λ · (a− b))2
(2.7)

+
fabAN+m(f,μ) + fbaBN+m(f,μ)

λ · (a− b)
+CN+m(f,μ),

where fab are of the form (2.4). Also AN+m(f,μ), BN+m(f,μ) are linear
combinations of μα′β′fα′β′ with |α′|+ |β′|=N+m and (α′, β′) �= (α,β), (β,α).
And CN+m(f,μ) is a linear combination of fα′β′fα′′β′′ with |α′|+ |β′|= |α′′|+
|β′′|=N +m and (α′, β′), (α′′, β′′) �= (α,β), (β,α).

Proof. Write

T (x, y) = Tabx
N
1 ym2 + Tbax

m
2 yN1 +

∑
(a′,b′) �=(a,b),(b,a)

Ta′b′x
a′
yb

′
.

Then we obtain∑
j,k

λjxjTxjyk
Txk

= TabTba

(
λ1Nm2(x1y1)

N (x2y2)
m−1

+ λ2mN2(x1y1)
N−1(x2y2)

m
)
+ · · · ,∑

j,k

λjyjTyjyk
Txk

= 0+ · · · ,

∑
j

λjTxjTyj = TabTba

(
λ1N

2(x1y1)
N−1(x2y2)

m

+ λ2m
2(x1y1)

N (x2y2)
m−1

)
+ · · · .

In the above and the next formula, the omitted terms have coefficients that
are linear combinations with integer coefficients in TabTa′b′ , TbaTa′′b′′ , and
Ta′b′Ta′′b′′ with (a′, b′), (a′′, b′′) �= (a, b), (b, a). Thus by (2.5)

ĥ(x, y)− f(x, y) = TabTba

{
(λ1 − λ2m)N2(x1y1)

N−1(x2y2)
m

+ (λ2 − λ1N)m2(x1y1)
N (x2y2)

m−1
}
+ · · · .

By (2.3) where h is replaced by f , we have

Tαβ =
fαβ

λ · (α− β)
.

Combining the last two identities gives us (2.7). �

In the next step, we want to use (2.4) to further express ĥαα in terms of
coefficients of h and the small divisors.

Proposition 2.3. Let h(x, y) = λ1x1y1 + λ2x2y2 +O(3) be a real analytic
function. Assume that λ1, λ2 are non-resonant. Let ϕ be any formal sym-

plectic map so that ĥ(x, y) = h ◦ϕ−1(x, y) = λ1x1y1 + λ2x2y2 +O(3) is in the
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Birkhoff normal form. Then for α = (N,m− 1), a = (N,0), b = (0,m) with
m≥ 1, one has

ĥαα = hαα +
m2(λ1N − λ2)(hab +Qab(h,λ))(hba +Qba(h,λ))

(λ · (a− b))2
(2.8)

+
habAab(h,λ) + hbaBab(h,λ) +Cab(h,λ)

λ · (a− b)
+ Q̂ab(h,λ).

Here Qab is a polynomial in hα′β′ , 1
λ·(α′′−β′′) with

α′′ �= β′′, max
{∣∣α′∣∣+ ∣∣β′∣∣, ∣∣α′′∣∣+ ∣∣β′′∣∣}< |a|+ |b|;

Q̂ab is a polynomial in hα′β′ , 1
λ·(α′′−β′′) with

α′′ �= β′′,
(
α′′, β′′) �= (a, b), (b, a),∣∣α′∣∣+ ∣∣β′∣∣ < 2|α|,
∣∣α′′∣∣+ ∣∣β′′∣∣≤ |a|+ |b|;

and Aab, Bab,Cab are polynomials in hα′β′ , 1
λ·(α′′−β′′) with

α′′ �= β′′,
(
α′′, β′′) �= (a, b), (b, a),

max
{∣∣α′∣∣+ ∣∣β′∣∣, ∣∣α′′∣∣+ ∣∣β′′∣∣}≤ |a|+ |b|.

Proof. We apply a symplectic map ϕ1 of the form (2.1), in which

S(x, ŷ) =
∑

α �=β,3≤|α|+|β|<N+m

Sαβx
αŷβ ,

so that h̃ = h ◦ ϕ−1
1 satisfies h̃αβ = 0 for all α �= β and |α| + |β| < N + m.

We know that h̃αβ = hαβ + Dαβ(h,λ), where Dαβ(h,λ) depends on hα′β′

with |α′|+ |β′|< |α|+ |β| and on 1/(λ · (α′′ − β′′)) with |α′′|+ |β′′|< |a|+ |b|,
α′′ �= β′′. Apply a formal symplectic map ϕ2 of the form (2.1) with

S(x, ŷ) =
∑

α �=β,|α|+|β|≥N+m

Sαβx
αŷβ ,

so that h̃ ◦ ϕ−1
2 is in the Birkhoff normal form. By (2.4) where h is actually

h̃ and by (2.7), we can write (with abuse of notation for Qab(h,λ))

h̃αα +CN+m(h̃, λ) = hαα + Q̂ab(h,λ),

h̃ab +Qab(h̃, λ) = hab +Qab(h,λ),

h̃abAN+m(h̃, λ) + h̃baBN+m(h̃, λ) = habAab(h,λ) + hbaBab(h,λ) +Cab(h,λ).

Here Cab(h,λ) = Dab(h̃, λ)AN+m(h̃, λ) + Dba(h̃, λ)BN+m(h̃, λ), Aab(h,λ) =

AN+m(h̃, λ) and Bab(h,λ) =BN+m(h̃, λ).
We have obtained (2.8), via the above normalizing map ϕ2 ◦ ϕ1. On the

other hand the Birkhoff normal form ĥ, with the same quadratic form as h, is
independent of the normalizing map. In other words, the right-hand side of
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(2.8) is independent of ϕ. Since each ĥαα is a polynomial with integer coef-
ficients in hα′β′ and 1

λ·(α′′−β′′) , we conclude that each term in (2.8) depends

only on h and is a polynomial in the sought form. �

We now restrict ourselves to |hαβ | ≤ 2 for all α,β. Then we have

(2.9)
(
|Qab|+ |Qba|+ |Aab|+ |Bab|+ |Cab|+ |Q̂ab|

)
(h,λ)≤ δab(λ)

−τab ,

where τab > 1 is a constant independent of λ and

δab(λ) =min

{
1

2
,
∣∣λ · (α−β)

∣∣ : α �= β, |α|+ |β| ≤ |a|+ |b|, (α,β) �= (a, b), (b, a)

}
.

Put λ2 = 1. Notice that for a= (N,0), b= (0,m), one has |a− b|= |a|+ |b|.
Thus, we can choose an irrational λ1 ∈ (0,1) so that

(2.10)
∣∣(a− b) · λ

∣∣= |Nλ1 −m|< δab(λ)
τab

100(N +m)!
, a= (N,0), b= (0,m)

hold for a sequence (N,m) = (Nj ,mj) with Nj ,mj being positive integers.
We may assume that Nj+1 +mj+1 > 2(Nj +mj). Put aj = (Nj ,0) and bj =
(0,mj). Note that the existence of λ1 can be obtained easily by modifying
Siegel’s argument [12] for

λ1 =

∞∑
k=1

2−Lk ,

where Lk are suitable positive integers tending to ∞ rapidly to ensure λ1 is
irrational and satisfies (2.10).

We now complete the proof of the theorem.
We shall find h whose coefficients hαβ are real. We also require that hαβ =

hβα to show the divergence of normal forms of another type of quadratic parts
for h. Put hαβ = 0 for all α,β with |α|+ |β|> 2 and (α,β) �= (aj , bj), (bj , aj).
Inductively, we shall choose hajbj = hbjaj = 0,2, or −2 as follows. Notice that
if u0, v0 are real and |u0v0|< 1, then either (u0+2)(v0+2)≥ 2 or (u0−2)(v0−
2) ≥ 2; otherwise, we would have both u0 + v0 < −1/2 and u0 + v0 > 1/2,
which is a contradiction. Therefore for two real numbers u0, v0, choosing
(u, v) among (0,0), (2,2) and (−2,−2) yields |(u0 + u)(v0 + v)| ≥ 1. This
shows that we can find hajbj = hbjaj = 0, 2 or −2, so that

(2.11)
∣∣(hab +Qab(h)

)(
hba +Qba(h)

)∣∣≥ 1, a= aj , b= bj .

Here, we already used Nj+1+mj+1 > 2(Nj +mj), which implies that if (2.11)
holds for a = aj , b = bj then it remains true no matter how aj+1, bj+1 are
chosen. By (2.8) we have

|ĥαα| ≥
∣∣λ · (a− b)

∣∣−2{
m2

∣∣(λ1N − λ2)
(
hab +Qab(h)

)(
hba +Qba(h)

)∣∣
−
∣∣λ · (a− b)

∣∣2(|hαα|+
∣∣Q̂αα(h)

∣∣)
−
∣∣λ · (a− b)

∣∣(∣∣habAab(h)
∣∣+ ∣∣hbaAba(h)

∣∣+ ∣∣Cab(h)
∣∣)}.
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Recall that λ1 ∈ (0,1), λ2 = 1 and |hαβ | ≤ 2. When N is sufficiently large, we
have λ1N − λ2 > 2. Recall that δab(λ) < 1 < τab. Thus by (2.9)–(2.11) and
for (N,m) = (Nj ,mj) with j sufficiently large, we obtain

|ĥαα| ≥
∣∣λ · (a− b)

∣∣−2
{
2m2 −

(
δτab

ab (λ)

100(N +m)!

)2

· 3δ−τab

ab (λ)

− δτab

ab (λ)

100(N +m)!
· 5δ−τab

ab (λ)

}
>
∣∣λ · (a− b)

∣∣−2
.

Finally, we conclude that for j sufficiently large

|ĥαα|>
∣∣λ · (a− b)

∣∣−2
> (N +m)!, α= (Nj ,mj − 1).

This shows the divergence of ĥ.
We reformulate our theorem to cover another case.

Proposition 2.4. There exist some non-resonant real numbers λ1 and λ2

with λ1λ2 > 0 and a real analytic function h(x, y) = λ1(x
2
1 + y21) + λ2(x

2
2 +

y22) +O(3) such that the Birkhoff normal form of h is divergent.

Proof. Indeed, for the above analytic real function h(x, y) on R2 ×R2, its
complexification, denoted by h(z,w), is holomorphic near 0 ∈C2 ×C2. Let
ϕ be a formal symplectic map of R4, which is tangent to the identity, so
that h ◦ ϕ−1(x, y) = g(x1y1, x2y2) is in the normal form. Since ϕ preserves
ω = dx1 ∧ dy1 + dx2 ∧ dy2, its complexification, still denoted by ϕ, preserves
ωc = dz1 ∧ dw1 + dz2 ∧ dw2.

Let L(ξ, η) = (ξ+ iη, ξ− iη). Notice that L∗ωc =−2i(dξ1∧dη1+dξ2∧dη2).

Thus ψ = L−1ϕL preserves dξ1 ∧ dη1 + dξ2 ∧ dη2. Also h̃ ◦ψ−1(ξ, η) = g(ξ21 +

η21 , ξ
2
2 + η22) for h̃= h ◦L. In other words, h̃ ◦ψ−1 is the (formal holomorphic)

Birkhoff normal form with respect to the holomorphic symplectic 2-form dξ1∧
dη1 + dξ2 ∧ dη2. Notice that the quadratic form of h̃ is now λ1(ξ

2
1 + η21) +

λ2(ξ
2
2+η22). Let e be the restriction of h̃ onR2×R2 : ξ = ξ, η = η. Since hαβ =

hβα by construction, then e is real-valued. Thus e(ξ, η) is an analytic real
function of the form λ1(ξ

2
1 + η21) + λ2(ξ

2
2 + η22) +O(3), while L∗ωc, restricted

to R2 ×R2 : ξ = ξ, η = η, is a constant multiple of the standard symplectic
real 2-form. Therefore h̃ ◦ ψ−1, restricted to ξ = ξ, η = η, is a real Birkhoff
normal form of e; since h diverges, one readily sees the divergence of the
restriction. �

Our theorem is valid for higher dimension R2n. Indeed such a real analytic
function which has a divergent normal form can be achieved by adding suitable
quadratic forms in the remaining variables in higher dimension. Furthermore,
one can see, from the proof of the theorem, that the set of real analytic
Hamiltonian functions with a divergent Birkhoff normal form is dense in a
suitable topology.
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We emphasize that our theorem does not deal with the case when the
Hamiltonian functions on R4 have eigenvalues λ1,−λ1, λ2, λ2 for which λ2/λ1

is not real. This is an interesting case since by a theorem of Moser [8] the
real analytic Hamiltonian system can be solved real analytically. In fact, its
Birkhoff normal form can be realized by a convergent symplectic transforma-
tion (see Bruno [1], pp. 228–229, and Giorgilli [3]).
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