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L2-EXTENSION OF ∂̄-CLOSED FORM

BO BERNDTSSON

Dedicated to John d’Angelo

Abstract. Generalizing and strengthening a recent result of
Koziarz, we prove a version of the Ohsawa–Takegoshi–Manivel
theorem for ∂̄-closed forms.

1. Introduction

The celebrated Ohsawa–Takegoshi–Manivel extension theorem, [7], [6] gives
optimal conditions for the extension of holomorphic sections of line bundles
from a divisor to the ambient space. In Manivel’s article [6], it is stated that
a completely parallel result holds for smooth ∂̄-closed forms of higher degree.
There is however a problem in the proof of this in [6] which is connected with
the regularity of solutions of certain ∂̄-equations with singular weights. This
problem is also discussed in [4], where a strategy towards its solution is put
forward.

Recently, an at least moral solution of this problem was given by Koziarz [5].
Instead of looking at the extension of individual forms, Koziarz considered the
extension of cohomology classes, that is, extended closed forms up to a ∂̄-exact
error. This formulation is actually more natural than the original problem
since cohomology classes have well defined restrictions on divisors, whereas
∂̄-closed forms restrict only if a somewhat artificial condition of smoothness
is imposed. Koziarz’s method is inspired by work of Siu [8], and consists in
representing cohomology classes by Cech cocycles. These cocycles consist of
holomorphic objects for which the available machinery works better.

The purpose of this note is twofold. First, we will prove a simple proposition
saying that a smooth ∂̄-exact form on a divisor can always be extended to a
closed form with arbitrary small L2-norm in the ambient space. The converse
of this statement also holds, so in fact a closed form on the divisor is exact if
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and only if it can be extended to a closed form with arbitrarily small norm.
This means that Koziarz’s theorem on the extension up to an exact error
actually gives a solution to the original problem on extension of closed forms.
Second, we will give an alternative proof of Koziarz’s theorem, following the
method in [2]. The advantage with this alternative proof is that it gives an
absolute constant for the extension, whereas in Koziarz’s theorem the constant
depended on the manifold and the divisor. Moreover, the curvature conditions
that guarantee extendability are shown to be somewhat more liberal for forms
of higher degree than for holomorphic sections. Finally, the proof exhibits the
significance of extension of cohomology classes in a seemingly interesting way.

Let us comment a little bit more on this. If u is a holomorphic section of
KΔ + L over a divisor Δ, the method in [2], see also [1], consists in solving
the equation

∂̄v = u∧ [Δ] := g.

The right-hand side here is not a L2-form but a current, but nevertheless
it turns out that L2-methods can be used here. One cannot however get
a solution v in L2. If the divisor Δ is defined by a section s of some line
bundle S over the ambient manifold X , the solution of the extension problem
is sv, so what we want is an L2-estimate for sv. Dually (and formally!), this
corresponds to an estimate for smooth testforms α like

(1.1)
∣∣〈g,α〉∣∣2 ≤C

∫ ∣∣∂̄∗α
∣∣2/|s|2ψ

(where ψ is some metric on S). But this dual formulation is only formal. The
fact that the weight |s|−2 is nonintegrable causes a problem in the functional
analysis involved since all smooth test forms do not have finite norm with
respect to this weight. This problem can be circumvented if we instead prove
a stronger estimate

(1.2)
∣∣〈g,α〉∣∣2 ≤C

∫ ∣∣∂̄∗α
∣∣2/|s|rψ,

where r < 2. Then the functional analytic difficulty disappears and one even
gets a stronger result than is asked for.

We now want to follow the same route for forms of higher degree. Both
estimates (1.1) and (1.2) can then be proved in much the same manner as
for holomorphic sections. As in the case of holomorphic sections, the best
thing would be to use (1.2), since that is a bona fide dual formulation of the
∂̄-problem. But this causes problems with regularity. One would then need to
discuss regularity properties in L2-spaces with singular weights, which leads
back to the original problem with Manivel’s argument. We therefore choose
to work with (1.1) instead. Then the regularity problems disappear since
we can go back and forth between estimates with the singular weight |s|−2

and estimates without that weight by multiplying and dividing with s. The
price we have to pay for this is that (1.1) is no longer a dual formulation
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of the ∂̄-estimate, and so not a dual formulation of the extension problem.
But, miraculously, it turns out to be a dual formulation of the extension of
cohomology classes, and this is what makes the scheme work.

In this paper, we will suppose all the time that X is a compact Kähler
manifold. Maybe the same arguments could be pushed to noncompact situa-
tions, but the compactness assumption simplifies and makes the argument a
little bit simpler than in [2].

Finally, I would like to thank the referee for a careful reading of the man-
uscript with many suggestions for improvement.

2. ∂̄-exact forms

In this section, we discuss the extension of ∂̄-exact forms. The main point
is the following proposition.

Proposition 2.1. Let X be an n-dimensional compact complex manifold,
and let Δ be a smooth divisor in X . Let L be a holomorphic line bundle
over X . Let u be a smooth ∂̄-closed L-valued (0, q)-form on Δ, q ≥ 1. Then
u is ∂̄-exact on Δ if and only if, for any ε > 0, there is a ∂̄-closed extension,
U , of u to X with L2-norm smaller than ε.

Here L2-norms are taken with respect to some smooth metric and some
arbitrary smooth volume form. In the proof we use the next lemma.

Lemma 2.2. There is a sequence of cutoff-functions ρε such that:

1. The sets where ρε(z) = 1 are neighbourhoods of Δ shrinking to Δ, and the
sets where ρε(z) = 0 increase to X \Δ.

2. ‖∂̄ρε‖ goes to zero with ε.

Proof. Let first the dimension be 1 and take X to be the unit disk and Δ
to be the origin. The main point is that there is a complete (Kahler) metric
on the punctured disk, ω, which gives {|z| < 1/2} finite area. Indeed, the
Poincare metric

ω = idz ∧ dz̄/
(
|z|2

(
log |z|

)2)
has this property. Completeness implies that there is some realvalued function
near the origin, ρ, such that ρ(z) tends to infinity when z tends to zero and

i∂ρ∧ ∂̄ρ≤ ω.

Explicitly, ρ(z) = log log(1/|z|) will do. Define functions χk(x) on the positive
halfaxis, equal to 0 when x < k, to 1 when x > k+1, and having χ′

k bounded.
Then put

ρε = χ1/ε ◦ ρ.
Then 1 is clear and 2 follows by dominated convergence since∫

|z|<1/2

i∂ρε ∧ ∂̄ρε ≤
∫
|z|<1/2

χ′
εω.
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The general case is basically the same. We can cover Δ by a finite number of
coordinate neighbourhoods, inside which Δ is defined by the equation z1 = 0.
Then take ρε(z1) with ρε defined as above and piece together with a partition
of unity. �

With this, we can turn to the proof of the proposition. Assume first that
u= ∂̄v on Δ with v smooth. We extend v to X smoothly in an arbitrary way
and let

Uε = ∂̄(ρεv).

By the lemma, this a ∂̄-closed, or even exact, extension of u with L2-norm
going to zero with ε.

For the converse, assume there are some ∂̄-closed extensions, Uε, with L2-
norms going to zero. Let Uε be the harmonic representative of the cohomology
class [Uε]. The norms of the harmonic representatives are smaller than the
norms of Uε, so they go to zero too. Now, the space of harmonic forms is finite
dimensional, so all norms are equivalent. Hence, the supnorms of Uε also go
to zero, so the restrictions of Uε to Δ also go to zero. Since on Δ, u−Uε is
exact, it follows that u lies in the closure of the space of exact forms. But ∂̄
has closed range on a compact manifold, so u must be exact.

3. ∂̄-closed forms

In this section, we adapt the argument in [2] to forms of higher degree. We
will use the residue formulation of the extension problem and the set up is as
follows.

X is a compact Kähler manifold, with Kähler form ω and L is a holomor-
phic line bundle over X . Δ is a smooth divisor in X , given as Δ = s−1(0),
with s a holomorphic section of a line bundle S. Let u be a smooth L-valued
∂̄-closed (n−1, q)-form on Δ. We want to find a smooth L+S-valued ∂̄-closed
(n, q)-form, U , on X , such that

(3.1) U = ds∧ u

on Δ. Note that u could alternately be interpreted as a (0, q)-form on Δ with
values in KΔ +L. By the adjunction isomorphism

u 	→ ds∧ u

between KΔ and (KX + S)|Δ this means that we extend a (0, q)-form with
values in

(3.2) F :=KX + S +L

to a form with values in F .

Theorem 3.1. Assume that φ is a smooth metric on L and that ψ is a
smooth metric on S such that

i∂∂̄φ∧ ωq ≥ εi∂∂̄ψ ∧ ωq



L2-EXTENSION OF ∂̄-CLOSED FORM 25

and

i∂∂̄φ∧ ωq ≥ 0.

Assume moreover the normalizing inequality

log |s|2e−ψ ≤−1/ε.

Let u be a smooth ∂̄-closed (n− 1, q)-form with values in L over Δ. Then
there is a ∂̄-closed (n, q)-form, U , with values in S +L over X such that

U = ds∧ u

on Δ and ∫
X

|U |2e−φ−ψ dVX ≤C0

∫
Δ

|u|2e−φ dVΔ,

where C0 is an absolute constant. The norms and the volume forms are defined
by the Kähler form ω.

The argument starts with the observation that if U satisfies the conclusion
of the theorem, and if v := U/s, then v has values in KX +L and solves

(3.3) ∂̄v = ∂̄(1/s)∧ ds∧ u= cu∧ [Δ],

where [Δ] is the current of integration on Δ and c= (2π)−1. Conversely, let v
solve (3.3) and assume that U := sv is smooth. On Δ, we can write U = ds∧ ũ
by the adjunction isomorphism. Then

∂̄v = ∂̄(1/s)∧ ds∧ ũ= cũ∧ [Δ].

Hence ũ= u on Δ, so U solves the extension problem.
We now try to solve this ∂̄-problem and start to give it a dual formulation.

We will then see that the dual formulation does not at first give us a true
solution to the ∂̄-equation, and so not a solution to the extension problem. It
will however give us a solution to the extension problem up to a ∂̄-exact error
term, which can then be handled by Proposition 2.1. (Going back again, if we
wish, to the ∂̄-equation, we will then after all get a solution to the ∂̄-equation
as well.) Let

f := u∧ [Δ],

a current with measure coefficients, concentrated on Δ and of bidegree (n, q+
1), with values in a certain line bundle. The proof of the next lemma will be
postponed to the end of the section.

Lemma 3.2 (The basic estimate). Assume, in addition to the assumptions
in Theorem 3.1, that

‖u‖2Δ ≤ 1.

Then, for any smooth L-valued (n, q)-form α on X

∣∣〈f,α〉∣∣2 ≤C0

∫
X

|∂̄∗
φα|2

|s|2e−ψ
e−φ.
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The norm ‖ · ‖Δ here is the L2-norm defined by the Kähler form ω and the
metric φ on L.

Now consider the conjugate linear functional

R
(
∂̄∗
φα

)
= 〈f,α〉

defined on the space

E :=
{
∂̄∗
φα;α smooth

}
.

By the lemma, R is bounded by the norm∫
X

|∂̄∗
φα|2

|s|2e−ψ
e−φ

on the subspace E0 of elements of E such that this norm is finite. Clearly, this
subspace consists of forms ∂̄∗

φα that vanish on Δ. By the Riesz representation
theorem, there is a form w such that

R
(
∂̄∗
φα

)
=

∫
X

w · ∂̄∗
φα

|s|2e−ψ
e−φ

for all α with ∂̄∗
φα= 0 on Δ. Moreover, w can be taken to satisfy

∫
X

|w|2
|s|2e−ψ

e−φ ≤C0.

Substitute

v =w/
(
|s|2e−ψ

)
.

Then

(3.4) 〈f,α〉=R
(
∂̄∗
φα

)
=

∫
X

v · ∂̄∗
φαe

−φ

and

(3.5)

∫
X

|v|2|s|2e−φ−ψ ≤C0.

Notice that this does not mean that ∂̄v = f since we only know that (3.4)
holds for α with ∂̄∗

φα= 0 on Δ.
In order to get smoothness, we now choose v with minimal norm defined

in (3.5), and the first objective is to check that there is a minimizer.

Lemma 3.3. Assume that vk is a sequence of forms such that

〈f,α〉=
∫
X

vk · ∂̄∗
φαe

−φ

for all α with ∂̄∗
φα= 0 on the divisor. Assume also that∫

X

|v− vk|2|s|2e−φ−ψ → 0
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for some v satisfying ∫
X

|v|2|s|2e−φ−ψ <∞.

Then

〈f,α〉=
∫
X

v · ∂̄∗
φαe

−φ

for all α with ∂̄∗
φα= 0 on the divisor.

This means that the affine space of forms v that satisfy (3.4) is closed for
the norm in (3.5), so it has an element of minimal norm. The proof of the
lemma is clear since∣∣∣∣

∫
X

(v− vk) · ∂̄∗
φαe

−φ−ψ

∣∣∣∣
2

≤
∫
X

|v− vk|2|s|2e−φ−ψ

∫
X

|∂̄∗
φα|2

|s|2e−ψ
e−φ.

The next point is to see that if v is a minimizer, then sv is a harmonic form,
hence smooth.

Lemma 3.4. Assume that v minimizes the norm in (3.5) among all solu-
tions to (3.4). Then ∂̄∗

φ+ψ(sv) = 0.

Proof. If v is a minimizer, then∫
X

|v|2|s|2e−φ−ψ ≤
∫
X

|v− ∂̄u|2|s|2e−φ−ψ

for all smooth u. This means that∫
X

sv · ∂̄sue−φ−ψ = 0.

Hence, ∂̄∗
φ+ψsv = 0 at least outside of Δ, but sv has finite L2-norm so a divisor

is removable for this equation. (A ∂̄∗-equation for a form is a ∂̄-equation for
∗ of the form.) �

Finally, we have

Lemma 3.5. Assume v satisfies (3.4) and that the norm of v defined as in
(3.5) is finite. Then

∂̄(sv) = 0.

Proof. Take first α appearing in (3.4) to be supported outside of Δ. Then
of course ∂̄∗

φα= 0 on Δ and 〈f,α〉= 0, so∫
X

v · ∂̄∗
φαe

−φ = 0.

Hence, ∂̄v = 0 outside of Δ, so ∂̄sv = 0 there as well. But, since sv is locally
in L2, the last equation holds across Δ too. �
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All in all we have now seen that U := sv is harmonic and therefore smooth,
if v is the minimal solution of the dual problem. What remains is to investigate
the behaviour of U on the divisor. Write U = ds∧ ũ on the divisor. Let α be
a smooth L-valued (n, q+1)-form such that ∂̄∗

φα= 0 on the divisor and write

α= γα ∧ ωq+1/(q+ 1)!

for some (uniquely determined) (n−q−1,0)-form γα. Then for any (n, q+1)-
form g

〈g,α〉ωωn/n! = g ∧ γ̄α

(see [3] for more on this).
Hence,

〈f,α〉=
∫
X

f ∧ γ̄αe
−φ =

∫
Δ

u∧ γ̄αe
−φ.

On the other hand, by (3.4) this also equals∫
X

v · ∂̄∗
φαe

−φ =

∫
X

U/s · ∂̄∗
φαe

−φ =

∫
X

∂̄(1/s)∧U ∧ γ̄αe
−φ =

∫
Δ

ũ∧ γ̄αe
−φ.

From this, we see that

(3.6)

∫
Δ

u∧ γ̄αe
−φ =

∫
Δ

ũ∧ γ̄αe
−φ

for all α such that ∂̄∗
φα= 0 on Δ. This latter condition is equivalent to saying

that
∂̄
(
γ̄αe

−φ
)
= 0.

Let γ̄αe
−φ =: χ. This is a (0, n− q− 1)-form with values in −L. Hence,

(3.7)

∫
Δ

(u− ũ)∧ χ= 0

for all (0, n− q − 1)-forms χ with values in −L such that ∂̄χ= 0 on Δ. The
∂̄ operator here is the ∂̄ on X , but, by the next lemma, the same thing holds
if only ∂̄Δχ= 0.

Lemma 3.6. Let χ be a smooth—L-valued (0, p)-form on X such that
∂̄Δχ = 0 on Δ. Then there is a smooth form on X , χ̃ such that ∂̄X χ̃ = 0
on Δ and χ= χ̃ on Δ.

Proof. Locally the divisor is given by an equation z1 = 0 in some local
chart. The hypothesis then means that ∂̄χ is divisible by dz̄1. To get a local
extension it therefore suffices to subtract a suitable multiple of z̄1, and one
then obtains χ̃ from a partition of unity. �

It follows from the lemma that (3.8) holds for any χ on Δ such that
∂̄Δχ= 0. But this means that the difference u − ũ is ∂̄-exact. Hence, we
have proved Koziarz’s theorem that u can be extended up to an exact error,
and the proof of Theorem 3.1 then follows from Proposition 2.1.
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All that remains is now to prove Lemma 3.2.

3.1. Proof of the basic estimate. This follows closely the proof in [2],
and the proof in the compact case is described in [3], and we refer to these
notes for more details on the computations that follow.

We first write as above

α= γ ∧ ωq+1/(q+ 1)!

so that γ is an L-valued (n − q − 1,0)-form. Then define a scalar valued
(n− 1, n− 1)-form

Tα = cqγ ∧ γ̄ ∧ ωqe−φ/q!,

where cq is a unimodular constant chosen so that Tα is a positive form. We
will prove the basic estimate first assuming that ∂̄α = 0. In that case, it
follows from Proposition 3.4.1 in [3] that

(3.8) i∂∂̄Tα ≥−2Re
(
∂̄∂̄∗

φα,α
)
ωn/n! + i∂∂̄φ∧ Tα.

Let

W :=− log
(
|s|2e−ψ

)
.

By the hypothesis in Theorem 3.1, W ≥ 1/ε. Moreover,

i∂∂̄W = i∂∂̄ψ− c[Δ].

Multiply (3.9) by W and apply Stokes’ formula. This gives∫
X

(
Wi∂∂̄φ∧ ωq − i∂∂̄ψ ∧ ωq

)
/q!∧ cqγ ∧ γ̄e−φ(3.9)

+ c

∫
Δ

cqγ ∧ γ̄ ∧ ωq/q!e−φ ≤ 2Re
〈
∂̄∂̄∗

φα,Wα
〉
.

By the hypotheses in Theorem 3.1 the first integral in the left-hand side is
nonnegative, so we get

c

∫
Δ

cqγ ∧ γ̄ ∧ ωq/q!e−φ ≤ 2Re
〈
∂̄∂̄∗

φα,Wα
〉
.

On the other hand

∣∣〈f,α〉∣∣2 =
∣∣∣∣
∫
X

f ∧ γ̄e−φ

∣∣∣∣
2

=

∣∣∣∣
∫
Δ

u∧ γ̄e−φ

∣∣∣∣
2

.

By the Cauchy inequality we get, since by assumption ‖u‖Δ ≤ 1 that

∣∣〈f,α〉∣∣2 ≤ ‖γ‖2Δ =

∫
Δ

cqγ ∧ γ̄ ∧ ωq/q!e−φ ≤ 2c−1Re
〈
∂̄∂̄∗

φα,Wα
〉
.

The right-hand side equals

2

∫
X

W
∣∣∂̄∗

φα
∣∣2e−φ − 2Re

〈
∂̄W ∧ ∂̄∗

φα,α
〉
.
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The first term is obviously OK since W ≤ eW . For the second term, we write

II :=
〈
∂̄W ∧ ∂̄∗

φα,α
〉
=

∫
X

∂̄W ∧ ∂̄∗
φα∧ γ̄αe

−φ.

By Cauchy’s inequality

2|II | ≤
∫
X

|∂̄∗
φα|2

|s|2e−ψ
e−φ + cq

∫
X

e−W∂W ∧ ∂̄W ∧ γα ∧ γ̄α ∧ ωq/q!e−φ.

It is only the last term that we need to worry about. Let

W1 =
(
1− e−W

)
.

Then 0<W1 < 1 and

i∂∂̄W1 =−e−W i∂W ∧ ∂̄W.

We now repeat the same argument as above, but with W replaced by W1.
The result is

cq

∫
X

e−W∂W ∧ ∂̄W ∧ γα ∧ γ̄α ∧ ωq/q!e−φ

≤ 2

∫
X

W1

∣∣∂̄∗
φα

∣∣2e−φ − 2Re
〈
∂̄W1 ∧ ∂̄∗

φα,α
〉
.

The first term is controlled since W1 < 1 and the second term can easily be
absorbed in the left-hand side. This completes the proof of the basic estimate
in case ∂̄α= 0.

The general case is easily reduced to this special case. We decompose

α= α1 + α2,

where α1 is ∂̄-closed and α2 is orthogonal to the space of ∂̄-closed forms.
Then in particular α2 is orthogonal to ∂̄-exact forms, so ∂̄∗

φα
2 = 0. Hence

α1 satisfies ∂̄α1 = 0 and ∂̄∗
φα

1 = ∂̄∗
φα. This means, by elliptic regularity that

α1, and therefore α2 are both smooth. Now we claim that booth sides in the
basic estimate are unchanged if we replace α by α1. Since we know the basic
estimate holds for α1 this is all we need. That the right-hand side is unchanged
we have already seen. That the left-hand side is unchanged follows since f is
closed and α2 is orthogonal to closed forms. There is a minor problem here,
coming from the fact that f is not an L2-form. However, f is cohomologous
to a smooth form

f = fsmooth + ∂̄g

and this proves the claim since α2 is smooth and satisfies ∂̄∗
φα

2 = 0.
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