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RELATIVE PFAFFIAN CLOSURE FOR DEFINABLY
COMPLETE BAIRE STRUCTURES

ANTONGIULIO FORNASIERO AND TAMARA SERVI

Abstract. Speissegger proved that the Pfaffian closure of an o-
minimal expansion of the real field is o-minimal. Here we give a

first order version of this result: having introduced the notion of

definably complete Baire structure, we define the relative Pfaf-
fian closure of an o-minimal structure inside a definably complete

Baire structure, and we prove its o-minimality. We derive effec-
tive bounds on some topological invariants of sets definable in
the Pfaffian closure of an o-minimal expansion of the real field.

1. Introduction

In [Wil99], the author proved that the structure generated by all real Pfaf-
fian functions is o-minimal. Subsequently, Speissegger defined the notion
of Pfaffian closure of an o-minimal structure (based on R) and generalized
Wilkie’s result in [Spe99] by proving that the Pfaffian closure of an o-minimal
expansion of the real field is again o-minimal.

Here, we give a version of this result which holds also in a nonarchimedean
context. More precisely, having introduced in [FS10] the notion of defin-
ably complete Baire structure, we define the relative Pfaffian closure of an
o-minimal structure inside a definably complete Baire structure, and we prove
its o-minimality. As a corollary, we obtain an alternative proof of Speisseg-
ger’s result, by a modification of the argument in [KM99]. We remark that
the first result in this direction is due to Fratarcangeli in [Fra06]. However
his definitions and methods are substantially different from ours (he follows
[Spe99] whereas we follow [KM99]) and the results he obtains are a special
case of our Main Theorem 2.6, as we show in Section 5. There we also compare
different notions of Rolle Leaf for expansions of definably complete fields.

Received May 17, 2010; received in final form November 15, 2010.
2010 Mathematics Subject Classification. Primary 03C64. Secondary 58A17, 32C05,

54E52, 03B25.

1203

c©2013 University of Illinois

http://www.ams.org/msc/


1204 A. FORNASIERO AND T. SERVI

Moreover, our definition of Virtual Rolle multi-Leaf (Definition 3.9) allows
us to give in Section 6 effective bounds on a series of topological invariants
of sets definable in the Pfaffian closure of an o-minimal expansion of the real
field, thus answering a question of Fratarcangeli [Fra06, p. 6].

2. The main result

We recall that Speissegger’s results in [Spe99] concern expansions of the
real field. Let R0 be an o-minimal expansion of the real field. Let U ⊆ Rn

be an open subset definable in R0, and ω be an R0-definable C1-form on U
which is never 0. An embedded leaf with data (U,ω) is a closed connected
real submanifold of U of dimension n − 1 that is orthogonal to ω at every
point. A Rolle Leaf (RL) is an embedded leaf L which moreover satisfies the
condition:

If γ : [0,1] → U is a C1 curve with end-points in L, then γ is orthogonal to
ω in at least one point.

The typical example of a Rolle Leaf is the graph of a C1 function f such that
f is the solution of a first order polynomial differential equation. The Pfaffian
closure of an o-minimal expansion of the real field was defined in [Spe99]: the
idea is to expand R0 by all Rolle Leaves with R0-definable data, and then
repeat the procedure inductively.

We now begin to describe the generalized setting in which we will work.
We recall that an expansion K of an orderedfield is a definably complete Baire
structure if the two following (first-order) conditions hold:
• every definable subset of K has a supremum in K ∪ {±∞}.
• K, as a set, is not definably meager, i.e. K is not the union of a definable

increasing family of nowhere dense sets.
We refer the reader to [FS10] for the precise definitions and preliminary results
about definably complete Baire structures.

We make the same notational choices as in [FS10]. Let K0 be an o-minimal
structure (expanding a field), and K be an expansion of K0 that is definably
complete and Baire.

Proviso 2.1. In what follows, “definable” will mean “definable in K with
parameters,” unless otherwise specified. By “connected” we will mean “defin-
ably connected” (in K), by “connected component” we will mean “definably
connected component” and by “compact” we will mean “definable, closed and
bounded.”

Definition 2.2. A K-manifold of dimension d (or simply “manifold”) is
a definable subset M of Kn, such that for every point of x ∈ M there exist
a definable neighbourhood U of x (in Kn), and a definable diffeomorphism
f : U → Kd, such that U ∩ M = f −1(Kn × {0}).
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Definition 2.3. Let ω = a1 dx1 + · · · +an dxn be a definable C1 differential
form, defined on some definable open subset U ⊆ Kn, such that ω �= 0 on all U .
A multi-leaf with data (U,ω) is a C1 manifold M contained in U and closed
in U , of dimension n − 1, such that M is orthogonal to ω at all of its points
(i.e., TaM = ker(ω(a)), for every a ∈ M ).

We must now face the problem of generalizing the notion of Rolle Leaf to
the context of definably complete Baire structures.

We let an arc be a definable C1 map γ : [0,1] → Kn, such that γ′ is always
nonzero.

The most natural notion of generalized Rolle Leaf would be the following.

Definition 2.4. An Alternate Rolle Leaf (ARL) is a connected multi-leaf
L with data (U,ω) which moreover satisfies the condition:

If γ : [0,1] → U is an arc in L, then γ is orthogonal to ω in at least one
point.

One could think of replacing the use of arcs with the use of connected mani-
folds of dimension one (see the definition of Rolle Leaf according to Fratarcan-
geli [Fra06, Definition 1.5]). Unfortunately, it is not clear whether in definably
complete Baire structures definable C1 connected manifolds of dimension one
are parameterizable as a finite union of arcs. Also, the drawback of this choice
is that it is not possible to express with a first-order formula the fact that a
set is definably connected. This fact creates an impediment, as will be clear
later (see Section 4), and forces us to modify this definition.

However, for the application we have in mind (see Section 6) we introduce
the notion of Virtual Rolle multi-Leaf (VRL, see Definition 3.9), which has the
advantage of being first order (as ARL is) and at the same time of involving
the notion of manifold of dimension one, rather than that of arc.

We are now ready to define the notion of relative Pfaffian closure.

Definition 2.5. Inductive definition: for every n ∈ N, let Kn+1 be the
expansion of Kn to a language Ln+1 with a new predicate for every VRL with
Kn-definable data. Let L∗ =

⋃
n Ln and define the relative Virtual Pfaffian

closure of K0 inside K, denoted by V P (K0,K), as the L∗-expansion of K0

where every predicate is interpreted as the corresponding Rolle Leaf.

Our aim is to prove the following version of Speissegger’s theorem.

Main Theorem 2.6. Let K be a definably complete Baire structure and
K0 be an o-minimal reduct of K. Then V P (K0,K) is o-minimal.

3. Virtual Rolle multi-Leaves

We now give the precise definition of Virtual Rolle multi-Leaf. The idea is
the following: unlike the definition of ARL, where we considered all arcs X , we
now consider closed manifolds X of dimension one (not necessarily connected)
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such that X does not have compact connected components. We want to find
a first order condition on X that implies a bound on the number of connected
components of X : every component has two “end-points at infinity” (see
Definition 3.5 below); hence, if we ask that X has at most 2k end-points at
infinity, we obtain that X has at most k connected components. It remains to
express the requirement that X has no compact components in a first order
way: this is done by asking the existence of a definable C1 function without
critical points on X .

Finally, the Rolle condition for a leaf L is expressed by asking that for any
X as above that intersects L in a number of points which is greater than the
number of connected components of X , there is a point where X is orthogonal
to the 1-form defining L.

Definition 3.1. A weak cell of dimension d is a K0-definable set U ⊆ Kn

which is diffeomorphic, via a K0-definable diffeomorphism φU , to Kd. For
every 0 < t ∈ K, we define Ut := φ−1

U ({x ∈ Kd : ‖x‖ = t}).

We consider the diffeomorphism φU as part of a weak cell: the same subset
U of Km with two different choices of diffeomorphisms should be considered as
two different weak cells. Notice that, for 0 < t ∈ K, Ut is a compact manifold
of dimension d − 1.

Definition 3.2. Let U ⊆ Kn be a weak cell. We say that X ⊆ U is a twine
in U if X is a 1-dimensional C1 manifold, such that X is closed in U . We
say that X ⊆ U is a good twine in U if X is a twine in U and moreover there
exists a definable C1 function ρ : X → K without critical points.

Remark 3.3. Let X ⊆ Kn be definable. We denote by B(X) the Boolean
algebra of definable clopen subsets of X . B(X) is finite iff cc(X) (the number
of connected components of X) is finite, and in that case each connected
component of X is definable and an atom of B(X), and moreover |B(X)| =
2cc(X).

Moreover, for every m ∈ N, the following are equivalent:

(1) B(X) ≤ 2m;
(2) cc(X) ≤ m;
(3) if Y1, . . . , Ym+1 are disjoint elements of B(X), then at least one of them

is empty.

Remark 3.4. Let U be a weak cell and X be a twine in U . Let ∅ �= Y ∈
B(X). Then, Y is a also twine. If moreover X is good, then Y is also good
and not compact. In particular, if X is a good twine and cc(X) < ∞, then
no connected component of X is compact (because otherwise the map ρ in
Definition 3.2 would have at least one critical point).
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Definition 3.5. Let U be a weak cell and X be twine in U . For each
0 < t ∈ K, let Xt := {x ∈ X ∩ Ut : X is transversal to Ut at x}. We denote by

vbU (X) := limsup
t→+∞

|Xt| ∈ N ∪ { ∞},

the virtual boundary of X .

Notice that Xt is a 0-dimensional manifold, and hence |Xt| = cc(Xt). No-
tice also that, unlike the number of connected components, vbU (X) can be
defined with a first order formula.

Lemma 3.6. Assume that K is o-minimal. Let U be a weak cell and X ⊆ U
be a good twine in U . If X is a connected, then vbU (X) = 2. More generally,
vbU (X) = 2 · cc(X).

Proof. It suffices to do the case when X is connected. Since K is o-minimal,
X is then the image of some definable C1 function γ : (0,1) → U . The con-
clusion follows from the o-minimality of K. �

Lemma 3.7. Let U be a weak cell and X be a good twine in U . If X is
nonempty, then vbU (X) ≥ 1, and if moreover K is an expansion of R, then
vbU (X) ≥ 2.

Moreover, if vbU (X) is finite, then cc(X) ≤ vbU (X), and in particular X
has a finite number of connected components, and each component of X is not
compact.

Proof. The case K expanding R follows from the fact that each connected
component of X (not necessarily definable!) is the image of some C1 function
f : (0,1) → R, and some standard analysis.

Let X0 ⊆ X be nonempty, clopen, and definable. Let I0 := {t > 0 : X0
t �= ∅}

(see Definition 3.5). By the Implicit Function theorem, I0 is an open subset
of K. We say that I ⊆ K is almost final in K if there exists R > 0, such that
(R,+∞) \ I is nowhere dense in K. �

Claim 1. I0 is almost final in K.

Define r : U → K, r(x) := ‖φU (x)‖. Let R > 0 be such that there exists
x0 ∈ X0 with r(x0) < R. Assume, for a contradiction, that there exist b > a >
R, such that (a, b) ⊆ (R,+∞) \ I0, that is, for every t ∈ (a, b), X0 meets Ut

only nontransversally.
Let U(a,b) := r−1((a, b)) = {x ∈ U : a < ‖φU (x)‖ < b} and Y := X0 ∩ U(a,b);

notice that Y is open in X0, and hence open in X . Let s := r � X0; notice
that s has only critical points on Y , and therefore s is locally constant on Y .
Let Z := s−1((−∞, (a+ b)/2)); since s is locally constant on Y , Z is clopen in
X0, and hence in X , and nonempty (because x0 ∈ Z). By Remark 3.4, Z is
not compact; however, Z is closed and bounded in Kn, contradiction, proving
the claim.
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Assume, for a contradiction, that m := vbU (X) < cc(X). Let X1, . . . ,
Xm+1 ∈ B(X) be disjoint and nonempty, and, for each j ≤ m + 1, let Ij :=
{t > 0 : Xj

t �= ∅}. Then, by Claim 1, each Ij is almost final in K; thus
⋂

j Ij

is almost final in K, and hence vbU (X) ≥ m + 1, contradiction.
The remainder follows from Remark 3.4.

Remark 3.8. Let X ⊂ Kn be a weak cell of dimension 1. Then, X is a
good twine in itself, and vbX(X) = 2.

Definition 3.9. A Virtual Rolle multi-Leaf (VRL) is a multi-leaf L with
data (U,ω) which satisfies the following condition: for every n ∈ N, for every
V ⊆ U × Kn weak cell and every X good twine in V , if |X ∩ (L × Kn)| >
vbV (X), then X is orthogonal to π∗(ω) in at least one point, where π∗(ω) is
the pullback of ω via the canonical projection π : U × Kn → U .

With the notation of the above definition, if vbV (X) is infinite, then the
premise is false, and therefore the condition is automatically satisfied (for the
given X). Therefore, to verify whether L is a VRL, we need to check only
the good twines X such that vbV (X) is finite. Moreover, by Lemma 3.7, such
a good twine X satisfies cc(X) ≤ vbV (X). Therefore, if X1, . . . ,Xm are the
components of X , and |X ∩ L| > vbV (X), then for at least one i we have
|Xi ∩ L| > 1.

4. o-minimality of V P (K0,K)

In this section, we prove Theorem 2.6. We will assume the reader to have
familiarity with [FS09]. In particular, recall Definitions 3.1, 3.3 and 3.7. How-
ever, we will use a condition which, albeit stronger than the DACN condition
([FS09, Definition 3.7]), is easier to state and to work with.

Definition 4.1. A partial function f : Kn ↪→ K is an admissible partial
function if it is definable, its domain is open in Kn, it is continuous, and its
graph is closed in Kn+1. Suppose that S is a weak structure over K. We say
that S is determined by its CN admissible partial functions (DPCN ) for all
N , if, for each n ∈ N and A ∈ Sn, there exists m ≥ n, such that, for every
N ∈ N, there exists a set BN ⊆ Km, which is a finite union of sets of the form
V (fN,i), where each fN,i : Km ↪→ K is an admissible CN partial function, and
A = Πm

n (BN ).

Notice that if S is a semi-closed o-minimal weak structure which is DPCN

for all N , then it is DACN for all N . Therefore, the following theorem is an
immediate consequence of [FS09, Theorem 3.8]

Theorem 4.2 (Generalized theorem of the complement). Suppose that S
is a semi-closed o-minimal weak structure over K, which is DPCN for all N .
Then the Charbonnel closure S̃ of S is an o-minimal weak structure over K,
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which is closed under complementation. Hence, S̃ is an o-minimal first-order
structure.

Hence, all we need to do is to prove that V P (K0,K) is the Charbonnel
closure of some weak structure S which satisfies the hypotheses of the above
theorem.

For the rest of this section, a Rolle Leaf will be a Virtual Rolle multi-Leaf
(in particular, we are not requiring that a Rolle Leaf is definably connected).

Definition 4.3. Let Rolle(K0,K) = {(Rolle(K0,K))n|n ∈ N} be such that
(Rolle(K0,K))n consists of all the finite unions of sets A ∩ L1 ∩ · · · ∩ Lk, which
we call basic Rolle sets, where A ⊆ Kn is K0-definable, and each Li is a Rolle
Leaf with data (Ui, ωi) in K0.

We will show the following proposition.

Proposition 4.4. Rolle(K0,K) is a semi-closed o-minimal weak structure,
satisfying DPCN for all N .

Since Rolle(K0,K) generates K1 in Definition 2.5, this, together with The-
orem 4.2, shows that K1 is o-minimal; by applying inductively the same result
to each Kn, we obtain a proof of Theorem 2.6.

We will prove Proposition 4.4 via a series of lemmas.

Remark 4.5. Every basic Rolle set is the projection of another basic Rolle
set, such that all the open sets Ui in the data are the same open set U (the
proof is as in [KM99, ¶3.4]).

Lemma 4.6. Rolle(K0,K) is a weak structure.

Proof. As in [KM99, Lemma 3]. Notice that Rolle(K0,K) is closed under
cartesian products by definition of VRL. �

Proposition 4.7. Let Ω = (ω1, . . . , ωq) be a tuple of K0-definable nonsin-
gular 1-forms defined on some common open subset U of Kn, and let A be
a K0-definable subset of U . Then, there is a natural number N such that,
whenever Li is a VRL of ωi = 0 for each i = 1, . . . , q, then A ∩ L1 ∩ · · · ∩ Lq

is the union of at most N connected manifolds. Moreover, N can be chosen
independent of the parameters used in defining Ω, U , and A.

The proof of the above proposition is in Section 4.1.

Proposition 4.8. Let U be a K0-definable open subset of Kn, and ω be
a K0-definable 1-form on U , such that ω �= 0 on all U . Let L be a multi-leaf
with data (U,ω). Let C be a definable connected C1 manifold of dimension at
most n − 1 contained in U , such that C is orthogonal to ω at all of its points.
Then, either C is contained in L, or C is disjoint from L.

Proof. [Fra06, Lemma 5.4]. �
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We need the following results on o-minimal structures. By “cell” we will
always mean “cell in the sense of K0.”

Lemma 4.9. Let n and N be natural numbers greater than 0. Define π :=
Πn+1

n .
(1) For every Y ⊆ Kn closed and K0-definable, there exists f : Kn → [0,1]

K0-definable and CN , such that Y = V (f). Moreover, if Z is a closed and K0-
definable subset of Kn disjoint from Y , then we can require that Z = V (1 − f).

(2) For every K0-definable X ⊆ Kn there exists Y ⊆ Kn+1, also K0-de-
finable, such that Y is closed and X = π(Y ). If moreover X is a CN cell, then
Y can be chosen to be a (closed) CN cell of the same dimension as X .

(3) Let X ⊆ Kn be K0-definable. Then, there exists f : Kn+1 → K K0-
definable and CN , such that X = π(V (f)).

(4) Let Y ⊆ Kn be a closed CN cell. Then, there exists a K0-definable CN

retraction: Kn → Y .

Sketch of proof. (1) The proof in [vdDM96, Corollary C.12] works in any
o-minimal structure expanding a field, and not only in R.

(2) is clear (see [vdD98]) and (3) follows immediately from (1) and (2).
(4) It is easy to see that there exists a K0-definable open neighbourhood

U of Y and a K0-definable CN retraction r0 : U → Y . Let V be another K0-
definable open neighbourhood of Y , such that V ⊆ U . By (1), there exists
h : Kn → [0,1] K0-definable and CN , such that Y = h−1(1) and Kn \ V =
h−1(0). Let φ : Y → Kd be a CN K0-definable diffeomorphism. Define

r(x) :=

{
φ−1

(
h(x) · φ

(
r0(x)

))
if x ∈ U ;

φ−1(0) if x /∈ V .
�

Lemma 4.10. Rolle(K0,K) is semi-closed.

Proof. We use:
(1) union commutes with projection;
(2) the class of projections (from various Kn) of closed sets in Rolle(K0,K)

is closed under intersections.
It suffices to prove that any Rolle Leaf L ⊆ Kn is the projection of a closed
set in Rolle(K0,K). Let (U,ω) be the data (definable in K0) of L. Consider
f : U → K, f(x) := 1/d(x,Kn \ U) (where d is the distance function). Notice
that f is an admissible partial function with domain U . Let π := Πn+1

n ,
ω̃ := π∗(ω) be the pullback of ω to U × K, and L̃ := π−1(L); note that L̃ is a
Rolle Leaf, with data (U × K, ω̃). Define C := L ∩ F , where F is the graph
of f . Then, C is closed in Kn+1, and π(C) = L. �

Lemma 4.11. Rolle(K0,K) is an o-minimal weak structure.

Proof. The conclusion can be easily obtained from Proposition 4.7, reason-
ing as in [Spe99, Corollary 2.7]. �
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Hence, we can conclude that Rolle(K0,K) is a semi-closed o-minimal weak
structure. The last step is proving that Rolle(K0,K) satisfies DPCN for all
N , and hence is an o-minimal structure.

The following observation explains why it is easier to work with admissible
partial functions instead of correspondences.

Remark 4.12. (1) Let f : Kn ↪→ K be a definable continuous partial func-
tion, with domain an open set U . Then, f is admissible iff, for every x ∈ bdU ,

lim
y→x,

y∈U

∥∥f(y)
∥∥ = +∞.

(2) Let f, g : Kn ↪→ K be two admissible partial functions. Then h := f2 +
g2 is an admissible partial function, such that dom(h) = dom(f) ∩ dom(g) and
V (h) = V (f) ∩ V (g).

The following lemma explains the reason why we are able to use admissible
partial functions instead of admissible correspondences.

Lemma 4.13. Let U be an open CN cell in Kn, θ := Πn
n−1, and U ′ := θ(U)

be the basis of U . Let ω := a1 dx1 + · · · + an dxn be a CN 1-form on U , such
that an ≡ 1, and let F be a Rolle Leaf with data (U,ω). Then, F is the graph of
a C N+1 partial function f : W → K, with open domain W ⊆ U ′. Moreover, for
every N ∈ N, there exists an admissible CN partial function gN : Kn+1 ↪→ K

in ˜Rolle(K0,K), such that f = π(V (gN )), where π := Πn+1
n .

Proof. Let us prove that F is the graph of a (single-valued) partial func-
tion f . The fact that f is a CN+1 partial function with open domain is
then clear. If not, there exist x̄ ∈ V and y1 < y2 ∈ K, such that, for i = 1,2,
pi := (x̄, yi) ∈ F . Let J be the “vertical” segment with endpoints p1 and p2.
By the Rolle condition, there exists q ∈ J such that J is orthogonal to ω at q.
Since J is vertical, this means that ω(q) is “horizontal,” contradicting the fact
that an ≡ 1.

Hence, F is a closed subset of U , and satisfies all conditions for being
the graph of an admissible CN partial function f : Kn−1 ↪→ K, except that F
might not be closed in Kn (but only in U ). If U = Kn, we can easily conclude
as in [KM99, Lemma 6]. Otherwise, we have more work to do.

Let φ′ : Kn−1 ∼−→ U ′ and φ : Kn ∼−→ U be K0-definable CN diffeomor-
phisms, such that φ′ ◦ θ = θ ◦ φ. Let F̃ := φ−1(F ), and ω̃ := φ∗(ω). Then,
F̃ is a Rolle Leaf, with data (Kn, ω̃). Moreover, F̃ is the graph of a CN

admissible partial function f̃ : Kn−1 ↪→ K (in fact, F̃ is closed in Kn).
Define g̃(x1, . . . , xn) := f̃(x1, . . . , xn−1) − xn, g̃ : Kn ↪→ K. By [FS09,

Lemma 4.5], g̃ is an admissible partial function; notice that F̃ = V (g̃). We
would like to pullback g̃ via φ; the problem is that g̃ ◦ φ−1 might not have a
closed graph, because φ−1 is not defined on all Kn.
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Let D ⊆ Kn+1 be a closed CN cell, such that π(D) = U , let fN,1 : Kn+1 → K

be a CN and K0-definable (total!) function, such that D = V (fN,1),
and r : Kn+1 → D be a K0-definable CN retraction (D, fN,1 and r exist by
Lemma 4.9). Let fN,2 := g̃ ◦ φ−1 ◦ π ◦ r. Notice that φ−1 ◦ π ◦ r is a total
CN function, and therefore, by [FS09, Lemma 4.4], fN,2 is admissible; fN,1 is
also obviously admissible. Let hN := f2

N,1 + f2
N,2 : Kn+1 ↪→ K; clearly, gN is

an admissible CN partial function in S̃ , and F = π(V (hN )). �

Notice that the following lemma does not imply Lemma 4.10, because the
DPCN condition does not imply that a weak structure is semi-closed.

Lemma 4.14. Rolle(K0,K) satisfies DPCN for all N .

Proof. Proceeding as in the proof of Lemma 4.10, one can see that it is
enough to prove:
(*) If U ⊆ Kn is open and definable in K0, ω is a C1 form, also definable in K0,

and L is a Rolle Leaf with data (U,ω), then, for every N ≥ 1, there is a set
S ⊆ K2n, such that S is a finite union of sets of the form V (fN,i), where

each fN,i : K2n ↪→ K is a CN admissible partial function in ˜Rolle(K0,K),
and L = π(S), where π := Π2n

n .

Note that the above claim is the DPCN hypothesis for L, with m = 2n. We
prove (*) by induction on n. If n = 0 or n = 1, the conclusion is clear. So, we
can assume n ≥ 2, and that (*) is true for any n′ < n.

Fix N . Do a decomposition of U into CN cells Ei, such that on each open
cell ω is a CN form. Let E := Ei. It suffices to prove (*) for L ∩ E. We
proceed by further induction on dim(E).

Case 1. Assume that dim(E) < n. Let X be the set of points x ∈ E such
that ω is orthogonal to E in x. Notice that X is K0-definable; decompose E
into C1 cells compatibly with X . Let E′ be a cell in this second decomposition.
It suffices to prove (*) for L ∩ E′.

Case 1a. If E′ ⊆ X , then, by definition, E′ is orthogonal to ω at all of its
points. By Proposition 4.8, E′ is either disjoint or contained in L. Hence,
L ∩ E′ is either empty or a cell, and thus, by Lemma 4.9, it satisfies (*).

Case 1b. Assume that E′ ⊆ E \ X . Assume moreover that d := dim(E′) =
dim(E). After a permutation of coordinates, we can assume that E′ is the
graph of a CN function f : V → Kn−d, where V ⊆ Kd is an open cell. Let
σ : E′ → V be the canonical projection, and τ : V → E′, x �→ (x, f(x)) be
its inverse. Notice that σ and τ are CN diffeomorphisms; let ω � E′ be the
projection of ω onto the tangent space TE′ (that is, the pullback of ω to
E′ via the inclusion map), ω̃ := τ ∗(ω � E′) be the its pullback to V , and
L̃ := σ(L ∩ E′). Since E′ ⊆ E \ X and dim(E′) = dim(E), ω is never orthogonal
to E′; thus, ω � E′ is never 0, and ω̃ is never 0. Moreover, L̃ is a Rolle
Leaf with data (V, ω̃). Thus, by inductive hypothesis, there exist finitely
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many admissible CN partial functions gN,i : K2d ↪→ K in S̃ , such that L̃ =⋃
i Π

2m
m (V (gN,i)). Let hN : Kn+1 → K be a CN K0-definable function, such

that E′ = Πn+1
n (V (h)). For each i, define

fN,i(x1, . . . , xd, yd+1, . . . , yn, zn+1, . . . , zn+d)

:= hN (x1, . . . , xd, yd+1, . . . , yn)2 + gN,i(x1, . . . , xd, zn+1, . . . , zn+d)2.

Notice that each fN,i is an admissible partial function in S̃ , and that L ∩ E′ =
Πn+d

n (
⋃

i V (fN,i)).
Case 1c. If dim(E′) < dim(E), we can apply the induction on dim(E),

and conclude that L ∩ E′ satisfies (*).
Case 2. If E := Ei is an open cell, then L ∩ E is a Rolle Leaf with data

(E,ω); hence, by substituting U with E, w.l.o.g. we can assume that U is an
open cell.

Let ω := a1 dx1 + · · · + an dxn, and Vj := {x̄ ∈ U : aj(x̄) �= 0}, j = 1, . . . , n.
Note that Vj is open and definable in K0. Decompose again U into CN cells,
in a way compatible with each Vj . For the nonopen cells, apply the induction
on dim(E). If E′ is an open cell, then it is contained in some Vj .

We claim that, w.l.o.g., E′ ⊆ Vn. In fact, assume that E′ is contained
in Vj . Permute the coordinates, exchanging xj with xn, and rename the Vl

accordingly. Notice that in the new system of coordinates E′ ⊆ Vn, but E′

might no longer be a cell; decompose further E′ into cells. For the nonopen
ones, proceed as in Case 1. For the open ones, the claim is true.

Thus, by substituting U with E′ and permuting the coordinates, we are
reduced to the case an(x̄) is never 0 on U , and therefore we can assume that
an is the constant function 1. Hence, we can apply Lemma 4.13, and we are
done. �

Remark 4.15. In the proof of [KM99, Lemma 6] there is a gap, in that the
function fN,2 in the proof of Lemma 4.13 might not be a total function: this
is the reason why we had to work with admissible partial functions instead of
total functions. For instance, let f : R ↪→ R be the partial function f(x) :=
1/x, defined on R+, and F ⊂ R2 be the graph of f . Let ω(x, y) := y2 dx + dy
be a 1-form defined on R2. Then, F is a C ∞ Rolle Leaf of ω = 0. In fact, f
solves the differential equation f ′ = −f2, and therefore we can apply [Spe99,
Example 1.3].

4.1. Proof of Proposition 4.7. We will assume familiarity with [Fra06].
Some important but easy observations are the following ones:

• [Fra06, Lemma 5.9] does not require that the manifolds Li are connected,
and therefore can be applied to Li multi-leaves.

• [Fra06, Proposition 5.10] does not use neither the conditions that the Li

are connected nor the Rolle condition, and remains true for Li multi-leaves.
• [Fra06, Proposition 5.7] can be used in the following form:
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Proposition 4.16. Let U and V be definable open subsets of Kn, and let
σ : V → U be a definable diffeomorphism. Let ω be a definable 1-form on U ,
and L be a multi-leaf with data (U,ω). Then, σ−1(L) is a multi-leaf with data
(V,σ∗(ω)).

If L is a VRL and σ is K0-definable, then σ−1(L) is a VRL.

Hence, the Rolle condition is used directly only at the end of the proof, on
[Fra06, p. 39]. We will show how to use the Virtual Rolle condition instead.

The proof will proceed by induction on q. If q = 0, the conclusion follows
from o-minimality of K0; hence, we can assume q ≥ 1.

For the inductive step, we assume that we have already proved the con-
clusion for q − 1: that is, we assume that we have proved the result for every
(q − 1)-tuple Ω′ of K0-definable nonsingular 1-forms defined on some open set
U ′ of Kn′

, for every K0-definable set A′ ⊆ U ′, and for every corresponding
(q − 1)-tuple of VRL with data (U ′,Ω′).

Fix U , Ω, L1, . . . ,Lq , and A as in the assumption of the theorem. Let
d := dim(A). We prove the conclusion by a further induction on d.

As in the proof of [Fra06, Theorem 1.7], we can reduce to the case that A is
a K0-definable C1-cell of dimension d ≥ q, contained in U , and Ω is transverse
to A; that is, for every a ∈ A, the projections of (the vector fields associated
to) ω1, . . . , ωq on Ta(A) are linearly independent. Notice that “Ω transverse
to A” is equivalent to “the projection on T (A) of the q-form ω1 ∧ · · · ∧ ωq is
never null.”

If d > q, we can conclude by induction on d as in [Fra06, p. 39, “Case

d > q”]; as we noticed before, the Rolle condition is not used in [Fra06, Propo-
sition 5.10], and therefore we can use it in our situation.

Hence, it remains to treat the case d = q.
If d = q, we treat first as a way of exemplification the case d = q = 1. Then,

A is a good twine in itself, thus, by the Rolle condition, and the fact that ω1

is transverse to A, |A ∩ L1| ≤ vbA(A) = 2, and we are done.
In general, if d = q, define L′ := A ∩ L1 . . .Lq−1 (or L′ := A if q = 1). Notice

that L′ is a twine in A. Let ω′ := ω′
1 ∧ · · · ∧ ω′

q−1, where each ω′
i is the projection

of ωi onto (the tangent space of) A. Notice that ω′ is a nonsingular (q − 1)-
form on A. If we identify ω′ with the corresponding vector field on A, then ω′

is always tangent to L′. Notice also that A ∩ L1 ∩ · · · ∩ Lq is a 0-dimensional
manifold, and therefore cc(A ∩ L1 ∩ · · · ∩ Lq) = |L′ ∩ Lq |.

We have to further decompose A in order to transform L′ into a good twine.
Fix a map p : A → K, such that p is K0-definable, is C1, and has no critical
points on A. For every x ∈ A, let c(x) be the gradient vector of p at x (by
definition, c(x) is tangent to A).

Define Acrit to be the set of points in A such that ω′ is orthogonal to c, and
Areg := A \ A1. After a further cell decomposition, w.l.o.g. we can assume
that either A = Areg, or A = Acrit.
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If A = Areg, let ρ be the restriction of p to L′. Notice that, by defini-
tion of Areg, ρ is a definable C1 function without critical points, and hence
L′ is a good twine in A. Fix a K0-definable diffeomorphism φA between
A and Kd, and define At accordingly. By induction on q, there is N ∈ N

such that L′ ∩ At ∩ {x ∈ A : ω′ is not orthogonal to At} has at most N con-
nected components, where N does not depend on t. Hence, by definition,
vbA(L′) ≤ N . Thus, since Lq is a VRL and Ω is transverse to A, |L′ ∩ Lq | ≤ N ,
and we are done.

If instead A = Acrit, for every t ∈ K let B(t) := {x ∈ A : p(x) = t}: each
B(t) is a K0-definable set of dimension d − 1. By induction on q, L′ has a
uniformly bounded number of connected components M1, . . . ,Mr. Moreover,
p is constant on each Mi, and therefore for each i ≤ r there exists ti ∈ K such
that Mi ⊆ B(ti). Thus, Mi ∩ Lq ⊆ L1 ∩ · · · ∩ Lq ∩ B(ti), and therefore

A ∩ L1 ∩ · · · ∩ Lq =
r⋃

i=1

B(ti) ∩ L1 ∩ · · · ∩ Lq.

By induction on d, there exists a uniform (independent from t) bound r′ for
cc(B(ti) ∩ L1 ∩ · · · ∩ Lq), and therefore cc(A ∩ L1 ∩ · · · ∩ Lq) ≤ rr′.

5. Variants of the rolle property

In this section, we compare different notions of Rolle Leaves: the original
definition of Rolle Leaf (RL), due to Speissegger, which makes sense only for
expansions of the real field was given at the beginning of Section 2. Alternate
Rolle Leaves (ARL) and Virtual Rolle multi-Leaves (VRL) were defined in
Definitions 2.4 and 3.9, respectively.

Definition 5.1. A Rolle Leaf according to Fratarcangeli (FRL) is a con-
nected multi-leaf L with data (U,ω), which moreover satisfies the condition:
for every m ∈ N, if X ⊂ U × Km is a definable connected C1 submanifold of
U × Km of dimension one, and X intersects L in at least two points, then X
is orthogonal to ω in at least one point (compare with [Fra06, Definition 1.5]).

Proposition 5.2. Let K be an expansion of the real field. Then every RL
is a VRL.

In particular, we recover Speissegger’s theorem as a special case of ours.

Proof of Proposition 5.2. Let L ⊂ Rn be a RL with data (U,ω). Let V ⊆ U
be a weak cell and X be a good twine in V . Assume that |X ∩ L| > vbV (X) =:
m (the case when V ⊆ U × Rk can be treated similarly). We must show that
X is orthogonal to ω in at least one point; assume, for a contradiction, that
this is not the case. Let Xi be a connected component of X (notice that Xi

is not necessarily definable). Since X is a good twine, Xi is not compact;
moreover, X has at most m connected components. Hence, Xi intersects L
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in at least two points, for some connected component Xi. Thus, since L is
a RL and Xi is arc-connected, Xi is orthogonal to ω in at least one point,
contradiction. �

Proposition 5.3. Let K be definably complete. Then every FRL is a VRL.

In particular, we recover Fratarcangeli’s theorem as a special case of ours.

Proof of Proposition 5.3. Let L be a FRL with data (U,ω). Let V ⊆ U be a
weak cell and X ⊆ V be a good twine in V , such that |X ∩ L| > vbV (X) =: m
(for simplicity, we are dealing with the case n = 0 in Definition 3.9). By
Lemma 3.7, X has at most m connected components; therefore, there exists
Y component of X such that |Y ∩ X| ≥ 2. Thus, since L is a FRL, Y it
orthogonal to ω at some point. �

Remark 5.4. Notice that a priori it is not clear whether every RL is
an FRL: consider an expansion of the real field and let L be a connected
multi-leaf with data (U,ω); let X be 1-dimensional definably connected but
not topologically connected manifold. Then it could happen that L meets two
distinct connected components of X without X being anywhere orthogonal
to ω.

There is the following question left. Let K be definably complete and Baire.
Let F : Kn → K be a definable C ∞ function satisfying ∂F

∂xi
= gi(x,F (x)), for

some C ∞ K0-definable function gi : Kn → K. Let K0(F ) be the expansion of
K0 by F . Is K0(F ) o-minimal? Let C be the graph of F , and ω be the 1-form
on U := Kn+1 g1 dx1 + · · · +gn dxn − dy. Notice that C is a connected leaf with
data (U,ω). The question has positive answer if C is a VRL. We don’t know
if this is true, but, since being a VRL is a first-order condition, we can add
either the condition “C is VRL” to the axioms of K0(F ), or we can add the
condition “every graph of a Pfaffian function is a VRL” to the axioms of K. In
both ways, we obtain an axiomatization of K0(F ) that ensures o-minimality.

6. Effective bounds

In this section, we apply our results to derive uniform and effective bounds
on some topological invariants (e.g., the number of connected components)
of sets definable in the Pfaffian closure of an o-minimal expansion of the real
field.

Let T0 be a recursively axiomatized (not necessarily complete) o-minimal
theory (if T0 is not recursively axiomatized, then the effective results of these
section are still valid with respect to an oracle for T0). Let R0 be an o-minimal
expansion of the real field, which is a model of T0 and let P (R0) be the Pfaffian
closure of R0 (in the sense of [Spe99]).



RELATIVE PFAFFIAN CLOSURE 1217

Definition 6.1. Let X ⊆ Rn be definable in P (R0). We call the topological
complexity of X (denoted by t.c.(X)) the least N ∈ N, such that there exist:

(1) a simplicial complex Z composed of fewer than N simplices, each of
dimension at most N ;

(2) and a P (R0)-definable homeomorphism f : X ≈ |Z|.

Note that, since P (R0) is o-minimal, the topological complexity is a well
defined natural number [vdD98, Theorem 8.1.7 and ¶9.2.1].

Let X be defined by a formula ϕ, where some of the variables are evaluated
as a suitable tuple of parameters. This definition will involve a finite number
of Rolle Leaves L1, . . . ,Lk. As one can see from the inductive definition of
Pfaffian closure, every leaf Li will have data (Ui, ωi) definable (by a formula
φi, where some of the variables are evaluated as a suitable tuple of parameters)
in terms of a finite number of Rolle Leaves Li,1, . . . ,Li,ni of lower complexity
(i.e., appearing at some earlier stage of the inductive construction). Hence,
to the set X (or better, to its definition ϕ) we can associate a finite sequence
F1 = L1, . . . , Fk = Lk, Fk+1 = L1,1, . . . , Fk+1+n1 = L1,n1 , . . . of Rolle Leaves,
which are involved in its definition. The aim of the following definition is to
code the set X by this sequence of leaves (cf. [Fra06], [GV04]).

Definition 6.2. Let L(P ) be the language of R0 to which we adjoin a
countable set of new predicates {P1, . . . , Pn, . . .}. A format of a definable set
X is the following finite sequence of L(P )-formulae (without parameters):
(ϕ,P,Φ), where
• for a suitable choice of parameters ā, the set X is defined by ϕ(·, ā);
• P = (P1, . . . , Pm) and every Pi represents a Rolle Leaf Fi involved in this

definition of X ;
• Φ = (φ1, . . . , φm), where φi is an L(Pi+1, . . . , Pm)-formula, and, for a suit-

able choice of parameters āi, the formula φi(·, āi) defines the graph of ωi

on Ui, where (Ui, ωi) is the data of the leaf Fi.

Note that in the definition only formulas without parameters appear. In
particular, if ω is a definable form on a definable open set U , then every Rolle
Leaf with data (U,ω) corresponds to the same format.

Example 6.3. Let X = L1 ∪ L2, where Li are Rolle Leaves with data
(Ui, ωi). Let L3 be a Rolle Leaf with R0-definable data (U3, ω3). Suppose
(U1, ω1) are 〈R0,L3〉-definable and (U2, ω2) are R0-definable. Let the graphs
of ω1, ω2, ω3 be defined by formulas φ1(ā1, x̄, ȳ), φ2(ā2, x̄, ȳ), φ3(ā3, x̄, ȳ) re-
spectively, where ā1, ā2, ā3 are tuples of parameters. Then a format for X
is given by the L0 ∪ {P1, P2, P3}-formulas (ϕ,P,Φ), where ϕ = P1 ∨ P2;P =
(P1, P2, P3);Φ = (φ1, φ2, φ3).

The next definition requires the notion of Rolle Leaf to be first order. This
is the reason why we introduced Virtual Rolle multi-Leaves: the property of
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being a VRL is type-definable, that is, it can be expressed by a countable
(recursive) conjunction of first order formulae.

Definition 6.4. Let X be a definable set and θ = (ϕ,P,Φ) be a format
for X . Let Tθ be the first order theory (in the language of R0 adjoined with
the predicates P1, . . . , Pm) with the following recursive (but not necessarily
complete) axiomatization:
• Axioms of T0;
• Axioms of Definably Complete Baire Structure;
• φi defines the graph of a nonsingular C1 1-form ωi on some definable open

subset Ui;
• Pi is a VRL with data (Ui, ωi).

We now show the existence of a bound on the topological complexity of X ,
which depends (recursively) only on a format for X .

Theorem 6.5. There is a recursive function η which, given a set X defin-
able in P (R0) and a format θ for X , returns a natural number η(θ) which is
an upper bound on the topological complexity of X .

Proof. Let X be a definable set and θ = (ϕ,P,Φ) be a format for X . Note
that, by Theorem 2.6, the theory Tθ is o-minimal. In particular, there is a
natural number N such that t.c.(X) < N . Moreover, Tθ is recursively enu-
merable, hence we can recursively enumerate all the formulas which (for every
choice of the parameters) are provable in this theory. Take the first formula
in this enumeration which defines a homeomorphism between the set defined
by ϕ and some simplicial complex Z. Define η(θ) as the number of complexes
which form Z. �

Corollary 6.6. There are recursive bounds on the following topological
invariants of sets definable in P (R0): number of connected components, sum
of the Betti numbers, number of generators of the fundamental group.

Proof. Let X be a set definable in P (R0) and N be the recursive bound
on t.c.(X) given by the above theorem. Let F be a simplicial complex with
at most N simplices, each of them of dimension at most N , such that |F | is
homeomorphic to X (F exists by definition of t.c.(X)). Clearly, the number
of connected components of |F | (and hence of X) is at most N .

If F were a closed complex, by classical algebraic topology theory, N would
be also a bound for the other mentioned topological invariants. Otherwise, let
F ′ be the barycentric subdivision of F . By [EW08, Lemma 7.1], there exists a
closed simplicial complex C which is also a sub-complex of F ′, such that |F ′ |
(and hence X) is homotopic to |C|. Since C is a closed complex, the number
m of simplices of C gives an upper bound to the sum of the Betti numbers of
|C| (and hence of X), and to the number of generators of π1(X,x0) (for any
x0 ∈ X), and m is bounded by a recursive function of N . �
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