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MAHLER’S MEASURES ON FUNCTION SPACES

HANSONG HUANG

Abstract. Recently, I. Pritsker considered a Bergman-space ver-
sion of Mahler’s measure, and obtained many nice properties such

as the arithmetic nature, relation with asymptotic zero distribu-
tion, etc. (Illinois J. Math. 52 (2009) 347–363). In this paper,

we define a Fock-space analogue of Mahler’s measure, and show a

similar version of Lehmer’s conjecture. Inspired by this result, we

establish an equivalent form of Lehmer’s conjecture. Also, this

consideration is done on weighted Bergman spaces. However, it

is shown that in this case the corresponding form of Lehmer’s

conjecture fails. In addition, we give an affirmative answer to an

approximation question raised by I. Pritsker (Illinois J. Math.
52 (2009) 347–363).

1. Introduction

Let C[z] and Z[z] denote the set of all polynomials, with complex and
integer coefficients, respectively. In [16], Mahler defined a quantity for poly-
nomials, called Mahler’s measure today, also see [5], [9], [14]. Precisely, for
each polynomial P ∈ C[z], set

M(P ) � lim
r→0+

exp
(

1
2π

∫ 2π

0

∣∣P (
eiθ

)∣∣r dθ

) 1
r

,

and it turns out that

M(P ) = exp
(

1
2π

∫ 2π

0

log
∣∣P (

eiθ
)∣∣dθ

)
.
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Then M(P ) is called Mahler’s measure. This definition can be naturally
extended to analytic functions f defined on the unit disk D, whose boundary
values make sense a.e. such that log |f | is integrable on ∂D. Below, Pn always
denotes a polynomial with degree n. If we write

Pn(z) = an

n∏
j=1

(z − zj),

then applying Jensen’s equality shows that

M(Pn) = |an|
∏

|zj |≥1

|zj |.

A well-known open problem related to Mahler’s measure is known as Lehmer’s
conjecture, which says that there exists a numerical constant ζ0 > 1 such
that for any Pn ∈ Z[z], either M(Pn) = 1 or M(Pn) ≥ ζ0. In fact, from a
result of Kronecker [15], if M(Pn) = 1 for a polynomial Pn ∈ Z[z], then either
Pn or −Pn is the product of a monomial and cyclotomic polynomials. An
irreducible polynomial with integer coefficients is called cyclotomic if all the
zeros are roots of unity. Therefore, Lehmer’s conjecture is equivalent to that
there exists a numerical constant ζ0 > 1 such that for any non-cyclotomic
polynomials P ∈ Z[z] with P (0) �= 0, M(P ) ≥ ζ0. This conjecture has many
applications on various fields of mathematics, for example, transcendental
number theory, ergodic theory, knot theory, and etc. For details, one may
refer to [2], [10], [20], and see [3], [5], [6], [7], [17] for results on Mahler’s
measure for polynomials in several variables.

Recently, I. Pritsker considered a Bergman-space version of Mahler’s mea-
sure, and deduced some of its properties. In this paper, those ideas are ex-
tended to Fock and other spaces. However, there are significant differences
between these two spaces. Let dA(z) denote the area measure over the com-
plex plane, and we may defined a quantity |Pn|F related to the Gaussian
measure e− |z|2 dA(z)

π . It turns out that there is a numerical constant c > 1
such that for any Pn ∈ Z[z] with Pn(0) �= 0, |Pn|F ≥ c. This, in some sense,
shows that a Fock space version of Lehmer’s conjecture holds. Furthermore,
we give a family of function space versions of Mahler’s measure. It is shown
that those function space versions of Lehmer’s conjecture are equivalent to
Mahler’s conjecture (see Section 4).

We also consider weighted-Bergman-space versions of Mahler’s measure,
and define |Pn|ρ∗ for each nonzero polynomial, where ρ is related to the weight
on these spaces. When ρ = 1, it is reduced to the case of Bergman space that
was considered by I. Pritsker [18], where he denoted it by ‖Pn‖0. It was shown
by an example that there exists a sequence of non-cyclotomic polynomials
{Pn} in Z[z] with Pn(0) �= 0, satisfying limn→∞ ‖Pn‖0 = 1. Under a mild
condition, this result is generalized.
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In Section 2, we defined a version of Mahler’s measure on the Fock space.
For polynomials P (z) with integer coefficients and P (0) �= 0, it is shown that
this quantity is always larger than a numerical constant c > 1. In Section 3,
we consider a family of heights of polynomials defined by normalized weighted
area measures over the unit disk. However, in this case, it is shown that the
corresponding Lehmer’s conjecture fails. In Section 4 we define a family of
function-space versions of Mahler’s measure and shows that those versions
of Lehmer’s conjecture are equivalent to the original conjecture. In Sec-
tion 5, we give an affirmative answer to an approximation question raised
by I. Pritsker [18].

2. Mahler’s measure on the Fock space

In this section, we will define a quantity over the Fock space and show that
the Fock space version of Mahler’s conjecture holds.

Recall that the Fock space F consists of all entire functions which are
square integrable with respect to the Gaussian measure e− |z|2 dA(z)

π . For each
f ∈ F , its norm is defined by

‖f ‖ =
(∫

C

∣∣f(z)
∣∣2e− |z|2 dA(z)

π

) 1
2

.

In general, the Fock space Ft (0 < t < ∞) consists of all entire functions f
such that

‖f ‖t �
(∫

C

∣∣f(z)
∣∣te− |z|2 dA(z)

π

) 1
t

< +∞.

Fix f ∈
⋂

t>0 Ft, and it is easy to see that ‖f ‖t is increasing. Therefore,
limt→0+ ‖f ‖t always exists. In particular, if f = Pn is a polynomial, then it
turns out

lim
t→0+

‖Pn‖t = exp
(∫

C

log
∣∣Pn(z)

∣∣e− |z|2 dA(z)
π

)
.

Now we define

(1) |Pn|F = exp
(∫

C

log
∣∣Pn(z)

∣∣e− |z|2 dA(z)
π

)
≥

∣∣Pn(0)
∣∣,

and put

S(x) =
∫ ∞

1

e−tx2

t
dt, x > 0.

It turns out that the function S has some relation with the Gamma function
Γ, defined by

Γ(z) =
∫ ∞

0

tz−1e−t dt, Re z > 0,
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which can be analytically extended to the whole complex plane except for
0, −1, −2, . . . , see [1], [8], [21], for example. In fact, the following identity is
known:

(2)
∫ 1

0

1 − e−t

t
dt −

∫ ∞

1

e−t

t
dt = −Γ′(1) = γ,

where γ is the gamma constant, that is,

γ = lim
n→∞

(
1 +

1
2

+ · · · +
1
n

− logn

)
= 0.57721 . . . .

By (2), S(1) =
∫ 1

0
1−e−t

t dt − γ. Therefore, expanding e−t shows that

S(1) =
∫ 1

0

1 −
∑∞

n=0
(−1)n

n! tn

t
dt − γ

=
∞∑

n=1

(−1)n−1 1
n!n

− γ.

The constant S(1) has a close relation with |Pn|F , whose explicit form is given
as follows.

Theorem 1. If Pn ∈ C[z] and z1, . . . , zn are its zeros, then

|Pn|F = M(Pn) exp
(

1
2

∑
|zj |≥1

S
(

|zj |
))

× exp
(

1
2

∑
|zj |<1

(
−

∫ 1

|zj |2

1 − e−r

r
dr + S(1)

))
.

By (2), the above formula for |Pn|F can also be written as

|Pn|F = M(Pn) exp
(

1
2

∑
|zj |≥1

S
(

|zj |
))

exp
(

1
2

∑
|zj |<1

(∫ |zj |2

0

1 − e−r

r
dr − γ

))
.

This theorem has the following consequence.

Corollary 2. For any nonconstant polynomial Pn ∈ Z[z] with Pn(0) �= 0,
we have |Pn|F ≥ exp(S(1)

2 ) = 1.115 . . . . Moreover, the smallest value exp(S(1)
2 )

is attained exactly by the followings: z + 1, z − 1, −z + 1 and −z − 1.

This corollary can be viewed as an affirmative answer to the Fock space
version of Lehmer’s conjecture. Also, notice that the constant exp(S(1)

2 ) is less
than the smallest known Mahler measure M(L) = 1.17628 . . . , where L(z) =
z10 + z9 − z7 − z6 − z5 − z3 − z4 + z + 1 [13].
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Proof. For a polynomial Pn with

Pn(z) =
n∑

i=0

aiz
i = an

n∏
i=1

(z − zi),

(3)
M(Pn) = |an|

∏
|zj |≥1

|zj | = |a0|
∏

|zj |≤1

1
|zj | .

There are two cases under consideration.
Case I. There is an i0 such that |zi0 | < 1. In this case, notice that the

function g(x) = e
x2−1

2

x is always larger than 1 for 0 < x < 1 [18]. Then by
Theorem 1 and (3), we have

|Pn|F ≥ |a0|
∏

|zj |<1

(
exp( |zj |2−1

2 )
|zj | exp

(
S(1)

2

))
≥ exp

(
S(1)

2

)
.

Case II. There is no zj such that |zj | < 1. From the identity

a0 = (−1)nan

n∏
i=1

zn,

it is easy to see that either all |zj | = 1 or |a0| ≥ 2. Then again by Theorem 1
and (3),

|Pn|F = M(Pn) exp
(

1
2

∑
|zj |≥1

S
(

|zj |
))

≥ min
{

exp
(

S(1)
2

)
,2

}
= exp

(
S(1)

2

)
.

The remaining follows from a close look at the above discussion. The proof
is complete. �

Remark 1. Furthermore, the constant exp(S(1)
2 ) is not a limit point of{

|Pn|F ;Pn ∈ Z[z] and Pn is a nonconstant polynomial satisfying Pn(0) �= 0
}
.

To see this, it is enough to show that for any Pn having at least two zeros,
|Pn|F is away from exp(S(1)

2 ). Fix a constant a (a > 1) and write

Pn(z) =
n∑

i=0

aiz
i = an

n∏
i=1

(z − zi).

Combining Theorem 1 with (3) shows that

|Pn|F ≥ |a0|
∏

|zj |<1

(
exp( |zj |2−1

2 )
|zj | exp

(
S(1)

2

)) ∏
|zj |≥1

exp
(

S(|zj |)
2

)
.

We may assume that |a0| = 1; otherwise |Pn|F ≥ |a0| ≥ 2 > exp(S(1)
2 ). There

are two cases under consideration.
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Case I. There is an i0 such that |zi0 | < 1. We may even assume that zi0 is
the only zj satisfying |zj | < 1, since otherwise we would have

|Pn|F ≥
∏

|zj |<1

(
exp( |zj |2−1

2 )
|zj | exp

(
S(1)

2

))
≥ exp

(
S(1)

)
.

Now either |zi0 | > 1
a or |zi0 | ≤ 1

a . If |zi0 | > 1
a , then by the identity

1 = |a0| =

∣∣∣∣∣(−1)nan

n∏
i=1

zn

∣∣∣∣∣,
we have |zj | ≤ a for all |zj | ≥ 1. Therefore,

|Pn|F ≥
∏

|zj |<1

(
exp( |zj |2−1

2 )
|zj | exp

(
S(1)

2

)) ∏
|zj |≥1

exp
(

S(|zj |)
2

)

≥ exp
(

S(1)
2

)
exp

(
S(a)

2

)
.

Otherwise, we have |zi0 | ≤ 1
a , forcing

|Pn|F ≥
exp( | 1

a |2−1

2 )
| 1
a |

exp
(

S(1)
2

)
.

Case II. There is no zj such that |zj | < 1. By the proof of Corollary 2, all
|zj | = 1. Therefore |Pn|F ≥ min{2, exp(S(1))}.

Now put

b = min
{

exp( | 1
a |2−1

2 )
| 1
a |

, exp
(

S(a)
2

)}
> 1,

and we have

|Pn|F ≥ min
{

2, b exp
(

S(1)
2

)}
> exp

(
S(1)

2

)

for any Pn (Pn ∈ Z[z]) having at least two zeros. Therefore, exp(S(1)
2 ) is not

a limit point of{
|Pn|F ;Pn ∈ Z[z] and Pn is a nonconstant polynomial satisfying Pn(0) �= 0

}
.

To close this section, we give the proof of Theorem 1.

Proof of Theorem 1. Assume that Pn is a nonzero polynomial and z1, . . . ,
zn are its zeros. By (1), we have

log |Pn|F = 2
∫ ∞

0

e−r2
r

(
1
2π

∫ 2π

0

log
∣∣Pn

(
reiθ

)∣∣dθ

)
dr.
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Applying Jensen’s formula, we get

log |Pn|F =
∫ ∞

0

(
log |an| +

∑
|zj |≥r

log |zj | +
∑

|zj |<r

log r

)
e−r2

dr2

= log |an| +
n∑

j=1

(
log |zj | +

1
2

∫ ∞

|zj |2

(
log r − log |zj |2

)
e−r dr

)
.

Then write

I
(

|zj |
)

= log |zj | +
1
2

∫ ∞

|zj |2

(
log r − log |zj |2

)
e−r dr(4)

= log |zj | +
1
2

∫ ∞

|zj |2

e−r

r
dr

= log |zj | +
1
2
S

(
|zj |

)
.

When |zj | < 1,

I
(

|zj |
)

=
1
2

log |zj |2 +
1
2

(∫ 1

|zj |2

e−r

r
dr +

∫ ∞

1

e−r

r
dr

)
(5)

=
1
2

(
−

∫ 1

|zj |2

1 − e−r

r
dr +

∫ ∞

1

e−r

r
dr

)

=
1
2

(
−

∫ 1

|zj |2

1 − e−r

r
dr + S(1)

)
.

Combining (3) and (4) with (5), we get

|Pn|F = |an|
∏

|zj |≥1

(
|zj | exp

(
S(|zj |)

2

))

× exp
(

1
2

∑
|zj |<1

(
−

∫ 1

|zj |2

1 − e−r

r
dr + S(1)

))

= M(Pn) exp
(

1
2

∑
|zj |≥1

S
(

|zj |
))

× exp
(

1
2

∑
|zj |<1

(
−

∫ 1

|zj |2

1 − e−r

r
dr + S(1)

))
.

The proof is complete. �

Remark 2. Recently, I. Pritsker studied an areal analog ‖Pn‖0 for Mahler
measure, see [18], [19]. Given a polynomial Pn ∈ C[z] with zeros zj , it turns
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out that

‖Pn‖0 = M(Pn) exp
( ∑

|zj |≤1

|zj |2 − 1
2

)
,

and then it is easy to see that ‖Pn‖0 ≤ |Pn|F . From this, one may check
that almost all results for ‖Pn‖0 in Sections 2 and 3 in [18] remain valid for
|Pn|F .

3. Counterparts of Mahler’s measure defined over the unit disk

In this section, we consider a family of heights of polynomials defined by
normalized weighted area measures over the unit disk. However, it is shown
that the corresponding Lehmer’s conjecture fails.

Recently, on the Bergman space, I. Pritsker defined a quantity ‖Pn‖0 for
polynomials Pn. Precisely,

‖Pn‖0 = exp
(∫

D

log
∣∣Pn(z)

∣∣dA(z)
π

)
,

and it turns out that

‖Pn‖0 = M(Pn) exp
(

− 1
2

∑
|zj |≤1

∫ 1

|zj |2
dr

)
.

In [19], it was shown that there is a sequence of non-cyclotomic polynomials
Pn ∈ Z[z] with Pn(0) �= 0, satisfying

lim
n→∞

‖Pn‖0 = 1.

In this section, we will show that this also happens in the case of weighted
Bergman spaces, see Corollary 4.

Now we assume that τ is a nonnegative continuous function over [0,1)
satisfying limr→1− τ(r) = 1. Define

(6) |Pn|τ = M(Pn) exp
(

− 1
2

∑
|zj |<1

∫ 1

|zj |2
τ(r)dr

)
,

where zj are all zeros of Pn with |zj | < 1. We also assume that for any polyno-
mial Pn ∈ Z[z] with Pn(0) �= 0, |Pn|τ ≥ 1. In many cases, these assumptions
hold.

Example 1. It is natural to extend the quantity ‖Pn‖0 to the case of
weighted Bergman space. Let ρ be a continuous positive function on [0,1),
and denote L2

a(D, ρ(|z|2)dA(z)) the weighted Bergman space consisting of all
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holomorphic functions over D, which are square integrable with respect to
ρ(|z|2)dA(z). For each polynomial Pn ∈ C[z], its norm is defined by

‖Pn‖ρ �
(∫

D

∣∣Pn(z)
∣∣2ρ(

|z|2
)dA(z)

π

) 1
2

.

We also assume that
∫ 1

0
ρ(r)dr = 1, which is the normalizing condition; that

is, ‖1‖ρ = 1.
We define

|Pn|ρ∗ = exp
(∫

D

log
∣∣Pn(z)

∣∣ρ(
|z|2

)dA(z)
π

)
.

Then for each Pn ∈ Z[z] with Pn(0) �= 0, |Pn|ρ∗ ≥ 1. The reasoning is as
follows. Since |Pn(z)|t is subharmonic for each t > 0, it follows that∫

D

∣∣Pn(z)
∣∣tρ(

|z|2
)dA(z)

π
≥

∣∣Pn(0)
∣∣ ≥ 1,

and hence

|Pn|ρ∗ = lim
t→0+

(∫
D

∣∣Pn(z)
∣∣tρ(

|z|2
)dA(z)

π

) 1
t

≥ 1,

as desired.
Now define F (r) =

∫ r

0
ρ(t)dt, and it is clear that F (0) = 0 and F (1) = 1.

Set τ(r) = F (r)
r ,0 < r < 1; τ(0) = ρ(0), and put

G(x) = exp
(

− 1
2

∫ 1

x2
τ(r)dr

)
.

We will see that
|Pn|ρ∗ = M(Pn)

∏
|zj |<1

G
(

|zj |
)
,

where zj are zeros of Pn with |zj | < 1. Then |Pn|ρ∗ is a special case of |Pn|τ
since τ(1) = 1.

The reasoning is as follows. For a polynomial Pn with

Pn(z) =
n∑

i=0

aiz
i = an

n∏
i=1

(z − zi),

we have

log |Pn|ρ∗ =
1
π

∫ 1

0

ρ
(
r2

)
r dr

∫ 2π

0

log
∣∣Pn

(
reiθ

)∣∣dθ

= 2
∫ 1

0

ρ
(
r2

)
r dr

1
2π

∫ 2π

0

log
∣∣Pn

(
reiθ

)∣∣dθ

=
∫ 1

0

(
log |an| +

∑
|zj |≥r

log |zj | +
∑

|zj |<r

log r

)
ρ
(
r2

)
2r dr
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=
(

log |an| +
∑

|zj |≥1

log |zj |
)

+ 2
∑

|zj |<r

(∫ |zj |

0

log |zj |ρ
(
r2

)
r dr +

∫ 1

|zj |
ρ
(
r2

)
r log r dr

)

≡
(

log |an| +
∑

|zj |≥1

log |zj |
)

+ I.

Since

I =
∑

|zj |<r

(∫ |zj |2

0

log |zj |ρ(r)dr +
1
2

∫ 1

|zj |2
ρ(r) log r dr

)

=
∑

|zj |<r

(
log |zj |F

(
|zj |2

)
+

1
2

∫ 1

|zj |2
log r dF (r)

)

= −
∑

|zj |<r

(
1
2

∫ 1

|zj |2

F (r)
r

dr

)
,

then

log |Pn|ρ∗ =
(

log |an| +
∑

|zj |≥1

log |zj |
)

−
∑

|zj |<r

(
1
2

∫ 1

|zj |2

F (r)
r

dr

)
.

Therefore, |Pn|ρ∗ = M(Pn)
∏

|zj |<1 G(|zj |), as desired.

We have the following proposition.

Proposition 3. Suppose that τ is a nonnegative continuous function over
[0,1) satisfying limr→1− τ(r) = 1, and |Pn|τ is defined by (6). Then there
is a sequence of non-cyclotomic polynomials {Pn} in Z[z] with Pn(0) �= 0,
satisfying

lim
n→∞

|Pn|τ = 1.

Corollary 4. Let |Pn|ρ∗ be defined as in Example 1. Then there is a se-
quence of non-cyclotomic polynomials {Pn} in Z[z] with Pn(0) �= 0, satisfying

lim
n→∞

|Pn|ρ∗ = 1.

As done in Example 1, write

G(x) = exp
(

− 1
2

∫ 1

x2
τ(r)dr

)
,
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and then by definition we rewrite

(7) |Pn|τ = M(Pn)
∏

|zj |<1

G
(

|zj |
)
,

where zj are zeros of Pn with |zj | < 1. Since τ(r) → 1 (r → 1−), there is a
positive infinitesimals o(1) such that τ(r) ≥ 1 − o(1). For example, we may
choose o(1) to be |1 − τ(r)|.

Now we are ready to give the proof of Proposition 3.

Proof of Proposition 3. Now put Pn(z) = zn + z + 1, and it is known that
each Pn (n > 2) is not cyclotomic [10, p. 78, Exercise 3.12]. To prove Proposi-
tion 3, it suffices to show that limn→∞ |Pn|τ = 1. First, observe that {M(Pn)}
is bounded since |Pn| ≤ 3 on the unit circle. In fact,

lim
n→∞

M(Pn) = 1.38135 . . . ,

see [4], [20]. Also, we will see that for this sequence {Pn},

lim
n→∞

min
{

|z| < 1 : Pn(z) = 0
}

= 1.

To see this, suppose conversely that there is a subsequence {Pnk
} and {wk } ⊆

D such that Pnk
(wk) = 0 and

lim
k→∞

|wk | = a with 0 ≤ a < 1.

However, we have |Pnk
(wk)| ≥ 1 − |wk | − |wk |nk , forcing

limsup
k→∞

∣∣Pnk
(wk)

∣∣ ≥ 1 − a.

This is a contradiction to the assumption Pnk
(wk) = 0.

For each fixed Pn, let {zj } be its zeros satisfying |zj | < 1, and write |zj | =
1 − εj . Since

lim
n→∞

min
{

|z| < 1 : Pn(z) = 0
}

= 1,

these εj tends to zero uniformly as n tends to infinity. We assume that εj are
small enough as required. By the definition of G and our convention below
Corollary 4, there is a positive infinitesimal o(1) such that

(8)
G(|zj |)

|zj | ≤
exp(− 1

2

∫ 1

|zj |2(1 − o(1))dr)

1 − εj

as n tends to ∞. Here and below, o(1) always denotes a positive infinitesimal,
which may differs in the context. Roughly speaking, we assume that it is
enough small.

Noticing that by Taylor’s expansion of e−x, for any enough small x (x > 0),

e−x ≤ 1 − x +
x2

2
,
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and that

− 1
2

∫ 1

|zj |2

(
1 − o(1)

)
dr = − 1

2

∫ 1

(1−εj)2

(
1 − o(1)

)
dr

= −
(

εj −
ε2
j

2

)(
1 − o(1)

)
≤

(
−1 + o(1)

)
εj ,

we get

(9) exp
(

− 1
2

∫ 1

|zj |2

(
1 − o(1)

))
dr ≤ 1 − εj + o(1)εj ,

which, combined with (8), shows that

(10)
G(zj)

|zj | ≤ 1 − εj + o(1)εj

1 − εj
≤ 1 + o(1)εj .

Since there exists a constant M > 0 such that M(Pn) ≤ M (n ≥ 1), we have∏
|zj |<1

1
|zj | ≤ M ;

that is, ∏
|zj |<1

1
1 − εj

≤ M.

Therefore,

(11) −
∑

|zj |<1

log(1 − εj) ≤ logM.

Now fix δ > 0. When n is sufficiently large, for each j with |zj | < 1, εj are
small enough to satisfying

εj ≤ −2 log(1 − εj).

This, combined with (11), immediately gives that∑
|zj |<1

log
(
1 + o(1)εj

)
≤

∑
|zj |<1

log(1 + δεj) ≤
∑

|zj |<1

δεj

≤ −2δ
∑

|zj |<1

log(1 − εj) ≤ 2δ logM.

Then by (10), ∏
|zj |<1

G(|zj |)
|zj | ≤

∏
|zj |<1

(
1 + o(1)εj

)
≤ M2δ.
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On the other hand, by (7) and (3), |Pn|τ =
∏

|zj |<1
G(zj)

|zj | . Thus

limsup
n→∞

|Pn|τ ≤ M2δ,

and by the arbitrariness of δ, we have

limsup
n→∞

|Pn|τ ≤ 1.

By our assumption, |Pn|τ ≥ 1 for any Pn ∈ Z[z] satisfying Pn(0) �= 0. There-
fore,

lim inf
n→∞

|Pn|τ = 1,

and hence
lim

n→∞
|Pn|τ = 1.

The proof is complete. �

4. An equivalent version for Lehmer’s conjecture

In this section, we will establish an equivalent version for Lehmer’s conjec-
ture.

We adopt the notation of Section 3. Define

|Pn|τ = M(Pn) exp
(

− 1
2

∑
|zj |<1

∫ 1

|zj |2
τ(r)dr

)
,

where zj are all zeros of Pn with |zj | < 1. However, in this section, we assume
that τ is a continuous function on [0,1) satisfying 0 ≤ τ ≤ 1 and

limsup
r→1−

τ(r) < 1.

Clearly, |Pn|τ ≤ M(Pn).
Recently, on the Bergman space, I. Pritsker defined a quantity ‖Pn‖0 for

polynomials Pn, which turns out to be

‖Pn‖0 = M(Pn) exp
(

− 1
2

∑
|zj |≤1

∫ 1

|zj |2
dr

)
.

Clearly, ‖Pn‖0 ≤ |Pn|τ , and then for each Pn ∈ Z[z] with Pn(0) �= 0, |Pn|τ ≥
‖Pn‖0 ≥ 1.

First, let us see an example.

Example 2. In Section 2, for each nonzero polynomial Pn ∈ C[z], we have
defined |Pn|F , which turns out to be

|Pn|F = M(Pn) exp
(

1
2

∑
|zj |≥1

S
(

|zj |
))

× exp
(

1
2

∑
|zj |<1

(
−

∫ 1

|zj |2

1 − e−r

r
dr + S(1)

))
.
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The above quantity |Pn|F induces another one, say

|Pn| ′
F � M(Pn) exp

(
− 1

2

∑
|zj |<1

∫ 1

|zj |2

1 − e−r

r
dr

)
.

Since 0 < 1 − e−r ≤ r for 0 < r ≤ 1, we have 0 ≤ 1−e−r

r ≤ 1. Also, notice that
1−e−r

r |r=1 < 1. Therefore, |Pn| ′
F is a quantity as desired.

Here, we will establish a statement that is equivalent to Lehmer’s con-
jecture, which says that there is a constant ζ0 (ζ0 > 1) such that for each
Pn ∈ Z[z], either M(Pn) = 1 or M(Pn) ≥ ζ0. As mentioned in the Introduc-
tion, Lehmer’s conjecture is equivalent to saying that there is a constant ζ0

(ζ0 > 1) such that for each non-cyclotomic polynomial Pn in Z[z], M(Pn) ≥ ζ0.
The following theorem gives an equivalent version for Lehmer’s conjecture,

which can be also regarded as the counterpart of Proposition 3.

Theorem 5. Suppose τ is a continuous function on [0,1) satisfying 0 ≤
τ ≤ 1 and

limsup
r→1−

τ(r) < 1.

Then the followings are equivalent:
(i) Lehmer’s conjecture holds;
(ii) There exists a constant c (c > 1) such that for any non-cylotomic Pn ∈

Z[z] with Pn(0) �= 0, |Pn|τ ≥ c.

To prove this theorem, we need to establish a lemma. Now define

(12) h(x) =
exp(− 1

2

∫ 1

x2 τ(r)dr)
x

, x > 0.

By a simple calculation, it is easy to see that h′(x) < 0 for 0 < x < 1, and
hence h(x) ≥ 1 (0 < x ≤ 1).

Lemma 6. Given a constant c0 > 1, there exist constants s and c with
0 < s < 1 < c and satisfying the following: for each finite sequence {xi}n

i=1

with each xi ∈ [s,1), if
∏n

i=1
1
xi

≥ c0 > 1, then
n∏

i=1

h(xi) ≥ c.

Proof. By our previous assumption,

limsup
r→1−

τ(r) < 1.

So there are constants a, s ∈ (0,1) such that τ(r) ≤ a for s2 ≤ r < 1. Also, we
assume that 1 − s is small enough such that the followings hold for each y
satisfying 0 < y ≤ 1 − s:

(13) e−y ≥ 1 − y, 2y ≥ − log(1 − y) and log(1 + y) ≥ y

2
.
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Therefore, we have

(14) exp
(

− 1
2

∫ 1

x2
τ(r)dr

)
≥ exp

(
− 1

2
a
(
1 − x2

))
≥ 1 − a

2
(
1 − x2

)
,

where s ≤ x < 1.
For a given sequence {xi}n

i=1 which satisfies
∏n

i=1
1
xi

≥ c0 > 1 and s ≤ xi < 1
(1 ≤ i ≤ n), write εi = 1 − xi. Then by (12) and (14), we have

n∏
i=1

h(xi) ≥
n∏

i=1

1 − a
2 (1 − x2

i )
xi

(15)

≥
n∏

i=1

1 − a(1 − xi)
xi

=
n∏

i=1

1 − aεi

1 − εi

≥
n∏

i=1

(
1 + a′εi

)
,

where a′ = 1 − a > 0. Since s ≤ xi < 1, i.e. 0 < εi ≤ 1 − s, then by (13)

2εi ≥ − log(1 − εi)

and

log
(
1 + a′εi

)
≥ a′

2
εi.

Therefore,
n∑

i=1

log
(
1 + a′εi

)
≥ a′

2

n∑
i=1

εi ≥ a′

4

n∑
i=1

− log(1 − εi),

which, combined with the inequality
n∏

i=1

1
1 − εi

=
n∏

i=1

1
xi

≥ c0,

gives that

n∏
i=1

(
1 + a′εi

)
≥

(
n∏

i=1

1
1 − εi

) a′
4

≥ c
a′
4

0 > 1.

Then letting c = c
a′
4

0 , by (15) we get
∏n

i=1 h(xi) ≥ c, as desired. �

Now we are ready to prove Theorem 5.
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Proof of Theorem 5. Since for each polynomial Pn, we have |Pn|τ ≤ M(Pn),
(ii) ⇒ (i) is straightforward. It remains to consider (i) ⇒ (ii). For this, sup-
pose Pn(z) =

∑n
i=0 aiz

i is a non-cyclotomic polynomial with integer coeffi-
cients. Also, we assume that both a0 and an are nonzero, and zj are all zeros
of Pn with |zj | < 1. By (3) and (6),

|Pn|τ = |a0|
∏

|zj |<1

h
(

|zj |
)
.

Next, we will show that |Pn|τ has a lower bound c > 1. There are two cases
under consideration.

Case I: |a0| ≥ 2. By the comments after Theorem 5, for each x ∈ (0,1),
h(x) ≥ 1, and then

|Pn|τ = |a0|
∏

|zj |<1

h
(

|zj |
)

≥ 2.

Case II: |a0| = 1. In this case, |Pn|τ =
∏

|zj |<1 h(|zj |).
Now let s be as in Lemma 6. If there is a zj such that |zj | ≤ s, then |Pn|τ ≥

h(s) > 1. Otherwise, all |zj | with |zj | < 1 must satisfy |zj | > s. By Lehmer’s
conjecture, there is a constant ζ0 > 1 such that M(Pn) =

∏
|zj |<1

1
|zj | ≥ ζ0.

Then by Lemma 6, there is a numerical constant c′ > 1 such that∏
|zj |<1

h
(

|zj |
)

≥ c′.

That is, |Pn|τ ≥ c′.
Put c = min{c′, h(s),2} > 1, and we have |Pn|τ ≥ c. The proof is complete.

�

5. Approximation by polynomials in Z[z] in Mahler’s measure

Recently, I. Pritsker considered several questions of approximation by poly-
nomials in Z[z]. In the Hardy space Hp(D) (0 < p < ∞), define

‖f ‖Hp �
(∫ 2π

0

∣∣f(
eiθ

)∣∣p dθ

2π

) 1
p

, f ∈ Hp(D).

It was shown in [18] that for each f ∈ Hp, if there is a sequence of polynomials
{Pn} in Z[z] such that

lim
n→∞

‖f − Pn‖Hp = 0,

then f ∈ Z[z]. I. Pritsker asked whether this conclusion also holds for p = 0,
i.e. for approximation of functions in Mahler’s measure. In this section, we
give an affirmative answer to this question under a mild condition. In fact,
we show that this is true for Nevanlinna functions.

An analytic function f over the unit disk f is called in the Nevanlinna
class if the subharmonic function log+ |f | has a harmonic majorant. This
condition is equivalent to that f has bounded characteristic, that is, there are
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two bounded analytic functions g and h such that f = g
h , see [11, pp. 69–75].

For a Nevanlinna function f , its boundary values make sense and then we
may define

M(f) � exp
(

1
2π

∫ 2π

0

log
∣∣f(

eiθ
)∣∣dθ

)
< ∞.

Then we have the following result.

Theorem 7. Suppose f is a Nevanlinna function over D. If Pn ∈ Z[z], n ∈
Z+, satisfying

lim
n→∞

M(f − Pn) = 0,

then f ∈ Z[z].

Before continuing, let us make an observation. For each analytic function h
over D, log |h| is subharmonic. From this and the inner–outer decomposition
of H2(D)-functions, it is easy to give the following (see [11], [12], for example).

Lemma 8. Given a nonzero function h ∈ H2(D), there exists an r ∈ (0,1)
such that

sup
r≤t≤1

∣∣∣∣
∫ 2π

0

log
∣∣h(

teiθ
)∣∣ dθ

2π

∣∣∣∣ < ∞.

Also, we have∫ 2π

0

log
∣∣h(

teiθ
)∣∣ dθ

2π
≤

∫ 2π

0

log
∣∣h(

eiθ
)∣∣ dθ

2π
, 0 < t < 1.

Then we are ready to prove Theorem 7.

Proof of Theorem 7. Suppose that f is a Nevanlinna function over D and
there are polynomials Pn ∈ Z[z], n ∈ Z+, satisfying

lim
n→∞

M(f − Pn) = 0.

Write

f(z) =
∞∑

k=0

akzk, z ∈ D.

Assume conversely that f(z) /∈ Z[z], and then there are two cases under con-
sideration.

(1) All an are integers and there exist infinitely many n such that an �= 0;
(2) There exists a minimal k0 such that ak0 �= Z.

Then we claim that in both cases, there exists a constant a such that

(16) lim inf
r→1−

∫ 2π

0

log |f − Pn|
(
reiθ

)
dθ ≥ a.
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In fact, in case (1), let j = j(n) be the largest integer such that f(z)−Pn(z)
zj is

analytic in D. Since f(z)−Pn(z)
zj |z=0 is a nonzero integer, it follows that

lim inf
r→1−

∫ 2π

0

log |f − Pn|
(
reiθ

)
dθ = lim inf

r→1−

∫ 2π

0

log
∣∣∣∣f − Pn

zj

∣∣∣∣(reiθ
)
dθ

≥ log
∣∣∣∣f(z) − Pn(z)

zj

∣∣∣∣
∣∣∣∣
z=0

≥ 0.

The discussion for case (2) is similar.
Since f is a Nevanlinna function, write f = g

h , where both g and h are
bounded analytic function over D. By Lemma 8, assume that there is an
r0 ∈ (0,1) and M > 0 satisfying

(17) sup
r0≤t≤1

∣∣∣∣
∫ 2π

0

log
∣∣h(

teiθ
)∣∣ dθ

2π

∣∣∣∣ = M < ∞.

Since ∫ 2π

0

log |f − Pn|
(
reiθ

)
dθ

=
∫ 2π

0

log
∣∣∣∣ gh − Pn

∣∣∣∣(reiθ
)
dθ

= −
∫ 2π

0

log
∣∣h(

reiθ
)∣∣dθ +

∫ 2π

0

log |g − hPn|
(
reiθ

)
dθ,

then by (17), ∫ 2π

0

log |g − hPn|
(
reiθ

)
dθ(18)

=
∫ 2π

0

log |f − Pn|
(
reiθ

)
dθ +

∫ 2π

0

log
∣∣h(

reiθ
)∣∣dθ

≥
∫ 2π

0

log |f − Pn|
(
reiθ

)
dθ − M.

Combining (17) and (18) with Lemma 8 implies that∫ 2π

0

log |f − Pn|
(
eiθ

)
dθ = −

∫ 2π

0

log
∣∣h(

eiθ
)∣∣dθ +

∫ 2π

0

log |g − hPn|
(
eiθ

)
dθ

≥ −M +
∫ 2π

0

log |g − hPn|
(
reiθ

)
dθ

≥ −2M +
∫ 2π

0

log |f − Pn|
(
reiθ

)
dθ.
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Then by (16), we get∫ 2π

0

log |f − Pn|
(
eiθ

)
dθ ≥ −2M + a,

and hence
M(f − Pn) ≥ exp(−2M + a),

which is a contradiction to limn→∞ M(f − Pn) = 0. Therefore, f ∈ Z[z]. The
proof is complete. �
Acknowledgments. The author thanks Professor K. Guo and the referee
for helpful suggestions which make this paper more readable.

References

[1] E. Artin, The Gamma function, Holt, Rinehart and Winston, New York, 1964.

MR 0165148
[2] K. Ball, Mahler’s conjecture and wavelets, Discrete Comput. Geom. 13 (1995), 271–

277. MR 1318777
[3] M. Bertin, Mahler’s measure: From number theory to geometry, Number theory and

polynomials, LMS Lecture Notes, vol. 352, Cambridge University Press, Cambridge,
2008, pp. 20–31. MR 2428513

[4] D. Boyd, Variations on a theme of Kronecker, Canad. Math. Bull. 21 (1978), 129–133.

MR 0485771
[5] D. Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math. Bull.

24 (1981), 453–469. MR 0644535
[6] D. Boyd, Mahler’s measure and special values of L-functions, Experiment. Math. 7

(1998), 37–82. MR 1618282
[7] D. Boyd, Mahler’s measure and invariants of hyperbolic manifolds, Number theory

for the millennium, I (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 127–143.

MR 1956222
[8] P. Davis, Leonhard Euler’s integral: A historical profile of the Gamma function, Amer.

Math. Monthly 66 (1959), 849–869. MR 0106810
[9] A. Durand, On Mahler’s measure of a polynomial, Proc. Amer. Math. Soc. 83 (1981),

75–76. MR 0619985
[10] G. Everest and T. Ward, Heights of polynomials and entropy in algebraic dynamics,

Universitext, Springer, London, 1999. MR 1700272
[11] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 0628971
[12] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, NJ,

1962. MR 0133008
[13] D. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933),

461–479. MR 1503118
[14] R. Louboutin, Sur la mesure de Mahler d’un nombre algebrique, C. R. Acad. Sci. Paris

Ser. I Math. 296 (1983), 707–708. MR 0706663
[15] L. Kronecker, Zwei Staze uber Gleichungen mit ganzzahligen Coefficient, J. Reine

Angew. Math. 53 (1857), 173–175.
[16] K. Mahler, On some inequalities for polynomials in several variables, J. Lond. Math.

Soc. 37 (1962), 341–344. MR 0138593
[17] K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11

(1964), 257–262. MR 0166188
[18] I. Pritsker, An areal analog of Mahler’s measure, Illinois J. Math. 52 (2009), 347–363.

MR 2524641

http://www.ams.org/mathscinet-getitem?mr=0165148
http://www.ams.org/mathscinet-getitem?mr=1318777
http://www.ams.org/mathscinet-getitem?mr=2428513
http://www.ams.org/mathscinet-getitem?mr=0485771
http://www.ams.org/mathscinet-getitem?mr=0644535
http://www.ams.org/mathscinet-getitem?mr=1618282
http://www.ams.org/mathscinet-getitem?mr=1956222
http://www.ams.org/mathscinet-getitem?mr=0106810
http://www.ams.org/mathscinet-getitem?mr=0619985
http://www.ams.org/mathscinet-getitem?mr=1700272
http://www.ams.org/mathscinet-getitem?mr=0628971
http://www.ams.org/mathscinet-getitem?mr=0133008
http://www.ams.org/mathscinet-getitem?mr=1503118
http://www.ams.org/mathscinet-getitem?mr=0706663
http://www.ams.org/mathscinet-getitem?mr=0138593
http://www.ams.org/mathscinet-getitem?mr=0166188
http://www.ams.org/mathscinet-getitem?mr=2524641


1202 H. HUANG

[19] I. Pritsker, Polynomial inequalities, Mahler’s measure and multipliers, Number theory
and polynomials, LMS Lecture Notes, vol. 352, Cambridge University Press, Cam-

bridge, 2008, pp. 255–276. MR 2428526
[20] C. Smyth, The Mahler measure of algebraic numbers: A survey, Number theory and

polynomials, LMS Lecture Notes, vol. 352, Cambridge University Press, Cambridge,
2008, pp. 322–349. MR 2428530

[21] P. Sebah and X. Gourdon, Introduction to the Gamma function, http://www.frm.

utn.edu.ar/analisisdsys/MATERIAL/Funcion Gamma.pdf.

Hansong Huang, Department of Mathematics, East China University of Science

and Technology, 200237-Shanghai, China

E-mail address: hshuang@ecust.edu.cn

http://www.ams.org/mathscinet-getitem?mr=2428526
http://www.ams.org/mathscinet-getitem?mr=2428530
http://www.frm.utn.edu.ar/analisisdsys/MATERIAL/Funcion_Gamma.pdf
mailto:hshuang@ecust.edu.cn
http://www.frm.utn.edu.ar/analisisdsys/MATERIAL/Funcion_Gamma.pdf

	Introduction
	Mahler's measure on the Fock space
	Counterparts of Mahler's measure defined over the unit disk
	An equivalent version for Lehmer's conjecture
	Approximation by polynomials in Z[z] in Mahler's measure
	Acknowledgments
	References
	Author's Addresses

