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ON ACTIONS OF COMPACT QUANTUM GROUPS

PIOTR M. SO�LTAN

Abstract. We compare algebraic objects related to a compact
quantum group action on a unital C∗-algebra in the sense of

Podleś and Baum et al. and show that they differ by the kernel

of the morphism describing the action. Then we address ways

to remove the kernel without changing the Podleś algebraic core.

A minimal such procedure is described. We end the paper with

a natural example of an action of a reduced compact quantum
group with non-trivial kernel.

1. Introduction

In this paper, we discuss some aspects of the theory of actions of compact
quantum groups on unital C∗-algebras (compact quantum spaces) which are
usually neglected or excluded from consideration by additional assumptions.
The motivation for this came from some recent work of P. Baum et al. on the
Peter–Weyl functor ([1], cf. also Section 2).

1.1. Standing assumptions and notation. All considered C∗-algebras
will be unital and for such C∗-algebras A and B we will denote by Mor(A,B)
the set of unital ∗-homomorphisms from A to B. The symbol “⊗” will denote
the minimal tensor product of C∗-algebras.

Throughout the paper, G = (A,Δ) will be a compact quantum group as
defined in [14, Definition 2.1]. By Gu = (Au,Δu) and Gr = (Ar,Δr), we shall
denote the universal and reduced versions of G [2, Sections 3 & 2]. The
canonical morphisms from Au to A and from A to Ar will be denoted by

Λ ∈ Mor(Au,A), λ ∈ Mor(A,Ar).
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The canonical dense Hopf ∗-algebra inside A will be denoted by (A ,Δalg). In
particular, we have Δalg = Δ|A ([14, Section 6]).

Also throughout the paper, B will denote a unital C∗-algebra.

1.2. Actions of compact quantum groups on C∗-algebras. We shall
denote by δ an action of G on B. This means that δ ∈ Mor(B,B ⊗ A) is such
that

(1) (δ ⊗ id) ◦ δ = (id ⊗ Δ) ◦ δ,
(2) span{δ(b)(1 ⊗ a)|a ∈ A,b ∈ B} is dense in B ⊗ A.

Actions of compact quantum groups were defined an studied first by Piotr
Podleś in [7]. There is now ample literature on this topic, for example, [3],
[5], [6], [11], [13]. Some authors assume that δ is an injective map. Others
impose the formally stronger condition that

(1.1) (id ⊗ ε) ◦ δ = id,

where ε is the counit of G (which is then assumed to be continuous). Clearly
(1.1) implies injectivity of δ.

As mentioned in the Introduction, we will focus on situations, when such
additional conditions do not hold. In fact, there are natural examples of
actions which are not injective (cf. Section 4).

Remark 1.1.

(1) It is important to note that in case G does possess a continuous counit
then it follows from our definition of an action that in fact (1.1) is auto-
matically satisfied. In our case, this can be easily proved using the Podleś
algebraic core (see Section 2), but can be established in a much more
general situation ([10, Lemma 2.2]).

(2) There are many other situations when an action δ ∈ Mor(B,B ⊗ A) is au-
tomatically injective. For example, this happens if B is finite dimensional
or simple (cf. [5, Example 3.6]).

2. Two approaches to the algebraic core

The notion of algebraic core of an action of a compact quantum group
goes back to the Ph.D. thesis of Podleś ([7]). Motivated by the fact that
any action of a compact group on a Banach space decomposes into isotypical
components Podleś showed that the vector space B spanned by elements of
B which transform according to irreducible representations of G is a dense
unital ∗-subalgebra of B which is a right comodule algebra for the Hopf algebra
(A ,Δalg).

We shall now explain briefly the construction of B and introduce notation
needed in what follows. Let R be a set indexing the equivalence classes of
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irreducible unitary representations of G (cf. [14]). For each α ∈ R we let

uα =

⎡
⎢⎣

uα
1,1 · · · uα

1,Nα

...
. . .

...
uα

Nα,1 · · · uα
Nα,Nα

⎤
⎥⎦ ∈ MNα ⊗ A

be a representative of the class corresponding to α. Note that

(2.1)
{
uα

i,j |α ∈ R, i, j = 1, . . . ,Nα

}
is a linear basis of A ([14, Proposition 6.1]). There are (continuous) function-
als φα

i,j on A such that

φα
i,j

(
uβ

k,l

)
= δα,βδi,kδj,l.

We define Eα : B → B by Eα =
∑Nα

r=1(id ⊗ φα
r,r) ◦ δ and let

Wα = Eα(B), B =
⊕
α∈R

Wα ⊂ B.

The following theorem is due to Podleś ([8], [9], see also [3]).

Theorem 2.1.
(1) B is a dense unital ∗-subalgebra of B,
(2) δ(B) ⊂ B ⊗alg A ,
(3) δalg = δ|B is a coaction of the Hopf ∗-algebra A on the ∗-algebra B, in

particular
(id ⊗ ε)δ(b) = b

(ε is the counit of A ) for all b ∈ B, so that ker δ ∩ B = {0}.

We call the algebra B the Podleś subalgebra of B and the comodule algebra

δalg : B −→ B ⊗ A

the algebraic core of the action δ.
In the chapter from an upcoming book [1], P. Baum, P. M. Hajac, R.

Matthes and W. Szymanski introduce a different ∗-subalgebra of B:

B̃ =
{
b ∈ B|δ(b) ∈ B ⊗alg A

}
([1, Eq. (3.1.4)]). This space is essential in the study of the Peter–Weyl functor
(see [1]).

It is fairly obvious that B ⊂ B̃. Our aim is to describe the link between
B and B̃.

Proposition 2.2.
(1) For any b ∈ B̃ we have δ(b) ∈ B ⊗alg A ,
(2) B̃ = B ⊕ ker δ.
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Proof. Ad (1). Using the basis (2.1), we can write the element δ(b) ∈
B ⊗alg A in the form

δ(b) =
∑
α∈S

Nα∑
i,j=1

bα
i,j ⊗ uα

i,j ,

where S is a finite subset of R. Since (δ ⊗ id) ◦ δ = (id ⊗ Δ) ◦ δ, we have

(2.2)
∑
α∈S

Nα∑
i,j=1

δ
(
bα
i,j

)
⊗ uα

i,j =
∑
α∈S

Nα∑
i,j,s=1

bα
i,j ⊗ uα

i,s ⊗ uα
s,j .

Applying (id ⊗ id ⊗ φβ
k,l) to both sides of (2.2) gives

(2.3) δ
(
bβ
k,l

)
=

Nβ∑
i=1

bβ
i,l ⊗ uβ

i,k

and it follows that E(bβ
k,l) = bβ

k,l, so that bβ
k,l ∈ Wβ . This means that δ(b) ∈

B ⊗alg A .
Ad (2). Take b ∈ B̃ and write

δ(b) =
∑
α∈S

Nα∑
i,j=1

bα
i,j ⊗ uα

i,j ,

as in the proof of Statement (1). Let

b′ =
∑
α∈S

Nα∑
i=1

bα
i,i.

By (2.3)

δ
(
b′) =

∑
α∈S

Nα∑
i=1

Nα∑
k=1

bα
k,i ⊗ uα

k,i.

It follows that δ(b) = δ(b′), so that b − b′ ∈ ker δ. Moreover, by Statement (1),
we have b′ ∈ B. �

It is desirable in some applications that B̃ = B. Section 3 is devoted to
possible ways of obtaining this equality.

Let us end this section with the following remark.

Remark 2.3. We know that given an action δ ∈ Mor(B,B ⊗ A) as defined
in Section 1.2 the algebra B̃ = δ−1(B ⊗alg A ) is dense in B. Assume that G

has a continuous counit and consider a map θ ∈ Mor(B,B ⊗ A) satisfying only
(θ ⊗ id) ◦ θ = (id ⊗ Δ) ◦ θ. If θ−1(B ⊗alg A ) is dense in B then the condition

(id ⊗ ε) ◦ θ = id



ON ACTIONS OF COMPACT QUANTUM GROUPS 957

implies that the linear span of {θ(b)(1 ⊗ a)|a ∈ A,b ∈ B} is dense in B ⊗ A.
Indeed, take c ∈ θ−1(B ⊗alg A ) and a ∈ A . Let S be the antipode of A .
Then the element (

(id ⊗ S)δ(c)
)
(1 ⊗ a) ∈ B ⊗alg A

and applying to it the map Φ : B ⊗alg A 
 (x ⊗ y) �→ δ(x)(1 ⊗ y) ∈ B ⊗ A we
get Φ(X) = c ⊗ a. It follows that the range of Φ is dense in B ⊗ A. Note that
if B is generated by elements of some set S ⊂ B then it is enough to check
that θ(s) ∈ B ⊗alg A for all s ∈ S to ensure that θ−1(B ⊗alg A ) is dense in B.

3. Universal and reduced action. Minimal reduction

Given the action δ ∈ Mor(B,B ⊗ A) one can perform certain operations on
B which are know as passage to the universal of full action and reduction of
the action respectively. These have been known for quite some time (cf. e.g.,
[3, Section 1]). A very good descriptions of both operations can be found in
[5, Section 3].

We have the following theorem.

Theorem 3.1 ([5, Proposition 3.3]).

(1) The ∗-algebra B admits the universal enveloping C∗-algebra Bu;
(2) the natural extension of δalg to a map δu ∈ Mor(Bu,Bu ⊗ A) is an action

of G on Bu;
(3) the canonical morphism πu ∈ Mor(Bu,B) is G-equivariant, that is, the

diagram

Bu
δu ��

πu

��

Bu ⊗ A

πu⊗id

��
B

δ
�� B ⊗ A

is commutative;
(4) the Podleś algebra of δu is B ⊂ Bu and the algebraic part of δu can be

canonically identified with δalg.

Let s remark that the passage to the action δu we do not get rid of the
kernel of the original action δ. Indeed if we take G = Gu in the example in
Section 4, then the constructed action is universal, but has a nonzero kernel.
On the other hand, the procedure of reduction described in the next theorem
leads to an injective action.

Theorem 3.2 ([5, Proposition 3.4]). There exists a unital C∗-algebra Br

and a surjective ∗-homomorphism πr ∈ Mor(B,Br) such that
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(1) there exists a unique δr ∈ Mor(Br,Br ⊗ A) such that

(3.1) B
δ ��

πr

��

B ⊗ A

πr⊗id

��
Br

δr
�� B ⊗ A

and δr is an action of G on Br,
(2) ker δr = {0},
(3) πr is injective on B,
(4) the Podleś algebra Br of δr is equal to πr(B),
(5) the algebraic part of δr is can be canonically identified with δalg.

The procedure of reduction is therefore one way to ensure the equality
B̃ = B. However, it can easily happen that for injective δ (so in a case when
we already have B̃ = B) the procedure of reduction changes B which is not
necessary. Indeed, suppose G is not reduced ad has a continuous counit. If
we take B = A and δ = Δ, then we have Br = Ar ([5, Example 3.6(3)]) which
is a proper quotient of B, while the action δ is injective by Remark 1.1(1).

Below we address the procedure of minimal reduction. Let rB = B/ker δ
and let p : B → rB be the quotient map. The ∗-homomorphism δ : B → B ⊗ A
is a composition

B
δ ��

p
���

��
��

��
� B ⊗ A

rB

i

�����������

with i injective. Define rδ = (p ⊗ id) ◦ i.

Theorem 3.3.
(1) rδ is an action of G on rB and the morphism p ∈ Mor(B, rB) is equivari-

ant,
(2) p is injective on B and the algebraic part of rδ can be canonically identified

with δalg,
(3) if kerΔ = {0} then ker rδ = {0}.

Proof. Ad (1). Take b ∈ B

(rδ ⊗ id)rδ
(
p(b)

)
= (p ⊗ id ⊗ id)(i ⊗ id)(p ⊗ id)i

(
p(b)

)
= (p ⊗ id ⊗ id)(δ ⊗ id)δ(b)
= (p ⊗ id ⊗ id)(id ⊗ Δ)δ(b)
= (p ⊗ id ⊗ id)(id ⊗ Δ)i

(
p(b)

)
= (id ⊗ Δ)(p ⊗ id)i

(
p(b)

)
= (id ⊗ Δ)rδ

(
p(b)

)
.
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Therefore, we have (rδ ⊗ id) ◦ rδ = (id ⊗ Δ) ◦ rδ.
Now since

span
{

rδ(x)(1 ⊗ a)|a ∈ A,x ∈ rB
}

= span
{(

(p ⊗ id)i(x)
)
(1 ⊗ a)|a ∈ A,x ∈ rB

}
= span

{
(p ⊗ id)

(
i(x)(1 ⊗ a)

)
|a ∈ A,x ∈ rB

}
= span

{
(p ⊗ id)

[
i
(
p(b)

)
(1 ⊗ a)

]
|a ∈ A,b ∈ B

}
= span

{
(p ⊗ id)

(
δ(b)(1 ⊗ a)

)
|a ∈ A,b ∈ B

}
= (p ⊗ id)

(
span

{
δ(b)(1 ⊗ a)|a ∈ A,b ∈ B

})
which is dense in rB ⊗ A because (p ⊗ id) is surjective. This establishes that
rδ is an action of G on rB.

We have the commutative diagram:

(3.2) B

p

��

δ �� B ⊗ A

p⊗id

��
rB

i

���������������
rδ

��
rB ⊗ A

(the lower triangle is the definition of rδ) which shows that p is equivariant.
Ad (2). Since B ∩ ker δ = {0} we have kerp|B = {0}. The second assertion

follows from the diagram (3.2).
Ad (3). Let us first note that kerp = ker δ implies that ker(p ⊗ id) = ker(δ ⊗

id). To see this note that (δ ⊗ id) = (i ⊗ id)(p ⊗ id) and (i ⊗ id) is injective
([12, Proposition 4.22]).

ker rδ =
{
x ∈ rB|(p ⊗ id)i(x) = 0

}
=

{
p(b)|b ∈ B, (p ⊗ id)i

(
p(b)

)
= 0

}
=

{
p(b)|b ∈ B, (p ⊗ id)δ(b) = 0

}
=

{
p(b)|b ∈ B,δ(b) ∈ ker (p ⊗ id)

}
=

{
p(b)|b ∈ B,δ(b) ∈ ker (δ ⊗ id)

}
=

{
p(b)|b ∈ B, (δ ⊗ id)δ(b) = 0

}
=

{
p(b)|b ∈ B, (id ⊗ Δ)δ(b) = 0

}
=

{
p(b)|b ∈ B,δ(b) = 0

}
= {0}. �

We now see that if kerΔ = {0} then the minimal reduction is the most
economical way to obtain equality B̃ = B.

There are no known examples of compact quantum groups with non-
injective coproduct and we could venture a conjecture that such examples
do not exist. It is known that the coproduct of reduced and universal quan-
tum groups is always injective.
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Remark 3.4.

(1) There is a canonical surjective morphism γ : rB → Br. Indeed, if b ∈ ker δ
then δr(πr(b)) = 0 (by (3.1)). Now since ker δr = {0}, we have that b ∈
kerπr. In other words, ker δ ⊂ kerπr. Moreover, γ is equivariant because
it is an isomorphism of the algebraic parts of rδ and δr. Also γ ◦ p = πr.

(2) If kerΔ �= {0}, then one can consider the algebra rA = A/kerΔ. It is
easy to see that we obtain a comultiplication rΔ ∈ Mor(rA, rA ⊗ rA) and
that rG = (rA, rΔ) is a compact quantum group whose quotient is Gr.
However, it is not clear if ker rΔ is different from {0}.

4. Lifts, and restrictions of actions. Construction of
non-injective actions

The reduced version Gr of G is a quantum subgroup of G in the sense that
the reduction map λ ∈ Mor(A,Ar) intertwined the comultiplications: Δr ◦ λ =
(λ ⊗ λ) ◦ Δ. Clearly an action δ ∈ Mor(B,B ⊗ A) can always be restricted to
a quantum subgroup and thus, in particular, we obtain the restriction of δ
to δr = (id ⊗ λ) ◦ δ ∈ Mor(B,B ⊗ Ar) which is an action of Gr on B. The
algebraic core of δr can be identified with that of δ.

One of the consequences of this fact is that without changing the algebraic
core one can always ensure that a given action δ ∈ Mor(B,B ⊗ A) is trans-
formed into an action of Gr whose coproduct is injective, while the algebraic
core remains the same.

Another question which one might ask is whether a given action of G admits
a lift to an action of Gu. In other words if δ ∈ Mor(B,B ⊗ A) is an action, is
there an action δu ∈ Mor(B,B ⊗ Au) of Gu on B such that the diagram

B ⊗ Au

id⊗Λ

��
B

δu

���������������
δ

�� B ⊗ A

is commutative. It was shown in [4, Theorem 4.7] that if G is reduced then
any continuous action of G with trivial kernel admits a lift.

Proposition 4.1. Assume that G = (A,Δ) is not reduced. Put B = A and
let δ = (id ⊗ λ) ◦ Δ. Then δ ∈ Mor(B,B ⊗ Ar) is an action of Gr on B and
ker δ = kerλ. In particular δ is not injective.

Proof. Let π be the composition Au
Λ ��A

λ ��Ar . It is easy to see that
the universal lift of the (injective) action of Gr on itself given by Δr can be
performed just as well “on the left leg”. We obtain a map which we will call
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δu (just as in the discussion preceding our proposition) for which the diagram

Au ⊗ Ar

π⊗id

��
Ar

δu
����������������

Δr

�� Ar ⊗ Ar

is commutative.
We then have the following commutative diagram

A

λ

��

Δ ��

δ
���������������� A ⊗ A

id⊗λ

��
A ⊗ Ar

λ⊗id

��
Ar

δ̃

���������������
Δr

�� Ar ⊗ Ar

where δ̃ = (Λ ⊗ id) ◦ δu.
Assume now that x ∈ kerλ. Then δ(x) = δ̃(λ(x)) = 0, which shows that

kerλ ⊂ ker δ. On the other hand, if δ(x) = 0 then

(λ ⊗ λ)Δ(x) = (λ ⊗ id)δ(x) = 0.

Since (λ ⊗ λ) ◦ Δ = Δr ◦ λ and Δr is injective, we see that λ(x) = 0, i.e. we
have ker δ ⊂ kerλ. �

Let us end with a remark that if G is not co-amenable (i.e., the canonical
map Au → Ar is not an isomorphism, cf. [2]) then Proposition 4.1 gives an
example of a non-injective action of Gr which admits a lift to an action of Gu:
we take G = Gu and let B = Au and δ = (id ⊗ λ) ◦ Δu. Then by the proposition
ker δ = kerλ �= {0} and the lift is provided by δu = Δu : B → B ⊗ Au. This
shows that injectivity of the action is not necessary for existence of a lift to
the universal level.
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