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COMPUTATION OF THE KERNELS OF LÉVY
FUNCTIONALS AND APPLICATIONS

HORST OSSWALD

Dedicated to Martin Wirsing

Abstract. An effective computation of the kernels of the chaos
decomposition of Lévy functionals is used, to prove, among other

things, a chain- and product-rule of the Malliavin derivative for

a large class of Lévy processes. In case of finite and infinite-
dimensional Brownian motion, the well-known rules are obtained,

but for Poisson processes, the results are new. The kernels of a

Lévy functional can be computed by taking the expected value

of the product of this functional and multiple white noise of the
Lévy process.

1. Introduction

Chaotic representations of Lévy functionals often serve as basis for the
Malliavin calculus for Lévy processes. We refer to the articles [9], [16], [22],
[23], [24] and [27] for infinite dimensional Brownian motion, and to [5], [10],
[16], [17], [21] and [23] for finite dimensional Lévy processes. Lévy functionals
are square integrable random variables and are uniquely determined by a
sequence (fn)n∈N0 of deterministic functions, where the domain of fn is the
continuous time line [0, r]n, r ∈ R+ or [0, ∞[n.

An effective recipe for the computation of the kernels is used to prove,
among other things, a chain- and product-rule of the Malliavin derivative
for a large class Lévy processes. In case of finite and infinite-dimensional
Brownian motion, the well-known rules are obtained (see Nualart [16]), but
for Poisson processes the results and, in any case, the method are new. As
far as I know, this recipe has never been used before to prove these rules.

Received January 8, 2010; received in final form February 11, 2011.
2010 Mathematics Subject Classification. Primary 60H05, 60G51, 60H40. Secondary

60J65.

815

c©2013 University of Illinois

http://www.ams.org/msc/


816 H. OSSWALD

This recipe can be found in [19] and is an extension of a result, due to
Cutland and Ng [4], for finite-dimensional Brownian motion to more general
Lévy processes. N. Wiener [26] was the first to develop chaotic representations
of Brownian functionals. He used them to obtain better models for telecom-
munications under Brownian noise (see P. R. Masani [15]). The domain of a
Brownian functional ϕ is the Wiener space CR of real continuous functions
on the continuous time line, endowed with the Wiener measure. Cutland and
Ng [4] have pointed out, that it was the intention of Wiener, to think of the
kernels fn of ϕ as being given by

(1) fn(t1, . . . , tn) = E(ϕḃt1 · · · ḃtn),

where ḃt is the derivative of the Brownian motion b at time t. However, ḃt

only exists in the sense of Schwartz distributions (see Walter [25]).
Instead of taking generalized functions, Cutland and Ng [4] use an extension

of the notion “finite” in a countably saturated model M of mathematics.
We refer to the book of S. Albeverio, J. E. Fenstad, R. Høegh-Krohn, T.
Lindstrøm [1] for details. Without any loss of generality, Cutland and Ng
replace the Wiener space with a ∗finite (finite in M) dimensional Euclidean
space Ω. The Wiener measure on CR is replaced with the Loeb measure [13]
over the centered Gaußian measure on Ω of infinitely small variance. The
continuous time line is replaced with a ∗finite time line and the Brownian
motion b with a ∗smooth Brownian motion. Cutland and Ng now showed
that, using these new entities, Equation (1) becomes a mathematically exact
statement.

The literature is full of nice applications of finitization of topics in stochastic
analysis. The pioneers are Loeb [13], Anderson [2], Keisler [8], Lindstrøm [11],
Hoover and Perkins [7], . . . .

In our paper finitization is used, to compute the kernels for quite general
Lévy functionals, in particular for the product of two Lévy functionals, in
order to obtain the product- and chain-rule in standard terms. Infinite di-
mensional Brownian motion in the context of abstract Wiener spaces (see
Gross [6]) and Poisson processes are included, and, of course, finite dimen-
sional Brownian motion.

An abstract Wiener space is a pair (H,B), where B is a real Banach space
and H is a densely embedded separable Hilbert space. In case of a B-valued
Brownian motion, the range of the kernel fn of a Brownian functional is the
n-fold tensor product of H.

If L is a one dimensional Lévy process, then the range of the kernel fn of
an L-functional is a suitable subspace of RNL , where NL ⊆ N (see [19]). In
case of one dimensional Brownian motion or for Poisson processes NL = {1},
for symmetrized Poisson processes NL = {1,2} (see [19]). In [19], there are
also examples, where NL = N.
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The computation of the kernels is simple and intuitive. It will be seen
that it is also effective. However, its application is rather technical, although,
one should better say, because it is constructive. For example, in order to
compute the kernels of the product ϕ · ψ of two Lévy functionals ϕ and ψ,
quite complicated finite combinatorics is used. Therefore, for the reader’s
convenience, we describe the ideas in the much simpler case of, even infi-
nite dimensional, Brownian motion, before going to more general Lévy pro-
cesses.

Added to proof : In the meantime versions of the results in this article and
the theories behind can be found in an introduction to Malliavin calculus
([20]).

2. The main results

First, we present the product- and chain-rules for finite dimensional Lévy
processes. Based on Lindstrøm’s article [12], it is shown in [19] that each
Lévy process L lives on a fixed ∗finite dimensional sample space Ω; Ω only
depends on the dimension of L. The probability measure μ̂ = μ̂L on Ω charac-
terizes the process L. For simplicity, we study only one-dimensional processes
L : [0, ∞[ × Ω → R, except for infinite-dimensional Brownian motion, where
R is replaced by any separable Banach space. We assume that L is locally
square integrable and equivalent to a process with limited increments. Brow-
nian motion, Poisson processes and many other important Lévy processes (see
[19]) meet this demand. It is also fulfilled for truncated Lévy processes.

We take the σ-algebra D := DL on Ω, generated by the Wiener–Lévy in-
tegrals, associated to L. Also determined by L, there exists an initial subset
NL of N and a sequence (pk)k∈NL

of real orthogonal polynomials.
Each square integrable DL-measurable random variable ϕ can be expanded

to an orthogonal series
∑∞

n=0 In(fn) of multiple integrals In(fn), the so called
chaotic representation of ϕ. The kernels fn of ϕ, which are uniquely de-
termined by ϕ, are deterministic square summable real functions, defined
on Nn

L × [0, ∞[n, that is,
∑

k∈Nn
L

∫
[0,∞[n

f2
n(k, ·)dλn < ∞, where λn is the

Lebesgue measure on [0, ∞[n. Moreover, the kernels fn are symmetric, that
is, for all permutations σ on {1, . . . , n},

fn(k1, . . . , kn, r1, . . . , rn) = fn(kσ1 , . . . , kσn , rσ1 , . . . , rσn).

Using the shorthand k = (k1, . . . , kn), r = (r1, . . . , rn), the integrals In(fn) have
the following form (for details, see [19]):

In(fn) =
∑

k∈Nn
L

∫
[0,∞[n≤

fn(k, r)dMk1(r1, ·) · · · dMkn(rn, ·),

where (Mk)k∈NL
is a bunch of real square-integrable martingales Mk. In-

tuitively, the increment ΔMk(r, ·) of Mk at r ∈ [0, ∞[ is the polynomial pk
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applied to the increment ΔL(r, ·) of L at r. It should be mentioned that for
all k ∈ NL, the Doleans-measure of Mk is the Lebesgue measure.

Each ϕ ∈ L2
D(μ̂) has the decomposition ϕ =

∑∞
n=0 In(fn) ([19]). The Malli-

avin derivative D is a densely defined operator from the space L2
D(μ̂) into the

space L2(c ⊗ λ ⊗ μ̂) of real square summable stochastic processes, defined on
NL × [0, ∞[ × Ω (see [19]) by

(Dϕ)l,r(X) = Dϕ(l, r,X) =
∑
n∈N

In−1

(
fn(·, l, ·, r)

)
(X),

if this series converges in L2(c ⊗ λ ⊗ μ̂). Then ϕ is called Malliavin differen-
tiable. For each S ∈ N, define

ϕS := ϕ � S :=
∑

n∈N0

In(fn � S),

where (fn � S)(k, r) := fn(k, r) if n ≤ S, |fn(k, r)| ≤ S, k ∈ {1, . . . , S}n and
r ≤ S. Otherwise, (fn � S)(k, r) := 0. If ϕ = ϕS or f = f � S, then we say that
ϕ,f , respectively, are bounded by S.

Bounded ϕ ∈ L2
D(μ̂) are Malliavin differentiable. Fix ϕ ∈ L2

D(μ̂). Since In

is a bounded operator, limS→∞ ϕS = ϕ in L2
D(μ̂), and, if ϕ is Malliavin differ-

entiable, then limS→∞ DϕS = Dϕ in L2(c ⊗ λ ⊗ μ̂). Here are the main results,
where we use constants α(κ, κ̃, l) ∈ R depending on κ, κ̃, l ∈ NL. Intuitively,

α(κ, κ̃, l) =
∫

[0,∞[×Ω

ΔMκ
s · ΔM κ̃

s · ΔM l
s dλ ⊗ μ̂(s,X).

The precise definition of α(κ, κ̃, l) will be given in Equation (2).

Theorem 2.1 (Product rule). Let NL be finite. Fix Malliavin differentiable
ϕ,ψ ∈ L2

D(μ̂) such that (Eμ̂(ϕS · ψS))S∈N converges in R.

(A) Suppose that the sequences (DϕS · ψS)S∈N, (ϕS · DψS)S∈N converge in
L2(c ⊗ λ ⊗ μ̂). Then (D(ϕS · ψS))S∈N converges in L2(c ⊗ λ ⊗ μ̂) iff
((l, r,X) �→

∑
κ,κ̃∈NL

α(κ, κ̃, l) · (DϕS)κ,r(X) · (DψS)κ̃,r(X))S∈N converges
in L2(c ⊗ λ ⊗ μ̂), in which case ϕ · ψ is Malliavin differentiable and(

D(ϕ · ψ)
)
(l,r)

= (Dϕ)(l,r) · ψ + ϕ · (Dψ)(l,r)

+
∑

κ,κ̃∈NL

α(κ, κ̃, l) · (Dϕ)κ,r · (Dψ)κ̃,r

in L2(c ⊗ λ ⊗ μ̂). In case, NL = {1}, we have for α = α(1,1,1)(
D(ϕ · ψ)

)
r
=

(ϕ + α · (Dϕ)r) · (ψ + α · (Dψ)r) − ϕ · ψ

α
, if α 	= 0,

in L2(λ ⊗ μ̂). If α = 0, then (D(ϕ · ψ))r = (Dϕ)r · ψ + ϕ · (Dψ)r.
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(B) Suppose that (D(ϕS · ψS))S∈N converges in L2(c ⊗ λ ⊗ μ̂). Then ϕ · ψ is
Malliavin differentiable and for all l ∈ NL we have λ ⊗ μ̂-a.e.(

D(ϕ · ψ)
)
l,r

= (Dϕ)l,r · ψ + ϕ · (Dψ)l,r +
∑

κ,κ̃∈NL

α(κ, κ̃, l) · (Dϕ)κ,r · (Dψ)κ̃,r.

If L is the Brownian motion, then NL = {1} and α = 0. For the Poisson
process with rate β we have NL = {1} and α = 1√

β
. In case of symmetrized

Poisson processes, we have NL = {1,2} (see [19]).

Theorem 2.2 (Chain rule). Suppose that NL = {1}. Fix g : Rn → R and
Malliavin differentiable ϕ1, . . . , ϕn. Assume that the partial derivatives of g
exist and that there are polynomials qj in n variables with lim qj = g and
lim∂iqj = ∂ig for i = 1, . . . , n.
(A) Fix S ∈ N. Suppose that (D(qj(ϕ1,S , . . . , ϕn,S)))j∈N converges in L2(λ ⊗

μ̂) and (Eμ̂(qj(ϕ1,S , . . . , ϕn,S)))j∈N converges in R.
Then g(ϕ1,S , . . . , ϕn,S) is Malliavin differentiable and λ ⊗ μ̂-a.e.,(

D
(
g(ϕ1,S , . . . , ϕn,S)

))
r

=
1
α

(
g
(
ϕ1,S + α · (Dϕ1,S)r, . . . , ϕn,S + α · (Dϕn,S)r

)
− g(ϕ1,S , . . . , ϕn,S)

)
,

where this fraction is equal to
∑n

i=1(∂ig)(ϕ1,S , . . . , ϕn,S) · (Dϕi,S)r, if
α = 0.

(B) Assume that (A) is true for all S ∈ N, and g and ∂ig are continuous.
Moreover, let (D(g(ϕ1,S , . . . , ϕn,S)))S∈N, Eμ̂(g(ϕ1,S , . . . , ϕn,S))S∈N con-
verge in L2(λ ⊗ μ̂), in R, respectively. Then g(ϕ1, . . . , ϕn) is Malliavin
differentiable and we have λ ⊗ μ̂-a.e.(

D
(
g(ϕ1, . . . , ϕn)

))
r

=
g(ϕ1 + α · (Dϕ1)r, . . . , ϕn + α · (Dϕn)r) − g(ϕ1, . . . , ϕn)

α
,

where this fraction is equal to
∑n

i=1(∂ig)(ϕ1, . . . , ϕn) · (Dϕi)r, if α = 0.

In the terminology of Nualart and Schoutens [17], the densely defined op-
erator D(·)l from L2

D(μ̂) into L2
D(λ ⊗ μ̂) is called the partial derivative for

l ∈ NL.
In the work of G. Di Nunno, Th. Meyer-Brandis, B. Øksendal, F. Proske

[5] on pure jump processes, the product rule has the form(
D(ϕ · ψ)

)
l
= (Dϕ)l · ψ + ϕ · (Dψ)l + D(ϕ)l · D(ψ)l.

In case of the chain rule, they prove a corresponding formula via Wick product
similar to the formula above for α = 0. Moreover, in that work and also in the
work of J. L. Solé, F. Utzet, J. Vives [21] the set R × [0, ∞[ × Ω is the domain
of the Malliavin derivative Dϕ of a Lévy functional ϕ, where the measure on
R depends on the Lévy process.
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In our approach Dϕ is defined on NL × [0, ∞[ × Ω, the measure on NL ×
[0, ∞[ is the product of the counting measure on NL and Lebesgue measure
on [0, ∞[. Later on, we briefly refer to the work of Nualart and Schoutens
[17]. They take the power jump processes of a Lévy process to prove a chaos
representation result for Lévy functionals. J. A. Léon, J. L. Solé, F. Utzet,
J. Vives [10] use their approach to define the directional Malliavin derivative
and the directional Skorohod integral.

3. Preliminaries

To keep this paper self-contained to a large extent, we recall some relevant
notions in [19]. We are working in a countably saturated model M of math-
ematics, where we have a strict extension ∗A of each infinite standard set A.
However, we can work in M as it is common practice in mathematics. For
example, the extensions ∗R, ∗+, ∗ ·, ∗< of R,+, ·,< together with 0,1 build an
ordered field.

It should be mentioned that not each subset of ∗A is a set in M. The
internal subsets of ∗A (internal in M) include the finite subsets and have nice
closure properties: each subset of ∗A, which can be defined by using only
internal objects, is again internal. For details and for undefined notations in
this article, consult the book of S. Albeverio, J. E. Fenstad, R. Høegh Krohn,
T. Lindstrøm [1] or the book of P. Loeb and M. Wolff [14]. Recall that a ∈ ∗R

is called limited, if |a| < n for some n ∈ N. For limited a there exists a uniquely
determined standard number, denoted by ◦a, which is infinitely close to a,
that is, the difference of a and ◦a is smaller than any positive standard real
number.

Fix an unlimited H ∈ ∗N such that, for technical reasons, each n ∈ N divides
H and for t ≤ H let Tt := { i

H | i ∈ ∗N, i
H ≤ t}. Set T := TH . On Tn

t , n ∈ N,
we take the counting measure νn with

νn
t (A) :=

|A|
Hn

for all internal subsets A ⊆ Tn
t , where |A| denotes the internal number of

elements of Tn
t . Let (Tn

t ,Lνn
t
, ν̂n

t ) denote the Loeb space over (Tn
t , νn

t ). It is a
nonfinite measure space iff t is unlimited. However, the set of all (t1, . . . , tn) ∈
Tn

t such that all the ith components ti for some i ∈ {1, . . . , n} are unlimited
is a ν̂n

t -nullset. For unlimited t the set Tt can be seen as an infinitely fine
partition of [0, ∞[. However, Tt is finite in the sense of M, |Tt| = t · H . Set

Tn
< :=

{
t ∈ Tn | t1 < · · · < tn

}
, Tn

�= :=
{
t ∈ Tn | ti 	= tj for i 	= j

}
.

It is known that the standard part map st : (t1, . . . , tn) �→ (◦t1, . . . ,
◦tn) is

ν̂n-a.s. well defined and a measure preserving map from Tn onto [0, ∞[n,
where [0, ∞[n is endowed with the Lebesgue measure λn. Let Ln ⊆ Lνn be the
σ-algebra, generated by the standard part map, augmented by the ν̂n-nullsets,
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and let for p ∈ [0, ∞] Lp
Ln(ν̂n) be the space of Ln-measurable functions in

Lp(ν̂n). Then the Lp-spaces Lp(λn) and Lp
Ln(ν̂n) can be identified, because

ι : Lp
(
λn

)
→ Lp

Ln

(
ν̂n

)
, ι(ϕ)(t1, . . . , tn) := ϕ

(◦t1, . . . ,
◦tn

)
defines a canonical, that is, basis independent, isometric isomorphism be-
tween both Lp-spaces. It is more comfortable to work with Lp

Ln(ν̂n) than
with Lp(λn), because ν̂n is closely linked to the counting measure νn in the
following sense: fix r ∈ N and B ∈ Lνn

r
. Then there exists an internal A ⊆ Tn

r

such that the symmetric difference of A and B is a ν̂n
r -nullset. It follows that

ν̂n
r (B) ≈ νn

r (A). It should be mentioned that the full Loeb σ-algebra Lνn is
much larger than Ln.

Let (Λ, C, ρ) be a measure space, let g, defined on Tn × Λ, be Ln ⊗ C-
measurable and let f , defined on [0, ∞[n × Λ, be Leb ⊗ C-measurable. Then
f and g are called equivalent, if g(t1, . . . , tn, x) = f(◦t1, . . . ,

◦tn, x) for ν̂n ⊗ ρ-
almost all (t1, . . . , tn, x). Equivalent functions can be identified.

Using the work of Lindstrøm’s [12], it is shown in [19] that all (for simplicity
one-dimensional) Lévy processes are determined by internal Borel probability
measures μ1 on ∗R. Let μ be the H2-fold product of μ1 on Ω := ∗RT . Let
(Ω,Lμ(B), μ̂) denote the Loeb space over (Ω, B, μ), where B is the internal
Borel algebra on the H2-dimensional Euclidean space Ω. On B we take the
canonical filtration (Bt)t∈T , i.e., Bt is unable to distinguish X from Y in Ω if
Xs = Ys for all s ≤ t. Often we use the filtration (Bt− )t∈T with t− := t − 1

H ,
where B0 := {Ω, ∅}. The conditional expectation with respect to Bt is denoted
by EBt .

We assume that the Lévy processes, determined by μ1, are equivalent to
processes with bounded increments. This condition is true for Brownian mo-
tion, Poisson processes and many other important Lévy processes. In [19],
the reader can find the details and some examples.

While Nualart and Schoutens [17] orthonormalize the full power jump pro-
cess of the Lévy process, in [19] we have orthonormalized the increments and
obtain internal sequences (pk)k∈NL ∪{0} of orthogonal polynomials pk in the
internal space L2(μ1) with p0 = 1 and Eμ1p2

k = 1
H for k ≥ 1. It is assumed

that NL is an initial segment of N, depending on the Lévy process L. In [19],
we have written N◦L instead of NL. The following terms are crucial: set for
l, κ, κ̃ ∈ NL

(2) σ(κ, κ̃, l) := HEμ1pκ · pκ̃ · pl and α(κ, κ̃, l) := ◦σ(κ, κ̃, l).

A slight modification (see [19]) of the Loeb–Anderson lifting theorem (see [2],
[13]) is used: There exists a ∗finite extension ML of NL such that any measur-
able f : Nm

L × [0, ∞[n × Ω → R has a lifting F : Mm
L × Tn × Ω → ∗R, i.e., Fk(t, ·)

is B-measurable and Fk(t,X) ≈ fk(◦t,X) for all k ∈ Nm
L and ν̂n ⊗ μ-almost all

(t,X). Then we call f the standard part of F , denoted by ◦F . The function
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F is called S-square summable if ◦ ∑
k∈Mm

L
‖Fk ‖2

νn ⊗μ =
∑

k∈Nm
L

‖ ◦Fk ‖2
λn ⊗μ̂, in

which case we write F ∈ SL2(cm ⊗ νn ⊗ μ). If m = 0, then F is called S-square
integrable.

4. Infinite-dimensional Brownian motion

In the case of finite dimensional Brownian motion, NL = {1} and α =
α(1,1,1) = 0. Therefore, the rules for Brownian motion are much simpler
than they are for more general Lévy processes, even in the infinite-dimensional
case. For the reader’s convenience, we first give priority to the computation of
the kernels in the chaos decomposition of Gaußian functionals in the infinite
dimensional case.

Fix an infinite dimensional separable Hilbert space H. The n-fold ten-
sor product H⊗n of H is the Hilbert-space of continuous multilinear maps
f : Hn → R with

∑
i1,...,in ∈N f2(bi1 , . . . ,bi1) < ∞, where (bi)i∈N is an orthonor-

mal basis of H. For n = 1 H⊗1 is the topological dual space H′ = H of H. Set
H⊗0 := R. The scalar product on H⊗n is denoted by 〈f, g〉 and the norm by

‖ · ‖. In [18], there is a ∗finite-dimensional representation F of H. This means
the following.

There is a finite-dimensional (in the sense of M) linear space F and an
embedding ∗ from H⊗n into F⊗n such that for all f, g ∈ H⊗n ,

〈f, g〉 ≈
∑

i1,...,in ≤ω

∗f · ∗g(ei1 , . . . , ei1) =:
〈∗f, ∗g

〉
,

where E := (ei)i∈ω is an internal orthonormal basis of F. The norm on F⊗n

is also denoted by ‖ · ‖. Set F⊗0 := ∗R. If f ∈ H⊗n and F ∈ F⊗n , then we
define f ≈Fn F ⇔ ‖∗f − F ‖ ≈ 0, in which case we call f the standard part of
F , denoted by ◦F . Note that ‖ ∗f − F ‖2 =

∑
i∈ωn(∗f − F )2(ei1 , . . . , ein).

Set Ω := FT , that is, we now replace ∗R in Section 3 by the ω-dimensional
F and R by H. Then Ω is an H2 · ω-dimensional Euclidean space. Let γ1 :=
γ1

1
H

be the centered Gaußian measure on ∗R of variance 1
H . This measure

was introduced by Cutland [3]; the density is infinitely close to the Dirac
δ-function, but a smooth function.

The internal probability measure γ on the internal Borel algebra B of Ω is
the H2 · ω-fold product of γ1. With the shorthand xs,i := 〈Xs, ei〉 we have for
all B ∈ B,

γ(B) := γ
(
BE

)
:=

∫
BE

e− H
2

∑
s∈T,i∈ω x2

s,i d(xs,i)s∈T,i∈ω ·
√

H

2π

H2·ω

,

where BE := {(xs,i)s∈T,i≤ω | (
∑ω

i=1 xs,i · ei)s∈T ∈ B}. Note that γ(B) does not
depend on the orthonormal basis of F.

Let B be an abstract Wiener space over H. Then B is the Banach space
completion of H with respect to a Gross measurale norm | · | on H, which
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means in nonstandard terms: for all internal subspaces E ⊆ F with E ⊥ ∗a for
all a ∈ H,

γ̂1

{
x ∈ E | |x| 	≈ 0

}
= 0,

where γ̂1 is the Loeb measure over the internal Gaußian measure of variance
1 on E. The dual space B′ of B is a dense subspace of H′ = H in the original
norm on H. It is well known that each separable Banach space appears as an
abstract Wiener space (see Kuo [9]).

It follows from [18] that there exists a continuous Brownian motion bB : Ω ×
[0, ∞[ → B for any abstract Wiener space B over H, defined by

(3) bB

(
X, ◦t

)
= ◦B(X, t) with B(X, t) :=

∑
s≤t

Xs =
∑

s≤t,i≤ω

〈Xs, ei〉ei

for γ̂-almost all X ∈ Ω and all limited t ∈ T , where B(X, t) ∈ F is fixed and
◦B(X, t) is the standard part of B(X, t) in the topology of B. Note that B is
an internal discrete Brownian motion.

The probability space Ω is very rich, although it is finite dimensional: Ω
only depends on H and not on the many quite different abstract Wiener
spaces over H. Moreover, it is shown in [18] that the standard part map
κB : X �→ bB(X, ·) is a surjective measurable mapping from Ω onto the space
CB of continuous functions from [0, ∞[ into B. This is true for any abstract
Wiener space B over the fixed H. The image measure WB of γ̂ by κB is called
the Wiener measure on the Borel-algbra on CB. Let W ⊆ Lγ(B) be the σ-
algebra, generated by bB, augmented by the γ̂-nullsets. Again, W does not
depend on B, only on H. In analogy to the case of Lp

Ln(ν̂n) and Lp(λn) we
can identify the “nonstandard space” Lp

W (γ̂) with the standard space Lp(WB).
Each ϕ ∈ Lp

W (γ̂) can be identified with ψ ∈ Lp(WB) if ϕ(X) = ψ(bB(X, ·)). It
is easier to work with Lp

W (γ̂) than with Lp(WB), because γ̂ is closely linked
to the Gaußian measure γ on a finite-dimensional space. Moreover, Lp

W (γ̂) is
independent of B.

Fix a Lebesgue square integrable function g : [0, ∞[n≤ → H⊗n . By a slight
modification of the Loeb–Andersen lifting theorems, there exists an inter-
nal function G : Tn

< → F⊗n such that g(◦t) is the standard part of G(t) for
ν̂n-almost all t ∈ Tn

< and G is S-square integrable, i.e. ◦ ∑
t∈T n

<
‖G(t)‖2 1

Hn =∫ ∞
[0,∞[n≤

‖g‖2 dλn. The iterated Itô integral In(g) : Ω → R is γ̂-a.s. well defined

(see [18]), by setting

In(g) := ◦In(G) with In(G)(X) :=
∑

t1<···<tn ∈T

Gt1,...,tn(Xt1 , . . . ,Xtn).

Note that

Gt1,...,tn(Xt1 , . . . ,Xtn) =
∑

i1,...,in ∈ω

Gt1,...,tn(ei1 , . . . , ein) · xt1,i1 · · · xtn,in .
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Since In(G) is a finite sum, we can apply the binomial theorem to prove that

Eγ

(
In(G)

)4 ≤ (4!)n

( ∑
t∈T n

<,i∈ωn

G2
t (ei1 , . . . , ein)

1
Hn

)2

(4)

= (4!)n

( ∑
t∈T n

<

‖Gt‖2 1
Hn

)2

is limited, thus In(G) is S-square integrable. By Loeb theory and the com-
putations (i), (ii), (iii) below, we have

Eγ̂

((
In(g)

)2) ≈ Eγ

((
In(G)

)2) =
∑

t∈T n
<

∥∥G(t)
∥∥2 1

Hn
=

∫ ∞

[0,∞[n≤

‖g‖2 dλn.

The proof, due to Cutland and Ng [4] for the one-dimensional case, can be
used to prove the following result (see also Theorem 5.6 in [19]). It is an
application of the chaos decomposition theorem in [18].

Theorem 4.1. Fix ϕ ∈ L2
W (γ̂)and an S-square integrable lifting Φ of ϕ.

For all n ∈ N0 define Fn : Tn
< → F⊗n by setting

(5) Fn(r1, . . . , rn)(ej1 , . . . , ejn) := Hn · Eγ(Φ · xr1,j1 · · · xrn,jn).

Then the standard part ◦Fn : [0, ∞[n → H⊗n of Fn exists and ϕ has the chaos
expansion

ϕ =
∞∑

n=0

In

(◦F
)
.

Let us write Equation (5) in the following form: since the Xr are the
increments of the internal Brownian motion B we obtain, using Δt := 1

H ,

Fn(r1, . . . , rn)(ej1 , . . . , ejn) = E

(
Φ

〈
ΔBr1

Δt1
, ej1

〉
· · ·

〈
ΔBrn

Δtn
, ejn

〉)
= E

(
Φ〈Ḃr1 , ej1 〉 · · · 〈Ḃrn , ejn 〉

)
,

where Ḃt may be understood as the “derivative” of B at time t. This is
Wiener’s Equation (1).

Example. Fix a square integrable g : [0, ∞[ → H′ and an S-square integrable
lifting G : T → F′. Set ϕ := eI1(g)− 1

2

∫
[0,∞[ ‖g‖2 dλ. Then

Φ := eI1(G)− 1
2

∑
t∈T ‖G(t)‖2 1

H

is an S-square integrable lifting of ϕ. Therefore the kernel fn : [0, ∞[n≤ → H⊗n

of eI1(g)− 1
2

∫
[0,∞[ ‖g‖2 dλ is the standard part of Fn : Tn

< → F⊗n with

Fn(r1, . . . , rn)(ej1 , . . . , ejn)

= Hn · Eγ

(
eI1(G)− 1

2

∑
t∈T ‖G(t)‖2 1

H · xr1,j1 · · · xrn,jn

)
.
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Using the shorthand c :=
√

H
2π

H2·ω
, we obtain by elementary computation:

Fn(r1, . . . , rn)(ej1 , . . . , ejn)

= cHn

∫
∗RH2·ω

e
∑

t∈T,i≤ω(Gt(ei)·xt,i − 1
2H G2

t (ei)− H
2 x2

t,i)

· xr1,j1 · · · xtn,jn d(xt,i)t∈T,i≤ω

= cHn

∫
∗RH2·ω

e
∑

t∈T,i≤ω − H
2 (x2

t,i − Gt(ei)
H )2xr1,j1 · · · xrn,jn d(xt,i)t∈T,i≤ω

=

√
H

2π

n

Hn

∫
∗Rn

Ad(xri,ji)i≤n(
with A = e

∑n
i=1 − H

2 x2
ri,ii

(
xr1,j1 +

Gr1(ej1)
H

)
· · ·

(
xtn,jn +

Grn(ejn)
H

))
= Gr1(ej1) · · · Grn(ejn).

It follows that Fn is the n-fold tensor product G � · · · � G of G, and therefore,

◦Fn = g�n : [0, ∞[n → H⊗n

with g�n(r1, . . . , rn)(a1, . . . , an) = gr1(a1) · · · grn(an). This is an elementary
proof of the following well-known result:

Proposition 4.2. eI1(g)− 1
2

∫
[0,∞[ ‖g‖2 dλ = 1 +

∑∞
n=1 In(g�n).

To obtain the product- and chain rule, we transfer ϕ,ψ ∈ L2
W (γ̂) = L2(WB)

into the model M. Using the chaos decomposition theorem in [18], ϕ,ψ have
S-square integrable liftings Φ,Ψ of the form

Φ =
M∑

n=0

In(Fn), Ψ =
M∑

n=0

In(Gn),

where the Fn,Gn : Tn
�= → F⊗n are S-square integrable and symmetric. Now

assume that ϕ,ψ be Malliavin differentiable. The Malliavin derivative Dϕ of
ϕ is a process from [0, ∞[ × Ω into H′ = H. By results in [18], we may assume
that Dϕ,Dψ have S-square integrable liftings of the form

DΦ(r,X) :=
M∑

n=1

In−1

(
Fn(·, r)

)
, DΨ(r,X) :=

M∑
n=1

In−1

(
Gn(·, r)

)
∈ F′ = F.

Note that for all a ∈ F,

DΦr(X)(a) := DΦ(r,X)(a) :=
M∑

n=1

∑
t∈T n−1

<

Fn(t, r)(Xt1 , . . . ,Xtn−1 , a).
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In order to prove the product rule, we want to compute functions Kn : Tn
< →

F⊗n , such that ϕ · ψ =
∑∞

n=0 In(◦Kn) and
M∑

n=0

In(Kn) is an S-square integrable lifting of ϕ · ψ.

However, ϕ · ψ is not square integrable, in general. Therefore, we assume that
ϕ and ψ belong to finite chaos levels, that is, M ∈ N0. Then,

Φ · Ψ, (DΦ) · Ψ, Φ · DΨ and D(Φ · Ψ) are S-square integrable liftings of
ϕ · ψ, (Dϕ) · ψ, ϕ · Dψ and D(ϕ · ψ), respectively.

Now Kn, given by

Kn(r1, . . . , rn, eρ1 , . . . , eρn) = HnEγ(Φ · Ψ · xr1,ρ1 · · · xrn,ρn)

has the desired property. We have to compute all possible

a := Eγ(xt1,τ1 · · · xtm,τm · xs1,σ1 · · · xsk,σk
· xr1,ρ1 · · · xrn,ρn)

with t1 < · · · < tm, s1 < · · · < sk, r1 < · · · < rn. Here are some typical exam-
ples:
(i) Let rn < t := tm = sk. If σ := τm = σk, then

a = Eγ

(
xt1,τ1 · · · xtm−1,τm−1xs1,σ1 · · · xsk−1,σk−1xr1,ρ1 · · · xrn,ρn · EBt− x2

t,σ

)
= Eγ

(
xt1,τ1 · · · xtm−1,τm−1xs1,σ1 · · · xsk−1,σk−1xr1,ρ1 · · · xrn,ρn

1
H

)
,

because EBt− x2
t,σ = Eγ1x2 = 1

H . If τm 	= σk, then

a = Eγ

(
xt1,τ1 · · · xtm−1,τm−1xs1,σ1 · · · xsk−1,σk−1xr1,ρ1 · · · xrn,ρn

· EBt− (xt,τmxt,σk
)
)

= 0,

because EBt− (xt,τm · xt,σk
) = Eγ2x · y = 0. We may continue in the same

manner: for example, let tm−1 < sk−1 = rn, σk−1 = ρn, rn < tm = sk and
τm = σk. Then

a = Eγ

(
xt1,τ1 · · · xtm−1,τm−1xs1,σ1 · · · xsk−2,σk−2xr1,ρ1 · · · xrn−1,ρn−1

1
H2

)
.

(ii) Let tm, sk < rn =: r. Then

a = Eγ

(
xt1,τ1 · · · xtm,τmxs1,σ1 · · · xsk,σk

xr1,ρ1 · · · xrn−1,ρn−1EBr− xr,ρn

)
= 0

because EBr− xr,ρn = Eγ1x = 0.
(iii) Let t := tm = sk = rn. Then

a = Eγ

(
xt1,τ1 · · · xtm−1,τm−1xs1,σ1 · · · xsk−1,σk−1xr1,ρ1 · · · xrn−1,ρn−1

· EBt− (xt,τmxt,σk
xt,ρn)

)
= 0,
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because Eγ1x3 = Eγ2x2 · y = Eγ3x · y · z = 0. Here is a difference to more
general Lévy processes. In general, Eμ1x3 	= 0.

In order to gain control of all the summands in Kn, we proceed as follows:
let n ∈ N0 and k ≤ n We identify k ∈ N0 with the set {1, . . . , k}, thus 0 = ∅.
If π is a strictly monotone increasing function from k into n, then we will
write π : k ↑ n. For π : k ↑ n, let π : n − k ↑ n \ range(π), that is, π enumerates
the numbers in n, that are different from π1, . . . , πk. For example, if k = 0,
then π : k ↑ n = ∅ and π : k ↑ k = idk. Calculating HnEγ(ΦΨ ·

∏n
i=1 xri,ρi), we

obtain the following formula:

Kn(r1, . . . , rn, a1, . . . , an) =
n∑

k=0

∑
π:k↑n

M2∑
m=0

∑
t∈T m

<

∑
i∈ωm

A · B · 1
Hm

,

where, with (a1, . . . , an) := (eρ1 , . . . , eρn),

A = Fm+k(t, rπ1 , . . . , rπk
, ei1 , . . . , eim , aπ1 , . . . , aπk

),
B = Gm+n−k(t, rπ1 , . . . , rπn−k

, ei1 , . . . , eim , aπ1 , . . . , aπn−k
).

In order to prove the product rule

D(ϕ · ψ)◦r = Dϕ◦r · ψ + ϕ · Dψ◦r,

we write Kn(r1, . . . , rn−1, r, a1, . . . , an−1, a) in a slightly different way:

Kn(r1, . . . , rn−1, r, a1, . . . , an−1, a)

= KDΦr ·Ψ
n (r1, . . . , rn−1, r, a1, . . . , an−1, a)

+ KΦ·DΨr
n (r1, . . . , rn−1, r, a1, . . . , an−1, a),

where the first summand is equal to

n−1∑
k=0

∑
π:k↑n−1

M2∑
m=0

∑
t∈T m

<

∑
i∈ωm

AuBu
1

Hm

with

Au = Fm+k+1(t, rπ1 , . . . , rπk
, r, ei1 , . . . , eim , aπ1 , . . . , aπk

, a),
Bu = Gm+n−1−k(t, rπ1 , . . . , rπn−1−k

, ei1 , . . . , eim , aπ1 , . . . , aπn−1−k
).

The second summand is equal to

n−1∑
k=0

∑
π:k↑n−1

M2∑
m=0

∑
t∈T m

<

∑
i∈ωm

AvBv
1

Hm

with

Av = Fm+k(t, rπ1 , . . . , rπk
, ei1 , . . . , eim , aπ1 , . . . , aπk

),
Bv = Gm+n−k(t, rπ1 , . . . , rπn−1−k

, r, ei1 , . . . , eim , aπ1 , . . . , aπn−1−k
, a).
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Note that for r ∈ T and a ∈ F,

KDΦr ·Ψ
n (r1, . . . , rn−1, r, a1, . . . , an−1, a) = Hn−1Eγ

(
DΦr(a)Ψ ·

n−1∏
i=1

xri,ρi

)
,

KΦ·DΨr
n (r1, . . . , rn−1, r, a1, . . . , an−1, a) = Hn−1Eγ

(
ΦDΨr(a) ·

n−1∏
i=1

Xri,ρi

)
.

Therefore, KDΦr ·Ψ
n ,KΦ·DΨr

n build the kernels under DΦr · Ψ,Φ · DΨr for
Dϕ◦r · ψ, ϕ · Dψ◦r, respectively. To sum up, we obtain for ν̂ ⊗ γ almost
all (r,X)

D(ϕ · ψ)◦r(X) ≈F

M2∑
n=1

In−1

(
Kn(·, r)

)
(X)

=
M2∑
n=1

In−1

(
KDΦr ·Ψ

n (·, r)
)
(X)

+
M2∑
n=1

In−1

(
KΦ·DΨr

n (·, r)
)
(X)

≈F Dϕ◦r(X) · ψ(X) + ϕ(X) · Dψ◦r(X).

The proof of the product-rule is finished for functions in finite chaos levels.
The proof of more general results, according to Theorems 2.1, 2.2, is similar
to the proof in the following section.

5. The proof of the rules

Now we turn back to Sections 2 and 3. Some additional difficulties appear
in the case of more general Lévy processes. The set NL is often different from
{1} and the multiple integrals are only square integrable. It follows that, in
contrast to Brownian motion, the product of two Lévy functionals even in
finite chaos levels is, in general, not square integrable. However, the most
unpleasant difference is the fact that Eμ1p3

1 	= 0, for example, in the case of
Poisson processes. In the Gaußian case p1(x) = x.

In order to get over some of the difficulties, we replace functionals in fi-
nite chaos levels by bounded functions (see Section 2). An internal function
Φ : Ω → ∗R is called a polynomial, bounded by S ∈ ∗N, if

Φ(X) =
∑

n∈∗N0

∑
k∈Mn

L

∑
t∈T n

<

Fn(k, t)
n∏

i=1

pki(Xti),

where Fn : Mn
L × Tn

�= → ∗R is internal and symmetric and Φ and therefore
also the Fn are bounded by S. The functions Fn are called the kernels of Φ.
By Theorem 6.1 in [19], we can assume that each ϕ : Ω → R in L2

D(μ̂) has
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a polynomial lifting Φ : Ω → ∗R ∈ SL2(μ), bounded by some S ∈ ∗N. If ϕ is
Malliavin differentiable, then we can, in addition, assume that

DΦ : (l, r,X) �→
∑

n∈∗N

∑
k∈Mn

L

∑
t∈T n−1

<

Fn(k, l, t, r)
n−1∏
i=1

pki(Xti)

belongs to SL2(c ⊗ ν ⊗ μ) and is a lifting of the Malliavin derivative of ϕ.
We use the following notations; compare this notation with the nota-

tion in the Brownian motion case. Fix m ∈ N, ρ ∈ m ∪ {0}, a strictly in-
creasing ρ-tuple β1 < · · · < βρ in m and i ∈ {ρ, . . . ,m}. Let τ : i − ρ ↑ m \

{β1, . . . , βρ} be a strictly monotone increasing function from i − ρ into m \
{β1, . . . , βρ}. Then τ denotes the complement of τ , i.e., τ is the uniquely deter-
mined strictly monotone increasing function from m − i onto m \ (range(τ) ∪

{β1, . . . , βρ}). Account that τ and τ depend on m. Here is the key to both
rules:

Theorem 5.1. Suppose that ϕ,ψ ∈ L2
D(μ̂) and the kernels in the chaos

decomposition (see Theorem 6.1 in [19]) of ϕ and ψ are bounded by some
standard S ∈ N. Then we have in L2(c ⊗ λ ⊗ μ̂).(

D(ϕ · ψ)
)
(l,r)

= (Dϕ)(l,r) · ψ + ϕ · (Dψ)(l,r)

+
∑

κ,κ̃∈NL

α(κ, κ̃, l) · (Dϕ)κ,r · (Dψ)κ̃,r.

Proof. By the chaos expansion result (see Theorem 6.1 in [19]), ϕ and ψ
have polynomial liftings Φ and Ψ. Since ϕ,ψ are bounded by S, we can
assume that Φ and Ψ are also bounded by S. Therefore, Φ · Ψ belongs to
SL2(μ) and is a lifting of ϕ · ψ ∈ L2

D(μ̂). Moreover, D(Φ · Ψ),DΦ · Ψ,Φ ·
DΨ ∈ SL2(c ⊗ ν ⊗ μ) are liftings of D(ϕ · ψ),Dϕ · ψ,ϕ · Dψ, respectively.
Moreover,

∑
κ,κ̃∈NL

σ(κ, κ̃, ·) · DΦκ · DΨκ̃ ∈ SL2(c ⊗ ν ⊗ μ) and is a lifting
of

∑
κ,κ̃∈NL

α(κ, κ̃, l) · Dϕκ · Dψκ̃. By the recipe for the computation of the
kernels of the chaos decomposition (see Theorem 5.6 in [19]), the kernels
of ϕ · ψ are the standard parts of the kernels Km under Φ · Ψ, given by
K0 = Eμ(Φ · Ψ) and for m ≥ 1,

Km(l, r) = HmEμ

(
Φ · Ψ · pl1(Xr1) · · · plm(Xrm)

)
with l ∈ Nm

L , r ∈ Tm
< . Let Fn,Gn, be the kernels of Φ,Ψ, respectively. Ele-

mentary finite combinatorics tells us that Km(l, r) is the finite sum:

Km(l, r)

=
m∑

ρ=0

∑
κ,κ̃∈N

ρ
L

∑
β∈mρ

<

m∑
i=ρ

∑
τ :i−ρ↑m\ {β1,...,βρ }

∑
n∈N0

∑
k∈Nn

L

∑
t∈T n

<

1
Hn

· Π
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with

Π = Fn+i(k,κ, lτ1 , . . . , lτi−ρ , t, rβ1 , . . . , rβρ , rτ1 , . . . , rτi−ρ)
· Gn+m−i+ρ(k, κ̃, lτ1 , . . . , lτm−i , t, rβ1 , . . . , rβρ , rτ1 , . . . , rτm−i)
· σ(κ1, κ̃1, lβ1) · · · σ(κρ, κ̃ρ, lβρ).

It is easy to see that

Km(l, r) = A + B + C(lm, rm)

with

A =
m∑

ρ=0

∑
κ,κ̃∈N

ρ
L

∑
β∈(m−1)ρ

<

m∑
i=ρ

∑
τ :i−ρ↑m\ {β1,...,βρ },

τ(i−ρ)=m

∑
n∈N0

∑
k∈Nn

L

∑
t∈T n

<

1
Hn

· Π,

B =
m∑

ρ=0

∑
κ,κ̃∈N

ρ
L

∑
β∈(m−1)ρ

<

m∑
i=ρ

∑
τ :i−ρ↑m\ {β1,...,βρ },

τ̃(m−i)=m

∑
n∈N0

∑
k∈Nn

L

∑
t∈T n

<

1
Hn

· Π,

C(lm, rm) =
m∑

ρ=0

∑
κ,κ̃∈N

ρ
L

∑
β∈mρ

<,βρ=m

m∑
i=ρ

∑
τ :i−ρ↑m\ {β1,...,βρ }

∑
n∈N0

∑
k∈Nn

L

∑
t∈T n

<

1
Hn

· Π.

In the same way, computing the kernel K
DΦlm,rm ·Ψ
m−1 under DΦlm,rm · Ψ, we

obtain for l = (l1, . . . , lm−1), r = (r1, . . . , rm−1),

K
DΦlm,rm ·Ψ
m−1 (l, r)

= Hm−1Eμ

(
DΦlm,rm · Ψ · pl1(Xr1) · · · plm−1(Xrm−1)

)
=

m−1∑
ρ=0

∑
κ,κ̃∈N

ρ
L

∑
β∈m−1ρ

<

m−1∑
i=ρ

∑
τ :i−ρ↑m−1\ {β1,...,βρ }

∑
n∈N0

∑
k∈Nn

L

∑
t∈T n

<

1
Hn

· Fn+i+1(k,κ, lτ1 , . . . , lτi−ρ , lm, t, rβ1 , . . . , rβρ , rτ1 , . . . , rτi−ρ , rm)
· Gn+m−1−i+ρ(k, κ̃, lτ1 , . . . , lτm−1−i , t, rβ1 , . . . , rβρ , rτ1 , . . . , rτm−1−i)
· σ(κ1, κ̃1, lβ1) · · · σ(κρ, κ̃ρ, lβρ).

It is easy to see that K
DΦlm,rm ·Ψ
m−1 (l, r) = A and

B = K
Φ·DΨlm,rm
m−1 , C(lm, rm) =

∑
η,η̃∈NL

K
DΦη,rm ·DΨη̃,rm
m−1 σ(η, η̃, lm),

where K
Φ·DΨlm,rm
m−1 and K

DΦη,rm ·DΨη̃,rm
m−1 are the kernels under Φ · DΨlm,rm

and under DΦη,rm · DΨη̃,rm
, respectively. This proves that for l ∈ NL and

r ∈ T :(
D(Φ · Ψ)

)
(l,r)

= (DΦ)(l,r) · Ψ+Φ · (DΨ)(l,r) +
∑

κ,κ̃∈NL

σ(κ, κ̃, l) · DΦκ,r · DΨκ̃,r.

Taking standard parts, we obtain the desired result. �
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The product-rule (Theorem 2.1) now follows from Theorem 5.1 and Propo-
sition 6.1 below. The chain-rule (Theorem 2.2) follows from Theorem 5.1, the
following lemma and Proposition 6.1 below.

Lemma 5.2. Suppose that NL = {1}. Fix g : Rn → R with g(x1, . . . , xn) =
xk1

1 · · · xkn
n and ϕ1, . . . , ϕn ∈ L2

D(μ̂) bounded by some S ∈ N. Then in
L2(λ ⊗ μ̂)

D
(
g(ϕ1, . . . , ϕn)

)
=

{
1
α (g(ϕ1 + α · Dϕ1, . . . , ϕn + α · Dϕn) − g(ϕ1, . . . , ϕn)), if α 	= 0,∑n

i=1(∂ig)(ϕ1, . . . , ϕn) · Dϕi, if α = 0.

Proof. By induction on n, using the product-rule. In the case n = 1, apply
induction on k1. �

6. A commutation rule for derivative and limit

The following commutation rule, which we have used, reminds of a result in
elementary analysis: we can interchange derivative and limit if the sequence
of derivatives converges uniformly, and the original sequence converges in at
least one point. Here we have:

Proposition 6.1. Suppose that (ϕi) is a sequence of Malliavin differen-
tiable functions such that (Dϕi) converges in L2

L ⊗ D(c ⊗ ν̂ ⊗ μ) and suppose
that (Eμ̂ϕi) converges in the real numbers. Then (ϕi) converges to a Malliavin
differentiable function and

D
(

lim
i→∞

ϕi
)

= lim
i→∞

Dϕi in L2
L ⊗ D(c ⊗ ν̂ ⊗ μ).

Proof. Let ϕi =
∑∞

n=0 In(f i
n). By the assumption,

0 = lim
i,j→∞

∥∥Dϕi − Dϕj
∥∥2

c⊗ν̂⊗μ

= lim
i,j→∞

∞∑
n=1

∑
k∈Nn

L

∫
T n−1

< ×T

(
f i

n(k, ·) − f j
n(k, ·)

)2
dν̂n.

Since the f i
n are symmetric, (f i

n)i∈N is a Cauchy sequence in L2
Ln(cn ⊗ ν̂n) for

all n ∈ N. Let limi→∞ f i
n = fn in L2

Ln(cn ⊗ ν̂n). Then

lim
i→∞

∑
k∈Nn

L

∫
T n−1

< ×T

(
f i

n(k, ·) − fn(k, ·)
)2

dν̂n = 0.

It follows that in L2
D(μ̂), L2

L ⊗ D(c ⊗ ν̂ ⊗ μ) respectively,

lim
i→∞

In

(
f i

n

)
= In(fn) and lim

i→∞
DIn

(
f i

n

)
= DIn(fn).
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Since this is true and (ϕi) and (Dϕi) are Cauchy sequences and In(f i
n) ⊥

Im(f j
m), DIn(f i

n) ⊥ DIm(f j
m) for n 	= m, the following limits exist

lim
i→∞

∞∑
n=1

In

(
f i

n

)
=

∞∑
n=1

In(fn) in L2
D(μ̂),

lim
i→∞

D

∞∑
n=0

In

(
f i

n

)
= lim

i→∞

∞∑
n=0

DIn

(
f i

n

)
=

∞∑
n=1

DIn(fn) = D

∞∑
n=0

In(fn)

in L2
L ⊗ D(c ⊗ ν̂ ⊗ μ). Define

ϕ :=
∞∑

n=1

In(fn) + lim
i→∞

Eμ̂ϕi.

Then we have limi→∞ ϕi = ϕ and limi→∞ Dϕi = Dϕ. �
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1990.

[16] D. Nualart, The Malliavin calculus and related topics, Springer-Verlag, New York,
1995. MR 1344217

[17] D. Nualart and W. Schoutens, Chaotic and predictable representations for Lévy pro-
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