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A GENERALIZATION OF ABEL’S THEOREM AND THE
ABEL–JACOBI MAP

JOHAN L. DUPONT AND FRANZ W. KAMBER

Abstract. We generalize Abel’s classical theorem on linear
equivalence of divisors on a Riemann surface. For every closed

submanifold Md ⊂ Xn in a compact oriented Riemannian n-
manifold, or more generally for any d-cycle Z relative to a tri-
angulation of X, we define a (simplicial) (n − d − 1)-gerbe ΛZ ,

the Abel gerbe determined by Z, whose vanishing as a Deligne

cohomology class generalizes the notion of ‘linear equivalence to

zero’. In this setting, Abel’s theorem remains valid. Moreover,

we generalize the classical Inversion theorem for the Abel–Jacobi

map, thereby proving that the moduli space of Abel gerbes is

isomorphic to the harmonic Deligne cohomology; that is, gerbes
with harmonic curvature.

1. Introduction

In this paper, we shall expand on some beautiful ideas of Hitchin [22] and
Chatterjee [2], generalizing the classical notion of linear equivalence of divi-
sors and Abel’s theorem about the existence of meromorphic functions with
prescribed zeroes and poles on a compact Riemann surface (see Section 2). As
is well known, this problem is equivalent to the existence of a parallel section,
for some complex connection, in the holomorphic line bundle of the divisor.
In general, for a closed oriented Riemannian manifold X of dimension n, we
replace the divisor by a cycle Z of arbitrary dimension d, d = 0, . . . , n − 1 in a
smooth triangulation of X .
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In Section 4, we associate to Z a higher Abelian gerbe with connection
ΛZ of degree n − d − 1 which we call the Abel gerbe for Z, whose class [ΛZ ]
in the smooth Deligne cohomology Hn−d

D (X,Z) only depends on Z. Two
cycles are then defined to be linearly equivalent, if their Abel gerbes represent
the same class in Deligne cohomology. This definition is in agreement with
the definition in the classical situation. At this level of generality we prove
in Section 5 Abel’s Theorem 5.3, characterizing linear equivalence of Abel
gerbes in terms of period integrals (cf. Chatterjee [2], Theorem 6.4.2 for
2-gerbes associated to submanifolds of codimension 3).

Abel’s theorem. Let Z = ∂Γ, Γ ∈ Cd+1(K). Then Z is linearly equiva-
lent to zero, that is [ΛZ ] = 0 ∈ Hn−d

D (X,Z), if and only if∫
Γ

θ ∈ Z

for all harmonic θ ∈ Ωd+1(X) with integral periods.

A similar result was proved by Harvey–Lawson–Zweck [19], Prop. 12.14
in terms of sparks and differential characters, which however only indirectly
provide gerbes with connection in the Čech–de Rham complex for Deligne
cohomology (see, e.g., Dupont–Kamber [11] or Harvey–Lawson [20] for this
relation). Earlier results in this direction were proved by Gillet–Soulé [13] and
Harris [18].

Other well-known results from the theory of Riemann surfaces make sense
in higher dimensions as well. Thus, in Section 6, we study the Picard torus of
Deligne classes represented by topologically trivial flat gerbes and the Jacobi
torus which is the recipient of the period map. The former is analogous to
the Picard variety of holomorphic line bundles of degree zero on a Riemann
surface, in which case every holomorphic line bundle is associated to a divisor.
The Jacobi torus is analogous to the Jacobi variety of a Riemann surface. We
determine the moduli space Md(X) of Abel gerbes in full generality, as well
as the moduli space M ◦

d(X) of topologically trivial Abel gerbes.
Prior to stating and proving the main Theorem 6.14, we illustrate our

method by a number of examples (Examples 6.7 to 6.13). Below, we quote
Theorem 6.14.

Moduli theorem. Let X be a compact connected oriented Riemannian
manifold X of dimension n ≥ 2 and let d = 0, . . . , n − 1. Then

(1) The Picard map α : M ◦
d(X) → Picn−d−1(X) is an isomorphism.

(2) The Abel–Jacobi map J : M ◦
d(X) → Jacd+1(X) is an isomorphism.

(3) The mapping Λ : Md(X) → Hn−d
D (X,Z) is an isomorphism.

(4) Every equivalence class of (n − d − 1)-gerbes in the harmonic Deligne
cohomology Hn−d

D (X,Z), given by classes in Hn−d
D (X,Z) whose curvature is

harmonic, can be realized by a unique (up to linear equivalence) Abel gerbe.
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In the final Sections 7 and 8, we shall investigate the Abel gerbe associ-
ated to the fundamental cycle of an embedded closed submanifold M ⊂ X .
In particular, we shall compare the restriction of this gerbe to M with the
characteristic gerbe [11] called the Euler gerbe, which respresents the Cheeger–
Chern–Simons class for the normal bundle with the Riemannian connection
and is defined in terms of the Pfaffian polynomial. We prove in Theorem 8.1
that these two gerbes differ by a third canonical gerbe, called the difference
gerbe. This is a topologically trivial gerbe whose curvature is the difference be-
tween the harmonic form representing the Poincaré dual of [M ] ∈ Hd(X) and a
specific choice for the form representing the Thom class of the normal bundle.

For the construction of these gerbes, it is convenient to use the represen-
tation of Deligne cohomology and gerbes by simplicial differential forms as
developed in our previous paper [11]. For completeness, we recall in Sec-
tion 3 the basic definitions and properties of these topics. Notice that we
have shifted up the degree of a gerbe by 1 compared to the usual physics
convention. Our convention conforms to the degree convention for differential
characters (compare [3] and also [11], Prop. 2.5).

The topics in the present paper overlap to a certain extent in a different
setting with those in [19], [20]. However, except for the case noted above,
our results are not explicitly stated there. At any rate, our methods are
independent and quite different, and we think that the present elementary
approach represents an attractive point of view on a beautiful subject.

2. Abel’s Theorem on linear equivalence of divisors on a Riemann
surface

For motivation, let us recall the classical Abel theorem. Let X be a compact
Riemann surface and d =

∑k
i=1 aipi, ai ∈ Z, pi ∈ X a divisor. A first necessary

condition for finding a meromorphic function with zeros and poles exactly in
{pi} of order ai, is that the degree Deg d =

∑
i ai = 0 ∈ Z; that is, there is

chain Γ with ∂Γ = d.

Abel’s theorem. Suppose that Deg(d) = 0 and d = ∂Γ, where Γ is a
(smooth) 1-chain on X . Then d admits a global meromorphic function, that
is d ∼ 0, if and only if ∫

Γ

θ ∈ Z

for every harmonic 1-form θ ∈ H1(X,Z) with integral periods.

The relationship with smooth connections in the holomorphic line bundle
L(d) for the divisor d is given by the following lemma.

Lemma 2.1. L(d) admits a non-vanishing holomorphic section; that is,
d ∼ 0, if and only if L(d) admits a non-vanishing C∞-section, which is parallel
with respect to a suitable complex connection in L(d).
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Proof. Recall that L(d) is given by first choosing an open covering U =
{Ui}i∈I and local solutions fi on Ui. Then

gij = fi/fj : Ui ∩ Uj → C
∗ = C \ {0}

is a Čech cocycle defining a holomorphic line bundle L(d). If hi : Ui → C
∗

defines a holomorphic section of L(d) that is, if gijhj = hi on Ui ∩ Uj ∀i, j ∈ I ,
then

fi/hi = fi/(gijhj) = fj/hj

defines a global meromorphic solution. For finding {hi}, we define a smooth
connection in L(d), that is, a family ωi ∈ Ω1(Ui), such that g−1

ij dgij = ωi − ωj

on Ui ∩ Uj and we can arrange that ωi = f −1
i dfi away from small neighbor-

hoods of {pi}.
Now suppose L(d) has a non-vanishing parallel C∞-section {ki}, that is, a

section satisfying
k−1

i dki = ωi in Ui.

Then away from {pi}, we have

d logki = ωi = d log fi.

Hence, logki is holomorphic away from pi. But logki is smooth all through Ui

so the singularity of logki is removable. Hence, we can redefine ki throughout
Ui to give a holomorphic section. �

Our goal is to generalize these classical results to submanifolds Md ⊂ Xn

of compact oriented Riemannian manifolds Xn, and more generally to cycles
Z ⊂ X , by using the notion of the Abel gerbe.

3. Review of ‘gerbes with connection’ and simplicial gerbes

3.1. Gerbes with connections. Let X be a smooth manifold and U =
{Ui}i∈I an open covering. We assume throughout that the covering U is
good, i.e. all

Ui0...ip = Ui0 ∩ · · · ∩ Uip

are contractible. We identify the circle group U(1) with R/Z via the expo-
nential map; that is

U(1) = circle group ∼= R/Z,

exp(2πit) ↔ t.

A Hermitian �-gerbe is given by a cocycle in the Čech complex

θ ∈ Č�(U ,R/Z);

that is, θi0...i�
: Ui0...i�

→ R/Z satisfying

0 ≡ δ̌θi0...i�
=

�+1∑
ν=0

(−1)νθi0...̂iν ...i�+1
.
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For � = 1, θ defines a line bundle.
We consider the modified Čech–de Rham bi-complex:

...
...

...

Č2(U ,R/Z) Č2(U ,R/Z) d
Č2

(
U ,Ω1

) d
Č2

(
U ,Ω2

) d · · ·

Č1(U ,R/Z)

δ

Č1(U ,R/Z) d

δ

Č1
(

U ,Ω1
) d

δ

Č1
(

U ,Ω2
) d

δ

· · ·

Č0(U ,R/Z)

δ

Č0(U ,R/Z) d

δ

Č0
(

U ,Ω1
) d

δ

Č0
(

U ,Ω2
) d

δ

· · ·

Map(X,R/Z) d

ε∗

Ω1(X) d

ε∗

Ω2(X) d

ε∗

· · ·

where the dotted lines indicate the total complex with differential D = δ̌ +
(−1)pd on Čp(U ,Ω∗).

A connection in an �-gerbe θ is a sequence ω = (ω0, . . . , ω�) in the Čech–de
Rham bi-complex

ων ∈ Čν
(

U ,Ω�−ν
)
, ν = 0, . . . , �,

satisfying

ω� ≡ −θ mod Z, δ̌ων−1 + (−1)ν dων = 0, ν = 1, . . . , �.

In particular, we have δ̌(dω0) = 0, so that dω0 is given by a global form Fω ,
the curvature of (θ,ω); that is, we set

dω0 ∈ Im
{
ε∗ : Ω�+1(X) → Č0

(
U ,Ω�+1

)}
,

where ε :
⊔
i

Ui → X is the natural map and

Fω :=
(
ε∗)−1(

dω0
)

∈ Ω�+1(X).

Definition 3.1.
(1) Two gerbes with connection are equivalent, (θ1, ω1) ∼ (θ2, ω2), if ω1 − ω2

is a coboundary in (
Č∗(

U ,Ω∗)
/Č∗(U ,Z),D

)
.

(2) H�+1
D (X,Z), the set of equivalence classes [θ,ω] of �-gerbes with con-

nection, is the smooth Deligne cohomology of X .
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(3) H�(X,R/Z) is the set of equivalence classes of �-gerbes with flat con-
nection; that is Fω = 0. Hence, we have the exact sequence

(3.1) 0 H�(X,R/Z) H�+1
D (X,Z)

d∗ Ω�+1
cl (X,Z) 0,

[θ,ω] Fω

where Ω�+1
cl (X,Z) denotes the closed (� + 1)-forms with integral periods.

Let us introduce the notation

H�+1
D (X) = Ω�(X)/dΩ�−1(X).(3.2)

The elements [ω] ∈ H�+1
D (X) can be interpreted as equivalence classes of con-

nections on the trivial �-gerbe θ = 0 by setting

(3.3) ω0 = ε∗ω, Fω = dω, δ̌ω0 = 0, ω1 = · · · = ω� = 0.

Thus, ι(ω) = (0; ε∗ω,0, . . . ,0) induces a well-defined mapping

ι∗ : H�+1
D (X) → H�+1

D (X,Z),

since ι(dα) = D(0; ε∗α,0, . . . ,0). Clearly the connection is flat if and only if
Fω = dω = 0, that is [ω] ∈ H�(X,R).

We then have the following commutative diagram with exact rows and
columns:

(3.4)

0 0

0 j∗H�(X,Z)
∼=

Ω�
cl(X,Z)/dΩ�−1(X) 0

0 H�(X,R)

ρ∗

H�+1
D (X)

ι∗

Ω�(X)/Ω�
cl(X)

d

0

0 H�(X,R/Z)

β∗

H�+1
D (X,Z)

c

d∗
Ω�+1

cl (X,Z) 0

H�+1(X,Z)

j∗

H�(X,R/Z)
δ̌∗

∼= j∗H�+1(X,Z) 0

H�+1(X,R) 0 0

Remarks 3.2. The diagram (3.4) incorporates many properties of our con-
struction:
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(1) The second exact row follows from the definition (3.2).
(2) The third exact row is (3.1), with d∗ being the curvature.
(3) The exact column on the left is the Bockstein sequence for

0 → Z
j−→ R

ρ−→ R/Z → 0.

Note that the image of β∗ is the (finite) torsion subgroup of H�+1(X,Z); that
is, β∗ induces an isomorphism

H�(X,R/Z)/ρ∗
(
H�(X,R)/j∗H�(X,Z)

)
∼= TorZ

(
H�+1(X,Z),R/Z

)
⊆ H�+1(X,Z).

(4) The map c is the characteristic class δ̌∗[θ] = −[δ̌ωl] of the gerbe [θ,ω]
(the Douady–Dixmier invariant); it is equivalent to the last map [θ,ω] �→ [θ]
in the middle exact column, which simply forgets the connection. These
maps are surjective, since every (naked) gerbe [θ] ∈ H�(X,R/Z) admits a
connection.

(5) The image of ι∗; that is, the equivalence classes of trivial gerbes with
connection, is given exactly by the the kernel of the characteristic class c, so
we may call these gerbes topologically trivial.

(6) It follows that the Deligne cohomology is given by an exact sequence
(i.e., the middle exact column in (3.4))

(3.5) 0 → Ω�(X)/Ω�
cl(X,Z) ι∗−→

⊆
H�+1

D (X,Z) c−→ H�+1(X,Z) → 0.

(7) The commutativity of the diagram involving the slanted arrows ex-
presses the fact that the characteristic class of a gerbe determines the de
Rham class of the curvature in H�+1(X,R); that is, j∗c([θ,ω]) = [Fω].

(8) Notice that a �-gerbe in our sense is a (� − 1)-gerbe in the usual physics
convention. Thus, a 0-gerbe in our sense is a smooth circle-valued function
and a 1-gerbe is a line bundle.

3.2. Simplicial forms and gerbes. In this section, we recall the reformu-
lation of Deligne cohomology in terms of simplicial de Rham theory [11]. For
simplicial de Rham theory, we refer to [7], [8].

Consider the standard simplex Δp ⊆ R
p+1

Δp =
{

(t0, . . . , tp)
∣∣∣∑

i

ti = 1, ti ≥ 0
}

with face maps εi : Δp−1 → Δp, i = 0, . . . , p,

given by εi(t0, . . . , tp−1) = (t0, . . . ,0, . . . , tp−1),

(t0, . . . , tp−1) ∈ Δp−1.
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The open covering U = {Ui}i∈I of X determines a simplicial manifold N U

N U (p) =
⊔

(j0,...,jp)

Uj0...jp , p = 0,1, . . .

with face operators εj : N U (p) → N U (p − 1), i = 0, . . . , p,

given by Uj0...jp ↪→ Uj0...ǰi...jp
.

The fat realisation is

‖N U ‖ =
⊔
p

Δp × N U (p)/ ∼,

with identifications (t, εix) ∼ (εit, x), t ∈ Δp−1, x ∈ N U (p).

Definition 3.3. A simplicial k-form ω on N U is a sequence ω(p) ∈ Ωk(Δp ×
N U (p)) satisfying(

εi × id
)∗

ω(p) = (id × εi)∗ω(p−1), i = 0, . . . , p, ∀p,

and we denote by Ωk(‖N U ‖) the set of simplicial k-forms.

Recalling that the open covering U is assumed to be good, we have the
following results.

Theorem 3.4 (de Rham [7], [8]). There are quasi-isomorphisms (inducing
isomorphisms in cohomology)

IΔ : Ω∗(
‖N U ‖

)
→ Č

(
U ,Ω∗)

,

given by

IΔ(ω) =
(
ων

)
, ων =

∫
Δν

ω(ν);

and
ε∗ : Ω∗(X) → Ω∗(

‖N U ‖
)
,

induced by the natural map

ε : Δp × N U (p) → N U (p) → X.

We also need the following definition.

Definition 3.5. ω ∈ Ωk(‖N U ‖) is integral if

(1) ω(p) =
∑

αi0...ik
(t)dti1 ∧ · · · ∧ dtik

,
(2) IΔ(ω) ∈ Č∗(U ,Z) ⊆ Č∗(U ,Ω0).

We denote by Ω∗
Z
(‖N U ‖) ⊆ Ω∗(‖N U ‖) the subcomplex of integral forms.

Remark 3.6. Note that we now have that IΔ : Ω∗
Z
(‖N U ‖) → Č∗(U ,Z) is

also a quasi-isomorphism.
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Theorem 3.7 ([11]). Every �-gerbe with connection (θ,ω) is up to equiva-
lence determined by a simplicial form Λ ∈ Ω�(‖N U ‖) satisfying

(3.6) dΛ = ε∗α − β, with α ∈ Ω�+1(X), β ∈ Ω�+1
Z

(
‖N U ‖

)
.

In fact

ων =
∫

Δν

Λν , ν = 0, . . . , �, −θ = ω�,

and α is the curvature.

Equivalently, we have

Theorem 3.8. Every element in H�+1
D (X,Z) is represented by a unique

class [Λ] in
Ω�

(
‖N U ‖

)
/
(
Ω�

Z

(
‖N U ‖

)
+ dΩ�−1

(
‖N U ‖

))
,

satisfying (3.6) above.

Proof. Let H�+1
D (X,Z)′ be the subgroup of such classes [Λ] satisfying (3.6).

Then there is a diagram with exact rows:

0 H�
(
Ω∗(

‖N U ‖
)
/Ω∗

Z

(
‖N U ‖

))
IΔ∼=

H�+1
D (X,Z)′

IΔ

Ω�+1
cl (X,Z)

id

0

0 H�(X,R/Z) H�+1
D (X,Z) Ω�+1

cl (X,Z) 0

The vertical map on the left is an isomorphism by de Rham’s theorem. Hence,
Theorem 3.8 follows from the 5-lemma. �

4. Abel gerbes associated to cycles and submanifolds

Classically on a Riemann surface two divisors d1,d2 are called linearly equiv-
alent if d1 − d2 is the divisor of a meromorphic function. We have seen that
this is equivalent to finding a parallel section for a suitable connection in
the line bundle L(d1 − d2). Using gerbes, we can generalise this to higher
dimensions as follows.

Let X = Xn be a compact connected oriented manifold, ∂X = ∅, with Rie-
mannian metric. Choose a smooth triangulation, that is, a homeomorphism
to a finite simplicial complex X ≈ |K|, such that the homeomorphism is a
diffeomorphism on each simplex. For a cycle

Z ∈ Cd(K),

let |Z| ⊆ |K| be the subcomplex consisting of all simplices of Z and their faces.
For the good covering U of X given by the open stars of the vertices of K,
we set UX− |Z| = {Uj | Uj ∩ |Z| = ∅ } and UZ = U − UX− |Z| = {Ui | Ui ∩ |Z| �=
∅}. Then UX− |Z| is a covering of X − |Z| and UZ is a covering of a regular
neighborhood of Z ⊂ X . Let

ηZ ∈ Hn−d(X,Z) ⊂ Ωn−d(X), βZ ∈ Ωn−d
Z

(
‖N U ‖

)
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both represent the Poincaré dual of [Z] ∈ Hd(X): ηZ is a harmonic form
with integral periods, and βZ is an integral form with suppβZ ⊆ ‖N U ‖ −

‖N UX− |Z| ‖. Here H�(X,Z) ⊂ H�(X) denote the harmonic forms, respectively
the integral lattice of harmonic forms.

Following Hitchin [22], we can solve the distributional Poisson equation in
Ωd(X)′ [6]:

(4.1) ΔHZ = ηZ − δZ ,

where Δ is the Laplace operator, ηZ the harmonic form dual to [Z] and δZ

the Dirac measure associated to Z; that is,

ηZ(ψ) =
∫

X

ηZ ∧ ψ, δZ(ψ) =
∫

Z

ψ, ψ ∈ Ωd(X).

HZ is uniquely defined up to a global harmonic (n − d)-form, and is smooth
outside |Z|. Since ηZ and δZ represent the same cohomology class, we get
from the de Rham–Hodge decomposition

ΔHZ = d ∗ d ∗ HZ ,

where ∗ is the Hodge ∗-operator. Setting FZ = ∗ d ∗ HZ , it follows that FZ is
uniquely defined by Z and we have

(4.2) ΔHZ = dFZ = ηZ − δZ .

In particular, F = FZ |X− |Z| = ∗ d ∗ HZ |X− |Z| is smooth and satisfies

(4.3) dF = ηZ |X− |Z|, d∗F = 0.

Theorem 4.1. There is a canonical Deligne class [ΛZ ] ∈ Hn−d
D (X,Z), such

that ΛZ ∈ Ωn−d−1(‖N U ‖) satisfies:
(1) dΛZ = ε∗ηZ − βZ . Thus the curvature of [ΛZ ] is the integral harmonic

form ηZ ∈ Hn−d(X,Z) and the characteristic class of [ΛZ ] is the Poincaré
dual [βZ ] ∈ Hn−d(X,Z) of [Z] ∈ Hd(X).

(2) [ΛZ ] is additive; that is, we have [ΛZ1+Z2 ] = [ΛZ1 ]+ [ΛZ2 ], for Z1,Z2 ∈
Zd(K).

(3) F = FZ |X− |Z| ∈ Ωn−d−1(X − |Z|) is smooth and satisfies ΔF = 0; that
is, F is harmonic on X − |Z|.

(4) ΛZ |W = ε∗F , where W = ‖N UX− |Z| ‖.

Proof. Let

K0 = {a0, . . . , am, am+1, . . . , aN },

Z0 = {a0, . . . , am}
be the vertices of K and the subcomplex |Z| respectively. Then the coverings
of |K|, |Z| and X − |Z|, respectively are given by U = {Ui | i = 0, . . . ,N },
UZ = {Ui | i = 0, . . . ,m} and UX− |Z| = {Ui | i = m + 1, . . . ,N }, where Ui =



A GENERALIZATION OF ABEL’S THEOREM 651

Star(ai). Let V =
⋃m

i=0 Ui, which is a regular neighborhood of |Z|. Then by
Lefschetz and Poincaré duality we have a commutative diagram

Hn−d(V ,∂V )
∼=

∼=

Hn−d
(
X,X − |Z|

)∼=
Hd

(
|Z|

)

Hn−d(X,X − V ) Hn−d(X)
∼=

Hd(X)

It follows, as claimed above, that the Poincaré dual of [Z] ∈ Hd(X) is rep-
resented in Hn−d(X) ∼= Hn−d(‖N U ‖) by an integral simplicial form βZ ∈
Ωn−d

Z
(‖N U ‖) with suppβZ ⊆ ‖N U ‖ − ‖N UX− |Z| ‖.

For the construction of ΛZ , we first define the following simplicial forms

η0, η1, η2 ∈ Ωn−d
(

‖N U ‖
)

and F1 ∈ Ωn−d−1(‖N U ‖). They are given on Δp × Ui0 ∩ · · · ∩ Uip respectively,
by the forms:

(η0)i0...ip =
∑

is ≤m

tisηZ , (η1)i0...ip =
∑

is>m

tisηZ ,

(η2)i0...ip =
∑

is>m

dtis ∧ F = −
∑

is ≤m

dtis ∧ F,

(F1)i0...ip =
∑

is>m

tisF.

Notice that η1, η2 and F1 vanish on Δp × Ui0...ip ∩ |Z|, since Ui0...ip ∩ |Z| �= ∅
only if all is ≤ m. From these formulas, we clearly have

dF1 = η1 + η2, ηZ = η0 + η1,

ηZ = (η0 − η2) + dF1.

The third equation implies that d(η0 − η2) = 0. Furthermore, by construction

suppη0, suppη2 ⊆ ‖N U ‖ − ‖N UX− |Z| ‖.

It follows that both βZ and η0 − η2 lie in Ωn−d(‖N U ‖), both have support in
‖N U ‖ − ‖N UX− |Z| ‖ and both represent the Lefschetz dual of [Z] ∈ Hd(|Z|)
in Hn−d(‖N U ‖, ‖N UX− |Z| ‖) ∼= Hn−d(X,X − V ). Hence, there is a simplicial
form γ ∈ Ωn−d−1(‖N U ‖), also with suppγ ⊆ ‖N U ‖ − ‖N UX− |Z| ‖, such that
η0 − η2 = βZ + dγ. Now we define ΛZ = γ + F1, so that we have

ΛZ = γ + F1 ∈ Ωn−d−1
(

‖N U ‖
)
,

(4.4)
dΛZ = dγ + dF1 = ηZ − βZ .

We must now show that the class of ΛZ in Deligne cohomology Hn−d
D (X,Z)

depends only on Z. Recalling that F is uniquely defined by the Poisson
equation (4.2), let β′ be another integral form representing the Poincaré dual
of [Z] and suppose γ′ satisfies the same properties as γ relative to β′; in
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particular η0 − η2 = β′ + dγ′. Then d(γ − γ′) = (β′ − βZ) = dκ; that is d(γ −
γ′ − κ) = 0, with κ ∈ Ωn−d−1

Z
(‖N U ‖) integral and all forms γ, γ′, κ having

support in ‖N U ‖ − ‖N UX− |Z| ‖. But since Hn−d−1(X,X − |Z|) ∼= Hd+1(|Z|) =
0, we have γ − γ′ − κ = dτ , for τ ∈ Ωn−d−2(‖N U ‖) also with support in ‖N U ‖ −
‖N UX− |Z| ‖. Thus, we have from (4.4)

γ′ + F1 = γ + F1 − (κ + dτ),
Λ′

Z = ΛZ − (κ + dτ).

By Theorem 3.8, this shows that the equivalence class [ΛZ ] is well defined and
we get

(4.5)
[
Λ′

Z

]
= [ΛZ ] ∈ Hn−d

D (X,Z).

This proves the theorem for the covering U by open stars of the vertices of K.
For an arbitrary good covering U ′ finer than U , we just use the image of ΛZ

by the natural map of simplicial de Rham complexes induced by the map
N U ′ → N U . It is straightforward to check that this pull-back agrees with
the construction of ΛZ as above relative to the refinement U ′. In particular,
the pull-back of the simplicial form F1 to ‖N U ′ ‖ coincides with the simplicial
form F ′

1 defined with respect to U ′.
The properties of ΛZ stated in (1) to (4) are clear from the construction.

�

Remarks 4.2.
(1) The invariance of [ΛZ ] under refinements applies in particular to the

covering U ′ by the open stars of the vertices of a subdivision K ′ of K, which
is a refinement of the covering by the open stars of the vertices of K.

(2) From the preceding proof, we have F1| ‖N UZ ‖ = 0 and therefore

(4.6) ΛZ | ‖N UZ ‖ = γ| ‖N UZ ‖.

(3) Let Xd ⊆ X denote the d-skeleton of X for the triangulation K. Notice
that if F = FZ |X−Xd satisfies dF = 0, then F is harmonic in the strong sense
by (4.3) and Z is determined by F . In fact, suppose that Z1 and Z2 are two
such cycles. Then by continuity (assuming d ≤ n − 1), we have ηZ1 = ηZ2 = 0,
so by (4.4)

βZ1 − βZ2 = −d(γ1 − γ2)

represents 0 in Hn−d(X,X − Xd), which is a subgroup of the dth chain group
of K. Hence, we have Z1 = Z2 in that group.

Definition 4.3. The Deligne cohomology class

(4.7) [ΛZ ] ∈ Hn−d
D (X,Z)

we shall call the Abel gerbe associated to the cycle Z.
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Remark 4.4. In particular, if M = Md ⊂ X is a closed oriented subman-
ifold, we choose a triangulation K of X , such that Md ≈ |L|, where L is a
subcomplex of K. Then there is a canonical simplicial cycle ZM ∈ Cd(L) ⊆
Cd(K), such that |ZM | = |L| ⊆ |K| and ZM represents the fundamental class
[M ] ∈ Hd(M) ∼= Z. Viewed as a cycle on X ≈ |K|, ZM ∈ Cd(K) represents the
image of [M ] under the homomorphism Hd(M) ∼= Z → Hd(X), also denoted
by [M ]; that is, we have [ZM ] = [M ] ∈ Hd(X). Then we put ΛM = ΛZM

, so
that the Abel gerbe

(4.8) [ΛM ] ∈ Hn−d
D (X,Z)

is well defined, with dΛM = ε∗ηM − βM having the obvious meaning, namely
ηM = ηZM

and βM = βZM
.

5. Linear equivalence of cycles and Abel’s Theorem

For X a Riemann surface and Z = d a divisor as in Section 2, the Abel gerbe
is the associated holomorphic line bundle L(d) with the complex connection
given by the holomorphic structure. In this case, by Lemma 2.1 Z has a
meromorphic solution, that is, it is linearly equivalent to zero, if and only if
[ΛZ ] = 0 in H2

D(X,Z). Motivated by this, we introduce the following definition
of linear equivalence for cycles.

Definition 5.1. Two cycles Z1,Z2 ∈ Cd(K) are called linearly equivalent
if

(5.1) [ΛZ1−Z2 ] = [ΛZ1 ] − [ΛZ2 ] = 0 ∈ Hn−d
D (X,Z).

Remark 5.2. If [ΛZ ] = 0, then in particular ηZ = 0 and [βZ ] = 0 in
Hn−d(X,Z), that is, Z is homologous to zero.

Theorem 5.3 (Abel’s Theorem). Let Z = ∂Γ, Γ ∈ Cd+1(K). Then Z is
linearly equivalent to zero, if and only if∫

Γ

θ ∈ Z

for all harmonic θ ∈ Hd+1(X,Z) with integral periods.

For the proof, we again solve the distributional equation (4.1) with ηZ = 0:

(5.2) ΔHZ = −δZ = −dδΓ,

where δΓ(ψ) =
∫
Γ

ψ,ψ ∈ Ωd+1(X). Hence for F∂Γ = FZ = ∗ d ∗ HZ as before,
we get

ΔHZ = dF∂Γ = −dδΓ,

and
d(F∂Γ + δΓ) = 0,

so that by de Rham–Hodge theory for currents [6]

(5.3) F∂Γ + δΓ = αΓ + dT
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for a harmonic form αΓ ∈ Hn−d−1(X) and a (n − d − 2)-current T ∈ Ωd+2(X)′.
Note that αΓ is smooth by elliptic regularity.

We shall first prove the following theorem.

Theorem 5.4. For Z = ∂Γ, the simplicial gerbe ΛZ and the harmonic form
αΓ have the following properties:

(1) As simplicial forms, we have

(5.4) ΛZ = Λ∂Γ ≡ ε∗αΓ mod
(
Ωn−d−1

Z

(
‖N U ‖

)
+ dΩn−d−2

(
‖N U ‖

))
;

that is, the simplicial form Λ∂Γ is given by the global harmonic form αΓ.
(2) There exists an integral form κ ∈ Ωn−d−1

Z
(‖N U ‖) with support in a

regular neighborhood VΓ of |Γ|, such that for all harmonic (d + 1)-forms with
integral periods θ ∈ Hd+1(X,Z), we have

(5.5)
∫

[X]

(Λ∂Γ + κ) ∧ ε∗θ ≡
∫

Γ

θ mod Z.

(3) If Z = ∂Γ = ∂Γ′, then ζ = αΓ′ − αΓ ∈ Hn−d−1(X,Z); that is, ζ is a
harmonic form with integral periods. Hence, [αΓ] is well-defined in the Picard
torus Picn−d−1(X) = Hn−d−1(X)/Hn−d−1(X,Z) in (6.9).

Proof. First notice that since FZ = ∗ d ∗ HZ and θ is harmonic, we get from
(5.3)

(5.6)
∫

X

αΓ ∧ θ = 〈FZ + δΓ, θ〉 = 〈δΓ, θ〉 =
∫

Γ

θ.

This shows that (1) and (2) are equivalent.
For the proof of (2), we let VΓ =

⋃
{Ui ∈ UΓ}, where UΓ is the set of open

sets Ui ∈ U intersecting Γ, so that VΓ is a regular neighborhood of |Γ|. Since
formula (5.5) is additive in Γ, we can without loss of generality assume that
Γ consists of a single simplex and that VΓ is contractible. Therefore, we can
assume that θ|VΓ = dν for some ν ∈ Ωd(VΓ). From the formulas for integration
of simplicial forms (cf. Dupont–Kamber [11] and Dupont–Ljungmann [12]),
together with the construction of ΛZ in the proof of Theorem 4.1, we now get

〈FZ + δΓ, θ〉 =
∫

[X−VΓ]

FZ ∧ θ + 〈FZ |V Γ
+ δΓ, dν〉(5.7)

=
∫

[X−VΓ]

ΛZ ∧ ε∗θ −
∫

[∂V Γ]

ΛZ ∧ ε∗ν

=
∫

[X−VΓ]

ΛZ ∧ ε∗θ +
∫

[V Γ]

dκ ∧ ε∗ν +
∫

[V Γ]

ΛZ ∧ ε∗θ

=
∫

[X]

ΛZ ∧ ε∗θ +
∫

[V Γ]

κ ∧ ε∗θ +
∫

[∂V Γ]

κ ∧ ε∗ν

=
∫

[X]

(ΛZ + κ) ∧ ε∗θ.
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Here we have used that, since Z = ∂Γ ∼ 0, we have ηZ = 0 and βZ = −dκ
and hence dΛZ = dκ for some integral simplicial form κ with support in VΓ.
We used also the simplicial Stokes’ theorem [12] to see that

∫
[V Γ]

d(κ ∧ ε∗ν) =∫
[∂V Γ]

κ ∧ ε∗ν = 0, since κ vanishes on ∂V Γ. Equations (5.6) and (5.7) now
prove (2).

For the proof of (3), let Z = ∂Γ = ∂Γ′. Then ∂(Γ′ − Γ) = 0 and Z ′ = Γ′ − Γ
is an integral (d + 1)-cycle. Equation (5.3) implies δZ′ = δΓ′ − δΓ = (αΓ′ −
αΓ) + d(T ′ − T ). So ζ = αΓ′ − αΓ satisfies δZ′ = ζ + d(T ′ − T ). Since Z ′ is an
integral cycle, ζ must be an integral harmonic form ζ ∈ Hn−d−1(X,Z). �

Abel’s Theorem 5.3 is now a consequence of the following Corollary to
Theorem 5.4.

Corollary 5.5. For Z = ∂Γ as above, the following statements are equiv-
alent:

(1) [ΛZ ] = 0 in Hn−d
D (X,Z);

(2) For all harmonic (d + 1)-forms θ with integral periods; that is, θ ∈
Hd+1(X,Z), we have

(5.8)
∫

Γ

θ ∈ Z.

(3) There exists Γ0 with ∂Γ0 = Z, such that

F∂Γ0 + δΓ0 = dT0,

where FZ = F∂Γ0 is given as before. By (5.3), we have αΓ0 = 0.

Proof. By Theorem 5.4 [ΛZ ] is represented in Hn−d−1(X,R) by the har-
monic form αΓ. Hence (1) and (2) are equivalent to αΓ ≡ 0 mod Hn−d−1(X,
Z). From Theorem (5.4) (3), we know that [αΓ] = 0 ∈ Hn−d−1(X)/Hn−d−1(X,
Z). By changing Γ by a cycle, we can make αΓ = 0. This proves that (3) is
equivalent to (1) and (2). �

Remark 5.6. Notice that F = F∂Γ|X− |Z| is now harmonic in the stronger
sense that dF = 0 and d∗F = 0 by (4.3). Furthermore, since [ΛZ ] = 0, we get
from Theorem 4.1, (4) that F = dL for a smooth form L on X − |Z|. Thus
L is analogous to a meromorphic solution in the classical Abel theorem and
linear equivalence is analogous to the classical notion.

6. Moduli spaces

In this section, we need to enlarge the chain complex C∗(K) relative to
a smooth triangulation of X , that is X ≈ |K|, which was introduced at the
beginning of Section 4. Therefore, we look at the limit complex

(6.1) C∗(X) = lim
−→

K

C∗(K) ⊂ S∗(X),
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taking into account the inclusions of chain complexes C∗(K) ⊆ C∗(K ′) where
K ′ corresponds to a subtriangulation of the triangulation coming from K.
Obviously, we can view C∗(X) as a subcomplex of the singular complex S∗(X)
of X . Then C∗(K) ⊆ C∗(K ′) ⊂ S∗(X) induce isomorphisms in homology, so
that we have canonical isomorphisms

H∗
(
C∗(X)

) ∼= lim
−→

K

H∗(K) ∼= H∗(X).

The construction of the Abel gerbe Z → [ΛZ ] passes to the limit (6.1) and
defines a homomorphism Zd(X) → Hn−d

D (X,Z). This follows from the proof
of Theorem 4.1 and the fact that the covering U ′ given by the open stars of
the vertices of a subdivision K ′ of K is a refinement of the covering U given
by the open stars of the vertices of K.

As the construction of the Abel gerbe in Section 4 involves de Rham–
Hodge theory on the compact oriented Riemannian manifold X , we need now
to better understand the terms in diagram (3.4) for the Deligne cohomology
in view of the de Rham–Hodge decomposition of forms on X :

(6.2) Ω�(X) ∼= H�(X) ⊕ dΩ�−1(X) ⊕ d∗Ω�+1(X).

We recall that H�(X,Z) ⊂ H�(X) denotes the harmonic forms, respectively
the integral lattice of harmonic forms. Further, the sum decompositions in
(6.2) and the following formulas are orthogonal. Thus the de Rham–Hodge
decomposition (6.2) implies that

(6.3) H�+1
D (X) ∼= H�(X) ⊕ d∗Ω�+1(X), Ω�(X)/Ω�

cl(X) ∼= d∗Ω�+1(X)

and also

(6.4) Ω�
cl(X,Z) ∼= H�(X,Z) ⊕ dd∗Ω�(X).

This implies

(6.5) j∗H�(X,Z) ∼= Ω�
cl(X,Z)/dd∗Ω�(X) ∼= H�(X,Z),

as well as

(6.6) Ω�(X)/Ω�
cl(X,Z) ∼= H�(X)/H�(X,Z) ⊕ d∗Ω�+1(X).

Remarks 6.1. This has the following consequences for the diagram (3.4):

(1) By (6.3), the right arrow in the second exact row is of the form

(6.7) H�+1
D (X) ∼= H�(X) ⊕ d∗Ω�+1(X) → Ω�(X)/Ω�

cl(X) ∼= d∗Ω�+1(X),

and is given by orthogonal projection to the second summand. Here the
infinite dimensional part d∗Ω�+1(X) consists of topologically trivial gerbes of
the form ω0 = d∗α whose curvature dω0 = dd∗α uniquely determines ω0 = d∗α.
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(2) Using (6.3), (6.5), the kernel of ι∗ are the harmonic forms H�(X,Z)
with integral periods. Thus, the image of ι∗ contains the torus

(6.8)

H�(X,R)/j∗H�(X,Z)

⊆ρ∗

∼= H�(X)/H�(X,Z)

⊆ι∗

H�(X,R/Z)
⊆

H�+1
D (X,Z)

of topologically trivial flat �-gerbes. In our motivating situation in Section 2,
where � = 1, this torus corresponds to the Picard variety of topologically trivial
holomorphic line bundles. We will refer to it as the Picard torus and write

(6.9) Pic�(X) = H�(X)/H�(X,Z).

Note that from (3.4) and Remark 3.2(3), the Picard torus in (6.8) differs
from the moduli space H�(X,R/Z) of flat �-gerbes by the torsion subgroup of
H�+1(X,Z). This is encoded in diagram (3.4) by the left exact column; that
is, the Bockstein exact sequence. In fact, the torus on the left side of (6.8) is
exactly the kernel of the Bockstein boundary map β∗ and the image of β∗ is
the torsion subgroup of H�+1(X,Z).

(3) It follows from (3.5) and (6.6) that the Deligne cohomology is given by
an exact sequence (i.e., the middle exact column in (3.4))

(6.10) 0 → Pic�(X) ⊕ d∗Ω�+1(X) ι∗−→
⊆

H�+1
D (X,Z) c−→ H�+1(X,Z) → 0,

since ι∗ is injective on d∗Ω�+1(X) by exactness of the third column of (3.4).
(4) Harmonic Deligne cohomology: If we pull back the exact sequence (3.1)

along the inclusion H�+1(X,Z) ⊂ Ω�+1
cl (X,Z), we obtain the harmonic Deligne

cohomology H�+1
D (X,Z) of �-gerbes with harmonic curvature:

(6.11)

0 H�(X,R/Z)

id

H�+1
D (X,Z)

d∗

⊂

H�+1(X,Z)

⊂

0

0 H�(X,R/Z) H�+1
D (X,Z)

d∗ Ω�+1
cl (X,Z) 0

Then the exact sequence (6.10) becomes

(6.12) 0 → Pic�(X) ι∗−→
⊆

H�+1
D (X,Z) c−→ H�+1(X,Z) → 0.

For these reasons, we call these gerbes harmonic gerbes and H�+1
D (X,Z) the

harmonic Deligne cohomology.1

1 After the present paper was posted on ArXiv, we were informed by Richard Green that

harmonic Cheeger–Simons characters are studied in Green–Mathai [14].
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6.1. The Picard torus and the Picard map. From the construction
of the Abel gerbe in Theorem 4.1 and the definition of linear equivalence in
Definition 5.1, we have an injection of Abelian groups

(6.13) Λ : Md(X) := Zd(X)/{lin. equiv.} ⊆ Hn−d
D (X,Z),

where the inclusion Λ is induced by Z �→ [ΛZ ].
For the boundaries Bd(X) ⊂ Zd(X), we have the following inclusion from

Theorem 5.4(1), (3):

(6.14) α : M ◦
d(X) := Bd(X)/{lin. equiv.} ⊆ Picn−d−1(X),

where the inclusion is given by Z = ∂Γ �→ αΓ = [αΓ]. Thus Md(X), respec-
tively M ◦

d(X), is the moduli space of Abel gerbes, respectively the moduli space
of topologically trivial Abel gerbes. From Theorem 5.4(1) and (6.8), we have
the following Cartesian diagram; that is, a pull-back diagram:

(6.15)

Md(X) Λ

⊆ Hn−d
D (X,Z)

M ◦
d(X) α

⊆

⊆

Picn−d−1(X)

⊆ ι∗

Recall that by construction, the image of Md(X) in Hn−d
D (X,Z) is con-

tained in the group of gerbes whose curvature is harmonic with integral peri-
ods; that is, in the harmonic Deligne cohomology Hn−d

D (X,Z) (cf. (6.11)). In
contrast, M ◦

d(X) is exactly the part of Md(X) which maps into the Picard
torus (6.8), (6.9), namely Picn−d−1(X); that is, it consists of flat, topologically
trivial gerbes. We call α the Picard map.

From (6.12) and the fact that the characteristic class of the Abel gerbe [ΛZ ]
is the Poincaré dual [βZ ] of [Z], it follows that we have canonical isomorphisms

(6.16) Md(X)/M ◦
d(X) ∼= Hd(X,Z) PD−−→∼=

Hn−d(X,Z),

the second being Poincaré duality, induced by the characteristic class. We
will see in Proposition 6.6 that M ◦

d(X) is connected in Picn−d−1(X). So if
M ◦

d(X) ∼= Picn−d−1(X), then Md(X) ∼= Hn−d
D (X,Z), the harmonic Deligne

cohomology of classes with harmonic curvature.
Thus, we need to understand the image of M◦

d in the Picard torus
Picn−d−1(X) of topologically trivial flat gerbes.

Remark 6.2. Torsion classes (cf. Remark 6.1(2)): Suppose that the Abel
gerbe ΛZ is flat; that is ηZ = 0, so that [ΛZ ] ∈ Hn−d−1(X,R/Z). By diagram
(3.4), the characteristic class [βZ ] ∈ Hn−d(X,Z) is given by [βZ ] = β∗[ΛZ ],
where β∗ is the Bockstein homomorphism. Thus, βZ is a torsion class, say
m · [βZ ] = 0 for some m ∈ N

+. By Poincaré duality, we have also m · Z = ∂Γ
and so m · Z determines an element in M ◦

d(X). Finally, the Bockstein formula
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implies m · β∗[ΛZ ] = 0; that is, m · [ΛZ ] = [αΓ] takes value in the Picard torus
Picn−d−1(X).

6.2. The Jacobi torus and the Abel–Jacobi map. First, we observe
that α �→

∫
X

α∧ induces by Poincaré duality a canonical isomorphism
ϕ : Hn−d−1(X) ∼= Hd+1(X)∗. It further induces an isomorphism of Abelian
tori of (real) dimension dimHd+1(X.R):

(6.17) ϕ : Hn−d−1(X)/Hn−d−1(X,Z) ∼= Hom
(

Hd+1(X,Z),R/Z
)
.

This is valid for d = 0, . . . , n − 1. The torus on the right hand side of (6.17)
corresponds classically to the Jacobi variety of a Riemann surface, where
n = 2, d = 0. We shall call it the Jacobi torus and denote it by Jacd+1(X).
We now recall formula (5.6); that is,∫

X

αΓ ∧ θ =
∫

Γ

θ, θ ∈ Hd+1(X).

Combining (5.6) with (6.17), we obtain a commutative diagram

(6.18)

Picn−d−1(X)

ϕ∼=M ◦
d(X)

α

⊆

J

⊆

Jacd+1(X)

where J is induced by the functional

(6.19) Z = ∂Γ �→ J∂Γ(θ) =
∫

Γ

θ, θ ∈ Hd+1(X,Z).

Note that J is well defined and injective by Abel’s Theorem 5.3, plus the
fact that J∂Γ(θ) has integral values if Γ is a cycle; that is ∂Γ = 0. We shall
call J the Abel–Jacobi map. Thus, we may just as well use the map J to
investigate the image of M ◦

d(X). The Abel–Jacobi map J is given in terms of
period integrals and therefore is more explicit than the Picard map α, which
is determined by the solution of a Laplace–Poisson equation. Therefore, it is
in general easier to deal with and more effective in explicit calculations, as we
shall see.

Remarks 6.3. Intermediate Jacobians:
(1) For a Kähler manifold, our definition of the Jacobians agrees with the

tori underlying the complex intermediate Jacobians in odd degrees, which are
related to holomorphic Deligne cohomology (cf. Griffiths–Harris [16], Ch. 2.6,
Dupont–Hain–Zucker [9] and also Clemens [5], Harvey–Lawson [21] and the
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references given there). For divisors on algebraic manifolds of complex di-
mension greater than one, it is not clear how our version of Abel’s theorem is
related to the version by Griffiths [15].

(2) We also remark that for dimX = n = 4k + 2, d = 2k, k ≥ 0, the Picard
and the Jacobi tori in degree n − d − 1 = d + 1 = 2k + 1 carry a canonical
complex and symplectic structure, compatible with the isomorphism

Pic2k+1(X)
ϕ−→∼=

Jac2k+1(X).

The former is induced by the Hodge ∗-operator on H2k+1(X) and the latter
is defined by the pairing 〈α,β〉 =

∫
X

α ∧ β on H2k+1(X).

6.3. Deformations. We now consider ‘deformations’ of Abel gerbes as fol-
lows.

Definition 6.4.
(1) A regular (d + 1)-simplex in X is a smooth embedding Γ : Δd+1 →

X of the standard simplex Δd+1 (or rather an open neighborhood in the
hyperplane

∑d+1
i=0 ti = 1). Note that any simplex in a triangulation K of X

can be parametrized as a regular simplex.
(2) A deformation of a cycle Z = ∂Γ ∈ Bd(X) for a triangulation K of X

is a family of cycles Zr = ∂Γr ∈ Bd(X), r ∈ [0,1], for some subdivisions Kr of
K, such that Γ1 = Γ, each simplex of Γr is regular and r �→ J(Zr) = J∂Γr =∫
Γr

(·) ∈ Jacd+1(X) is a smooth curve.

The following deformation techniques are used repeatedly in what follows
and we state them in a separate lemma.

Lemma 6.5. Let Z = ∂Γ, for Γ any (d+1)-chain in Cd+1(K) consisting of
regular simplices, where K is an arbitrary triangulation of X . Then there is
a deformation Zr = ∂Γr, r ∈ [0,1] of Z satisfying:

(1) Γr ∈ Cd+1(Kr), |Kr | a subdivision of |K|.
(2) For αr = αΓr , the map ]0,1] → Picn−d−1(X) given by r �→ [αr] is

smooth.
(3) For Jr = J∂Γr , the map ]0,1] → Jacd+1(X) given by r �→ Jr is smooth.
(4) [αr] → 0 in Picn−d−1(X) for r ↓ 0.
(5) Jr(θ) =

∫
Γr

θ → 0, r ↓ 0, for all θ ∈ Hd+1(X).

Proof. It is clearly enough to take Γ to be a regular (d + 1)-simplex Γ :
Δd+1 → X of K. Then we simply define Γr = Γ ◦ φr, with φr(t0, . . . , td−1, td,
td+1) = (t0, . . . , td−1, td + (1 − r)td+1, rtd+1), t ∈ Δd+1. Then Γr, r ∈ [0,1]
clearly satisfies (1) and (2). (2) and (3) are equivalent by formula (5.6).
Furthermore by Theorem 5.4 and formula (5.6), conditions (4) and (5) are
equivalent and are fulfilled, since

∫
Γr

θ → 0, r ↓ 0, for all θ ∈ Hd+1(X) by con-
struction of Γr. �
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Proposition 6.6.

(1) M ◦
d(X) is connected in the Picard torus, respectively the Jacobi torus.

(2) The closure M ◦
d(X) in the induced topology is a subtorus of

Picn−d−1(X).
(3) For α, respectively J to be surjective, it is necessary and sufficient that

their image contain an open neighborhood of the origin (or an open neighbor-
hood of any point in their image).

Proof. Again let ∂Γ for Γ any (d + 1)-chain in Cd+1(K), where K is an
arbitrary triangulation of X . To prove (1), we again take Γ to be a regu-
lar (d + 1)-simplex and we define as before Γr(t) = Γ(t0, . . . , td−1, td + (1 −
r)td+1, rtd+1), t ∈ Δd+1. Then (1) follows from Lemma 6.5 and (2) clearly
follows from (1). To prove (3), we have only to observe that α, respectively J
are homomorphisms of Abelian groups. The statement follows from the fact
that any open neighborhood of the origin in either torus generates the entire
torus. Observe that, except for (1), the above deformations can take place in
the interior of the fundamental domain of Hn−d−1(X) relative to the integral
lattice Hn−d−1(X,Z). �

6.4. The moduli theorem. In this section, we determine the moduli space
of Abel gerbes by establishing an inversion theorem for the Abel–Jacobi map.
Before stating and proving the main Theorem 6.14, we will illustrate the
technique involved in some important examples.

Example 6.7. The case n ≥ 2, d = n − 1:
The Jacobi map J : M ◦

n−1(X) → Jacn(X) is an isomorphism. Therefore,
so is the Picard map α : M ◦

n−1(X) → Pic0(X). This is the easiest case, since
the Picard and Jacobi tori are now in degree 0, respectively n. Thus

Pic0(X)
ϕ−→∼=

Jacn(X) ∼= Hom
(

Hn(X,Z),R/Z
) ∼= R/Z,

with the generator of the integral lattice given by θ0 = Vol, assuming that
the volume is normalized. Taking a deformation Γr, r ∈ [0,1] of a regular n-
simplex as in Lemma 6.5, we get JΓr (θ0) =

∫
Γr

Vol > 0, respectively JΓr(θ0) =∫
Γr

Vol < 0, if the orientation of the regular simplex Δn is reversed. Further,
we have JΓr (θ0) =

∫
Γr

Vol → 0, r ↓ 0. Thus the image contains an interval
around the origin and so the Jacobi map must be an isomorphism M ◦

n−1(X) ∼=
Jacn(X).

In this case, the Deligne cohomology H1
D(X,Z) consists of 0-gerbes, which

are given by f0 ∈ Č0(U ,R), such that δ̌f0 ≡ 0 mod Z, so that f0 defines a
global smooth function θ : X → R/Z ∼= U(1), modulo global functions Ω0(X).
Since δ̌ df0 = dδ̌f0 = 0, the curvature Ff is a closed 1-form with integral peri-
ods, determined by ε∗(Ff ) = df0. The characteristic class of [θ, f ] is given by
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c[θ, f ] = [δ̌f0] ∈ H1(X,Z); that is, the obstruction to lift θ to a global function
f ∈ Ω0(X).

Example 6.8. The case n > 2, d = n − 2:
Here we look at Abel 1-gerbes associated to submanifolds Mn−2 ⊂ Xn of

codimension 2 or more generally to cycles Z ∈ Cn−2(X). In this case, we have

Pic1(X)
ϕ−→∼=

Jacn−1(X) ∼= Hom
(

Hn−1(X,Z),R/Z
)
,

and the Abel–Jacobi map J : M ◦
n−2(X) ∼= Jacn−1(X) is an isomorphism. The

moduli space Mn−2(X) of Abel 1-gerbes is generated by cycles Z ∈ Cn−2(X)
and is given by Mn−2(X) ∼= H2

D(X,Z); that is, the moduli space of complex
line bundles with unitary connection and harmonic curvature.

Example 6.9. X = T
n, n ≥ 2, d = 0, . . . , n − 1:

The Jacobi map J : M ◦
d(X) → Jacd+1(X) is an isomorphism; so is the Pi-

card map α : M ◦
d(X) → Picn−d−1(X). Here, we take X = T

n, an n-dimension-
al torus with the flat (invariant) Riemannian metric. In this case, the di-
mension of the Picard-, respectively the Jacobi torus is dimHd+1(X,R) =(

n
d+1

)
, d = 0, . . . , n − 1. There is an orthonormal basis {θ1, . . . , θn} of inte-

gral, harmonic, invariant 1-forms which form a framing of the cotangent
bundle T ∗(X) and determine an orthonormal basis of Hd+1(X,Z) by θI =
θi1 ∧ · · · ∧ θid+1 , where I = (i1 < i2 < · · · < id+1). The dual basis {e1, . . . , en}
determines (d + 1)-subspaces eI = ei1 ∧ · · · ∧ eid+1 of R

n, respectively basis
elements of Λd+1(Rn) for all multi-indices I as above. By deforming small
(d + 1)-parallelepipeds PI in the direction of eI by the method of Lemma 6.5
and considering the families of Jacobi integrals JPI

(θI) =
∫

PI
θI or their linear

combinations, one generates (small) open sets in the range of the Jacobi map.

Example 6.10. The case n ≥ 2, d = 0:
This is similar to the classical case of divisors on a Riemann surface. In

this case, we have

Picn−1(X)
ϕ−→∼=

Jac1(X) ∼= Hom
(

H1(X,Z),R/Z
)
.

Theorem 6.14 asserts that the Jacobi map J : M ◦
0(X) → Jac1(X) is an iso-

morphism. Therefore, so is the Picard map α : M ◦
0(X) → Picn−1(X). The

moduli space M0(X) of Abel (n − 1)-gerbes defined by points {p} ⊂ X , whose
curvature is the normalized harmonic volume form Vol, satisfies M0(X) ∼=

Hn
D(X,Z); that is, the space of (n − 1)-gerbes with harmonic curvature. In

this case, we have M0(X)/M ◦
0(X) ∼= H0(X,Z). If X is connected with base-

point p0, the Abel–Jacobi map J : B0(X) → Jac1(X) defines a smooth map-
ping j : X → Jac1(X) by j(p)(θ) =

∫ p

p0
θ mod Z, for θ ∈ H1(X,Z). In turn, the

mapping j determines the Abel–Jacobi map J completely. To see this, choose
regular 1-simplices Γi, such that ∂Γi = {pi} − {qi}, i = 1, . . . ,m,m ≥ 1. Then
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for Γ =
∑

i Γi, we have J∂Γ(θ) =
∑

i

∫
Γi

θ ≡
∑

i(j(pi)(θ) − j(qi)(θ)) mod Z.
Thus Abel’s theorem implies that

∑
i j(pi) =

∑
i j(qi), if and only if the 0-

chains
∑

i{pi} and
∑

i{qi} are linearly equivalent. Note that this argument
does not prove surjectivity of J .

Example 6.11. Riemann surfaces X of genus g ≥ 1, n = 2, d = 0:
In this case, we have

Pic1(X)
ϕ−→∼=

Jac1(X) ∼= Hom
(

H1(X,Z),R/Z
)
,

and α : M ◦
0(X) → Pic1(X), respectively J : M ◦

0(X) → Jac1(X), correspond
to the Picard, respectively the Abel–Jacobi map of the Riemann surface. The
Jacobi integral involves path integrals over 1-chains Γ of the form JΓ(θ) =

∫
Γ

θ.
The Deligne cohomology H2

D(X,Z) is the moduli space of 1-gerbes; that is
complex line bundles with unitary connection.

On a Riemann surface the first cohomology group H1(X, M ∗
X) vanishes (cf.

[17], Ch. 7, Theorem 12). This is a non-trivial consequence of the Riemann–
Roch theorem and Serre duality. From the exact cohomology sequence

0 → H0
(
X, O ∗

X

)
→ H0

(
X, M ∗

X

) D−→ H0(X, DX)
δ∗−→ H1

(
X, O ∗

X

)
→ H1

(
X, M ∗

X

)
of the divisor sequence

0 → O ∗
X → M ∗

X
D−→ DX → 0,

it follows that H0(X, DX) δ∗−→ H1(X, O ∗
X) is surjective and every holomorphic

line bundle is the line bundle of a divisor. In particular, the divisors of degree
zero are mapped onto the Picard variety

Pic(X) = H1(X, OX)/H1(X,Z) ⊆ H1
(
X, O ∗

X

)
.

Pic(X) is a complex torus of dimC Pic(X) = g, the variety of holomorphic line
bundles L with Deg(L) = c1(L) = 0; that is, topologically trivial holomorphic
line bundles. In our context, the Picard torus Pic1(X) is a real torus of
dimension 2g and the above shows that M ◦

0(X) ∼= Pic1(X). Our proof of
J : M ◦

0(X) ∼= Jac1(X) in Theorem 6.14 is much more elementary and closer
to the direct generation of all holomorphic line bundles via divisors in [17],
Ch. 7(c) and the Inversion theorem in [16], Ch. 2.2. Thus, we choose suitable
1-simplices Γi on cycles Yi representing a basis [Yi] ∈ H1(X,Z), i = 1, . . . ,2g
and deform their endpoints pi = Γi(0,1) along the curves Γi by Γi(r)(t0, t1) =
Γi(t0 + (1 − r)t1, rt1), r ∈ [0,1] to the fixed initial points p0,i = Γi(1,0). In
this way one generates an open set in the image of the Abel–Jacobi map by
the functionals J∂Γ(r1,...,r2g) =

∫
Γ(r1,...,r2g)

, where Γ(r1, . . . , r2g) =
∑2g

i=1 Γi(ri).
The same procedure applies also to Example 6.10 for the generation of (n − 1)-
gerbes defined by points in X .
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Example 6.12. The case n = 3, d = 0:
This is a special case of Example 6.10; so, we have

Pic2(X)
ϕ−→∼=

Jac1(X) ∼= Hom
(

H1(X,Z),R/Z
)
.

Theorem 6.14 asserts that the Abel–Jacobi map J : M ◦
0(X) ∼= Jac1(X) is an

isomorphism. The moduli space M0(X) of Abel gerbes defined by points
{p} ⊂ X3 and whose curvature is the normalized harmonic volume form Vol
is given by M0(X) ∼= H3

D(X,Z); that is, the moduli space of 2-gerbes with
harmonic curvature. In this situation, the Abel–Jacobi map was introduced
and Abel’s theorem proved by Hitchin [22], Ch. 3.2 and Chatterjee [2] in the
context of 2-gerbes. This was one of our motivating examples.

Example 6.13. The case n > 3, d = n − 3:
Here we look at Abel 2-gerbes associated to submanifolds Mn−3 ⊂ Xn of

codimension 3 or more generally to cycles Z ∈ Cn−3(X). In this case, we have

Pic2(X)
ϕ−→∼=

Jacn−2(X) ∼= Hom
(

Hn−2(X,Z),R/Z
)
.

Theorem 6.14 asserts that the Abel–Jacobi map J : M ◦
n−3(X) → Jacn−2(X)

is an isomorphism. Therefore, so is the Picard map α : M ◦
n−3(X) → Pic2(X).

The moduli space Mn−3(X) of Abel 2-gerbes is generated by cycles Z ∈
Cn−3(X) and is given by Mn−3(X) ∼= H3

D(X,Z); that is, the moduli space
of 2-gerbes with harmonic curvature. However, except possibly for the case
n = 4, d = 1, it is not clear whether it would be sufficient to consider only
codimension three submanifolds M ⊂ X ; at any rate, in our proof of Theo-
rem 6.14 we need to consider cycles Z ∈ Cn−3(X) (cf. Bohr–Hanke–Kotschick
[1]).

For codimension 3 submanifolds Mn−3 ⊂ Xn, the Abel–Jacobi map was
also investigated and Abel’s theorem proved by Hitchin [22] and Chatterjee
[2], Theorem 6.4.2, in the context of 2-gerbes. Moreover, Hitchin in [22],
Theorem 3.2 proves a moduli theorem for families of special Lagrangian 3-
tori in a Calabi–Yau 3-fold via the Abel–Jacobi map. Again, these were
motivating examples for the present work.

Theorem 6.14 (Moduli Theorem). The following statements are equiva-
lent and hold for any compact connected oriented Riemannian manifold X of
dimension n ≥ 2, d = 0, . . . , n − 1:

(1) The Picard map α : M ◦
d(X) → Picn−d−1(X) is an isomorphism.

(2) The Abel–Jacobi map J : M ◦
d(X) → Jacd+1(X) is an isomorphism.

(3) The mapping Λ : Md(X) → Hn−d
D (X,Z) is an isomorphism.

(4) Every equivalence class [Λ] of (n − d − 1)-gerbes in the harmonic Deligne
cohomology Hn−d

D (X,Z) can be realized by a unique (up to linear equivalence)
Abel gerbe ΛZ .
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Proof. (1) and (2) are equivalent by diagram (6.18). To prove that (3)
is equivalent to (1), we observe that (6.12), (6.15) and (6.16) determine a
commutative diagram

(6.20)

0 M ◦
d(X)

α

Md(X)

Λ

Hd(X)

∼= PD

0

0 Picn−d−1(X) Hn−d
D (X,Z)

d∗
Hn−d(X,Z) 0

The result follows now from the 5-lemma. (4) is a restatement of (3). Thus
it suffices to prove (2).

We choose an (orthonormal) basis {θ1, . . . , θk }, k = dimHd+1(X,R) in the
integral lattice Hd+1(X,Z) ⊂ Hd+1(X) of harmonic forms and observe that
the Jacobi vector

(6.21) J∂Γ =
(∫

Γ

θ1, . . . ,

∫
Γ

θk

)

determines the element J∂Γ ∈ Jacd+1(X) via the expansion θ =
∑k

i=1 aiθi, ai ∈
Z for any θ ∈ Hd+1(X,Z). Next, we choose a dual basis {Y i} in the integral
lattice j∗Hd+1(X,Z) ⊂ Hd+1(X,R), represented by cycles Yi ∈ Zd+1(X), i =
1, . . . , k; that is, we have

(6.22)
∫

Yi

θj = δij .

Now, we write Yi =
∑

� Γi,�, where the Γi,� are regular (d + 1)-simplices for a
triangulation K of X . Expanding

(6.23) det
(∫

Yi

θj

)
(i,j=1,...,k)

= 1,

we see that for every i = 1, . . . , k, there is an �i such that for Γi = Γi,�i we
have

(6.24) det
(∫

Γi

θj

)
(i,j=1,...,k)

> 0.

We now deform the regular simplices Γi according to the deformation in the
proof of Lemma 6.5; so we consider Γi(r) : Δd+1 φr−→ Δd+1 Γi−→ X,r ∈ [0,1];
that is Γi(r) = Γi ◦ φr. First, we have from Lemma 6.5 (5)

lim
r↓0

∫
Γi(r)

θ = 0, i = 1, . . . , k

for every θ ∈ Hd+1(X,Z), since Γi(r) degenerates to a d-simplex as r ↓ 0. This
is equivalent to

(6.25) lim
r↓0

J∂Γi(r) = 0, i = 1, . . . , k.
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From (6.24) it follows that we can choose ε > 0 sufficiently small, such that
the smooth mapping

r = (r1, . . . , rk) �→
(∫

Γi(ri)

θj

)
(i,j=1,...,k)

(6.26)

=

⎛
⎜⎝

∫
Γ1(r1)

θ1 . . .
∫
Γ1(r1)

θk

...
...

...∫
Γk(rk)

θ1 . . .
∫
Γk(rk)

θk

⎞
⎟⎠

has positive determinant for ri ∈ (1 − ε,1]. Moreover, by passing to a subtrian-
gulation of K if necessary, we can achieve that our construction takes place in
the interior of the fundamental domain in the universal cover Hom(Hd+1(X,

Z),R) of Jacd+1(X). Therefore, the Jacobi vectors (the row vectors in (6.26))

(6.27) J∂Γi(ri) =
(∫

Γi(ri)

θ1, . . . ,

∫
Γi(ri)

θk

)

are linearly independent in Hom(Hd+1(X,Z),R) for ri ∈ (1 − ε,1] and i =
1, . . . , k. Setting Γ(r1, . . . , rk) =

∑k
i=1 Γi(ri) and taking the linear combination

of the Jacobi vectors

(6.28) J∂Γ(r1,...,rk) =
k∑

i=1

J∂Γi(ri) =
k∑

i=1

(∫
Γi(ri)

θ1, . . . ,

∫
Γi(ri)

θk

)

gives a mapping Φ : D → Hom(Hd+1(X,Z),R) ∼= R
k defined by

(6.29) Φ : D � r = (r1, . . . , rk) �→ J∂Γ(r1,...,rk) =
k∑

i=1

J∂Γi(ri).

Here D ⊂ R
k is the hypercube (prism) given by ri ∈ [0,1], i = 1, . . . , k. Φ is

continuous on D and smooth on the interior B ⊂ D, given by ri ∈ (0,1),
i = 1, . . . , k.

The following lemma asserts that the Jacobian DΦ has positive determi-
nant in the neighborhood of an inner point r0 = (r0,1, . . . , r0,k) ∈ B. By the
inverse function theorem, Φ is a local diffeomorphism near r0 and therefore
our theorem follows from Proposition 6.6(3). �

Lemma 6.15. The Jacobian matrix DΦ is given by

(6.30) DΦ =
(

∂Φj

∂ri

)
(i,j=1,...,k)

=
(∂

∫
Γi(ri)

θj

∂ri

)
(i,j=1,...,k)

.

Further, there exists r0 = (r0,1, . . . , r0,k) ∈ B, such that detDΦ(r0) > 0.

Proof. The form of the Jacobian matrix DΦ follows immediately from the
fact that each Jacobi vector J∂Γi(ri) in (6.26) and in the definition (6.28),
(6.29) of Φ depends only on one variable ri. In what follows, we will use
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this fact repeatedly. We now inductively use partial differentiation to pass
from (6.26) to (6.30), using just the intermediate value theorem of calculus.
Writing the matrix in (6.26) as a column of Jacobi vectors, we know that the
determinant is positive for ri in the indicated region, while it goes to 0 for
r1 ↓ 0 by (6.25). Therefore, there is a r0,1 ∈ (0,1), such that

(6.31)
∂

∂r1

∣∣∣∣
r0,1

det

⎛
⎜⎜⎜⎝

J∂Γ1(r1)

J∂Γ2(r2)

...
J∂Γk(rk)

⎞
⎟⎟⎟⎠ = det

⎛
⎜⎜⎜⎝

∂J∂Γ1(r0,1)

∂r1

J∂Γ2(r2)

...
J∂Γk(rk)

⎞
⎟⎟⎟⎠ > 0.

Proceeding inductively, we assume that we have r0,1, . . . , r0,j−1 ∈ (0,1),1 <
j ≤ k, such that the determinant

(6.32) det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂J∂Γ1(r0,1)

∂r1
...

∂J∂Γj−1(r0,j−1)

∂rj−1

J∂Γj(rj)

...
J∂Γk(rk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0

is positive for rj , . . . , rk ∈ (1 − ε,1]. Since (6.32) goes to zero as rj ↓ 0 by
(6.25), there is a r0,j ∈ (0,1), such that

(6.33)
∂

∂rj

∣∣∣∣
r0,j

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂J∂Γ1(r0,1)

∂r1
...

∂J∂Γj−1(r0,j−1)

∂rj−1

J∂Γj(rj)

J∂Γj+1(rj+1)

...
J∂Γk(rk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂J∂Γ1(r0,1)

∂r1
...

∂J∂Γj−1(r0,j−1)

∂rj−1
∂J∂Γj (r0,j)

∂rj

J∂Γj+1(rj+1)

...
J∂Γk(rk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0,

with rj+1, . . . , rk as above. This completes the induction. So for j = k we have
r0 = (r0,1, . . . , r0,k) ∈ B such that (6.33) is positive at r0. But for j = k, (6.33)
is the determinant of the Jacobian (6.30) and the proof is complete. �

Remark 6.16. The proof shows that given a triangulation K of X , every
harmonic gerbe is the Abel gerbe for a cycle in a suitable subdivision of K.

7. Euler and Thom gerbes

In this section, we construct the Euler gerbe and the Thom gerbe of an
orthogonal bundle, based on the gerbe approach in [11] (cf. also [19], [20]). In
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Section 8, we will investigate the relationship between the Euler-, Thom- and
the Abel gerbe. We briefly recall the main properties of the construction of
characteristic gerbes from section 5 of [11], which generalizes the classical con-
structions of secondary characteristic classes and ‘characters’ for connections
on principal G-bundles in terms of simplicial forms. For the classical construc-
tions, we refer to Kamber–Tondeur [23], Chern–Simons [4], Cheeger–Simons
[3] or Dupont–Kamber [10].

In the following p : P → X is a smooth principal G-bundle, G a Lie-group
with only finitely many components and K ⊆ G is the maximal compact sub-
group. As in Section 5 of [11], we fix an invariant homogeneous polynomial
Q ∈ In+1(G), n ≥ 0, such that one of the following 2 cases occur:

Case I: Q ∈ ker(In+1(G) → In+1(K)).
Case II: Q ∈ In+1

Z
(G), that is, there exists an integral class u ∈ H2n+2(BK,

Z) representing the Chern–Weil image of Q in H∗(BG,R) ∼= H∗(BK,R).
With this notation the secondary characteristic class associated to Q (case I)

or (Q,u) (case II) for a connection A on P → X is a class[
Λ(Q,A)

]
∈ H2n+2

D (X) in case I,(7.1) [
Λ(Q,u,A)

]
∈ H2n+2

D (X,Z) in case II.

Note that the characteristic classes in H∗
D(X) are defined by global forms,

whereas the classes in H∗
D(X,Z) are defined by simplicial forms.

(1) The classes in (7.1) are natural with respect to bundle maps and com-
patible coverings.

(2) Curvature formula:

dΛ(Q,A) = Q
(
Fn+1

A

)
in case I,(7.2)

dΛ(Q,u,A) = ε∗Q
(
Fn+1

A

)
− γ in case II,

where γ ∈ ΩZ(|N U |) represents the characteristic class u(P ) associated with
u and FA is the curvature of A.

(3) If Q(Fn+1
A ) = 0, then[

Λ(Q,A)
]

∈ H2n+1(X,R) in case I,(7.3) [
Λ(Q,u,A)

]
∈ H2n+1(X,R/Z) in case II,

and

(7.4) β∗
[
Λ(Q,u,A)

]
= −u(P ),

where β∗ : H2n+1(X,R/Z) → H2n+2(X,Z) is the Bockstein homomorphism.

We shall now use these classes for the case G = SO(2m),Pf ∈ Im
Z

(SO(2m))
the Pfaffian polynomial and u = e ∈ H2m(BSO(2m),Z) the Euler class. That
is, for Y any smooth manifold and π : E → Y a 2m-dimensional oriented
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vector bundle with Riemannian metric and metric connection A we obtain a
characteristic class [Λ(Pf, e,A)] ∈ H2m

D (Y,Z) represented by a simplicial form

Λ(Pf, e,A) ∈ Ω2m−1
(

‖N U ‖
)

for a suitable covering U of Y , satisfying

(7.5) dΛ(Pf, e,A) = ε∗ Pf(FA) − e(E).

We shall refer to this form Λ(Pf, e,A) as the Euler gerbe associated to E.
As is the case for the primary Euler class e(E), there is an alternative

definition of Λ(Pf, e,A), using the Thom space of E:
Let (B(E),S(E)) denote the ball and sphere bundle of radius 1. Then up

to the choice of a ‘bump function’ in the radial direction, the volume form
and connection determine a ‘canonical’ representative form UE ∈ Ω2m

c (B(E)),
with support inside S(E), for the Thom class in H2m(B(E),S(E)). The re-
striction of UE to a neighborhood of the image of the zero section s : Y → E
is independent of the choice of the bump function. For FA the curvature form
of A, we have

(7.6) s∗UE = Pf(FA) ∈ Ω2m(Y ).

For a suitable open covering V of B(E), let βE ∈ Ω2m
Z

(‖N V ‖) represent the
Thom class of E in H2m(B(E),S(E),Z); that is, βE vanishes when restricted
to ‖N V ∩ S(E)‖. Then there exists a simplicial form μE ∈ Ω2m−1(‖V ‖), also
with μE vanishing in ‖N V ∩ S(E)‖, such that

(7.7) dμE = ε∗UE − βE .

Since H2m−1(B(E),S(E)) = 0, the form μE is unique modulo Ω2m−1
Z

(‖N V ‖)+
dΩ2m−2(B(E)) and hence the Deligne class [μE ] ∈ H2m

D (B(E),Z) is well de-
fined. We shall call μE the Thom gerbe of E.

Proposition 7.1. The Thom gerbe determines the characteristic Euler
gerbe by the formula:

(7.8)
[
s∗μE

]
=

[
Λ(Pf, e,A)

]
∈ H2m

D (Y,Z).

Proof. In the ‘universal’ case (cf. [11], Proposition 5.3), the differential of
both sides of the equation is ε∗ Pf(FA) − e(E) by (7.5), (7.6) and (7.7). Hence,
the result follows from the fact that H2m−1(BSO(2m),R) = 0. �

We shall now study the Euler and Thom gerbe in particular for E = νM = ν,
where νM → M is the normal bundle of a submanifold Md ⊂ Xn, which we
now assume to be of even codimension n − d = 2m. Here X as usual is a
compact oriented Riemannian manifold. In this case, we identify ν with a
tubular neighborhood V of M ⊂ X and let V0 = B(ν) ⊂ V .
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Now both Uν and βν define (ordinary, respectively simplicial) forms on
V with support in V 0 and hence μν ∈ Ω2m−1(‖N V ∩ B(ν)‖) extends (non-
canonically) to a simplicial form μ̃ν ∈ Ω2m−1(‖N U ‖) for a suitable covering
U of X , extending V on V . Hence, we have

(7.9) [μ̃ν ] ∈ H2m
D (X,Z),

which we shall call the extended Thom gerbe. Once Uν ∈ Ω2m(V ) is chosen,
[μ̃ν ] is well-defined, independent of the choice of U and the choice of μν . But
it does depend on the ‘scaling’ of Uν ∈ Ω2m(V ). This of course is not the case
for μν and [s∗μν ] ∈ H2m

D (M), since Uν |V0 has a canonical form.

8. Comparison of the Abel gerbe and the Euler gerbe

Continuing with the situation in Section 7 of a submanifold Md ⊂ X , of
even codimension, we want to compare the Euler gerbe with the Abel gerbe
associated to M . Thus let M ⊂ V0 ⊂ V 0 ⊆ V be a tubular neighborhood of M
and let Uν ∈ Ωn−d

c (V0) be the ‘canonical’ Thom class representative. Extend
it to X by 0 outside V0 (also denoted by Uν). With this, we can define a
topologically trivial gerbe, called the difference gerbe

[τM ] ∈ Hn−d
D (X)

as follows:
From the beginning of Section 4, recall that F = FZ |X− |Z| = ∗ d ∗ HZ |X− |Z|

is smooth and satisfies (4.3); that is dF = ηZ |X− |Z|. Triangulate M ⊂ X
and choose the covering U as in Section 4; choose a partition of unity
{ϕi}i=1,...,N subordinate to U and define smooth forms in Ωn−d(X), respec-
tively Ωn−d−1(X):

ζ0 =
∑
i≤m

ϕiηM , ζ1 =
∑
i>m

ϕiηM ,

ζ2 =
∑
i>m

dϕi ∧ F = −
∑
i≤m

dϕi ∧ F,

G1 =
∑
i>m

ϕiF.

Again, we have

dG1 = ζ1 + ζ2, ηM = ζ0 + ζ1,

ηM = (ζ0 − ζ2) + dG1,

with supp(ζ0 − ζ2) ⊆ V . Then d(ζ0 − ζ2) = 0 and hence ζ0 − ζ2 = Uν + dλ,
for λ ∈ Ωn−d−1(X), supp(λ) ⊆ V . Then we put τM = λ+G1 ∈ Ωn−d−1(X), so
that dτM = dλ + dG1 = (ζ0 − ζ2 − Uν) + dG1 = ηM − Uν ; that is, τM satisfies

τM = λ + G1 ∈ Ωn−d−1(X),
(8.1)

dτM = ηM − Uν .
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Hence, we get [τM ] ∈ Hn−d
D (X), and again this is well-defined (even indepen-

dent of the choice of U and {ϕi}i=1,...,N ) once Uν is chosen. Again, since
Uν |V0 has a canonical form, we have that [τM |V0 ] ∈ Hn−d

D (V0) and [τM |M ] ∈
Hn−d

D (M) are well defined. Also note that in a neighborhood of M (say V0),
we have G1|V0 = 0, so that τM |V0 = λ.

Theorem 8.1.
(1) In Hn−d

D (X,Z), we have

(8.2) [ΛM ] = [μ̃ν ] + ι∗[τM ]

and all three are well-defined, except that they depend on a ‘scaling’ of Uν .
Further, the characteristic class of ΛM and μ̃ν is [βM ] = [βν ] ∈ Hn−d(X,Z)
and τM is a topologically trivial gerbe with curvature ηM − Uν , where ηM ∈
Hn−d(X,Z).

(2) In particular, in Hn−d
D (M,Z), we have

(8.3) [ΛM |M ] =
[
Λ(Pf, e,A)

]
+ ι∗[τM |M ].

Proof. First, we observe that the integral simplicial form βM = βZM
, rep-

resenting the Poincaré dual of [M ] ∈ Hd(X), which was constructed at the
beginning of the proof of Theorem 4.1 and in Remark 4.4, can now be chosen
to be the integral representative βν of the Thom class for the normal bundle ν.
Since

ηM − βM = ηM − βν = (ηM − Uν) + (Uν − βν),

we have
dΛM = dτM + dμ̃ν ;

that is
d(ΛM − τM − μ̃ν) = d

(
γ + F1 − (λ + G1) − μ̃ν

)
= 0,

where γ,F1 are as in the proof of Theorem 4.1. Now, choosing U suit-
able, we can assume that F1 = ε∗(F ),G1 = F on X − V and therefore (F1 −
G1)|X−V = 0. Since γ,λ and μ̃ν have support inside V and since again

Hn−d−1(V ,∂V ) ∼= Hn−d−1
(
B(ν),S(ν)

)
= 0,

we get that
(γ − λ) + (F1 − G1) − μ̃ν ∈ dΩn−d−2

(
‖N U ‖

)
.

The theorem is proved. �

Corollary 8.2. Suppose that [ΛM ] = 0 ∈ Hn−d
D (X,Z); that is, M ⊂ X is

linearly equivalent to zero. Then the Euler gerbe [Λ(Pf, e,A)] ∈ Hn−d
D (M,Z)

is topologically trivial, given by the global gerbe [Λ(Pf, e,A)] = −ι∗[τM |M ].

Proof. This follows directly from Theorem 8.1(2). �
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