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ON WEIGHTED INEQUALITIES FOR FRACTIONAL
INTEGRALS OF RADIAL FUNCTIONS

PABLO L. DE NÁPOLI, IRENE DRELICHMAN AND RICARDO G. DURÁN

Abstract. We prove a weighted version of the Hardy–Little-
wood–Sobolev inequality for radially symmetric functions, and

show that the range of admissible power weights appearing in

the classical inequality due to Stein and Weiss can be improved
in this particular case.

1. Introduction

Consider the fractional integral operator

(Tγv)(x) =
∫

Rn

v(y)
|x − y|γ dy, 0 < γ < n.

Weighted estimates for this operator (also called weighted Hardy–Little-
wood–Sobolev inequalities) go back to G. H. Hardy and J. E. Littlewood in
the 1-dimensional case [5], and were generalized to the space R

n, n ≥ 1 by
E. M. Stein and G. Weiss in the following celebrated result.

Theorem 1.1 ([10, Theorem B*]). Let n ≥ 1, 0 < γ < n,1 < p < ∞, α <
n
p′ , β < n

q , α+β ≥ 0, and 1
q = 1

p + γ+α+β
n − 1. If p ≤ q < ∞, then the inequality∥∥|x| −βTγv

∥∥
Lq(Rn)

≤ C
∥∥|x|αv

∥∥
Lp(Rn)

holds for any v ∈ Lp(Rn, |x|pα dx), where C is independent of v.

Inequalities for the fractional integral with general weights were later stud-
ied by several people, see for example [8] and references therein. In particular,
it can be deduced from this theory (e.g., [8, Theorem 1]) that if we restrict
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ourselves to power weights, the previous theorem cannot be improved in gen-
eral.

However, if we reduce ourselves to radially symmetric functions, it is pos-
sible to obtain a wider range of exponents for which the fractional integral is
continuous with power weights. This is of particular interest for some appli-
cations to partial differential equations (see, e.g., [4], [11]). More precisely,
our main theorem is the following.

Theorem 1.2. Let n ≥ 1, 0 < γ < n,1 < p < ∞, α < n
p′ , β < n

q , α + β ≥
(n − 1)( 1

q − 1
p ), and 1

q = 1
p + γ+α+β

n − 1. If p ≤ q < ∞, then the inequality∥∥|x|−βTγv
∥∥

Lq(Rn)
≤ C

∥∥|x|αv
∥∥

Lp(Rn)

holds for all radially symmetric v ∈ Lp(Rn, |x|pα dx), where C is independent
of v.

Remark 1.1. If p = 1, then the result of Theorem 1.2 holds for α + β >
(n − 1)( 1

q − 1) as may be seen from the proof of the theorem.

Remark 1.2. When γ ≤ n − 1, the condition 1
q = 1

p + γ+α+β
n − 1 automat-

ically implies α + β ≥ (n − 1)( 1
q − 1

p ).

Remark 1.3. It is worth noting that if n = 1 or p = q, Theorem 1.2 gives
the same range of exponents as Theorem 1.1.

Our method of proof can also be used, with slight modifications, to re-
obtain the general case of Stein and Weiss’ Theorem. Since this result is not
new and the main ideas needed will appear in our proof of the radial case, we
leave the details to the reader.

Previous results in the direction of Theorem 1.2 include the works of M. C.
Vilela, who made a proof for the case p < q and β = 0 in [11, Lemma 4];
the work of G. Gasper, K. Stempak and W. Trebels [2, Theorem 3.1], who
proved a fractional integration theorem in the context of Laguerre expansions
which in the particular case of radial functions in R

n gives Theorem 1.2 for
α+β ≥ 0; and the work of K. Hidano and Y. Kurokawa [4, Theorem 2.1], who
proved Theorem 1.2 for p < q under the stronger condition β < 1

q . Notice that
this restriction, together with the additional assumptions on α and β, implies
n − 1 < γ < n, whereas our conditions on α and β allow for 0 < γ < n, which is
the natural range of γ’s for the fractional integral. This is because the proof of
Hidano and Kurokawa reduces to the 1-dimensional case of the Stein–Weiss
theorem, while our method of proof is completely different. Moreover, our
proof is simpler than that in [4], particularly when n = 2.

The rest of the paper is organized as follows: in Section 2, we recall some
definitions and preliminary results that will be needed in this paper. In Sec-
tion 3, we prove Theorem 1.2 in the case n = 1. As we have already pointed
out, in this case our range of weights coincides with that of Stein and Weiss
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(and Hardy and Littlewood) and, therefore, the assumption that v be radially
symmetric (i.e., even) is unnecessary. Although this result is not new, we
have included it because the proof we provide is very simple and uses some of
the ideas that we will use to prove the general theorem. Section 4 is devoted
to the proof of Theorem 1.2 in the general case, and we show, by means of
an example when n = 3, that the condition on α + β is sharp. Finally, in
Section 5, we use Theorem 1.2 to obtain a weighted imbedding theorem for
radially symmetric functions.

2. Preliminaries

Let X be a measure space and μ be a positive measure on X . Recall that
if f is a measurable function, its distribution function df on [0, ∞) is defined
as

df (α) = μ
({

x ∈ X :
∣∣f(x)

∣∣ > α
})

.

For 0 < p < ∞, the space weak-Lp(X,μ) is defined as the set of all μ-measura-
ble functions f such that ‖f ‖Lp,∞ is finite, where

‖f ‖Lp,∞ = inf
{
C > 0 : df (α) ≤

(
Cα−1

)p for all α > 0
}
.

If G is a locally compact group, then G posseses a Haar measure, that is, a
positive Borel measure μ which is left invariant (i.e., μ(At) = μ(A) whenever
t ∈ G and A ⊆ G is measurable) and nonzero on nonempty open sets. In
particular, if G = R

∗ := R − {0} (with multiplicative structure), then μ = dx
|x| ,

and if G = R
+, then μ = dx

x .
The convolution of two functions f, g ∈ L1(G) is defined as:

(f ∗ g)(x) =
∫

G

f(y)g
(
y−1x

)
dμ(y),

where y−1 denotes the inverse of y in the group G.
With these definitions in mind, we are ready to recall the following im-

proved version of Young’s inequality that will be needed in what follows.

Theorem 2.1 ([3, Theorem 1.4.24]). Let G be a locally compact group with
left Haar measure μ that satisfies μ(A) = μ(A−1) for all measurable A ⊆ G.
Let 1 < p, q, s < ∞ satisfy

1
q

+ 1 =
1
p

+
1
s
.

Then, there exists a constant Bpqs > 0 such that for all f ∈ Lp(G,μ) and
g ∈ Ls,∞(G,μ) we have

(2.1) ‖f ∗ g‖Lq(G,μ) ≤ Bpqs‖g‖Ls,∞(G,μ)‖f ‖Lp(G,μ).
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Remark 2.1. Notice that if p = 1, and g ∈ Ls(G,μ), then we can replace
(2.1) by the classical Young’s inequality, to obtain

‖f ∗ g‖Ls(G,μ) ≤ Bpqs‖g‖Ls(G,μ)‖f ‖L1(G,μ).

This can be used to prove the extension to the case p = 1 of Theorem 1.2 (see
Remark 1.1).

3. The 1-dimensional case

Recall that we want to prove

(3.1)
∥∥|x| −βTγf

∥∥
Lq(R)

≤ C
∥∥f |x|α

∥∥
Lp(R)

.

The key point in our proof is to write the above inequality as a convolution
inequality in the group R

∗ with the corresponding Haar measure μ = dx
|x| .

Indeed, inequality (3.1) can be rewritten as∥∥|x| −β+ 1
q Tγf

∥∥
Lq(μ)

≤ C
∥∥|x|α+ 1

p f
∥∥

Lp(μ)
.

Now,

|x| −β+ 1
q Tγf(x) =

∫ ∞

− ∞

|x| −β+ 1
q f(y)|y|α+ 1

p

|y|γ−1+α+ 1
p |1 − x

y |γ
dy

|y| = (h ∗ g)(x),

where h(x) = f(x)|x|α+ 1
p , g(x) = |x|−β+ 1

q

|1−x|γ , and we have used that γ − 1 + α +
1
p = −β + 1

q . Using Theorem 2.1, we obtain
∥∥|x| −β+ 1

q Tγf
∥∥

Lq(μ)
≤ C

∥∥|x|α+ 1
p f

∥∥
Lp(μ)

∥∥g(x)
∥∥

Ls,∞(μ)
,

where
1
q

=
1
p

+
1
s

− 1.

Therefore, it suffices to check that ‖g(x)‖Ls,∞(μ) < ∞. For this purpose,
consider ϕ ∈ C∞(R), supported in [ 12 , 3

2 ] and such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1
in ( 3

4 , 5
4 ). We split g = ϕg + (1 − ϕ)g := g1 + g2.

Clearly, g2 ∈ Ls(μ), since the integrability condition at the origin for |g2|s
(with respect to the measure μ) is β < 1

q , and the integrability condition when
x → ∞ is 1

q − β − γ < 0, which, under our assumptions on the exponents, is
equivalent to α < 1

p′ .
Therefore,

μ
(

{g1 + g2 > λ}
)

≤ μ

({
g1 >

λ

2

})
+

( ‖g2‖Ls(μ)

λ

)s

≤ μ

({
g1 >

λ

2

})
+

C

λs
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but,

μ

({
g1 >

λ

2

})
≤ μ

({
C

|1 − x|γ > λ

})

= μ

({
C

λ
1
γ

> |x − 1|
})

≤ C

λ
1
γ

≤ C

λs

as long as sγ ≤ 1, that is, γ ≤ 1 + 1
q − 1

p , which is equivalent to α + β ≥ 0.
Hence, g ∈ Ls,∞(μ) and this concludes the proof.

4. Proof of the weighted HLS theorem for radial functions

In this section, we prove Theorem 1.2. The main idea, as in the one-
dimensional case, will be to write the fractional integral operator acting on
a radial function as a convolution in the multiplicative group R

+ with Haar
measure μ = dx

x . For this purpose, we shall need the following lemma.

Lemma 4.1. Let x ∈ Sn−1 = {x ∈ R
n : |x| = 1} and consider an integral of

the form:

I(x) =
∫

Sn−1
f(x · y)dy

(the integral is taken with respect to the surface measure on the sphere), where
f : [−1,1] → R, f ∈ L1([−1,1], (1 − t2)(n−3)/2). Then, I(x) is a constant inde-
pendent of x and moreover

I(x) = ωn−2

∫ 1

−1

f(t)
(
1 − t2

)n−3
2 dt,

where ωn−2 denotes the area of Sn−2.

Proof. First, observe that I(x) is constant for all x ∈ Sn−1. Indeed, given
x̃ ∈ Sn−1, there exists a rotation R ∈ O(n) such that x̃ = Rx and, therefore,

I(x̃) =
∫

Sn−1
f(x̃ · y)dy =

∫
Sn−1

f(Rx · y)dy =
∫

Sn−1
f
(
x · R−1y

)
dy = I(x).

So, taking x = en, it suffices to compute I(en) =
∫

Sn−1 f(yn)dy. To this end,
we split the integral in two and consider first the integral on the upper-
half sphere (Sn−1)+. Since (Sn−1)+ is the graph of the function g : {x ∈
R

n−1 : |x| < 1} → (Sn−1)+, g(x) = (x,
√

1 − |x|2), we obtain∫
(Sn−1)+

f(yn)dy =
∫

{ |x|<1}
f
(√

1 − |x|2
) 1√

1 − |x|2
dx

using polar coordinates, this is∫
Sn−2

∫ 1

0

f
(√

1 − r2
) 1√

1 − r2
rn−2 dr dy = ωn−2

∫ 1

0

f(t)
(
1 − t2

)n−3
2 dt.
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Analogously, one obtains∫
(Sn−1)−

f(yn)dy = ωn−2

∫ 0

−1

f(t)
(
1 − t2

)n−3
2 dt.

This completes the proof. �

Now we can proceed to the proof of our main theorem.
Using polar coordinates,

y = ry′, r = |y|, y′ ∈ Sn−1,

x = ρx′, ρ = |x|, x′ ∈ Sn−1

and the identity
|x − y|2 = |x|2 − 2|x| |y|x′ · y′ + |y|2

we write the fractional integral of a radial function v(x) = v0(|x|) as

Tγv(x) =
∫ ∞

0

∫
Sn−1

v0(r)rn−1 dr dy′

(r2 − 2rρx′ · y′ + ρ2)γ/2
.

Using Lemma 4.1, we have that:

Tγv(x) = ωn−2

∫ ∞

0

v0(r)rn−1

{∫ 1

−1

(1 − t2)(n−3)/2

(ρ2 − 2ρrt + r2)γ/2
dt

}
dr.

Now, we may write the inner integral as:∫ 1

−1

(1 − t2)(n−3)/2

(ρ2 − 2ρrt + r2)γ/2
dt =

∫ 1

−1

(1 − t2)(n−3)/2

rγ [1 − 2(ρ
r )t + (ρ

r )2]γ/2
dt.

Therefore,

Tγv(x) = ωn−2

∫ ∞

0

v0(r)rn−γIγ,k

(
ρ

r

)
dr

r
,

where k = n−3
2 , and, for a ≥ 0,

Iγ,k(a) =
∫ 1

−1

(1 − t2)k

(1 − 2at + a2)γ/2
dt.

Notice that the denominator of this integral vanishes if a = 1 and t = 1 only.
Therefore, Iγ,k(a) is well defined and is a continuous function for a �= 1.

This formula shows in a explicit way that Tγv is a radial function, and can
be therefore thought of as a function of ρ. Furthermore, we observe that as
consequence of this formula, ρ

n
q −βTγv has the structure of a convolution on

the multiplicative group R
+:

ρ
n
q −βTγv(x) = ωn−2

∫ ∞

0

v0(r)rn−γ+ n
q −β ρ

n
q −β

r
n
q −β

Iγ,k

(
ρ

r

)
dr

r

= ωn−2

(
v0r

n−γ+ n
q −β

)
∗

(
r

n
q −βIγ,k(r)

)
.
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Hence, using Theorem 2.1 we get that

∥∥|x| −βTγv
∥∥

Lq(Rn)
=

(
ωn−1

∫ ∞

0

∣∣Tγv(ρ)
∣∣qρn−βq dρ

ρ

)1/q

= ω
1/q
n−1

∥∥Tγv(ρ)ρ
n
q −β

∥∥
Lq(μ)

≤ ω
1/q
n−1ωn−2

∥∥v0(r)rn−γ+ n
q −β

∥∥
Lp(μ)

∥∥r
n
q −βIγ,k(r)

∥∥
Ls,∞(μ)

provided that:

(4.1)
1
p

+
1
s

− 1 =
1
q
.

Using polar coordinates once again:

ω
1/p
n−1

∥∥v0(r)rn−γ+ n
q −β

∥∥
Lp(μ)

= ω
1/p
n−1

(∫ ∞

0

∣∣v0(r)
∣∣pr(n−γ+ n

q −β)p−nrn dr

r

)1/p

=
∥∥v0|x|n−γ+ n

q −β− n
p

∥∥
Lp(Rn)

.

But, by the conditions of our theorem,

n − γ +
n

q
− β − n

p
= α.

Therefore, it suffices to prove that

(4.2)
∥∥r

n
q −βIγ,k(r)

∥∥
Ls,∞(μ)

< +∞.

For this purpose, consider ϕ ∈ C∞(R), supported in [ 12 , 3
2 ] and such that

0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in ( 3
4 , 5

4 ). We split r
n
q −βIγ,k = ϕr

n
q −βIγ,k +(1 − ϕ)r

n
q −β ×

Iγ,k := g1 + g2.
We claim that g2 ∈ Ls(μ). Indeed, since Iγ,k(r) is a continuous function

for r �= 1, to analyze the behavior (concerning integrability) of g2 it suffices to
consider the behavior of r( n

q −β)s|Iγ,k(r)|s at r = 0, and when r → +∞.
Since Iγ,k(r) has no singularity at r = 0 (Iγ,k(0) is finite) the local integra-

bility condition at r = 0 is β < n
q .

When r → +∞, we observe that

Iγ,k(r) =
1
rγ

∫ 1

−1

(1 − t2)k

(r−2 − 2r−1t + 1)γ/2
dt

and using the bounded convergence theorem, we deduce that

Iγ,k(r) ∼ Ck

rγ
as r → +∞

(
with Ck =

∫ 1

−1

(
1 − t2

)k
dt

)
.

It follows that the integrability condition at infinity is n
q − β − γ < 0, which,

under our conditions on the exponents, is equivalent to α < n
p′ .
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We proceed now to g1. To analyze its behavior near r = 1, we shall need
the following lemma.

Lemma 4.2. For a ∼ 1 and k ∈ N0 or k = m − 1
2 with m ∈ N0, we have that

∣∣Iγ,k(a)
∣∣ ≤

⎧⎪⎨
⎪⎩

Ck,γ , if γ < 2k + 2,

Ck,γ log 1
|1−a| , if γ = 2k + 2,

Ck,γ |1 − a| −γ+2k+2, if γ > 2k + 2.

Remark 4.1. Notice that since in the proof of our theorem k = n−3
2 , the

conditions relating γ and k above correspond to conditions on γ and n which
cover all the range 0 < γ < n.

Proof of Lemma 4.2. Assume first that k ∈ N0 and − γ
2 + k > −1 (that is,

0 < γ < n − 1). Then,

Iγ,k(1) ∼
∫ 1

−1

(1 − t2)k

(2 − 2t)
γ
2

dt ∼ C

∫ 1

−1

(1 − t)k

(1 − t)
γ
2

dt.

Therefore, Iγ,k is bounded.
If − γ

2 + k = −1 (that is, γ = n − 1), then

Iγ,k(a) ∼
∫ 1

−1

(
1 − t2

)k dk

dtk
{(

1 − 2at + a2
)− γ

2 +k}
dt.

Integrating by parts k times (the boundary terms vanish),

Iγ,k(a) ∼
∣∣∣∣
∫ 1

−1

dk

dtk
{(

1 − t2
)k}(

1 − 2at + a2
)− γ

2 +k
dt

∣∣∣∣.
But dk

dtk {(1 − t2)k } is a polynomial of degree k and therefore is bounded in
[−1,1] (in fact, it is up to a constant the classical Legendre polynomial).
Therefore,

Iγ,k(a) ∼ 1
2a

log
(

1 + a

1 − a

)2

≤ C log
1

|1 − a| .

Finally, if − γ
2 + k < −1 (that is, n − 1 < γ < n), then integrating by parts

as before,

Iγ,k(a) ≤ Ck

∫ 1

−1

(
1 − 2at + a2

)− γ
2 +k

dt.

Thus,

Iγ,k(a) ∼
(
1 − 2at + a2

)− γ
2 +k+1∣∣t=1

t=−1
≤ Ck,γ |1 − a| −γ+2k+2.

This finishes the proof if k ∈ N0 (i.e., if n is odd).
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We proceed now to the case k = m + 1
2 , m ∈ N0. For − γ

2 + k > −1 the
proof is exactly as in the case k ∈ N0. If − γ

2 + k < −1, assume first that
− γ

2 + m + 1 < −1. Then,

Iγ,k(a) =
∫ 1

−1

(
1 − t2

)k(
1 − 2at + a2

)− γ
2 dt

=
∫ 1

−1

(
1 − t2

) 1
2 m(

1 − 2at + a2
)− γ

4
(
1 − t2

) 1
2 (m+1)(1 − 2at + a2

)− γ
4 dt

and applying the Cauchy–Schwarz inequality we get that

Iγ,k(a) ≤ Iγ,m(a)
1
2 Iγ,m+1(a)

1
2 .

Using the bound for the case in which k is an integer for Iγ,m(a) and Iγ,m+1(a),
we conclude that, Ik,γ(a) ≤ C|1 − a| −γ+2m+3 = C|1 − a| −γ+2k+2.

If, on the contrary, − γ
2 + m + 1 ≥ −1, we proceed as follows: notice that

we can always assume a < 1, since Iγ,k(a) = a−γIγ,k(a−1), then

I ′
γ,k(a) = γ

∫ 1

−1

(1 − t2)k(t − a)
(1 − 2at + a2)

γ
2 +1

dt ≤ γ

∫ 1

a

(1 − t2)k(t − a)
(1 − 2at + a2)

γ
2 +1

dt

≤ γ(1 − a)Iγ+2,k(a).

But, − γ+2
2 + k + 1

2 = − γ
2 + k − 1

2 < −1, therefore, Iγ+2,k can be bounded as
in the previous case to obtain Iγ+2,k(a) ≤ C|1 − a| −γ+2k. Using this bound,
when − γ

2 + k < −1, we obtain

Iγ,k(a) =
∫ a

0

I ′
γ,k(s)ds ≤ C

∫ a

0

(1 − s)−γ+2k+1 ds ≤ C|1 − a| −γ+2k+2,

and when − γ
2 + k = −1,

Iγ,k(a) ≤ C

∫ a

0

1
1 − s

ds = C log
1

|1 − a| .

It remains to check the case k = − 1
2

Iγ,− 1
2
(a) =

∫ 0

−1

(1 − t2)− 1
2

(1 − 2at + a2)
γ
2

dt +
∫ 1

0

(1 − t2)− 1
2

(1 − 2at + a2)
γ
2

dt

= I + II .

Since γ > 0,

I ≤
∫ 0

−1

dt

(1 + t)
1
2

= 2,

II ≤
∫ 1

0

(1 − t)− 1
2

(1 − 2at + a2)
γ
2

dt = −2
∫ 1

0

d
dt [(1 − t)

1
2 ]

(1 − 2at + a2)
γ
2

dt

≤ 2aγ

∫ 1

0

(1 − t2)
1
2

(1 − 2at + a2)
γ
2 +1

dt ≤ CIγ+2, 1
2
. �
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Now we can go back to the study of g1. We shall split the proof into three
cases, depending on whether γ is less than, equal to or greater than n − 1.
i. Assume first that 0 < γ < n − 1. Then |r|(−β+ n

q )s|Iγ,k(r)|s is bounded
when r ∼ 1, and, therefore, ‖g1‖Ls(μ) < +∞.

ii. Consider now the case γ = n − 1. Since in this case
∣∣Iγ,k(r)

∣∣ ≤ C log
1

|1 − r| ,

we conclude, as before, that ‖g1‖Ls(μ) < +∞.
iii. Finally, we have to consider the case n − 1 < γ < n. In this case,∣∣Iγ,k(r)

∣∣ ≤ C|1 − r| −γ+2k+2 = C|1 − r| −γ+n−1.

Therefore,

μ

({
g1 >

λ

2

})
≤ μ

({
C

|1 − x|γ−n+1
> λ

})
= μ

({
C

λ
1

γ−n+1
> |1 − x|

})

≤ C

λ
1

γ−n+1
≤ C

λs

as long as s(γ − n + 1) ≤ 1, which is equivalent to α + β ≥ (n − 1)( 1
p − 1

q ).
Therefore, ‖g1‖Ls,∞(μ) < +∞.

Remark 4.2. The following example shows that for n = 3 the condition
α + β ≥ (n − 1)( 1

q − 1
p ) is necessary.

Assume that α + β < (n − 1)( 1
q − 1

p ). Then, by Remark 1.2, γ > n − 1.
Since 1

q = 1
p + 1

s − 1, we obtain γ − n+1 > 1
s and, therefore, by Lemma 4.2,

for n = 3 and r ∼ 1, Iγ,k(r) ∼ 1

|1−r|
1
s
+ε

for some ε > 0.

Fix η such that ηp > 1 and let

f(r) =
χ[ 12 , 3

2 ](r)

|1 − r| 1
p log( 1

|1−r| )
η
.

Then f ∈ Lp(μ) and, for r > 1,

(Iγ,k ∗ f)(r) ≥
∫ 3

2

r

t
1
s +ε

t
1
s +ε|1 − r

t | 1
s +ε|1 − t| 1

p log( 1
|1−t| )

η
dt

≥
∫ 3

2

r

1

(t − r)
1
s +ε(t − 1)

1
p (log 1

|1−r| )
η

dy

≥ 1
(log 1

|1−r| )
η

∫ 3
2

r

dy

(t − 1)
1
s + 1

p +ε

∼ 1

(log 1
|1−r| )

η |1 − r| 1
q +ε

/∈ Lq.
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Recall now that for a radial function,

ρ
n
q −βTγf0(ρ) = f0r

n
p +α ∗ r

n
q −βIγ,k(r).

Therefore, defining f0 = f(|x|)|x| − n
p −α we have, ‖f0|x|α‖Lp < ∞ but

Tγf |x| −β �∈ Lq .

5. An application to weighted imbedding theorems

Consider the fractional order Sobolev space

Hs
(
R

n
)

=
{
u ∈ L2

(
R

n
)

: (−Δ)s/2u ∈ L2
(
R

n
)}

(s ≥ 0).

As an application of our main theorem, we will prove a weighted imbed-
ding theorem for Hs

rad(Rn), the subspace of radially symmetric functions of
Hs(Rn).

Theorem 5.1. Let 0 < s < n
2 , 2 < q < 2∗

c := 2(n+c)
n−2s . Then, we have the

compact imbedding
Hs

rad

(
R

n
)

⊂ Lq
(
R

n, |x|c dx
)

provided that −2s < c < (n−1)(q−2)
2 .

Remark 5.1. The case s = 1 of this lemma was already proved in the work
of W. Rother [7], while the general case was already proved in a completely
different way in our work [1].

Remark 5.2. The unweighted case c = 0 gives the classical Sobolev imbed-
ding (in the case of radially symmetric functions). In that case, the compact-
ness of the imbedding Hs

rad(Rn) ⊂ Lq(Rn) under the conditions 0 < s < n
2 and

2 < q < 2n
n−2s was proved by P. L. Lions [6].

Proof of Theorem 5.1. Let u ∈ Hs
rad(Rn). Then, f := (−Δ)s/2u ∈ L2, and,

recalling the relation between the negative powers of the Laplacian and the
fractional integral (see, e.g., [9, Chapter V]), we obtain

Tn−sf = C(−Δ)−s/2f = Cu.

Then, it follows from Theorem 1.2 that∥∥|x| c
q u

∥∥
L2∗

c (Rn)
= C

∥∥|x| c
q Tn−sf

∥∥
L2∗

c (Rn)
≤ C‖f ‖L2(Rn) ≤ C‖u‖Hs(Rn).

Therefore, writing q = 2ν + (1 − ν)2∗
c , and using Hölder’s inequality, we

obtain ∥∥|x| c
q u

∥∥
Lq(Rn)

≤
∥∥|x| c

q u
∥∥ν

L2∗
c (Rn)

‖u‖1−ν
L2(Rn) ≤ C‖u‖Hs(Rn).

It remains to prove that the imbedding Hs
rad(Rn) ⊂ Lq(Rn, |x|c dx) is com-

pact. The proof can be made in the same way as that in [1, Theorem 2.1].
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Indeed, it suffices to show that if un → 0 weakly in Hs
rad(Rn), then un → 0

strongly in Lq(Rn, |x|c dx). Since

2 < q < 2∗
c =

2(n + c)
n − 2s

by hypothesis, it is possible to choose r and q̃ so that 2 < r < q < q̃ < 2∗
c . We

write q = θr + (1 − θ)q̃ with θ ∈ (0,1) and, using Hölder’s inequality, we have
that

(5.1)
∫

Rn

|x|c|un|q dx ≤
(∫

Rn

|un|r dx

)θ(∫
Rn

|x|c̃|un|q̃ dx

)1−θ

,

where c̃ = c
1−θ . By choosing r close enough to 2 (hence making θ small), we

can fulfill the conditions

q̃ <
2(n + c̃)
n − 2s

, −2s < c̃ <
(n − 1)(q̃ − 2)

2
.

Therefore, by the imbedding that we have already established:(∫
Rn

|x|c̃|un|q̃ dx

)1/q̃

≤ C‖un‖Hs ≤ C ′.

Since the imbedding Hs
rad(Rn) ⊂ Lr(Rn) is compact by Lions theorem [6],

we have that un → 0 in Lr(Rn). From (5.1), we conclude that un → 0 strongly
in Lq(Rn, |x|c dx), which shows that the imbedding in our theorem is also
compact. This concludes the proof. �
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